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Abstract

Three-dimensional segmentation in magnetic resonance images (MRI), which reflects the
true shape of the objects, is challenging since high-resolution isotropic MRIs are rare and
typical MRIs are anisotropic, with the out-of-plane dimension having a much lower resolu-
tion. A potential remedy to this issue lies in the fact that often multiple sequences are ac-
quired on different planes. However, in practice, these sequences are not orthogonal to each
other, limiting the applicability of many previous solutions to reconstruct higher-resolution
images from multiple lower-resolution ones. We propose a weakly-supervised deep learning-
based solution to generating high-resolution masks from multiple low-resolution images.
Our method combines segmentation and unsupervised registration networks by introduc-
ing two new regularizations to make registration and segmentation reinforce each other.
Finally, we introduce a multi-view fusion method to generate high-resolution target object
masks. The experimental results on two datasets show the superiority of our methods. Im-
portantly, the advantage of not using high-resolution images in the training process makes
our method applicable to a wide variety of MRI segmentation tasks. The code for repro-
ducing the results is available at: https://github.com/mazurowski-lab/Supermask.

Keywords: High-resolution object generation, medical image segmentation

1. Introduction

As a non-invasive and low-radiation imaging technique, magnetic resonance imaging (MRI)
plays an important role in disease diagnosis and characterization. In clinical practice, MRI
scans are done with relatively few slices and a significant slice thickness, owing to the limits
imposed by the technique’s slow acquisition speed. In replace of an isotropic high-resolution
3D volume, highly anisotropic images, which can be seen as a stack of 2D slices (Erasmus
et al., 2004), are acquired with better resolution inside the slices than in the slice-selection
(or through-plane) direction (Van Reeth et al., 2012), see Figure 1 (green box). When
directly segmenting the target objects on the anisotropic volumes, the low resolution (LR)
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Figure 1: The objective of our strategy is to generate realistic 3D masks for non-isotropic
MRIs (have low-resolution at through-plane directions). The left is an illustration
of the definition of in-plane slices and through-plane slices. The 3D object directly
from manual annotations has a coarse and grid-like appearance (the first 3D
object); our method is targeted to generate higher-detailed and more realistic
high-resolution masks (the middle 3D object) when only low-resolution images
and annotations are available. The generated 3D object has more details and
higher similarity to real objects (the right 3D object).

in the slice-selection direction might result in extremely coarse predictions (Figure 1, red
box) that are far from the real-object shape, hence hindering the later diagnosis.

Machine learning-based super-resolution (SR) methods have been widely used for the
reconstruction of a high-resolution (HR) magnetic resonance (MR) 3D volume from multi-
planar LR 2D scans (Van Reeth et al., 2012; Plenge et al., 2012; Gholipour et al., 2010; Jia
et al., 2017; Sui et al., 2019). In recent years, several studies have further investigated con-
volutional neural networks (CNNs) based architectures for HR MRI reconstruction (Pham
et al., 2019; Jurek et al., 2020). Ebner et al. (2020) presented a fully automated framework
for fetal brain reconstruction that includes coarse fetal brain localization, fine segmenta-
tion, and super-resolution reconstruction. Chai et al. (2020) used a generative adversarial
network (GAN) to restore the through-plane slices. However, the majority of the previously
proposed methods are impractical because current MRI high-resolution recreation methods
from multi-planar views often require well-aligned and near-perfect orthogonal images
(Zhang et al., 2021; Zhou et al., 2019). This is not commonly happening in the real case
because the views are defined in the anatomy coordination instead of the world coordina-
tion, and patients may switch poses largely between views, as seen in Appendix A. Images
can be largely misaligned because of the patient’s movement, or other views are not taken
simultaneously.

When the resolution at the through-plane direction is too low to distinguish the details,
it is impossible to extract precise and realistic masks from a single MRI volume, as seen in
Figure 1 (left volume), and applying multi-planar scans into segmentation tasks is also an
effective strategy. In order for the recreation of HR masks from multi-view MRIs, image
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registration and alignment are essential. Some studies (Askin Incebacak et al., 2022) men-
tioned an initial registration procedure as the preprocessing. However, traditional registra-
tion techniques (Ferrante and Paragios, 2017) are time-consuming, isolated to downstream
tasks, and considered different views are taken simultaneously with only small variations
in the patient’s mobility instead of substantial posture switching. On the other side, our
target images have larger displacements, making the registration significantly harder.

Figure 2: This is the pipeline of our proposed method SuperMask. In training phase 1, an
image registration network (AlignNet) and a segmentation network are trained
separately. In training phase 2, the AlignNet and Segmentor are intertwined to
fine-tune with two newly introduced regularization losses. In the test phase for
our method, Coronal and Sagittal view images are aligned into the axial view
first, and a 1-D Gaussian fusion is applied to generate a high-resolution mask.

In this paper, we introduce a weakly-supervised framework called SuperMask that can
automatically register low-resolution, unaligned 2DMRI scans obtained from different orien-
tations and produce HR and precise masks. Our approach utilizes deep learning techniques
to learn the deformations required to register the images and the segmentations of target
subjects on different views of LR scans. The framework consists of three stages: in the
first, registration and segmentation networks are pre-trained independently; in the second,
segmentation and registration mutually promote one another (referred to as intertwined
learning); and in the third, segmentation results are fused. By introducing two extra reg-
ularization terms, our innovative design of intertwined learning can facilitate each part’s
learning. This complementary learning approach can achieve an optimal registration and
target object segmentation solution. In addition, our simple single-dimensional uncertainty
Gaussian fusion, inspired by Gaussian Mixture Models (GMM) (Reynolds, 2009), can ef-
ficiently fuse information from multiple views, and we consider it a good fit for MRIs’
through-plane uncertainty compared with other fusion strategies.
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We demonstrate the effectiveness of our framework on a variety of datasets with varying
distances between slices. The experiments show that our approach is able to outperform pre-
vious methods, particularly in cases where the images are low-resolution or poorly aligned.
In contrast with previously generative-based methods (Chai et al., 2020; Yuan et al., 2020)
and image-to-image translation methods (Masutani et al., 2020), our method does not re-
quire any high-resolution images or masks to be involved in the training and design
processes. Since high-resolution MRI images are exceedingly rare for several body parts
(3D), our method is extensible and effective for a variety of use cases.

2. Method

Our SuperMask is made to effectively auto-register low-resolution (LR) and unaligned im-
ages, segment the targets, and generate HR masks that have more accurate target objects’
shape representations. Section 2.2 describes a coarse pre-training for image registration and
segmentation, followed by an intertwined training for fine-tuning in Section 2.3. Finally, we
show the generation of HR masks using our novel 1D-Gaussian fusion in Section 2.4.

2.1. Pre-processing

In the target task, each patient contains three low-resolution 2D MR scans from differ-
ent views (axial, coronal, and sagittal) of the same body part, I1 ∈ RX×Y×Zl , I2 ∈
RX×Yl×Z ,I3 ∈ RXl×Y×Z . Xl, Yl, Zl represent the number of slices on lower-sampled dimen-
sions, which are much smaller than the in-plane dimensions X, Y , and Z. The ground-truth
masks for these three images are Y1, Y2, Y3 of the same dimension. For 2D MRI, which is
often not isotropic, its voxel size can be expressed in terms of pixel spacing (p) and dis-
tance between slices (d). For example, I1 has a voxel size of p × p × d, ds = p

d = Zl
Z ,

where we define ds as a relative ratio of the slice distance vs. in-plane pixel spacing. In
order to better register I1, I2, and I3, we first need to match their voxels to the same unit,
i.e., by up-sampling and fill the missing slices by nearest interpolation on 2D scans and
masks to get a voxel size of p × p × p, seen as Figure 2 (bottom left). We get 3D volumes
I ′1, I

′
2, I

′
3, Y

′
1 , Y

′
2 , Y

′
3 ∈ RX×Y×Z .

2.2. Coarse segmentation and registration

In phase 1 training, we train the coarse segmentation and registration separately, as shown
in the top left of figure Figure 2. For segmentation, we assemble all of the available up-
sampled images and masks into a training set I′ = I′1 ∪ I′2 ∪ I′3, Y = Y′

1 ∪Y′
2 ∪Y′

3 and
feed them into a 3D U-net (Çiçek et al., 2016) to train a coarse segmentation network S1.
Let I ′i as the input volume, Mi = S1(I

′
i) as the predicted mask and Yi as the corresponding

ground truth mask. Dice loss (Sudre et al., 2017) (noted as Lseg1) is applied for penalizing
the segmentation objective.

For registration, we implement a coarse 3D spatial transformer network G1 ((Jaderberg
et al., 2015) modified from a 2D version). For each patient, we sample two views, I ′i, I

′
j ∈

I ′1, I
′
2, I

′
3 and apply a random affine transformation to each to augment the training set.

The localization network takes two 3D volumes, I ′i as the moving image and I ′j as the fixed
image. It generates 12 affine parameters that reflect the transformation from I ′1 to I ′2.
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Considering that MRI responds to real-life objects and does not have the deformation and
scaling of objects, we reduce the number of affine parameters by setting the shearing and
scaling parameters all to 1. After sampling grid G based on these affine parameters θi→j to
get registration field ϕi→j = Tθ(G), we apply a differentiable image sampling on the input
moving image I ′i to generate a moved image fi→j = G1(I

′
i, I

′
j) = I ′i ◦ ϕi→j that is registered

into the pose of I ′j .
The unsupervised registration loss combines two components: Lsim that penalizes the

difference between the moving and fixed image, and LID that prevents the transformation
between two identical inputs,

Lalign1 = Lsim(I ′j , fi→j) + λ1LID, (1)

where we apply Lsim as local cross-correlation (Boyd, 2001), which is more robust to inten-
sity variations across scans and datasets, and LID = ||I ′i,G(I ′i, I ′i)||2+ ||I ′j ,G(I ′j , I ′j)||2, where
|| · || denotes L2-norm. Also, Lalign1 can be extended to a supervised version considering
the LR masks are available, which are finally Lalign∗

1
= Lalign1 + λ2Lsim(Y ′

j , Yiϕi→j). The
results of these two versions of registration loss had no significant differences based on our
experiments.

2.3. Intertwined-tuning segmentation and registration

After pre-training the segmentation S1 and G1, we fine-tune them by intertwining the seg-
mentation and registration steps. Similarly to the previous stage, we randomly select two
different views from a single patient at one time, I ′i, I

′
j ∈ I ′1, I

′
2, I

′
3. We also introduce two

new loss functions, cross-view supervision, Lcons1 and Lcons2 as

Lcons1 = ||MFj→i −Mi||2 + ||MFi→j −Mj ||2,
Lcons2 = ||FMi −Mi||2 + ||FMj −Mj ||2,

(2)

where MFj→i = S(fj→i) represents the segmentation masks obtained from the aligned
image fj→i, and similarly for MFi→j = S(fi→j). FMi = S(I ′i) ◦ ϕi→j was obtained by first
segmenting the original image I ′i and then registering the segmented mask into the pose of
image I ′j . Similarly for FMj = S(I ′j) ◦ ϕj→i. Lcons1 encourages the segmentation network S
to predict masks from a single view of the image that looks similar to those from aligned
images, and Lcons2 encourages the registration network G to align the segmented masks to
have more overlap. These two intertwined regularizations are applied separately to S and
G to achieve more accurate and precise segmentation and registration.

In training stage 2, the AlignNet and Segmentor are updated iteratively, and the final
objectives to update the segmentation network and registration network are Lseg2 = Lseg1+
α1Lcons1 , Lalign2 = Lalign1 + α2Lcons2 , respectively.

2.4. 1-D Gaussian fusion to generate high-resolution mask

During inference, we take the three views of scans I ′1, I
′
2 and I ′3, and align the last two views

(I ′2 I ′3 into the axial scans I ′1) first; then these aligned scans are fed into the segmentation
networks to get their predicted masks. Without loss of generality, let us examine the sagittal
view as an example. We introduce a sampling matrix called S3, that reflects the sampling
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voxels in the up-sampled image matrix, where S3[i, j, k] = 1 when this voxel point is taken
from the original LR image I3 instead of an interpolated value. Thus we can see that the
matrix S3 is like a matrix with the YZ-plane assigned to 1 at regular intervals in the x-
dimension, as shown in Figure 2 (bottom branch). Inspired by descriptions of uncertainties
in MRIs (Van Reeth et al., 2012), we found that 1D-Gaussian was a perfect match with
the uncertainties between slices. Thus, we apply a 1D-gaussian along the through-plane
dimension (x dimension for sagittal views) with a Gaussian kernel size of ds/2, we could get
a probability matrix (P3) that reflects the confidence of this scan at each voxel, and this
probability matrix can be aligned into the registered images as P3→1 = S3 ◦ϕ3→1. The final
mask is fused by the following equation:

Mhr =
1

ω1
M1 ∗ P1 +

1

ω2
MF2→1 ∗ PF2→1 +

1

ω3
MF3→1 ∗ PF3→1; (3)

where w1, w2, w3 are the normalization factors with ωi =
Pi∑3
1 Pk

.

3. Experiments

Figure 3: Qualitative results of the high-resolution mask generation methods. The methods
depicted here are Unet-LR, Unet-cc-nst, Unet-cc-vote, Ours, and Unet-HR. Here
are two examples from Heart 16 (upper two rows) and Brain 16 (bottom two
rows), respectively. For each example, the first row is the 2D-slice view of the HR
images with masks; the green curves are the ground truths, and the pink curves
are the predictions. The bottom row shows the 3D view of the objects.

3.1. Datasets

As above-mentioned, most body parts are not imaged in high-resolution (HR) MRI, so to
prove our method’s effectiveness, we test our method by the body parts with HR MRI
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available. By training the networks on the LR images, we can evaluate our method’s
performance on the HR masks. In this work, we obtain two MRI datasets, Brats (Menze
et al., 2015) and Heart (Simpson et al., 2019).

Brats contains 273 patient studies. We split them into 164 studies in the training
set and 42 in the test set. The original volumes are isotropic, with a voxel spacing of 1
mm * 1 mm * 1 mm. Heart contains 20 patient studies We split them into 15 studies
in the training set and 5 in the test set. The original images have a voxel spacing of
1.25mm*1.25mm*1.37mm, which has a slightly lower but acceptable resolution in the third
dimension. To make a consistent 3D input size for networks, we first resample the volumes
with a 1mm*1mm*1mm voxel spacing. For each of the datasets, we start by centering the
object and padding it to a cube of 256 × 256 × 256 voxels. Then, we apply a random 3D
affine transformation, consisting of a rotation ranging from -45 degrees to 45 degrees and
a translation ranging from -30 voxels to 30 voxels, and auto-contrast to imitate the MRIs
gotten at different times. To get the LR images, we resample each dimension with a slice
distance of 8 mm (noted as datasets Brain 8 and Heart 8 ) and 16 mm (noted as datasets
Brain 16 and Heart 16 ), where the resampled images have dimensions 32 for voxel spacing
of 8 mm and 16 for voxel spacing of 16 mm.

3.2. Baseline methods

We compare our methods with the following: The first baseline, Unet-LR, is a segmen-
tation algorithm (3D Unet) that uses all low-resolution images with all available views,
similar to our stage 1 segmentation (S1). Second, Unet-cc-img-nst, is the Unet-LR plus
image correlation, a traditional, non-learning-based iterative registration method that uses
image correlation as a similarity metric and has a convergence minimum value of 1E-6 to
register three-view images. Then the segmented masks are fused by a 3D nearest neighbor
interpolation (Unet-cc-img-nst). Third, Unet-cc-img-vote, a similar version of the second
but using majority voting, commonly used in ensemble learning, as the final fusion algo-
rithm. The fourth and fifth, Unet-cc-msk-nst and Unet-cc-msk-vote, are similar versions
of the second and third but apply registration directly to the segmented masks. Lastly,
Unet-HR is trained on 1 mm* 1 mm* 1 mm voxel-spaced HR images. It is not appropriate
to compare to the other methods, but it can serve as an “upper bound” for all methods.

3.3. Metrics

We compare the predicted masks with the ground-truth HR masks YHR. To make the
comparison fair, we assume that the HR masks are perfectly aligned with the axial view
images, as the axial view is unchanged. By directly calculating the metrics on the predicted
axial view masks, we can compare the predicted LR masks M1 with HR ground truth
masks YHR. We quantify the generated HR masks with MHR by first the dice score (DSC)
which quantifies the overlap of the predicted masks and HR ground truths. Then, the
under segmentation (US), over segmentation (OS), root mean squared (RMS) (Monteiro
and Campilho, 2006) which quantify the precision of the predicted masks. Lastly, in light of
the fact that the DSC evaluates overlap but places little emphasis on the shape information
of segmented volumes, we also add a boundary accuracy (mBA) (Taha and Hanbury, 2015)
that focuses on the shape details.
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3.4. Implementation details

For our methods, during training stage 1, Segmentor and Alignet are trained separately
with a learning rate of 0.001 for 40 epochs. During training stage 2, the learning rate is set
at 0.0001 with a step-wise learning rate decay for every 200 iterations as gamma = 0.9, and
stage 2 training is done for 60 epochs. Before feeding into the networks, rescale intensity
after a 2%-98% thresholding was applied to normalize image intensities into [0,1]. During
all the training, the batch size is set to 2, and 2 GPUs with the Geforce A6000 are used.
For the hyper-parameters, α1 = α2 = 0.05, λ1 = 0.1, and λ2 = 0.05, and it was chosen by
the experiments on Heart 16 dataset among several hyper-parameters combinations. All
the baseline methods are set for training over 100 epochs with the same learning rate decay
and batch size as our method.

Table 1: Quantitative results of the high-resolution mask generation methods. Dataset 8
and 16 note the slice distance in the through-plane direction. Results are reported
based on 4 repeated training sections with average and standard deviation (±).
our-1seq denotes the evaluation situation when only 1 view (axial-view) is avail-
able, and our-2seq denotes 2 views (axial-view and sagittal-view) are available.

Methods Heart 8 Brain 8
DSC US OS RMS mBA DSC US OS RMS mBA

Unet-LR 0.863±.008 0.118±.015 0.151±.013 0.141±.015 0.850±.010 0.839±.011 0.127±.013 0.173±.010 0.166±.013 0.819±.012
Unet-img-cc-nst 0.819±.017 0.202±.019 0.156±.018 0.182±.019 0.803±.021 0.634±.024 0.194±.022 0.397±.041 0.195±.039 0.789±.029
Unet-img-cc-vote 0.879±.014 0.063±.0120.174±.015 0.130±.013 0.859±.016 0.813±.019 0.058±.020 0.262±.032 0.196±.033 0.807±.019
Unet-msk-cc-nst 0.799±.026 0.121±.028 0.251±.023 0.204±.028 0.814±.022 0.728±.036 0.086±.033 0.359±.039 0.279±.039 0.770±.035
Unet-msk-cc-vote0.863±.022 0.198±.028 0.064±.0250.178±.024 0.842±.019 0.761±.029 0.053±.0320.330±.033 0.216±.021 0.776±.027
Ours-1seq 0.871±.005 0.098±.012 0.117±.010 0.108±.012 0.855±.009 0.849±.007 0.142±.008 0.151±.011 0.157±.009 0.821±.003
Ours-2seq 0.886±.006 0.095±.015 0.121±.016 0.114±.015 0.857±.011 0.855±.011 0.136±.009 0.131±.015 0.134±.011 0.830±.007
Ours(SuperMask)0.896±.0020.093±.010 0.113±.010 0.105±.0100.870±.0090.883±.0120.109±.014 0.116±.0150.126±.0150.848±.010

Heart 16 Brain 16
DSC US OS RMS mBA DSC US OS RMS mBA

Unet-LR 0.812±.009 0.201±.018 0.173±.016 0.189±.018 0.780±.014 0.81±.014 0.134±.021 0.224±.024 0.195±.025 0.797±.019
Unet-img-cc-nst 0.664±.054 0.338±.065 0.330±.045 0.336±.063 0.687±.035 0.638±.099 0.441±.097 0.162±.056 0.347±.095 0.794±.074
Unet-img-cc-vote 0.683±.035 0.319±.066 0.302±.055 0.310±.063 0.703±.045 0.638±.095 0.504±.094 0.042±.0070.359±.094 0.715±.029
Unet-msk-cc-nst 0.683±.043 0.176±.054 0.401±.074 0.312±.064 0.730±.043 0.629±.104 0.464±.122 0.125±.067 0.353±.069 0.719±.054
Unet-msk-cc-vote0.763±.024 0.059±.0070.357±.045 0.256±.043 0.766±.016 0.670±.047 0.040±.0050.460±.073 0.321±.071 0.728±.043
our-1seq 0.819±.008 0.200±.016 0.157±.012 0.182±.015 0.791±.016 0.820±.013 0.156±.024 0.190±.022 0.184±.023 0.801±.017
our-2seq 0.833±.005 0.187±.014 0.146±.015 0.177±.014 0.798±.015 0.836±.013 0.140±.027 0.185±.015 0.179±.017 0.810 ±.011
Ours(SuperMask)0.875±.0040.139±.012 0.131±.0140.137±.0130.842±.0100.861±.0150.108±.017 0.165±.020 0.152±.0170.823±.014

HR (upper bound) HR (upper bound)
Unet-HR 0.923±.009 0.102±.010 0.051±.006 0.082±.009 0.908±.013 0.900±.014 0.068±.013 0.117±.017 0.110±.015 0.877±.016

3.5. Results and discussion

Table 1 shows the results for the HR mask generation on various datasets. It is shown
that our method outperforms all the baselines on all the datasets when only LR images are
available. Compared with the drop in performance from Unet-HR to Unet-LR, there is a
drop in DSC of 0.06 for slice distances of 8 mm and a drop of 0.112 and 0.09 for 16 mm. We
can see that only training a simple 3D segmentation network with LR images and masks
is not enough to achieve acceptable HR masks. The loss of information between through-
plane slices is detrimental. The more distant the slices are from each other, the lower the
resolution of the image is, and the more significant this performance reduction is. This
could also be seen in Figure 3, where, despite up-sampling to the real-world coordination,
the segmented masks from Unet-LR have a very distinct ladder-like appearance.
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Even when only getting LR images, our method gets an increase in DSC of 0.03 and 0.043
for a slice thickness of 8 mm and a significant increase of 0.052 and 0.09 for a slice thickness
of 16 mm, for the heart and brain datasets, compared with Unet-LR. This confirms the
ability and effectiveness of our method to combine more details by extracting information
from non-orthogonal LR images. Comparing RMS, it can be reduced by about 28% on
the Heart 16 dataset and 22.1% on the brain 16 dataset. Our approach can substantially
reduce the RMS due to the through-plane uncertainty. Using mBA, we observe an obvious
increase in mBA for our methods, especially with a slice thickness of 16 mm, where a large
part of the boundary details is lost from the input images. Although there are some smaller
US for nearest or voting fusion methods, they suffer from a much larger OS, indicating an
over-segmentation bias. Our method achieves a better balance.

The drop in performance for baselines Unet-img-cc-* and Unet-msk-cc-* implies that
generating HR masks from multiple views requires highly precise image registration. The
traditional image registration methods based on image correlation can not handle the low
through-plane resolution well at different directions; see Appendix B for more details. Us-
ing failed image registration to construct segmentations from multiple views is detrimental.
Our learning-based registration, combined with the target object’s segmentation, can cir-
cumvent this problem and make connections between views, which contributes to the fusion
of the target object’s segmentation. Also, because the training was a two-view setting, our
work can be easily extended when only two views are available (our-2seq), and also get an
improvement. More details of the effectiveness of each component are shown in appendix D
Table 4. Also seen from the illustration in Figure 3, our final generated masks, though free
from any HR images or masks during the training and evaluation, can preserve the details
of the object boundaries and have a high consensus with the HR masks.

4. Conclusion

In this work, we proposed a method SuperMask that generates high-resolution target seg-
mentation from multiple unaligned 2D MRIs. We experimentally demonstrate the effec-
tiveness of our methods for improving segmentation performance when only low-resolution
masks are available. Importantly, our method does not require HR images in the training
stage, which makes it broadly applicable. Future work will consider extending the method
from generating HR masks to generating HR images.
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Appendix A. Illustration of the orientation of three different volumes

Figure 4 shows that the ideal assumption for multi-view MRIs is that axial/sagittal/coronal
views are orthogonal to each other with no translation offset. However, in reality, these
three perspectives are based on an anatomical term in which the objects may have large
positional movements or orientations. If we translate these three views into real-world units
and directly combine these three scans (Figure 4 (c), (d), (e)), the ulna/radius bones cannot
overlap due to the positional/orientation alterations.

Appendix B. The results for image registration

Figure 5 shows that, when we are to align coronal views and sagittal views which have the
low resolution at different planes, traditional registration can achieve to-some-extent the
correction between images. But the accuracy of its correction is not as high as that of our
method. For example, if we look at the bottom two rows in Figure 5 (aligned sagittal for
trade-img), it has a rotation error with the other two views after registration. These slight
imperfections are detrimental if we want to rely on the predicted mask on these aligned
images.

It can also be seen from Table 2, using our 2-stage intertwined learning can guarantee
better agreements between views, where the DSC between views is higher compared with
an isolated set of image segmentation and registration (Unet-img-cc-*). Also, applying the
registration directly to segmented masks can achieve a large overlap, but these alignments
might be far from the real objects (i&HR are lower).

Appendix C. Details of hyperparameter selection

We selected our model’s final hyper-parameters based on the evaluated DSC on the Heart
16 dataset, where we put extra 4 volumes in training set as the evaluation set here. There
are enormous combinations of parameters α1, α2, λ1, λ2, and we did not through all the
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Figure 4: Illustration of input MRIs and the orientation of three different volumes. (a)(ideal
case) anatomical coordinate system aligned with image coordinate system;
(b)(real case) anatomical coordinate system not aligned with image coordinate
system; (c)axial-view scans; (d)coronal-view scans; (e)sagittal-view scans; (f) in-
tegration of three views from the same patient in real-clinical forearm MRIs.

Table 2: Quantitative performance of image registration for multi-view MRIs. Shown are
the DSC between segmented masks on the aligned views of the Brat 16 dataset.
1&2 means DSC calculated on view 1 and view 2 masks.

DSC between views 1&2 1&3 2&3 2&HR 3&HR
Unet-img-cc-* 0.71 0.661 0.697 0.765 0.717
Unet-msk-cc-* 0.750 0.725 0.696 0.749 0.715
Ours 0.784 0.75 0.755 0.816 0.783
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Figure 5: Qualitative results for image registration from multi-views,

potential parameter settings. Based on the five different combinations, we found that λ1,
λ2, which controls the registration loss, were preferable under a scale of 0.5. α1, α2, which
controls the scales of regularization terms, are not too influential on the final performance.
We assumed that is because of the two-stage training, the previous loss terms as Lalign1

and Lseg1 were already optimized in pre-training, and stage 2 would care more from the
gradients contributed from Lcons1 and Lcons2 no matter the scaling is. We agreed that we
are not thoroughly optimizing these parameters on each individual dataset, but the general
selection rule for the scales of parameters found by these five combinations could give us a
relatively good performance on other datasets.

Table 3: The details of hyper-parameter selection on Heart 16 dataset, and the supporting
metric is DSC.

model version α1 α2 λ1 λ2 DSC
model 1 0.1 0.1 0.1 0.1 0.87
model 2 0.2 0.2 0.5 0.5 0.845
model 3 0.05 0.05 0.1 0.05 0.871
model 4 0.5 0.5 0.1 0.05 0.867
model 5 0.05 0.05 0.1 0.05 0.872
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Appendix D. The results for ablation studies

This section shows the ablation studies for our method that demonstrate the effectiveness of
each component of our method. Our-1-stage is our methods’ one-stage training without an
intertwined regularization. Our-voting is replacing the 1D-fusion in our method with voting,
and Our-voting is replacing the 1D-fusion in our method with the nearest interpolation.

Table 4: Ablation study of each component of our model.

Ablation methods componenets heart-16
two-stage Alignet fusion DSC US OS RMS mBA

Our-1-stage 0 1 our fusion 0.849 0.178 0.120 0.154 0.819
Our - voting 1 1 voting 0.826 0.154 0.161 0.157 0.821
Our - nearest 1 1 nearest 0.763 0.286 0.227 0.237 0.750
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