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ABSTRACT
Audio-Visual Segmentation (AVS) aims to segment sound-producing
objects in videos according to associated audio cues, where both
modalities are affected by noise to different extents, such as the
blending of background noises in audio or the presence of distracted
objects in video. Most existing methods focus on learning interac-
tions between modalities at high semantic levels but is incapable
of filtering low-level noise or achieving fine-grained representa-
tional interactions during the early feature extraction phase. Con-
sequently, they struggle with illusion issues, where nonexistent
audio cues are erroneously linked to visual objects. In this paper,
we present SelM, a novel architecture that leverages selective mech-
anisms to counteract these illusions. SelM employs State Space
model for noise reduction and robust feature selection. By impos-
ing additional bidirectional constraints on audio and visual embed-
dings, it is able to precisely identify crutial features corresponding
to sound-emitting targets. To fill the existing gap in early fusion
within AVS, SelM introduces a dual alignment mechanism specifi-
cally engineered to facilitate intricate spatio-temporal interactions
between audio and visual streams, achieving more fine-grained
representations. Moreover, we develop a cross-level decoder for
layered reasoning, significantly enhancing segmentation precision
by exploring the complex relationships between audio and visual in-
formation. SelM achieves state-of-the-art performance in AVS tasks,
especially in the challenging Audio-Visual Semantic Segmentation
subset. Source code will be made publicly available.

CCS CONCEPTS
• Computing methodologies→ Video segmentation.

KEYWORDS
Audio-visual segmentation, selective mechanism, multimodal fea-
ture alignment

1 INTRODUCTION
Audio-Visual Segmentation (AVS) is an emerging multimedia tech-
nology with wide applications, such as video editing, industrial
maintenance, and surveillance. It aims at leveraging audio cues
to enable models to locate sound-producing objects and generate
pixel-level segmentation masks. Introduced by AVSBench [56, 57],
this task encompasses three settings: Semi-supervised Single Sound
Source Segmentation (S4), Fully-supervised Multiple Sound Source
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Figure 1: Auditory Illusions. Illustrating the struggle of ex-
isting methods with auditory illusion issues, where models
erroneously segment non-emitting targets.

Segmentation (MS3), and Audio-Visual Semantic Segmentation
(AVSS), covering a spectrum of segmentation complexities.

In the AVS task, video provides explicit spatial information, while
audio reveals changes in sound over time. For instance, if the model
detects human vocals suddenly emerging within a piano accom-
paniment through the audio, then the model should accordingly
segment both the singer and the piano. Similarly, upon observing
guitar strings being plucked in the video, it should accordingly
segment the guitar. Therefore, the comprehensive integration of
both modalities is crucial for accurately inferring the location of
entities. Current methods [8, 29, 32, 38, 57] predominantly focus
on developing more effective auditory-visual information fusion
methods. For example, AVSBench [57] integrates the TPVAI mod-
ule to facilitate interaction between Audio-Vidual features, while
CATR [29] introduces a decoupled Audio-Visual Transformer for
integration across both spatial and temporal dimensions. From
another perspective, some researches [18, 39, 57] explores the diver-
sity of feature representation. AVSBench employs regularization to
reduce the distance between modal features, narrowing the domain
gap. One representative study is ECMVAE [39], which utilizes mul-
tiple regularizations to decompose features into shared and specific
components, achieving more robust feature representations.

Despite significant advancements in quantitative evaluation met-
rics achieved by current methods, extensive visualizations unveil
’hallucination’ as depicted in Figure 1. Despite the performers do
not sing, current methods are influenced to different degrees and
erroneously segment the silent objects. We term this phenomenon
the Auditory Illusions issue, highlighting that in existing methods,
audio fails to play a decisive role in entity selection. We identify two
reasons: (1) Both audio and video contain considerable noise, and
whenmultiple sound sources appear in the same scene, key informa-
tion overlaps, challenging the model’s ability to decouple different
sound-emitting entities, thereby misleading its segmentation. (2)
Although current methods employ feature fusion or regularization,
they predominantly utilize intermediate or late fusion techniques,
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as depicted in Figure 2. Given the substantial disparities between the
modalities, previous approaches result in a deficiency of nuanced
fusion and fine-grained representations.

To address the first issue, we consider leveraging the selective
mechanism of Mamba [11] to suppress noise. Mamba, renowned for
its powerful long-sequence modeling capability and computational
efficiency, garners widespread attention within the community. Its
reliable modeling prowess stems from the selective mechanism that
compresses redundant representations and noise, isolating key and
robust features. This capability is particularly suited to the AVS task,
prompting our use of Mamba coupled with the design of a bidirec-
tional conditional constraint for further cross-modal cue selection.
For the second issue, beyond facilitating high-level information ex-
change, we also propose the dual alignment approach between the
two encoders to achieve early fusion. The differences between the
previous method and ours are demonstrated in Figure 2(a) and (b).
Numerous multimodal studies [7, 10, 42, 54] highlight the benefits
of early fusion, such as the capability to overcome domain gaps and
generate more detailed representations. Thus, for the first time in
the context of AVS tasks, we introduce a dual alignment module as
an early fusion strategy to enhance the information diversity and
uniformity of the feature distributions.

Specifically, similar to AVSBench [57], we utilize two encoders to
extract features from video and audio. Between these encoders, we
design a Dual AlignmentModule (DAM) for early fusion, facilitating
fine-grained interaction. The encoded features are then directed to
a Bidirectional Conditioned Selective Mechanism Module (BCSM)
for the selection of relevant information and the imposition of bidi-
rectional constraints. To ensure a comprehensive understanding
during the decoding phase, we devise a Cross-LEVEl Reasoning
(CLEVER) decoder that alternately performs high-level fusion and
decoding of Audio-visual information, which yields the segmenta-
tion mask. Lastly, the auxiliary loss is applied to the cross-attention
map of the decoder to further refine segmentation quality.

In summary, our contributions are threefold:
• We employ a selective mechanism to filter out noise from

features, using bidirectional constraints to select spatio-
temporal information relevant to the sound-emitting enti-
ties, addressing the issue of Auditory Illusions.

• Transcending traditional intermediate fusion approaches,
we propose an elegant alignment module dedicated to early
fusion, cultivating more nuanced and enriched represen-
tations. This innovation fills a crucial gap in the current
fusion methodologies for AVS tasks.

• We introduce an cross-level reasoning decoder that alter-
nately merges and analyzes information from both modali-
ties, yielding precise segmentation results.

2 RELATEDWORK
2.1 Audio-Visual Segmentation
The purpose of Sound Source Localization (SSL) is to identify ob-
jects within a video that produce sound. Early efforts [1, 2, 5, 23, 24,
24, 33, 44, 44, 45, 47] in this domain remain at the patch level due
to the lack of fine-grained annotations. Recent research [57] intro-
duces the Audio-Visual Segmentation benchmark with pixel-level
annotations, capturing considerable attention from communities.

Figure 2: Compared with existing methods. (a) Existing meth-
ods typically facilitate feature interaction at high level, often
employing intermediate fusion with single-level decoder. (b)
Our approach introduces early fusion, utilizes a bidirectional
selection mechanism module at intermediate stages, and in-
terlaced in the final stages.

A considerable portion of the latest studies [18, 31, 39] focuses on
effectively integrating audio-visual information. For example, AVS-
Bench [57] proposes the TPAVI module for multimodal information
integration, incorporating regularization terms into optimization
objectives to bridge the gap between audio and visual features.
AVS-BG [18] utilizes a bidirectional generation manner to reinforce
the audio-visual relationship through maintaining cycle consis-
tency. ECMVAE [39] divides the features of the two modalities into
shared and specific knowledge to enhance representation diversity.
CATR [29] introduces a decoupled audio-visual transformer, taking
audio features and learnable embeddings as queries. AVSC [31]
employs a two-stage paradigm consisting of instance segmenta-
tion followed by sound source classification to alleviate ambiguity.
Our research aims to address the problem of datasets bias-induced
Auditory Illusions, effectively leveraging audio information and
preventing model degradation.

2.2 State Space Models
The State Space models, originating from classical control the-
ory [27], is introduced into the field of deep learning tomodel depen-
dencies in long sequences. Recent advancements in the State Space
model are driven by a variety of works [12–15, 17, 19, 35, 40, 48]
that focus on refining its computational efficiency and analytical ro-
bustness. Notably, there is a particular focus on Mamba [11], which
introduces a selective mechanism to enhance the model’s informa-
tion compression capabilities, while leveraging hardware-aware
algorithms to accelerate computation. Due to its input-dependent
parameters, Mamba demonstrates formidable capabilities in mod-
eling long sequences and possesses linear scalability properties.
A wide array of research [16, 25, 34, 43, 58] harnesses Mamba for
the extraction of hierarchical features in images, addressing direc-
tional sensitivity by augmenting the model with varied scanning
directions. Mamba even shows promising performance in point
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Figure 3: The pipeline of the proposed SelM model is depicted in the top-left part, featuring three novel design components.
(a) During the encoding phase, a dual alignment strategy is employed to align the distributions of the two modalities. (b)
After alignment, a selective mechanism is applied for noise suppression and robust feature representation, with bidirectional
constraints yielding information pertinent to the sound-emitting objects. (c) In the decoding phase, learnable queries alternately
interrogate both modalities, culminating in the predicted segmentation results.

cloud analysis [30] and generative tasks [4, 25]. Audio-Visual Seg-
mentation (AVS) depends crucially on the careful selection and
highlighting of visual segments that match specific audio cues,
ensuring segmentation targets only relevant data from both modal-
ities. Consequently, delving into Mamba’s selective mechanism for
AVS tasks presents an intriguing idea. To our knowledge, this marks
the first attempt to refine Mamba’s selection mechanism for AVS
tasks, indicating a new direction in this field of study.

2.3 Staged Fusion Methods in Multimodal
Learning

Integrating features and aligning latent representations acrossmodal-
ities are key for multimodal tasks [3, 7, 10, 26, 42, 50, 52, 54]. Early
fusion, the process of combiningmodalities before processing, lever-
ages all available data to effectively capture intermodal correlations.
Building on this foundation, intermediate fusion takes place at a
model’s mid-stage, where it merges features to enhance the under-
standing of complex data relationships. Finally, late fusion, applied
at the decision level, ensures modality independence by integrating
insights only after individual analyses, thereby maintaining the
distinctiveness of each data source. In the AVS field, both inter-
mediate and late fusion techniques are widely used. TPAVI [57]
leverages intermediate fusion to enhance audio-visual interactions,
while AVSegFormer [8] applies late fusion, integrating audio-visual
tokens in its decision stage to capitalize on the strengths of each
modality. This research builds upon existing concepts while inno-
vatively integrating early fusion to bridge the domain gap between
auditory and visual pre-training. By doing so, it aims to achieve

comprehensive multimodal integration and understanding at every
stage.

3 PRELIMINARIES: SELECTIVE MECHANISM
State Space Models (SSMs) [19, 35, 40, 48] are usually employed as
linear time-invariant systems to transform the input 𝒙 (𝑡) ∈ R𝑀 to
the output 𝒚(𝑡) ∈ R𝑀 via a hidden state 𝒉(𝑡) ∈ R𝑁 . Mathemati-
cally, this system can be formulated as a linear ordinary differential
equation:

𝒉′ (𝑡) = 𝑨𝒉(𝑡) + 𝑩𝒙 (𝑡),
𝒚(𝑡) = 𝑪𝒉(𝑡) + 𝐷𝒙 (𝑡), (1)

where 𝑨 ∈ R𝑁×𝑁 is the state transition matrix, 𝑩 ∈ R𝑁×1 and
𝑪 ∈ R1×𝑁 are projection matrices, and 𝐷 ∈ R1 denotes the skip
connection. Considering that the continuous-time models cannot
be directly applied to deep learning algorithms, the structured state
space sequence models and Mamba [11] employ the principle of
zero-order hold (ZOH) for discretization, resulting in the following
formula:

𝑨 = 𝑒𝑥𝑝 (△𝑨) ,
𝑩 = (△𝑨)−1 · (𝑒𝑥𝑝 (△𝑨) − 𝑰 ) · △𝑩,

(2)

where the continuous parameters 𝑨 and 𝑩 are discretized into 𝑨
and 𝑩 through a time scale parameter △. After discretization, Eq. (2)
can be written as follows:

ℎ𝑡 = 𝑨ℎ𝑡−1 + 𝑩𝑥𝑡 ,

𝑦𝑡 = 𝑪ℎ𝑡 .
(3)
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The final output 𝒚(𝑡) can be computed through a convolution,
directly establishing a relationship with the input 𝒙 (𝑡). The formula
is as follows:

𝑲 = (𝑪𝑩, 𝑪𝑨𝑩, ..., 𝑪𝑨𝑀−1
𝑩),

𝒚(𝑡) = 𝒙 (𝑡) ∗ 𝑲 ,
(4)

where 𝑲 ∈ R𝑁 is a structured convolutional kernel. Based on
this, Mamba [11] further introduces an input-dependent modeling
approach, and the selective mechanism can be expressed as follows:

𝑩 = 𝑠𝐵 (𝒙),

𝑪 = 𝑠𝐶 (𝒙),
△ = 𝜏𝐴 (𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 + 𝑠𝐴 (𝒙)),

(5)

where 𝑠𝐵 (·), 𝑠𝐶 (·), and 𝑠𝐴 (·) are linear projections. 𝜏𝐴 (·) denotes
the Softplus activation function.

4 METHOD
This section starts by introducing the overall architecture of the
proposed Selective Mechanism-based AVS method (SelM), followed
by elaborating its core components.

4.1 Overall Architecture
The proposed SelM is built upon the Selective Mechanism to select
and align the representative features of visual and audio inputs. It
mainly consists of two feature encoders, a Dual Alignment Module
(DAM), a Bidirectional Conditioned Selective Mechanism Mod-
ule (BCSM), and an Audio-visual Cross-LEVEl Reasoning decoder
(CLEVER). As shown in Figure 3, given the video frames and cor-
responding audio clip, they are first fed into the visual encoder
and audio encoder, respectively, to obtain the multi-stage features.
Meanwhile, the DAM is applied to align and fuse the audio and
visual features gradually for all the stages. Then, BCSM is designed
to model the spatial and temporal information, and filter out the
feature noise from audio and visual in a bidirectional manner. Fi-
nally, the filtered multi-modal features are fed into CLEVER to
obtain the final segmentation result. To make a fair comparsion,
we follow the prior methods [22, 57] by employing ResNet50 [20]
or Pyramid Vision Transformer (PVT-v2) [51] as the visual encoder
and VGGish [22] as the audio encoder. In the following, we will
describe the core components in detail.

4.2 DAM: Dual Alignment Module for Early
Fusion

Given the multi-stage audio and visual features extracted by the
encoders, the Dual Alignment Module for Early Fusion (DAM) is de-
signed for cross-modal feature alignment and integration. Different
from the conventional works that only employ late fusion for audio
and vision features at the high semantic level, we propose a dual
alignment manner and apply it at multiple feature stages to achieve
sufficient integration between the two modalities. While the two
modalities of data have different distribution characteristics, they
exhibit strong semantic correlations and complementarity. There-
fore, DAM is designed to comprise two symmetric subblocks named

V2ABlock and A2VBlock, to enhance the relevant information from
audio and vision features upon each other, respectively.

To simplify the description, we will focus on providing a de-
tailed description of the A2VBlock. The structure of the V2ABlock
is identical to the A2VBlock, with the only difference being the
interchange of data modalities between audio and video. As shown
in Figure 3 (a), given the audio tokens 𝑻 and the visual feature
𝑭 from the same stage of encoders, A2VBlock aims to enhance
the representative information from the visual features according
to the audio tokens. Therefore, we design to learn an alignment
weight map𝑾 upon the audio-visual features. Specifically, both the
audio tokens and visual features are fed into convolution branches,
respectively, and their outputs are element-wise multiplicated to
produce the weight map, which is further utilized to re-weight
the visual feature and output the enhanced version 𝑭𝒂 . In our de-
signs, Conv1D is adopted as the convolutional layer, followed by
a GELU [21] activation function and a dropout [49] operation to
introduce non-linearity and prevent overfitting.

To ensure the model achieves thorough understanding and align-
ment across all levels, DAM is applied at all the feature stages,
allowing a seamless harmonization of features between the two
branches. Compared with the existing AVS works, our method
adopting the proposed DAM enjoys at least two benefits. First, it
utilizes both low-level fine-grained and high-level semantic fea-
tures, offering comprehensive knowledge about the segmentation
target. Second, with the light-weight DAM, the visual and audio
information are bilaterally and gradually enhanced and aligned,
bringing more reliable representations of the target features.

4.3 BCSM: Bidirectional Conditioned Selective
Mechanism

To investigate whether source signals significantly impact model
decisions, we visualize the predicated segmentation maps of the
existing methods, which show a Auditory Illusions issue. As demon-
strated in Figure 1, models erroneously segment out the non-sounding
performers. This indicates that models tend to take shortcuts by
memorizing the segmented objects associated with specific scenes
rather than fully utilizing audio information. The issue is challeng-
ing to settle. First, the input data from two modalities are complex
and contain noise, making it challenging to decouple the key in-
formation, especially in multi-source scenarios where critical cues
overlap. Second, video frames and audio signals change over time,
and they struggle to perform mutual selection effectively.

Based on the above analyses, we introduce the Bidirectional Con-
ditioned Selective MechanismModule (BCSM). Details can be found
in Figure 3(b). Specifically, we employ the Mamba [11] to suppress
the irrelevant information of the given input. The design of Mamba
incorporates a selection mechanism that emphasizes robust feature
representation while filtering out noise and redundant information,
thereby making it highly suitable for the AVS task. In addition, we
design a bidirectional constraint that discerns relevant information
across both modalities.

As shown in Figure 3 (b), the BCSM consists of two symmetric
branches. Taking the upper branch as an example, the aligned video
feature 𝑭𝒂 is transformed into sequences through average pooling,
then processed through V2A-SeM which stacks three consecutive

4
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Figure 4: Comparison results in MS3 and AVSS settings. These findings demonstrate that SelM effectively localizes sound-
emitting objects, mitigating auditory illusion challenges.

Mamba blocks for filtering out irrelevant information. This pro-
duces high-level weight maps which contain appearance cues about
sound-emitting objects for selecting audio tokens by element-wise
multiplication. The process mirrors in the lower branch, with the
note that audio tokens bypass pooling operation. For a Mamba
block, it comprises a vanilla Mamba equipped with state space
model principles (recommended in Section 3 and Mamba [11]),
supplemented by residual connections and normalization opera-
tions. Overall, A2V-SeM and V2A-Sem are utilized for denoising
within each modality, further refined by bidirectional constraints
for feature selection. Ultimately, after processing through BCSM,
we obtain the selected 𝑭 𝒔 and 𝑻 𝒔 .

4.4 CLEVER: Audio-visual Cross-Level
Reasoning Decoder

Existing approaches [31] utilize the FPN [28] decoder, a single-level
decoding technique. They usually combine audio tokens and video
features via a TPAVI [57] module or other feature fusion module to
create a mixed audio-visual representation. The combined tensors
are directly used as inputs to the decoder without any discrimina-
tion.

To facilitate a comprehensive understanding and interaction
of audio-visual information at various levels, we design the Cross-
LEVEl Reasoning (CLEVER) decoder, depicted in Figure 3 (c). CLEVER
is structured around three identical Audio-Visual (AV) Transformer

layers, where each layer sequentially processes through audio cross-
attention followed by video cross-attention mechanisms. This lay-
ered operation marks our primary distinction from previous single-
level decoders. While single-level decoders may utilize multi-scale
features, they do not engage in alternate reasoning between differ-
ent modalities.

Specifically, for an AV Transformer layer, the input consists of
two parts: the selected audio tokens 𝑻 𝒔𝒊 and the video features 𝑭 𝒔𝒊 .
The outputs of the first two layers are concatenated with the sub-
sequent 𝑭 𝒔𝒊+1, forming mixed features that are fed into the next
AV Transformer layer. Each AV transformer layer comprises two
sequentially arranged cross-attention modules. For audio cross-
attention, selected tokens 𝑻 𝒔 serve as keys and values, while for
video cross-attention, the selected features 𝑭 𝒔 assumes these roles.
In the same AV Transformer layer, learnable tokens are shared be-
tween two cross-attention modules as queries. Through alternate
reasoning and comprehension, the queries are imbued with mean-
ing related to the sound-producing entities. In the third layer, we
perform a dot product between the learnable tokens of outputs and
mixed video features to produce the final estimated masks.

4.5 Loss Objective
For the S4 and MS3 settings, we employ a synergistic blend of
DICE [41] and BCE (Binary Cross Entropy) loss functions, further
augmented by an auxiliary loss component. This integrated ap-
proach is formalized as follows:
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L = L𝐷𝐼𝐶𝐸 + L𝐵𝐶𝐸 + L𝐴𝑢𝑥 . (6)

In this formulation, the DICE [41] and standard BCE losses are
leveraged to quantify the similarity between the estimated masks
produced by the model and the ground truth. The auxiliary loss
introduces an additional constraint on the intermediate layers of
the CLEVER decoder. Specifically, the auxiliary loss is defined by
the following equation:

L𝐴𝑢𝑥 =

3∑︁
1
𝛼𝑖 ℓ𝑖 , (7)

where ℓ𝑖 represents the DICE loss between the upsampled heat
map of the 𝑖𝑡ℎ layer and the ground truth. The term 𝛼𝑖 denotes
the associated weight for the 𝑖𝑡ℎ layer. For our implementation, we
empirically set the weights 𝜶1, 𝜶2, and 𝜶3 to 0.001, 0.01, and 0.1,
respectively.

For the AVSS setting, we forego the application of DICE loss,
opting instead to utilize the second and third components delineated
in Equation 6.

5 EXPERIMENTS
5.1 Implementation Details
5.1.1 Datasets. We validate our ideas across three settings: single-
sound andmulti-sound under AVSBench-object [57], andAVSBench-
Semantic [56]. AVSBench-Object targets audio-visual segmenta-
tion with two subjects — Semi-supervised Single-sound Source
Segmentation (S4) with 4932 videos, and Fully-supervised Multi-
sound Source Segmentation (MS3) with 424 videos — each offering
pixel-level segmentation across 23 categories. The 2023 expansion,
AVSBench-Semantic (AVSS), enhances AVSBench-Object with se-
mantic labels and 10-second clips, broadening the dataset for audio-
visual semantic segmentation research.

5.1.2 Training Details. We train our model on an NVIDIA Tesla
A100 using PyTorch, employing the AdamW optimizer with a initial
learning rate of 2 × 10−5. The batch size is set at 4, with training
durations of 40 epochs for the S4 setting, 100 epochs for the MS3
setting, and 30 epochs for the AVSS setting. Unless specifically
mentioned, video frames are uniformly resized to 224 × 224. For
the audio and visual encoders, we adopt the same configuration as
used in previous works [29, 57].

5.1.3 Evaluation Metrics. We employ the Jaccard index 𝑀𝐽 and
F-score𝑀𝐹 as our primary evaluation metrics. The𝑀𝐽 metric eval-
uates the segmentation accuracy by measuring the overlap between
predicted and ground truth areas. Meanwhile,𝑀𝐹 provides a com-
bined measure of precision and recall, which is formulated as fol-
lows:

𝑀𝐹 =

(
1 + 𝛽2

)
× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(8)

where 𝛽2 is set to 0.3 in our experiments, as in [57].

Method Backbone AVSS

𝑀𝐽 ↑ 𝑀𝐹 ↑
3DC [36] ResNet-18 17.3 21.6
AOT [53] ResNet-50 25.4 31.0

AVSBench [57] ResNet-50 20.2 25.2
CATR [29] ResNet-50 - -

AVSegformer [8] ResNet-50 24.9 29.3
SelM ResNet-50 31.9 37.2

AVSBench [57] PVT-v2 29.8 35.2
CATR [29] PVT-v2 32.8 38.5

AVSegformer [8] PVT-v2 36.7 42.0
SelM PVT-v2 41.3 46.9

Table 1: Comparison with state-of-the-art methods on the
AVSS setting.

5.2 Comparison with SOTA Methods.
5.2.1 Quantitative comparisons. To ensure a fair comparison, con-
sistent with AVSBench [57], we employ ImageNet-1K [46] pre-
trained ResNet-50 [20] or PVT-v2 [51] as the backbone for extract-
ing visual features, alongside AudioSet [9] pre-trained VGGish [22]
for audio feature extraction. We compare AVS-related research
and SOTA methods within three settings: Semi-supervised Single
Sound Source Segmentation (S4), Fully-supervised Multiple Sound
Source Segmentation (MS3), and Audio-Visual Semantic Segmen-
tation (AVSS). The related body of work includes sound source
localization (LVS [5] and MSSL [44]), video object segmentation
(3DC [36] and SST [6]), and salient object detection (iGAN [37]),
each sharing some degree of relevance with AVS tasks.

Table 1 showcases our performance on the AVSS setting. No-
tably, SelM outperforms related works (3DC [36] and AOT [53])
and existing methods (AVSBench [57], CATR [29]), comprehen-
sively surpassing the current best method, AVSegFormer [8], re-
gardless of whether ResNet-50 or PVT-v2 is used for video feature
extraction. For both𝑀𝐽 and𝑀𝐹 metrics, our approach achieves ap-
proximately an 11% performance increase over the baseline model
AVSBench [56]. Table 2 presents the performance of SelM on the S4
and MS3 settings, where we slightly outperform current methods
(AVS-BG [18], AUTR [32], AVSC [31], CATR [29], DiffusionAVS [38],
ECMVAE [39], AVSegFormer [8], etc.) using PVT-v2 as the feature
extractor, and we alse realize comparable or slightly superior perfor-
mance with ResNet-50. It is particularly noteworthy that the AVSS
task, with its more complex and varied sound sources and greater
number of categories, is the most challenging. This underscores the
capability of SelM to discern sound source information and achieve
superior segmentation results.

5.2.2 Qualitative Comparisons. To showcase SelM’s effectiveness
in mitigating Auditory Illusions, we display comparative visual-
ization results from AVSBench [57], AVSegFormer [8], and SelM.
Figure 4 presents examples from the MS3 and AVSS settings, which
involve multiple sound sources. For additional visualizations related
to the S4 setting, please refer to the supplementary materials. It can
be observed that previous methods struggle with Auditory Illusions
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Method Backbone S4 MS3

𝑀𝐽 ↑ 𝑀𝐹 ↑ 𝑀𝐽 ↑ 𝑀𝐹 ↑
LVS [5] ResNet-18 37.9 51.0. 29.5 33.0

MSSL [44] ResNet-18 44.9 66.3 26.1 36.3
3DC [36] ResNet-152 57.1 75.9 36.9 50.3
SST [6] ResNet-101 66.3 80.1 42.6 57.2

iGAN [37] ResNet-50 61.6 77.8 42.9 54.4
LGVT [55] Swin-B 74.9 87.3 40.7 59.3

AVSBench [57] ResNet-50 72.8 84.8 47.9 57.8
AVS-BG [18] ResNet-50 74.1 85.4 45.0 56.8
AUTR [32] ResNet-50 75.0 85.2 49.4 61.2
AVSC [31] ResNet-50 77.0 85.2 49.6 61.5
CATR [29] ResNet-50 74.8 86.6 52.8 65.3

ECMVAE [39] ResNet-50 76.3 86.5 48.7 60.7
AVSegformer [8] ResNet-50 76.5 85.9 49.5 62.8

SelM ResNet-50 76.6 86.2 54.5 65.6

AVSBench [57] PVT-v2 78.7 87.9 54.0 64.5
AVS-BG [18] PVT-v2 81.7 90.4 55.1 66.8
AUTR [32] PVT-v2 80.4 89.1 56.2 67.2
AVSC [31] PVT-v2 80.6 88.2 58.2 65.1
CATR [29] PVT-v2 81.4 89.6 59.0 70.0

ECMVAE [39] PVT-v2 81.7 90.1 57.8 70.8
AVSegformer [8] PVT-v2 82.1 89.9 58.4 69.3

SelM PVT-v2 83.5 91.2 60.3 71.3

Table 2: Comparison with state-of-the-art methods on the S4
and MS3 settings.

issues, whereas our approach demonstrates stronger sound source
localization capabilities and avoids segmenting irrelevant objects.
Moreover, our segmentation is more precise and refined. This is
due to the implementation of information interaction measures at
various stages, especially via BCSM, which effectively suppresses
noise and isolates robust features, thereby improving the precision
of localization.

5.3 Ablation Studies
In this part, we detail the contributions of each module, the ef-
ficacy of symmetric design, and the impact of loss functions. To
achieve a representative analysis, we conduct ablation studies un-
der single-source (S4) and multi-source (MS3) audio settings, with
all experiments utilizing the PVT-v2 as the video encoder. For addi-
tional subsidiary ablation studies, such as the effects of different
stages in early fusion, please refer to the supplementary materials.

5.3.1 Effect of the Essential Components. To dissect the impact of
each component on the effectiveness of SelM, we conduct ablation
studies by sequentially removing the three modules from the com-
plete SelM architecture. For these experiments, the S4 and MS3
settings are chosen for representative analysis. Regarding DAM
and BCSM, these modules are simply removed, while for the con-
dition ’without CLEVER’, the decoder from AVSegFormer [8] is
used as a substitute because it similarly utilizes the query-based
transformer structure and operates on a single level. Table 3 shows

Method S4 MS3

𝑀𝐽 ↑ 𝑀𝐹 ↑ 𝑀𝐽 ↑ 𝑀𝐹 ↑
w.o. BCSM 81.5(-2.0) 89.8(-1.4) 56.2(-4.1) 67.8(-3.5)
w.o. DAM 81.2(-2.3) 89.5(-1.7) 57.5(-2.8) 68.8(-2.5)

w.o. CLEVER 81.1(-2.4) 89.7(-1.5) 57.7(-2.6) 68.8(-2.5)
SelM 83.5 91.2 60.3 71.3

Table 3: Effect of the essential components. Replacing or
omitting any of our modules results in a decrease in perfor-
mance.

Method S4 MS3

𝑀𝐽 ↑ 𝑀𝐹 ↑ 𝑀𝐽 ↑ 𝑀𝐹 ↑
Add 81.2(-2.3) 89.7(-1.5) 54.7(-5.6) 66.6(-4.7)

Concat 64.8(-18.7) 78.6(-12.6) 42.6(-17.7) 53.0(-18.3)
DAM 83.5 91.2 60.3 71.3

Table 4: Effects of early fusion strategies.

that eliminating any module reduces the performance of SelM, with
removal of BCSM having the most substantial effect under MS3
setting. This emphasizes the effectiveness of our design in enhanc-
ing the selection and interaction of information in complex scenes.
Furthermore, the incorporation of DAM and CLEVER plays distinct
roles in bolstering performance.

Dual Alignment Module. Additionally, to validate the neces-
sity of introducing the Dual Alignment Module for early fusion,
we compare concatenation or addition of the features 𝑭 and to-
kens 𝑻 output from the intermediate layers of both encoders. To
align the dimensions, we apply average pooling to the 𝑭 and a
straightforward repeat operation to the 𝑻 . The results, displayed in
Table 4, indicate that neither of these elementary approaches results
in performance gains, and simple concatenation leads to significant
decline in capability. This indicates that a thoughtful design of early
fusion is necessary as merely interacting the modalities does not
automatically enhance performance.

Bidirectional Conditioned Selective Mechanism Module.
For BCSM, we employ a qualitative analysis approach, visualizing
the video feature maps with and without BCSM processing. Com-
parative observations in Figure 5 reveal that without processing
by the BCSM module, interference object such as the dog exhibits
notably high responses, leading to segmentation failure. In contrast,
maps tend to ignore the interfering, with attention directed towards
sound-emitting objects. This indicates that selective mechanism is
effective, as stacking Mamba blocks suppresses noise in both modal-
ities, and through bidirectional constraints, the model enhances its
focus on information relevant to sound-producing objects.

Cross-LEVEl Reasoning Decoder. To further analyze the ben-
efits of CLEVER for the AVS task, we perform ablation studies by
replacing the cross-level reasoning with single modality reason-
ing. Specifically, we maintain the same number of cross-attention
operations and queries but restrict the focus to purely video fea-
tures or audio tokens. As shown in Table 5, resorting to any single
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Figure 5: Comparison of features between the two versions.
As depicted, feature maps without BCSM show substantial
responses to interfering objects such as the dog, while BCSM
effectively suppresses these responses.

Method S4 MS3

𝑀𝐽 ↑ 𝑀𝐹 ↑ 𝑀𝐽 ↑ 𝑀𝐹 ↑
w.o. Audio CA 81.7(-1.8) 90.0(-1.2) 54.7(-5.6) 66.9(-4.4)
w.o. Video CA 81.6(-1.9) 89.8(-1.4) 57.4(-2.9) 67.8(-3.5)
CLEVER 83.5 91.2 60.3 71.3

Table 5: Ablation study on CLEVER. “CA” stands for Cross-
Attention.

Method S4 MS3

𝑀𝐽 ↑ 𝑀𝐹 ↑ 𝑀𝐽 ↑ 𝑀𝐹 ↑
A2V Block 81.3(-2.2) 89.7(-1.5) 56.9(-3.4) 66.6(-4.7)
V2A Block 81.7(-1.8) 90.2(-1.0) 57.3(-3.0) 67.6(-3.7)

DAM 83.5 91.2 60.3 71.3

Table 6: Impact of dual modality alignment in early fusion.

modality results in performance degradation. Particularly, exclud-
ing audio interactions proves to be significantly detrimental in the
MS3 setting. This is attributed to MS3 being a multi-source setting
where a single video may contain multiple sound-emitting objects,
rendering audio information crucial. This also demonstrates the
capacity of CLEVER to adequately incorporate information from
both modalities.

5.3.2 Impact of the Symmetrical Pipeline. To delve into the inter-
play between audio and visual modalities, as well as to quantify the
benefits brought by symmetric design, we conduct ablation studies
on the DAM and BCSM modules. In these experiments, “A2V” de-
notes the alignment or selection of video features based on audio
information, producing video features as output, whereas “V2A”
represents the reverse, yielding audio tokens as output. Table 6
illustrates the relationship between unilateral modeling capabili-
ties and symmetric design during the early fusion with DAM. We

Method S4 MS3

𝑀𝐽 ↑ 𝑀𝐹 ↑ 𝑀𝐽 ↑ 𝑀𝐹 ↑
A2V-SeM 81.1(-2.4) 89.4(-1.8) 56.7(-3.6) 67.4(-3.9)
V2A-SeM 81.3(-2.2) 89.8(-1.4) 57.1(-3.2) 68.3(-3.0)
BCSM 83.5 91.2 60.3 71.3

Table 7: Ablation study on BCSM.

Method S4 MS3

𝑀𝐽 ↑ 𝑀𝐹 ↑ 𝑀𝐽 ↑ 𝑀𝐹 ↑
BCE 81.1(-2.4) 89.4(-1.8) 55.5(-4.8) 65.9(-5.4)
+DICE 81.3(-2.2) 89.7(-1.5) 56.7(-3.6) 66.4(-4.9)

+DICE+Aux 83.5 91.2 60.3 71.3

Table 8: Ablation study on loss function

find that V2A alignment is superior to A2V, and a symmetric align-
ment method exceeds any unilateral approach. Similarly, Table 7
reveals that selecting audio tokens using video features is more
beneficial, and implementing bidirectional constraints yields the
best performance.

5.3.3 Impact of the loss functions. We conduct ablation studies on
the loss functions within the S4 and MS3 settings to thoroughly
understand the contributions of each component. Table 8 demon-
strates that incorporating DICE loss and auxiliary losses both con-
tribute to enhance the final predictions. We observe that adding
auxiliary losses leads to greater improvements in the MS3 setting,
likely because the MS3 setting has less training data, and auxiliary
losses help the model converge more effectively.

6 CONCLUSION
In this paper, we introduce the SelM model to address the Audi-
tory Illusions issue in Audio-Visual Segmentation (AVS) tasks. We
pioneer the application of early fusion in AVS by designing a Dual
Alignment Module that enables fine-grained feature interactions
and aligns the distributions of both modalities, filling the existing
gap in early fusion approaches. We then incorporate the selective
mechanism of Mamba to suppress noise and model robust repre-
sentations, while bidirectional constrains further select relevant
sound-emitting information. Finally, we develop a cross-level de-
coder that uses learnable queries to alternately interrogate audio
and video cues, facilitating comprehensive interactions between
the modalities and achieving effective segmentation results. Our
approach sets new state-of-the-art performance across all three AVS
settings and is thoroughly validated by extensive quantitative ex-
periments. Qualitative visualizations confirm that SelM effectively
mitigates Auditory Illusions issues.

Future work: The effectiveness of selective mechanism in AVS
tasks is validated in this paper. We will fully utilize mamba as a
feature extractor for both modalities to achieve more robust feature
representations in the future.
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