
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM ISOLATED CONVERSATIONS TO HIERARCHICAL
SCHEMAS: DYNAMIC TREE MEMORY REPRESENTA-
TION FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models have significantly improved their
context windows, yet challenges in effective long-term memory management
remain. We introduce MemTree, an algorithm that leverages a dynamic, tree-
structured memory representation to optimize the organization, retrieval, and in-
tegration of information, akin to human cognitive schemas. MemTree organizes
memory hierarchically, with each node encapsulating aggregated textual content,
corresponding semantic embeddings, and varying abstraction levels across the
tree’s depths. Our algorithm dynamically adapts this memory structure by com-
puting and comparing semantic embeddings of new and existing information to
enrich the model’s context-awareness. This approach allows MemTree to handle
complex reasoning and extended interactions more effectively than traditional
memory augmentation methods, which often rely on flat lookup tables. Evalua-
tions on benchmarks for multi-turn dialogue understanding and document question
answering show that MemTree significantly enhances performance in scenarios
that demand structured memory management.

Figure 1: MemTree (subset) developed on the MultiHop dataset (Tang & Yang, 2024). MemTree
updates its structured knowledge when new information arrives, enhancing inference-time reasoning
capabilities of LLMs.

1 INTRODUCTION

Despite recent advances in large language models (LLMs) where the context window has expanded
to millions of tokens (Ding et al., 2024; Bulatov et al., 2023; Beltagy et al., 2020; Chen et al.,
2023; Tworkowski et al., 2024), these models continue to struggle with reasoning over long-term
memory (Sun et al., 2021; Liu et al., 2024; Kuratov et al., 2024). This challenge arises because LLMs
rely primarily on a key-value (KV) cache of past interactions, processed through a fixed number of
transformer layers, which lack the capacity to effectively aggregate extensive historical data. Unlike
LLMs, the human brain employs dynamic memory structures known as schemas, which facilitate the
efficient organization, retrieval, and integration of information as new experiences occur (Anderson,
2005; Ghosh & Gilboa, 2014; Gilboa & Marlatte, 2017). This dynamic restructuring of memory is
a cornerstone of human cognition, allowing for the flexible application of accumulated knowledge
across varied contexts.

A prevalent method to address the limitations of long-term memory in LLMs involves the use of
external memory. Weston et al. (2014) introduced the concept of utilizing external memory for
the storage and retrieval of relevant information. More recent approaches in LLM research have
explored various techniques to manage historical observations in databases, retrieving pertinent

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

10/ 25/202 4

What is your favorite dish?

Where do you live?

09/ 01/202 4

08/ 25/202 4 10/ 25/202 4

I like pasta!

I’ve recently moved to Seattle!

08/ 25/202 4 09/ 01/202 4

Wow! Must be quite exciting!

Conversations New Conversation

sim = 0.00

[Expand Leaf Node]

[Node Update]

[Insert New Node]

MemTree

𝑣 1
.1

𝑣 1
.2

𝑣 1
.2

𝑣
2
.1

𝑣
2
.2

10/ 25/202 4

I live in San Francisco!

09/ 01/202 4

sim = 0.60 > 𝜃1= 0.50

10/ 25/202 4

c n
ew

Articles MemTree

𝑣0

Joe Biden

Nvidia

New Article

Donald Trump

MemTree New Article

Apple

MemTree

I’ve recently

moved to Seattle!

Joe Biden Donald Trump

I live in

San Francisco!

I’ve recently

moved to Seattle!

Joe Biden Nvidia

Nvidia Nvidia Tech

I recently moved from

SF now live in Seattle.

Joe Biden US Politics US Politics

I like

pasta!

I live in

San Francisco!

Donald Trump Apple

Figure 2: Illustration of MemTree. MemTree represents knowledge schema via a dynamic tree. Both
parent and leaf nodes archive textual content, summarizing information relevant to their respective
levels. Upon receiving new information, the system begins traversal from the root node. If the new
information is semantically akin to an existing leaf node under the current node, it is routed to that
node. Conversely, if it diverges from all existing leaf nodes under the current node, a new leaf node is
created under the current node, concluding the traversal. During this process, all ancestor nodes will
integrate the new information into the higher-level summaries they maintain.

data for given queries through vector similarity searches in the embedding space (Park et al., 2023;
Packer et al., 2023; Zhong et al., 2024). However, these methods primarily utilize a lookup table for
memory representation, which fails to capture the inherent structure in data. Consequently, each past
experience is stored as an isolated instance, lacking the interconnectedness and integrative capabilities
of the human brain’s schemas. This limitation becomes increasingly problematic as the size of the
memory grows or when relevant information is distributed across multiple instances.

In this work, we introduce MemTree, an algorithm designed to emulate the schema-like structures of
the human brain by maintaining a dynamically structured memory representation during interactions.
Within MemTree, each memory unit is represented as a node within a tree, containing node-level
information and links to child nodes.

Upon encountering new information, MemTree updates its memory structure starting from the root
node. It evaluates at each node whether to instantiate a new child node or integrate the information
into an existing child node. This decision process is governed by a traversal algorithm that efficiently
adds new information with an insertion complexity of O(log N), where N denotes the number of
conversational interactions. This structure facilitates the aggregation of knowledge at parent nodes,
which evolve to capture high-level semantics as the tree expands. For knowledge retrieval, MemTree
computes the cosine similarity between node embeddings and the query embedding. This method
maintains the retrieval time complexity comparable to existing approaches, ensuring efficiency.

We evaluated MemTree across four benchmarks, covering both conversational and document question-
answering tasks, and compared it against online and offline knowledge representation methods.
MemTree enables seamless dynamic updates as new data becomes available, a capability characteristic
of online methods. In contrast, offline methods require complete dataset access and are costly to
update, as they involve periodic rebuilding to incorporate new information.

• In extended conversations, MemTree consistently outperforms other online methods, including
MemoryStream (Park et al., 2023) and MemGPT (Packer et al., 2023), maintaining superior
accuracy as discussions progress.

• For document question-answering, MemTree excels in two key areas. On single-document
tasks, it outperforms other online methods and reduces the performance gap with offline models,
particularly surpassing RAPTOR (Sarthi et al., 2024) on challenging questions that require
deeper reasoning. In multi-document tasks, MemTree not only surpasses online methods but also
approaches the performance of offline models, particularly outperforming GraphRAG (Edge et al.,
2024). Moreover, on complex temporal queries requiring the analysis of event sequences across
multiple documents, MemTree exceeds all offline methods.

These results demonstrate that MemTree is a robust and scalable solution, delivering high accuracy
across diverse and challenging tasks while retaining the efficiency of online systems.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Memory-Augmented LLMs Recent advancements in memory-augmented LLMs have introduced
various strategies for enhancing memory capabilities. Park et al. (2023) developed LLM-based
agents that log experiences as timestamped descriptions, retrieving memories based on recency,
importance, and relevance. Similarly, Cheng et al. (2023) developed Selfmem with a dedicated
memory selector. MemGPT (Packer et al., 2023) proposed automatic memory management through
LLM function-calling for conversational agents and document analysis, providing a pre-prompt
with detailed instructions on memory hierarchy and utilities, along with a schema for accessing
and modifying the memory database. Zhong et al. (2024) introduced MemoryBank, a long-term
memory framework that stores timestamped dialogues and uses exponential decay to forget outdated
information. Additionally, Mitchell et al. (2022) proposed storing model edits in an explicit memory
and learning to reason over them to adjust the base model’s predictions. These methods represent
common solutions for adding memory to LLMs, focusing on tabular memory storage and vector
similarity retrieval (Zhang et al., 2024). However, as memory scales or information becomes dispersed
across multiple entries, their unstructured representations reveal significant limitations.

Another line of work explores triplet-based memory. For example, Modarressi et al. (2023) proposed
encoding relationships in triplets, and Anokhin et al. (2024) extended this approach to graph-based
triplet memory for text-based games. While effective at encoding individual relations or scene graphs
at the object level, these methods struggle with scalability and generalization to more complex data
that do not fit neatly into a strict triplet format.

Structured Retrieval-Augmented Generation Approaches To address the limitations of unstruc-
tured memory representations, recent advances have integrated structured knowledge into RAG
models, enhancing navigation and summarization in complex QA tasks. Trajanoska et al. (2023)
leveraged LLMs to extract entities and relationships from unstructured text to construct knowledge
graphs. Similarly, Yao et al. (2023) proposed techniques to fill in missing links and nodes in existing
knowledge graphs by utilizing LLMs to infer unseen relationships. Ban et al. (2023) identified causal
relationships within textual data and represented them in graph form to enhance understanding of
causal structures. In the context of retrieval-augmented generation, Gao et al. (2023) provided a
comprehensive review of existing RAG methods, and Baek et al. (2023) utilized knowledge graphs as
indexes within RAG frameworks for efficient retrieval of structured information.

More relevant to our work, RAPTOR (Sarthi et al., 2024) organizes text into a recursive tree,
clustering and summarizing chunks at multiple layers to enable efficient retrieval of both high-level
themes and detailed information. GraphRAG (Edge et al., 2024) constructs a knowledge graph from
LLM-extracted entities and relations, partitioning it into modular communities that are independently
summarized and combined via a map-reduce framework. While these methods effectively structure
large textual data to improve retrieval and generation capabilities, they are limited to static corpora,
requiring full reconstruction to integrate new information, and do not support online memory updates.

In this work, we propose a novel structured memory representation that overcomes these limitations by
enabling dynamic updates and efficient retrieval in large-scale memory systems without necessitating
full reconstruction.

3 METHOD

MemTree represents memory as a tree T = (V,E), where V is the set of nodes, and E ⊆ V × V is
the set of directed edges representing parent-child relationships. Each node v ∈ V is represented as:

v = [Cv, ev, pv, Cv, dv]

where:

• cv: the textual content aggregated at node v.

• ev ∈ Rd: an embedding vector derived using an embedding model femb(cv).

• pv ∈ V : the parent of node v.

• Cv ⊆ V : the set of children of node v, with edges directed from v to each u ∈ Cv .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• dv: the depth of node v from the root node v0.

Note that the root node v0 serves as a structural node, containing neither content nor embedding, i.e.,
cv0 = ∅ and ev0 = ∅.

MemTree utilizes this tree-structured representation to dynamically track and update the knowledge
exchanged between the user and the LLM. While less flexible than a generic graph architecture, the
tree structure inherently biases the model towards hierarchical representation. Additionally, trees
offer efficient complexity for insertion and traversal, making the algorithm suitable for real-time
online use cases.

When new information is observed, MemTree dynamically adapts by traversing the existing structure,
identifying the appropriate subtree for integration, and updating relevant nodes (Section 3.1). This
process, illustrated in Figure 2, ensures the proper integration of new information while preserving the
underlying context and hierarchical relationships within the memory. When retrieving information
from the memory, MemTree simply compares the embeddings of the query message with the
embeddings of each node in the tree, returning the most relevant nodes (Section 3.2).

3.1 MEMORY UPDATE

The memory update procedure in MemTree is triggered upon observing new information (e.g., a new
conversation). This procedure ensures that the tree structure dynamically adapts and integrates new
data while maintaining a coherent hierarchical representation. The complete memory update process
is outlined in Algorithm 1.

Attaching New Information by Traversing the Existing Tree To integrate new information, we
begin by creating a new node vnew with the textual content cvnew . Then we start tree traversal from the
root node. At each node v, MemTree evaluates the semantic similarity between the new information
cvnew and the children of the current node in the embedding space. This evaluation is performed
by computing the embedding evnew = femb(cvnew) for the new content cvnew and comparing it to the
embeddings of the child nodes C(v) of the current node v using cosine similarity.

This similarity evaluation drives the following decisions:

• Traverse Deeper: If a child node’s similarity exceeds a depth-adaptive threshold θ(dv), traversal
continues along that path. If multiple child nodes meet this criterion, the path with the highest
similarity score is chosen.

– Boundary: When traversal reaches a leaf node, the leaf is expanded to become a parent node,
accommodating both the original leaf node and vnew as children. The parent’s content is then
updated to aggregate both the original leaf node’s content and the new information cvnew . The
details of this aggregation process will be explained below.

• Create New Leaf Node: If all child nodes’ similarities are below the threshold θ(dv), vnew is
directly attached as a new leaf node under the current node.

The similarity threshold θ(d) is adaptive based on the node’s depth d, defined as:

θ(d) = θ0e
λd,

where θ0 is the base threshold, and λ controls the rate of increase with depth. This mechanism ensures
that deeper nodes, which represent more specific information, require a higher similarity for new data
integration, thereby preserving the tree’s hierarchical integrity. Further details, including specific
parameter values, are provided in the Appendix A.1.3.

Updating Parent Nodes Along the Traversal Path Once vnew is inserted, the content and embed-
dings of all parent nodes v along the traversal path are updated to reflect the new information. This is
achieved through a conditional aggregation function:

c′v ← Aggregate(cv, cnew | n),

where c′v is the updated content, and n = |C(v)| is the number of descendants of node v. The
aggregation function, implemented as an LLM-based operation, combines the existing content cv

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

with the new content cnew, conditioned on n. As n increases, the aggregation abstracts the content
further to balance the existing and new information (see Appendix A.1.2 for more details).

The embedding of the parent node is then updated as:

ev ← femb(c
′
v),

ensuring that the parent node effectively represents both the new and existing information. This
process maintains the hierarchical organization of the memory as the tree expands, enabling MemTree
to adaptively and accurately represent the evolving conversation. A key advantage of this method is its
computational efficiency: once the traversal path is defined, the content aggregation and embedding
updates for parent nodes can be parallelized on the CPU. This significantly accelerates the update
process, reducing bottlenecks as the memory grows.

Connection to Online Hierarchical Clustering Algorithms Our memory update algorithm can be
viewed as an instance of online hierarchical clustering algorithms (Zhang et al., 1996; Kobren et al.,
2017). We draw inspiration from the OTD (Online Top-Down Clustering) algorithm proposed by
Menon et al. (2019), which enables efficient online updates by calculating inter- and intra-subtree
similarities during the insertion process. This algorithm is known to provably approximate the
Moseley-Wang revenue (Moseley & Wang, 2017). In this work, we relax the inter- and intra-subtree
similarity comparisons by utilizing semantic similarities in the embedding space. We achieve this by
formatting the subtree representation (parent nodes) with LLMs as we traverse the MemTree during
the memory update.

Theorem 1 (Approximation Guarantee of MemTree (Informal)). Assuming the data processed by
MemTree satisfies the β-well-separated condition (see Appendix B.4), the hierarchy maintained by
MemTree achieves a revenue

Rev(MemTree;W) ≥ β/3 · Rev(T ∗;W),

where T ∗ is the optimal hierarchy maximizing the Moseley-Wang revenue.

This alignment with OTD ensures a high-quality hierarchical memory representation in MemTree.
Further details and proofs are provided in Appendix B.

3.2 MEMORY RETRIEVAL

Efficient and effective retrieval of relevant information is crucial for ensuring that MemTree can
provide meaningful responses based on past conversations. Inspired by RAPTOR (Sarthi et al., 2024),
we adopt the collapsed tree retrieval method, which offers significant advantages over traditional tree
traversal-based retrieval.

Collapsed Tree Retrieval The collapsed tree approach enhances the search process by treating
all nodes in the tree as a single set. Instead of conducting a sequential, layer-by-layer traversal, this
method flattens the hierarchical structure, allowing for simultaneous comparison of all nodes. This
technique simplifies the retrieval process and ensures a more efficient search.

The retrieval process involves the following steps:

1. Query Embedding: Embed the query q using femb(q) to obtain eq .

2. Similarity Computation: Calculate cosine similarities between eq and all tree nodes.

3. Filtering: Exclude nodes with similarity scores below a threshold θretrieve.

4. Top-K Selection: Sort the remaining nodes by similarity and select the top-k most relevant nodes.

4 EXPERIMENTS

4.1 DATASETS

We evaluate the effectiveness of MemTree across various settings using four datasets: Multi-Session
Chat, Multi-Session Chat Extended, QuALITY, MultiHop RAG. These datasets were selected to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

represent different interactive contexts—dialogue interactions and information retrieval from multiple
texts, respectively, providing a comprehensive test bed for our model. Additional statistics for each
dataset can be found in Appendix A.2.1.

• Multi-Session Chat (MSC): The dataset was introduced by (Xu, 2021). In this work, we consider
the processed version provided by (Packer et al., 2023). The dataset consists of 500 sessions,
each featuring approximately 15 rounds of synthetic dialogue between two agents. Each session
includes follow-up questions that challenge the model to retrieve and utilize information from prior
dialogues within the same session. For each session, a memory representation is independently
built, capturing the dialogue rounds as they unfold.

• Multi-Session Chat Extended (MSC-E): To test the performance for even longer conversation
rounds, we expanded MSC by generating an additional 70 sessions, each containing about 200
rounds of dialogue. In these extended sessions, a follow-up question follows each conversation
round, demanding more precise and timely information retrieval across the dialogues. As in MSC,
memory representations are constructed independently for each session. We detail the extension
methodology in Appendix A.2.3.

• Single-Document Question Answering (QuALITY): The QuALITY dataset, introduced by Pang
et al. (2021), consists of context passages averaging 5,000 tokens, paired with multiple-choice
questions that require reasoning across entire documents to answer. A memory representation is
built independently for each document. The dataset is divided into two subsets: QuALITY-Easy
and QuALITY-Hard. The latter contains questions that most human annotators found challenging
to answer within the time constraints. While the original dataset was designed for multiple-choice
question answering, in this paper we explore the more difficult setting where the model must
generate the answer directly, without being provided with the four answer options.

• Multi-Document Question Answering (MultiHop RAG): This dataset comprises 609 distinct
news articles across six categories (Tang & Yang, 2024). It includes 2,556 multi-hop questions
requiring the integration of information from multiple articles to formulate comprehensive answers.
We consider three question types: inference, comparison, and temporal reasoning, each adding a
layer of complexity to the information retrieval process. All news articles are used to construct a
unified memory representation, which is queried to answer the multi-hop questions.

4.2 BASELINES

We compare MemTree with various baseline methods along with a naive baseline, which involves
concatenating all chat histories and feeding them into a large language model (LLM):

• MemoryStream: Park et al. (2023) proposes a flat lookup-table style memory that logs chat
histories through an embedding table. The primary distinction between MemTree and this baseline
is that MemTree utilizes a structured tree representation for the memory and models high-level
representations throughout the memory insertion process.

• MemGPT: (Packer et al., 2023) introduces a memory system designed to update and retrieve
information efficiently. It uses an OS paging algorithm to evict less relevant memory into external
storage. However, like MemoryStream, it does not format high-level representations.1

• RAPTOR: Sarthi et al. (2024) constructs a structured knowledge base using hierarchical clustering
over all available information. The key difference between MemTree and this baseline is that
MemTree operates as an online algorithm, updating the tree memory representation on-the-fly
based on incoming knowledge, while RAPTOR applies hierarchical clustering on a fixed dataset.2.

• GraphRAG: Edge et al. (2024) introduces a graph-based indexing approach designed to improve
query-focused summarization and extract global insights from large text corpora. Like RAPTOR,
GraphRAG assumes access to the entire corpus and applies the Leiden algorithm to identify
community structures within the document graph. However, while MemTree expands its memory
top-down to allow for efficient, online updates, GraphRAG generates community summaries in a
bottom-up fashion, which is less suited for real-time adaptability.3

1https://github.com/cpacker/MemGPT
2https://github.com/parthsarthi03/raptor
3https://github.com/microsoft/graphrag

6

https://github.com/cpacker/MemGPT
https://github.com/parthsarthi03/raptor
https://github.com/microsoft/graphrag

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Naive History Combination vs. External Memory on MSC. With only 15 dialogue rounds
(<1,000 tokens), concatenating the entire history to GPT-4o achieves the best performance. Among
query-only models, MemTree outperforms MemGPT and MemoryStream in accuracy and ROUGE.

Model Context Accuracy ⇑ ROUGE-L (R) ⇑
Results reported by (Packer et al., 2023)
GPT-4 Turbo Query + Full history summary 35 35
GPT-4 Turbo Query + Full history summary + MemGPT 93 82

Our results with GPT-4o and text-embedding-3-large
GPT-4o Query + Full history 95.6 88.0
GPT-4o Query + MemGPT 70.4 68.6
GPT-4o Query + MemoryStream 84.4 79.1
GPT-4o Query + MemTree 84.8 79.9

Table 2: Accuracy on MSC-E. The MSC-E dataset extends MSC from 15 to 200 dialogue rounds,
providing a better test for long-context reasoning. Both MemoryStream and MemTree outperform the
naive baseline, highlighting the importance of external memory. Overall accuracy and a breakdown
by evidence position are shown; standard deviations are in Figure A.1.

Model Context Position of the supporting evidence Overall
0-40 40-80 80-120 120-160 160-200

GPT-4o Query + Full history 84.5 78.3 75.5 74.4 76.7 78.0
GPT-4o Query + MemoryStream 78.5 81.0 81.0 81.4 81.8 80.7
GPT-4o Query + MemTree 82.1 82.1 82.3 82.3 84.2 82.5

To demonstrate the applicability of our approach, we consider both open-source and commercial
models in our experiments. For LLMs, we used OpenAI’s GPT-4o (version 2024-05-13) and
Llama-3.1-70B-Instruct (Dubey et al., 2024). For the embedding models, we employed
text-embedding-3-large and E5-Mistral-7B-Instruct (Wang et al., 2023). In each
experiment, we standardized the use of the LLM and embedding model across all baselines to
ensure that any performance differences observed were attributable to the memory management
methodologies, rather than variations in the models’ capabilities or embeddings.

4.3 IMPLEMENTATION DETAILS AND EVALUATION METRICS

Following previous work (Packer et al., 2023; Tang & Yang, 2024), we report the end-to-end question
answering performance. Given each context-question-answer tuple, the experimental procedure
involves four steps:

1. Load the corresponding dialogue/history into the memory.
2. Retrieve the relevant information from the memory based on the given query.
3. Use GPT-4o to answer the query based on the retrieved information.
4. Evaluate the generated answer using one of the following two metrics: 1) Use GPT-4o to compare

the generated answer with the reference answer, resulting in a binary accuracy score; 2) Evaluate
the ROUGE-L recall (R) metric of the generated answer compared to the relatively short gold
answer labels, without involving the LLM judge.

The detailed prompts for steps 3 and 4 can be found in Appendix A.2. Other implementation details
for MemTree can be found in Appendix A.1.

5 RESULTS

5.1 MULTI-SESSION CHAT

15-round dialogue We present the MSC results in Table 1. For the naive baseline, directly providing
the full history to GPT-4o yields the best result, achieving an accuracy of 96%. This outcome is
expected, given that the entire dialogue consists of only 15 rounds and fewer than one thousand
tokens. We also note that providing a summary of the chat history significantly drops performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Accuracy on QuALITY. Performance is evaluated on (1) Easy questions, answerable with
surface-level information, and (2) Hard questions, requiring deeper reasoning. MemTree shows strong
overall performance, surpassing online methods and nearing offline methods in both categories.

Model Context Easy Hard Overall

Llama-3.1-70B Query + Full text 70.1 60.3 65.1

Offline Method
Llama-3.1-70B Query + RAPTOR 65.2 53.0 59.0
Llama-3.1-70B Query + GraphRAG 65.9 59.8 62.8

Online Method
Llama-3.1-70B Query + MemoryStream 46.7 41.0 43.8
Llama-3.1-70B Query + MemTree 63.3 56.5 59.8

to 35%, even for the more powerful GPT-4 Turbo model (Packer et al., 2023). This decline occurs
because the summary may not cover the topics the query is addressing. To directly compare the
performance of different memory management algorithms, we consider the setting where only the
query and the retrieved information are provided to the LLM. In this scenario, MemTree surpasses
both MemStream and MemGPT.4

200-round dialogue Table 2 presents the results on MSC-E. We observe that both MemoryStream
and MemTree achieve better overall accuracy than the naive baseline, which directly uses the full
history. This illustrates the importance of having an external memory system as the conversation
history grows. When we break down the accuracies based on the positions of the supporting evidence
within the entire dialogue, we find that the naive baseline performs best when the evidence is
presented early on, likely due to position bias (Liu et al., 2024). It is worth noting that since MemTree
updates the memory sequentially based on the order of the dialogue, it inherently favors more recent
conversations over older ones. This bias is demonstrated in Table 2, where the accuracy increases
from 82.1 to 84.2. Nevertheless, MemTree consistently outperforms MemoryStream across all
positions (see Figure A.1 for a visualization).

5.2 SINGLE-DOCUMENT QUESTION ANSWERING

Table 3 presents the accuracy of various models on the QuALITY benchmark. Llama-3.1 70B, which
processes the full text in a single pass, achieves the highest overall accuracy at 65.1%. This superior
performance is attributed to the dataset’s relatively short length (5000 tokens), a trend also observed
with the MSC dataset. Offline RAG methods such as RAPTOR and GraphRAG, designed for handling
knowledge retrieval over longer contexts, achieve lower accuracies of 59.0% and 62.8%, respectively.
The current online memory update method, MemoryStream, struggles with efficiently extracting
memory key-value pairs, resulting in a significantly lower accuracy of 43.8%. In contrast, our method,
MemTree, matches the offline performance of RAPTOR with a slightly higher accuracy of 59.8%,
especially excelling on hard questions that demand deeper reasoning and comprehension. Moreover,
MemTree retains the advantage of being an online method, allowing for continuous memory updates
at minimal computational cost. Refer to Figure A.2 for a visualization of the results.

5.3 MULTI-DOCUMENT QUESTION ANSWERING

Table 4 summarizes the end-to-end performance of MultiHop RAG using various memory retrieval
algorithms. All methods perform exceptionally well on inference-style questions, which focus on
fact-checking based on a single document, consistently achieving over 95% accuracy. However,
when it comes to more complex questions—those requiring the comparison of multiple documents or
temporal reasoning—MemTree significantly outperforms MemoryStream, achieving a 9.1 percentage
point advantage. Moreover, despite RAPTOR having full access to all information, MemTree’s
overall performance is within just 0.5 percentage points of this offline method. See Figure A.3 for a
detailed visualization of these results.

Another observation from the table is that while humans can annotate evidence fairly accurately
for inference and comparison-style questions, the annotated evidence for temporal questions is less

4We were unable to reproduce the results with the existing MemGPT GitHub codebase.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Accuracy on MultiHop RAG. Results are shown for (1) Inference queries, (2) Comparison
queries, and (3) Temporal queries. MemTree outperforms MemoryStream on comparison and
temporal queries, narrowing the gap to the offline RAPTOR.

Model Context Inference Comparison Temporal Overall

GPT-4o Human Annotated Evidence 98.4 80.1 55.6 79.2

Offline method
GPT-4o Query + RAPTOR 96.6 76.5 66.0 81.0
GPT-4o Query + GraphRAG 96.0 69.8 66.3 78.3

Online method
GPT-4o Query + MemoryStream 96.1 64.8 59.3 74.7
GPT-4o Query + MemTree 96.0 73.9 68.4 80.5

In an October 2023 friendly match, the
U.S. Men's National Team (USMNT)
faced Germany and suffered a 3-1 defeat
… Concurrently, the U.S. women's team
has appointed Emma Hayes as the new
head coach …

Uber's Q3 2023 earnings report highlights
a significant turnaround in profitability,
transitioning from a $1.2 billion net loss
last year to a net income of $219 million
…

The housing market is facing a downturn,
with existing home sales plunging to levels
seen during the Great Recession. This
decline is driven by reduced affordability
…

Emma Hayes, the highly successful coach
of Chelsea Women, has been appointed as
the 10th full-time head coach of the U.S.
Women's National Soccer Team
(USWNT) …

In a friendly match on October 14, 2023,
the USA men's national soccer team
(USMNT) faced Germany and suffered a
3-1 defeat at Rentschler Field in
Hartford. Despite the loss, there were
notable individual performances …

The particulars around timing and the
plan moving forward have been one of the
areas of discussion between Hayes and her
representatives, Chelsea and US Soccer,
that has continued through the start of
November. Unless the situation changes
drastically, Hayes will only have two
camps, including four friendlies, with the
USWNT ahead of the 2024 Olympics in
Paris. She'll miss three international
windows between Tuesday’s
announcement and her planned start date,
including the 2024 CONCACAF Gold
Cup in February and March. US Soccer
has a plan in place for the transition.

In his first 45 minutes of international football under Gregg Berhalter since the World Cup fallout, Gio
Reyna was his usual self, drawing the attention of German defenders and proving visionary with his
passing. He combined with Folarin Balogun on a number of occasions on the counter, which is a link-up
that US fans have been begging for more of. Reyna was only fit for 45 minutes of play here as he returns
from a leg injury, but it's no coincidence that Germany truly secured midfield dominance when he came off
the field.

In their recent 3-1 defeat to Germany, the USMNT
displayed a blend of offensive promise and defensive
shortcomings. Christian Pulisic, with a stunning goal and
high pass completion rate, and Tim Weah's speed and link-
up play, were offensive highlights. Gio Reyna also
contributed creatively. However, the defensive side was
problematic …

Figure 3: Visualization of the Learned MemTree Structure on the MultiHop RAG Dataset. Due to
space limitations, we display only a small subtree from the entire tree (a larger subtree is depicted in
Figure 1). As we traverse deeper into the tree, the content stored in the nodes becomes increasingly
specific. For instance, the three blue nodes shown in the bottom right corner begin with a general
summary of the USMNT’s 3-1 defeat to Germany, then branch into specific insights on individual
performances and team dynamics, and ultimately delve into a detailed analysis of Gio Reyna’s impact
during the match. Note that all intermediate contents in the parent nodes are generated by MemTree
during the node update step. This hierarchical organization demonstrates how MemTree efficiently
stores and retrieves information, progressing from overarching concepts to specific details.

precise. This results in worse performance than the model-derived memory for temporal questions.
Importantly, MemTree excels on temporal reasoning tasks, surpassing all baselines, including offline
approaches and human-annotated evidence.

Statistics of the Learned MemTree Table 5 presents statistics for the learned MemTree on
the Multihop RAG dataset, which consists of 609 documents. The resulting tree contains 3,154
nodes, with a maximum depth of 13 and an average branching factor of 2.1. Figure 4 illustrates
the distribution of nodes across different depth levels, revealing that the majority of nodes are
concentrated between depths 3 to 5. As the tree deepens, the information stored in the nodes increases
in length. For instance, at depth 1 (just below the root), the median token count is slightly over 200,
with a small deviation. By depth 10 and beyond, the median token count grows to around 800, with
greater variability (see Figure 4).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Depth-based Stats of MemTree learned on Multi-
Hop RAG

MemTree Property Value

#Nodes 3164
#Leaf Nodes 1706
#Branching Nodes 1458

Depth (max) 13
Depth (average) 4.9

Branching Factor 2.1
Height to Width Ratio 6.5

Table 5: Overall Stats of MemTree
learned on MultiHop

Figure 5: Efficiency of MemTree vs. RAPTOR and GraphRAG: MemTree’s top-down insertion
strategy allows content aggregation and embedding updates to be parallelized on the CPU, significantly
accelerating memory updates as memory grows. Despite its cumulative cost being approximately
1.4x higher than the offline algorithms (RAPTOR and GraphRAG), it remains manageable. Results
are reported on the MultiHop dataset.

Hierarchical Representation of the MemTree The hierarchical structure of the learned MemTree
reflects a semantic organization. Higher-level nodes capture more abstract, generalized information,
while deeper nodes store finer details. Figures 1 and 3 further visualize this hierarchy. The model
effectively groups related concepts, with intermediate parent nodes summarizing high-level informa-
tion during memory insertion. This structure enables the MemTree to maintain a balance between
abstract representations at the top and specific details at the bottom.

Time Efficiency of Online Algorithm vs Offline Algorithm MemTree’s continuous updates
during conversations make it ideal for real-time scenarios. Once the traversal path is defined, its
top-down insertion allows parent node updates to be parallelized on the CPU, accelerating the update
process and reducing bottlenecks as memory grows. In contrast, RAPTOR and GraphRAG use
clustering in a RAG setup, making memory updates after index construction impossible or costly. As
shown in Figure 5, MemTree inserts new information in 10 seconds on average, while RAPTOR and
GraphRAG take over an hour to build the full memory tree, making it impractical for real-time use.
Although MemTree’s cumulative time cost is 1.4x higher than RAPTOR’s due to continuous updates,
this trade-off enables maintaining an up-to-date memory in real time.

6 CONCLUSION

MemTree effectively addresses the long-term memory limitations of large language models by
emulating the schema-like structures of the human brain through a dynamic tree-based memory
representation. This approach enables efficient integration and retrieval of extensive historical data,
as demonstrated by its superior performance on four benchmarks with different interactive contexts.
Our evaluations reveal that MemTree consistently maintains high performance and demonstrates
human-like knowledge aggregation by capturing the semantics of the context within its tree memory
structure. This advancement offers a promising solution for enhancing the reasoning capabilities of
LLMs in handling long-term memory.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethical Statement In developing MemTree, we commit to ensuring that no private or proprietary
data is mishandled during our experiments, and all data used for training and evaluation are publicly
available. While our current research does not explicitly address principles such as transparency,
responsibility, inclusivity, bias mitigation, or user safety, we recognize that recent advancements in
these areas can be integrated into the memory learning component of our algorithm. We encourage
the research community to engage with these ethical considerations as we strive to enhance our
understanding and implementation of responsible AI practices.

Reproducibility Statement We provide comprehensive details for reproducing our results in Sec-
tion 4 and the Appendix, including our experimental setup, evaluation metrics, and implementation
settings. The code and scripts used in our experiments will be made publicly available upon accep-
tance. All external libraries and dependencies required for reproduction are specified. Our method
has been evaluated on both open-source and commercial models to demonstrate its applicability.

REFERENCES

John R Anderson. Cognitive psychology and its implications. Macmillan, 2005.

Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry Evseev, Mikhail Burtsev, and Evgeny
Burnaev. Arigraph: Learning knowledge graph world models with episodic memory for llm agents.
arXiv preprint arXiv:2407.04363, 2024.

Jinheon Baek, Alham Fikri Aji, and Amir Saffari. Knowledge-augmented language model
prompting for zero-shot knowledge graph question answering. Proceedings of the First Work-
shop on Matching From Unstructured and Structured Data (MATCHING 2023), 2023. URL
https://api.semanticscholar.org/CorpusID:260063238.

Taiyu Ban, Lyvzhou Chen, Xiangyu Wang, and Huanhuan Chen. From query tools to causal architects:
Harnessing large language models for advanced causal discovery from data. ArXiv, abs/2306.16902,
2023. URL https://api.semanticscholar.org/CorpusID:259287331.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Aydar Bulatov, Yuri Kuratov, Yermek Kapushev, and Mikhail S Burtsev. Scaling transformer to 1m
tokens and beyond with rmt. arXiv preprint arXiv:2304.11062, 2023.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023.

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu, Dongyan Zhao, and Rui Yan. Lift yourself up:
Retrieval-augmented text generation with self memory. ArXiv, abs/2305.02437, 2023. URL
https://api.semanticscholar.org/CorpusID:258479968.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv preprint
arXiv:2402.13753, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Vanessa E Ghosh and Asaf Gilboa. What is a memory schema? a historical perspective on current
neuroscience literature. Neuropsychologia, 53:104–114, 2014.

11

https://api.semanticscholar.org/CorpusID:260063238
https://api.semanticscholar.org/CorpusID:259287331
https://api.semanticscholar.org/CorpusID:258479968

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Asaf Gilboa and Hannah Marlatte. Neurobiology of schemas and schema-mediated memory. Trends
in cognitive sciences, 21(8):618–631, 2017.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. arXiv preprint arXiv:2310.05736,
2023.

Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum. A hierarchical algo-
rithm for extreme clustering. In Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 255–264, 2017.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Dmitry Sorokin, Artyom Sorokin, and Mikhail
Burtsev. In search of needles in a 11m haystack: Recurrent memory finds what llms miss.
ArXiv, abs/2402.10790, 2024. URL https://api.semanticscholar.org/CorpusID:
267740348.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

Aditya Krishna Menon, Anand Rajagopalan, Baris Sumengen, Gui Citovsky, Qin Cao, and Sanjiv
Kumar. Online hierarchical clustering approximations. arXiv preprint arXiv:1909.09667, 2019.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn.
Memory-based model editing at scale. ArXiv, abs/2206.06520, 2022. URL https://api.
semanticscholar.org/CorpusID:249642147.

Ali Modarressi, Ayyoob Imani, Mohsen Fayyaz, and Hinrich Schütze. Ret-llm: Towards a general
read-write memory for large language models. arXiv preprint arXiv:2305.14322, 2023.

Benjamin Moseley and Joshua Wang. Approximation bounds for hierarchical clustering: Average
linkage, bisecting k-means, and local search. Advances in Neural Information Processing Systems,
30, 2017.

Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and Joseph E Gonzalez.
Memgpt: Towards llms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen,
Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, et al. Quality: Question answering
with long input texts, yes! arXiv preprint arXiv:2112.08608, 2021.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Man-
ning. Raptor: Recursive abstractive processing for tree-organized retrieval. arXiv preprint
arXiv:2401.18059, 2024.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-Micke, and Mohit Iyyer. Do long-range language
models actually use long-range context? ArXiv, abs/2109.09115, 2021. URL https://api.
semanticscholar.org/CorpusID:237572264.

Yixuan Tang and Yi Yang. Multihop-rag: Benchmarking retrieval-augmented generation for multi-
hop queries. arXiv preprint arXiv:2401.15391, 2024. Copyright © 2024. Licensed under CC
BY-SA 4.0, including disclaimer of warranties. Available at https://arxiv.org/abs/2401.15391.

Milena Trajanoska, Riste Stojanov, and Dimitar Trajanov. Enhancing knowledge graph con-
struction using large language models. ArXiv, abs/2305.04676, 2023. URL https://api.
semanticscholar.org/CorpusID:258557103.

Szymon Tworkowski, Konrad Staniszewski, Mikołaj Pacek, Yuhuai Wu, Henryk Michalewski, and
Piotr Miłoś. Focused transformer: Contrastive training for context scaling. Advances in Neural
Information Processing Systems, 36, 2024.

12

https://api.semanticscholar.org/CorpusID:267740348
https://api.semanticscholar.org/CorpusID:267740348
https://api.semanticscholar.org/CorpusID:249642147
https://api.semanticscholar.org/CorpusID:249642147
https://api.semanticscholar.org/CorpusID:237572264
https://api.semanticscholar.org/CorpusID:237572264
https://api.semanticscholar.org/CorpusID:258557103
https://api.semanticscholar.org/CorpusID:258557103

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models. arXiv preprint arXiv:2401.00368, 2023.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

J Xu. Beyond goldfish memory: Long-term open-domain conversation. arXiv preprint
arXiv:2107.07567, 2021.

Liang Yao, Jiazhen Peng, Chengsheng Mao, and Yuan Luo. Exploring large language mod-
els for knowledge graph completion. ArXiv, abs/2308.13916, 2023. URL https://api.
semanticscholar.org/CorpusID:261242758.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method for
very large databases. ACM sigmod record, 25(2):103–114, 1996.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong, and
Ji-Rong Wen. A survey on the memory mechanism of large language model based agents. arXiv
preprint arXiv:2404.13501, 2024.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 19724–19731, 2024.

13

https://api.semanticscholar.org/CorpusID:261242758
https://api.semanticscholar.org/CorpusID:261242758

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MEMTREE DETAILS

Further details and parameter settings for our approach are outlined below. Unless otherwise specified,
these settings are consistent across all experiments presented in the paper.

A.1.1 MEMTREE ALGORITHM

The following outlines the algorithmic procedure for incrementally updating and restructuring
the memory representation in MemTree. This approach ensures that new information is efficiently
integrated into the existing memory hierarchy while dynamically adjusting based on content similarity
and structural depth.

Parameters:

• c: the textual content stored at a node or introduced as new information.
• e: the embedding vector representing the content, generated by an embedding function femb.
• v: a node in the memory tree, which contains content, embeddings, and connections to other

nodes. Note that the root is a structural node and does not hold content.
• d: the depth of a node in the tree.

Algorithm 1 Adding New Information to MemTree

Require: New information cnew, root node v0, threshold function θ(d)
1: enew ← femb(cnew)
2: INSERTNODE(v0, enew, cnew, 0)
3: procedure INSERTNODE(v, enew, cnew, d)
4: if v is a leaf then
5: Expand v into a parent
6: Create and attach child node vleaf with original content
7: end if
8: Compute similarity si = sim(enew, ei) for each child vi of v
9: vbest ← argmax(si), smax ← max(si)

10: if smax ≥ θ(d) then
11: cv ← Aggregate(cv, cnew)
12: ev ← femb(cv)
13: INSERTNODE(vbest, enew, cnew, d+ 1)
14: else
15: Create and attach new child node vchild with cnew
16: end if
17: end procedure

A.1.2 AGGREGATE OPERATION

When new information is added, the content of parent nodes along the traversal path is updated
through a conditional aggregation. This process combines the existing content of the parent node
with the new content, factoring in the number of its descendants. The aggregation operation is
implemented using the following prompt:

You will receive two pieces of information: New Information
is detailed, and Existing Information is a summary from
{n_children} previous entries. Your task is to merge these
into a single, cohesive summary that highlights the most
important insights.

- Focus on the key points from both inputs.

- Ensure the final summary combines the insights from both
pieces of information.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

- If the number of previous entries in Existing Information
is accumulating (more than 2), focus on summarizing more
concisely, only capturing the overarching theme, and getting
more abstract in your summary.

Output the summary directly.

[New Information]
{new_content}

[Existing Information (from {n_children} previous entries)]
{current_content}

[Output Summary]

A.1.3 ADAPTIVE SIMILARITY THRESHOLD

The adaptive similarity threshold ensures that deeper nodes, representing more specific information,
require higher similarity for new data integration, while shallower nodes are more abstract and accept
broader content. This mechanism preserves the tree’s hierarchical integrity by adjusting selectivity
based on the node’s depth. The threshold is computed as:

threshold = base_threshold× exp

(
rate× current_depth

max_depth

)
where:

• base_threshold = 0.4

• rate = 0.5

• current_depth is the depth of the current node.

• max_depth is the maximum depth of the tree.

A.1.4 RETRIEVAL

For the MSC experiment, the retrieval system returns the top k = 3 similar dialogues from 15-round
conversations, with a context length of 1000 tokens for all models. In the MSC-E dataset, due to
longer conversations, the retrieval returns the top k = 10 similar dialogues, with a context length of
8192 tokens to accommodate the models with full-chat history. This setting is similarly applied to the
Multihop RAG and QuALITY experimenst, where longer contexts are required.

A.2 FURTHER EXPERIMENTAL DETIALS

A.2.1 DATASET STATISTICS

We summarize the dataset statistics in Table A.1 to provide a clear overview of the scale and
complexity of the data used in our experiments. For the Multi-Session Chat (MSC) dataset, we
worked with 500 conversation sessions, each consisting of about 14 rounds, allowing us to evaluate the
model’s ability to handle multi-turn dialogues. A memory representation was independently built for
each session, capturing dialogues as the conversation progressed. In the extended version, MSC-E, we
expanded the original dataset by generating an additional 70 sessions, each containing over 200 rounds
of dialogue. For these longer sessions, a memory representation was similarly built for each session,
but the increased number of rounds presented a greater challenge in managing long-term information
across interactions. The QuALITY dataset, focusing on document comprehension, contains around
230 documents with an average of 5,000 tokens each. For each document, an independent memory
representation was built to facilitate reasoning across the entire document. Lastly, MultiHop RAG
includes 609 articles and over 2,500 multi-hop questions. A unified memory representation was
constructed across all the news articles, enabling the model to retrieve and integrate information from
multiple documents when answering complex multi-hop questions.

Further details about the configurations for each dataset are as follows:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• MSC and MSC-E: For the MSC and MSC-E datasets, each conversation consists of multiple
rounds. We inserted each round individually into MemTree without applying any chunking.
For each new conversation, we built an independent MemTree.

• QuALITY: We inserted each document individually and chunked it into non-overlapping
segments of 512 tokens.

• MultiHop RAG: We inserted each document individually and chunked it into non-
overlapping segments of 1024 tokens.

Dataset Statistic Value

MSC (Packer et al., 2023)

Conversation Sessions 500
Rounds per Session 13.7 ± 0.6
Tokens per Dialogue 21.6 ± 11.9
Queries per Session 1

MSC-E

Conversation Sessions 70
Rounds per Session 200.3 ± 16.7
Tokens per Dialogue 29.5 ± 1.5
Queries per Session 101.9 ± 8.6

QuALITY (Pang et al., 2021)

Documents 230
Tokens per Document 5028.4 ± 1619.1
Queries per Document 9.0 ± 1.0

- Easy Queries 1021
- Hard Queries 1065

Multihop RAG (Pang et al., 2021)

Articles 609
Tokens per Article 2046.4 ± 189.0
Total Queries 2255

- Inference Queries 816
- Comparison Queries 856
- Temporal Queries 583

Table A.1: Dataset Statistics

A.2.2 EVALUATION METRICS

Predicted Response Generation: To assess retrieval performance, we configure the LLM to generate
a response to the query based solely on the retrieved content using the following prompt:

Write a high-quality short answer for the given question
using only the provided search results (some of which might
be irrelevant).

[Question]
{query}

[Search Results]
{retrieved_content}

[Output]

Binary Accuracy Evaluation: To measure binary accuracy across all experiments, we employed the
following prompt, instructing the model to evaluate the predicted response against the ground-truth
answer:

Your task is to check if the predicted answer appropriately
responds to the query in a similar way as the ground-truth
answer.

Instructions:

- Output ’1’ if the predicted answer addresses the query
similarly to the ground-truth answer. - Output ’0’ if it
does not. - Only output either ’0’ or ’1’. No explanations
or extra text.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

[Query]
{query}

[Ground-Truth Answer]
{gt_answer}

[Predicted Answer]
{predicted_answer}

[Output]

A.2.3 MSC-E DATA GENERATION

Building on the MSC dataset from Packer et al. (2023), we extend each conversation to 200 rounds
using the following iterative process. A sliding window of the most recent 8 turns is maintained, and
for each step, the next 2 rounds of dialogue are generated using the prompt below. This approach
allows for a natural progression of conversation while keeping the context manageable for the model:

Generate a continuation of the conversation between Alex and
Bob. Follow these guidelines:

1. Alternate strictly between Alex and Bob, starting with
Alex.

2. Alex should speak exactly {n_rounds} times, and Bob
should speak exactly {n_rounds} times.

3. Each turn should consist of 1-3 sentences.

4. Ensure that each response flows logically and
organically from the previous turn, avoiding forced
transitions or unnatural questions.

5. Focus on developing rapport between the characters. Use
a mix of statements, reactions, and occasional questions
to maintain a conversational tone.

6. Allow the conversation to transition smoothly between
topics, keeping it casual and coherent.

[Conversation History]
{recent_chat_hist}

[Generated Dialogue]

Output Example: Below is an excerpt from the MSC-E dataset, showcasing one session of a
conversation that spans 200 rounds in total.

Alex: Hi! How are you doing tonight?
Bob: I’m doing great. Just relaxing with my two dogs.
Alex: Great. In my spare time I do volunteer work.
Bob: That’s neat. What kind of volunteer work do you do?

...

Alex: That would be great! I’d love to try some of your
Thai recipes. Cooking can be such a creative outlet, don’t
you think?
Bob: Absolutely, it’s like a culinary adventure in your own
kitchen. Speaking of adventures, have you planned any trips
lately, maybe to explore new cuisines firsthand?
Alex: Not yet, but I’ve been dreaming of a trip to Italy to
indulge in the food and scenery. How about you, any travel
plans on the horizon?
Bob: I’ve been thinking about visiting Japan. I’m
fascinated by their culture and, of course, the sushi! It
would be an amazing experience to see it all in person.
Alex: Japan sounds incredible! The blend of traditional
and modern aspects in their culture is so intriguing.
You’ll have to share your experiences if you go.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2.4 MSC-E QUERY GENERATION

To generate queries and ground-truth responses for evaluating memory retrieval quality, we apply the
following prompt to subsets of the conversation history. The generated questions will help assess
how effectively the memory captures and retrieves information from various points in the dialogue:

Based on the conversation between "Alex" and "Bob" below,
generate {n_q} unique questions that "Bob" can ask
"Alex," derived from the information "Alex" has shared.
Each question should be directly answerable using the
conversation’s content.

Output a JSON array where each element is an object with the
following keys:

- "question": The question for Alex.

- "response": The corresponding answer derived directly
from Alex’s information.

Ensure the output is valid JSON. Only output the JSON array.

[Conversation]
{chat_hist}

[Output]

A.3 FURTHER EXPERIMENTAL RESULTS

A.3.1 ACCURACY VS POSITION OF EVIDENCE (MSC-E)

We present accuracy results on the MSC-E dataset, focusing on how performance varies based on
the position of supporting evidence within the dialogue. This analysis demonstrates the model’s
ability to effectively retrieve and utilize information from different points in extended conversations,
highlighting its robustness in scenarios where a memory component is essential for maintaining
context.

Figure A.1: Accuracy on MSC-E.

A.3.2 PERFORMANCE VS QUESTION DIFFICULTY (QUALITY)

The experiment is conducted on the QuALITY benchmark to evaluate model performance on
questions of varying difficulty. Both single-pass and retrieval-augmented methods are tested, focusing
on the comparison between online and offline memory representation approaches. Llama-3.1 70B,
which processes the entire document in a single pass, serves as the baseline, while RAPTOR (Sarthi
et al., 2024), GraphRAG (Edge et al., 2024), MemoryStream (Park et al., 2023), and MemTree
(ours) are assessed for their ability to manage document comprehension with memory retrieval.
Offline methods (RAPTOR and GraphRAG) that need to be rebuilt from scratch to incorporate new
information are shaded in gray.

A.3.3 PERFORMANCE VS QUERY TYPE (MULTIHOP RAG)

We present results across three query types: (1) Inference queries, requiring reasoning from retrieved
information; (2) Comparison queries, which involve evaluating and comparing evidence within the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure A.2: Accuracy on QuALITY

retrieved data; and (3) Temporal queries, analyzing time-related information to determine event
sequences. Here, we compare online and offline methods (shaded in gray). Note that offline methods
must be rebuilt from scratch to incorporate new information and cannot support real-time memory
updates like MemTree.

Figure A.3: Accuracy on MultiHop RAG.

A.3.4 LLM CALL EFFICIENCY COMPARISON

We evaluate the efficiency of each baseline method by measuring the number of LLM calls required
to load the Multihop RAG dataset. Online methods like MemoryStream and our proposed MemTree
support dynamic addition of new information to the memory representation, enabling efficient
and incremental updates. In contrast, offline methods must be rebuilt from scratch to incorporate
new information, which is both computationally expensive and time-consuming. For example,
incorporating a single new observation requires approximately 3,750 LLM calls for RAPTOR and
about 3,850 LLM calls for GraphRAG, as these methods assume a static knowledge base when
constructing the memory representation.

Our approach, MemTree, achieves a high level of accuracy on the Multihop RAG task while requiring
only an average of 3.27 LLM calls per insertion, highlighting its efficiency and scalability. Moreover,
MemTree’s node updates can be performed concurrently, further enhancing its performance. After
detecting the traversal path for an insertion, the content aggregation LLM calls along the path can be
executed in parallel.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table A.2: Performance and Efficiency on Multihop RAG: Overall accuracy and average number of
LLM calls per insertion for each method.

Method Accuracy (%) #LLM Calls

Offline Methods
RAPTOR 81.0 3753
GraphRAG 78.3 3858

Online Methods
MemoryStream 74.7 1 per insertion
MemTree 80.5 3.27 ± 2.38 per insertion

A.3.5 ABLATION: COLLAPSED RETRIEVAL VS. TRAVERSAL RETRIEVAL

We evaluate MemTree’s performance in the Multihop RAG experiment using two retrieval strategies:

1. Collapsed Retrieval: This approach flattens the tree hierarchy, treating all nodes as a single
set for comparison. Each node is directly evaluated against the query without considering
the tree’s structure (see Section 3.2).

2. Traversal Retrieval: This method traverses the structure of the tree. Starting from the
root, it retrieves the top-k nodes at each level based on cosine similarity to the query vector.
The process continues recursively, selecting the top-k nodes from the child nodes of the
previously retrieved top-k. Although straightforward, an implementation of this retrieval
method is available online.5

Figure A.4: Accuracy Comparison: MemTree’s accuracy on the MultiHop RAG task using collapsed
and traversal retrieval strategies.

The traversal retrieval method, while leveraging the hierarchical structure of MemTree, introduces
trade-offs between accuracy and coverage. By limiting the search space at each level to the top-
k nodes, traversal retrieval focuses on localized paths within the tree. However, this approach
necessitates careful tuning of the parameter k. As shown in Figure A.4, higher values of k (e.g.,
k = 10) achieve accuracy comparable to the collapsed retrieval method, which evaluates all nodes
simultaneously. In contrast, lower values of k (k ≤ 5) significantly compromise accuracy in
the Multihop RAG experiment by prematurely narrowing the search space and missing relevant
information, as seen in the accuracy drop for temporal queries.

5https://github.com/parthsarthi03/raptor/blob/master/raptor/tree_
retriever.py

20

https://github.com/parthsarthi03/raptor/blob/master/raptor/tree_retriever.py
https://github.com/parthsarthi03/raptor/blob/master/raptor/tree_retriever.py

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

While collapsed retrieval excels by evaluating all nodes simultaneously to identify information at
the appropriate level of granularity for complex queries, traversal retrieval biases the search towards
paths already established in the tree hierarchy. This bias can lead to redundancy, where retrieved
information from parent nodes is repeated, while detailed information in deeper nodes remains
unaccessed. Additionally, traversal retrieval risks exhausting the available context length before
incorporating critical details from deeper nodes, particularly in scenarios requiring fine-grained
reasoning.

A.3.6 ABLATION: ROBUSTNESS OF MEMTREE UNDER VARIOUS LLM AND EMBEDDING
MODELS

In the main paper, we constructed MemTree using two widely adopted LLMs,
GPT-4o and Llama-3.1-70B-Instruct, along with two embedding models,
text-embedding-3-large and E5-Mistral-7B-Instruct. In this section, we
further explore the robustness of MemTree when smaller models are used for its construction.

To evaluate how the structure of MemTree changes when built with smaller models, we
compare the statistics of the learned MemTree on the Multihop RAG dataset using smaller
LLMs (GPT-4o-mini and Llama-3.1-8B-Instruct) and a smaller embedding model
(text-embedding-3-small). As summarized in Table A.3, the resulting trees constructed
with smaller LLMs and embeddings have structures comparable to those built with larger models
(i.e., in terms of the number of nodes, branching factors, and average depths).

Figure A.5 illustrates the distribution of nodes across different depth levels, revealing that the majority
of nodes are concentrated between depths 3 and 5 across all models. Additionally, as the tree deepens,
the length of the information stored increases, highlighting that deeper nodes capture more abstract
and overarching themes within the MemTree hierarchy. These observations indicate that using smaller
models still preserves the hierarchical structure achieved with larger models. The consistency in
structural statistics suggests that MemTree’s construction process is robust to the choice of LLM and
embedding model sizes, maintaining effectiveness even with more resource-constrained models.

Furthermore, as shown in Table A.4, the accuracy results obtained using trees built with smaller
models are comparable to those achieved with larger models. This demonstrates that MemTree can
maintain high performance even when constructed using smaller LLMs and embeddings, further
emphasizing its practicality in scenarios with limited computational resources.

Figure A.5: Depth-based statistics of MemTree learned on the Multihop RAG dataset using different
LLM and embedding models. The distribution of nodes across depths and the increase in information
length at deeper levels are shown.

A.3.7 ABLATION: ADAPTIVE THRESHOLD PARAMETERS

MemTree employs an adaptive similarity threshold θ(d) that varies with node depth d to maintain
hierarchical integrity. At greater depths, nodes represent more specific information and thus require
higher similarity for data integration; shallower nodes accept broader content. The threshold function
is defined as: θ(d) = θ0e

λd, where θ0 is the base threshold at depth zero, and λ controls the rate of
increase with depth. Throughout our experiments (see Section A.1.3), we use θ0 = 0.4 and λ = 0.5.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table A.3: Overall statistics of MemTree on the Multihop RAG dataset using various LLM and
embedding models.

LLM Model GPT-4o GPT-4o-mini Llama-3.1-8B

Embedding Model text-embed-3-large text-embed-3-small text-embed-3-small

#Nodes 3,164 3,178 3,174
#Leaf Nodes 1,706 1,706 1,706
#Branching Nodes 1,458 1,472 1,468

Depth (max) 13 15 15
Depth (average) 4.9 5.0 5.0

Branching Factor 2.1 2.1 2.1
Height-to-Width Ratio 6.5 7.5 7.5

Table A.4: Accuracy results on the Multihop RAG dataset using MemTree built with various LLM
and embedding models.

LLM Model Embedding Model Inference Comparison Temporal Overall

GPT-4o text-embed-3-large 96.0 73.9 68.4 80.5

GPT-4o-mini text-embed-3-small 94.6 71.3 66.0 78.4
Llama-3.1-8B text-embed-3-small 94.9 71.0 65.0 78.1

In this section, we investigate how varying θ0 and λ affects MemTree’s structure and performance
in the MultiHop RAG experiment. Figure A.6 illustrates the impact on the tree structure. A high
base threshold (θ0 = 0.8) leads to a shallow tree with most nodes at depths 1–2 because the stringent
similarity requirement forces new nodes to closely match existing ones, resulting in horizontal
expansion. Reducing θ0 to 0.4 relaxes the similarity criterion, allowing new nodes to integrate at
deeper levels. Consequently, nodes are predominantly distributed at depths 4–6. Further decreasing
θ0 to 0.1 results in an even deeper tree, with most nodes at depths 8–14, as the lower similarity
threshold promotes vertical growth. In contrast, varying the rate parameter λ has a less pronounced
effect on the tree’s structure. For example, with θ0 = 0.8, increasing λ from 0.25 to 0.75 results in
a slightly shallower tree—the maximum depth decreases from 15 to 11—and the node distribution
becomes more concentrated around depth 5.

The impact of the adaptive threshold parameters on the overall accuracy in the MultiHop RAG
experiment is depicted in Figure A.7. There is a slight improvement when θ0 = 0.1 and λ = 0.25;
however, the differences are not statistically significant. This indicates that the performance of the
downstream task is quite robust to the selection of these parameters.

Figure A.6: Impact of adaptive threshold parameters on MemTree’s structure.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure A.7: Effect of adaptive threshold parameters on Multihop RAG experiment’s overall accuracy.

A.3.8 HUMAN EVALUATION OF MEMTREE’S STRUCTURE

To evaluate how well MemTree’s hierarchical structure aligns with human perception of similarity,
we conducted a human evaluation study. Our goal was to determine whether the organization of
information within MemTree corresponds to how humans naturally group and relate concepts.

Experimental Design: We designed an experiment involving 500 questions, split evenly into 250
easy and 250 hard questions, with 5 annotators participating. The experiment consisted of the
following steps:

• Source Node: Randomly select a node from the MemTree.

• Alternative One: Randomly select a descendant of the Source Node at any depth.

• Alternative Two: Randomly select a node that is not a descendant of the Source Node but at
the same depth as Alternative One.

Participants were presented with the following task:

Question: Which of the following is more similar to [Source Node]?
Options:
(a) [Alternative One]
(b) [Alternative Two]

Question Tiers: We categorized the questions into two difficulty levels:

• Easy Questions: Alternative One and Alternative Two share only the root as their least
common ancestor. This implies they belong to different subtrees, making their content
clearly distinct and related to different topics.

• Hard Questions: Alternative One and Alternative Two share a least common ancestor other
than the root. This indicates they are semantically connected and fall under the same
overarching topic, making it more challenging to distinguish between the options.

Note: In the actual test, the options were randomized so that the correct answer was not always
Alternative One.

Example (Hard Question): Full content not shown for brevity.

Please read the following statement carefully:

“The USA vs Germany match showcased a mix of promising
individual performances and significant defensive lapses
from the USMNT. Christian Pulisic stood out with a stellar
performance, including a stunning first-half goal, and

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

was a constant threat on the left wing. Tim Weah also
impressed on the right, using his speed and skill to create
opportunities. Gio Reyna, in his limited 45 minutes,
demonstrated his playmaking abilities, linking well with
Folarin Balogun, who showed potential but needs more
service. ...

Defensively, the USMNT struggled. Sergiño Dest was a
key culprit, making several critical errors that led to
German goals. Weston McKennie and Yunus Musah had moments
of brilliance in possession but were defensively frail,
contributing to the team’s vulnerabilities. ...

Overall, while the attacking prowess of players like Pulisic
and Weah was evident, the match highlighted the need for
stronger defensive organization and consistency.”

Which of the following options is more closely related?

(a) “...Player ratings for USMNT substitutes vs Germany
...Cameron Carter-Vickers provided much-needed stability at
the back and Brenden Aaronson added dynamism to the attack.
Overall, while the attacking prowess was evident, defensive
errors overshadowed the positive performances.”

(b) “...Gio Reyna was exceptional throughout the first half,
demonstrating his playmaking abilities. However, the U.S.
team faltered after his departure, highlighting the need for
stronger defensive organization. ...”

Figure A.8 presents the results of the human evaluation. Overall, participants consistently chose
the option that was a descendant of the Source Node as more similar, indicating a strong alignment
between MemTree’s structure and human perception.

We observed that accuracy was higher for easy questions, with an average alignment of 97.9%
for nodes at depths 2–5, reaching 100% for deeper nodes (depths 6–13). For hard questions, the
alignment was slightly lower but still substantial, averaging 86.2% for depths 2–5 and increasing
to over 89% for deeper nodes. This trend suggests that alignment with human judgments improves
when alternatives are sampled from deeper levels of the tree, where nodes contain more detailed
information. These results demonstrate that MemTree effectively captures hierarchical relationships
in a manner that aligns with human intuition.

Figure A.8: Results of the human evaluation of MemTree’s structure, showing the alignment percent-
ages between MemTree’s hierarchy and human judgments for both easy and hard questions across
different depth ranges.

A.3.9 PROMPT COMPRESSION

Prompt compression methods, such as LLMLingua Jiang et al. (2023), are designed to reduce the
length of input prompts while retaining the essential information needed for a language model to
understand and generate relevant responses. In this section, we evaluate the effect of applying

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

LLMLingua prompt compression at various compression rates (0 < r ≤ 1, where lower rates
correspond to more aggressive compression) on the retrieved content. Our goal is to reduce the
number of tokens in the retrieved content when generating responses to queries in the Multihop RAG
and MSC-E experiments with online baseline method: our proposed MemTree and MemoryStream.

We observe that the task accuracy is highest when no compression is applied to the retrieved content
(r = 1), but it gradually decreases as the compression becomes more aggressive. Specifically,
for compression rates lower than 0.3 in the Multihop RAG experiments and lower than 0.7 in the
MSC-E experiments, the drop in accuracy is significant. Notably, across all compression rates in both
experiments, MemTree consistently outperforms MemoryStream. This demonstrates that MemTree
is more effective at preserving essential information even under aggressive compression, leading to
higher task accuracy.

These results indicate that while compression introduces a trade-off between prompt length and
accuracy, MemTree mitigates this trade-off more effectively than the baseline method. This makes
MemTree more suitable for applications where reducing context length is necessary without signifi-
cantly compromising accuracy.

Figure A.9: Impact of prompt compression rate on task accuracy for Multihop RAG and MSC-E
experiments using MemTree and MemoryStream. Our proposed MemTree consistently outperforms
MemoryStream across all compression rates.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B THEORETICAL JUSTIFICATION OF MEMTREE VIA ONLINE HIERARCHICAL
CLUSTERING

In this appendix, we provide a theoretical justification for MemTree by connecting it to online
hierarchical clustering algorithms, specifically the Online Top-Down (OTD) algorithm proposed
by Menon et al. (2019). We demonstrate that MemTree aligns with this algorithm, inheriting its
theoretical properties, which ensures efficient and effective hierarchical memory management in large
language models (LLMs).

B.1 MEMTREE’S APPROXIMATION TO THE MOSELEY-WANG REVENUE

MemTree achieves an approximation to the optimal Moseley-Wang revenue (Section B.2) under a
data separation assumption (Assumption 1), ensuring a structured and theoretically sound hierarchy
formation. The following theorem summarizes this guarantee.
Theorem 1 (Approximation Guarantee of MemTree (Informal)). Assuming the data processed by
MemTree satisfies the β-well-separated condition (Assumption 1), the hierarchy maintained by
MemTree achieves a revenue

Rev(MemTree;W) ≥ β

3
Rev(T ∗;W),

where T ∗ is the optimal hierarchy maximizing the Moseley-Wang revenue.

This β/3-approximation ensures that MemTree effectively clusters similar data points, preserving the
quality of the hierarchy.

B.2 BACKGROUND: ONLINE HIERARCHICAL CLUSTERING AND MOSELEY-WANG REVENUE

Hierarchical clustering organizes data into a nested sequence of clusters, capturing relationships at
various levels of granularity. To evaluate the quality of such hierarchies, we utilize objective functions
like the Moseley-Wang revenue function (Moseley & Wang, 2017), which measures how well similar
data points are grouped together.

OTD Algorithm The Online Top-Down (OTD) clustering algorithm (Menon et al., 2019) is an
efficient online hierarchical clustering method that incrementally updates the hierarchy as new data
arrives. It operates as follows:

• Traversal: OTD traverses the hierarchy T from the root to determine where to insert a new
data point x.

• Decision Mechanism: At each node S in the hierarchy, OTD compares the intra-cluster
similarity w(S) with the inter-cluster similarity w(S, x). If w(S, x) ≤ w(S), it inserts x
as a sibling of S; otherwise, it continues traversing into the child subtree with the highest
similarity.

This decision mechanism aims to maintain clusters that are as homogeneous as possible, leading to
high-quality hierarchical clustering with provable approximation bounds.

Moseley-Wang Revenue Function Given data points X = {x1, x2, . . . , xn} and pairwise similar-
ity weights wij between points xi and xj , the Moseley-Wang revenue function quantifies the quality
of a hierarchy T over X .
Definition 1 (Moseley-Wang Revenue (Moseley & Wang, 2017)). Let lca(i, j) denote the least
common ancestor of xi and xj in T . The revenue is defined as:

Rev(T ;W) =
∑

1≤i<j≤n

wij (n− |leaves (lca(i, j))|) ,

where |leaves (lca(i, j))| is the number of leaves under lca(i, j).

This function rewards hierarchies that place similar points (with high wij) together in clusters lower
in the hierarchy, maximizing the term n− |leaves (lca(i, j))|.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Approximation Guarantees Menon et al. (2019) showed that under a certain data separation as-
sumption (Assumption 1), the OTD algorithm achieves a β/3-approximation to the optimal Moseley-
Wang revenue, meaning the revenue obtained by OTD is at least (β/3) times the maximum possible
revenue.

B.3 ALIGNMENT OF MEMTREE WITH THE OTD ALGORITHM

Both MemTree and the OTD algorithm adopt a top-down approach for integrating new data, utilizing
hierarchical traversal and similarity-based decision-making at each node. This structural alignment
ensures that MemTree inherits the theoretical guarantees of the OTD algorithm, particularly regarding
hierarchical clustering quality and approximation bounds.

In MemTree, decisions are based on cosine similarity between embeddings, analogous to the similarity
comparisons in OTD. Additionally, the content aggregation mechanism in MemTree plays a crucial
role in preserving or enhancing intra-cluster similarity, ensuring that the embeddings of parent nodes
reflect the collective content of their child nodes. Below, we summarize the traversal and insertion
mechanisms of both algorithms to highlight their similarities:

• OTD Algorithm:
– Traversal: Processes new data points by traversing the hierarchy from the root to

identify the appropriate location for insertion.
– Decision Making: At each node S, OTD compares the intra-cluster similarity w(S) with

the inter-cluster similarity w(S, x), where x is the new data point. If w(S, x) ≤ w(S),
the new point is inserted as a sibling; otherwise, OTD continues traversing into a child
subtree.

• MemTree:
– Traversal: Computes the embedding enew of the new information cnew and traverses

the tree from the root. At each node v, it compares enew with the embeddings of child
nodes using cosine similarity.

– Decision Making: Proceeds to the child node with the highest similarity if this similarity
exceeds a depth-adaptive threshold θ(dv); otherwise, it attaches a new leaf node under
v.

– Content Aggregation: After inserting the new data, MemTree updates the content
cv and embedding ev of parent nodes along the traversal path using an aggregation
function. This process can be interpreted as maintaining or enhancing the intra-cluster
similarity within each subtree, as the parent node’s representation integrates and reflects
the combined information of its child nodes.

Theoretical Justification By adopting a similar traversal and decision-making process as the
OTD algorithm, MemTree inherits the theoretical properties of OTD, including its approximation
guarantees for the Moseley-Wang revenue function. This alignment suggests that MemTree forms a
hierarchy that effectively clusters similar data, optimizing the revenue and maintaining a coherent,
structured memory system. The depth-adaptive threshold used in MemTree further reinforces this
structure, ensuring that clusters remain well-separated and that intra-cluster similarity is preserved or
enhanced as new data is incorporated.

B.4 DATA SEPARATION ASSUMPTION AND DEPTH-ADAPTIVE THRESHOLD

The OTD algorithm’s approximation guarantee relies on the data satisfying a β-well-separated
condition.
Assumption 1 (β-Well-Separated Data (Menon et al., 2019)). A hierarchy T over data points X is
β-well-separated (0 < β ≤ 1) if, for every subtree S with children A and B, and for any new point x,
the following holds:

If
w(S, x) > w(S) and w(A, x) ≤ w(B, x),

then
w(A) ≥ β · w(A, x),

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where:

• w(S, x) is the average similarity between x and points in S,

• w(S) is the average similarity among points in S,

• w(A, x) is the average similarity between x and points in A,

• w(B, x) is the average similarity between x and points in B,

• w(A) is the average similarity among points in A.

This assumption ensures that clusters are well-separated: if a new point is more similar to the parent
cluster than the average within it and more similar to one child over another, then the intra-cluster
similarity of the less similar child is sufficiently high relative to its similarity to the new point.

MemTree’s Depth-Adaptive Threshold In MemTree, the depth-adaptive threshold θ(d) = θ0e
λd

increases with the depth d of the node, enforcing stricter similarity requirements for deeper clusters.
This mechanism effectively creates well-separated clusters, analogous to satisfying Assumption 1.

Mathematical Derivation Consider the threshold function θ(d) = θ0e
λd, where θ0 > 0 and

λ > 0. At depth d, suppose that during traversal, the new point x does not proceed to child A because
w(A, x) ≤ θ(d), while it proceeds to child B because w(B, x) > θ(d). Additionally, the intra-cluster
similarity of A at depth d− 1 must satisfy w(A) ≥ θ(d− 1) = θ(d)e−λ. Then, we have:

w(A) ≥ e−λθ(d) ≥ e−λw(A, x),

since w(A, x) ≤ θ(d).

This implies:
w(A) ≥ e−λw(A, x),

meaning that β = e−λ in the data separation condition (Assumption 1).

Implications By appropriately setting θ0 and λ, we can control β and the clustering behavior:

• A larger λ (resulting in a smaller β) enforces stronger separation between clusters at deeper
levels.

• The parameter θ0 sets the baseline similarity threshold at the root, influencing clustering
decisions at higher levels. While θ0 does not explicitly appear in the expression for β, it is
essential in practice because, depending on the data, an improper choice of θ0 could violate
the data separation assumption, affecting the approximation guarantee.

28

	Introduction
	Related Work
	Method
	Memory Update
	Memory Retrieval

	Experiments
	Datasets
	Baselines
	Implementation Details and Evaluation Metrics

	Results
	Multi-Session Chat
	Single-Document Question Answering
	Multi-document Question Answering

	Conclusion
	Appendix
	MemTree Details
	MemTree Algorithm
	Aggregate Operation
	Adaptive Similarity Threshold
	Retrieval

	Further Experimental Detials
	Dataset Statistics
	Evaluation Metrics
	MSC-E Data Generation
	MSC-E Query Generation

	Further Experimental Results
	Accuracy vs Position of Evidence (MSC-E)
	Performance vs Question Difficulty (QuALITY)
	Performance vs Query Type (Multihop RAG)
	LLM Call Efficiency Comparison
	Ablation: Collapsed Retrieval vs. Traversal Retrieval
	Ablation: Robustness of MemTree under Various LLM and Embedding Models
	Ablation: Adaptive Threshold Parameters
	Human Evaluation of MemTree's Structure
	Prompt Compression

	Theoretical Justification of MemTree via Online Hierarchical Clustering
	MemTree's Approximation to the Moseley-Wang Revenue
	Background: Online Hierarchical Clustering and Moseley-Wang Revenue
	Alignment of MemTree with the OTD Algorithm
	Data Separation Assumption and Depth-Adaptive Threshold

