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ABSTRACT

Recent advancements in large language models have significantly improved their
context windows, yet challenges in effective long-term memory management
remain. We introduce MemTree, an algorithm that leverages a dynamic, tree-
structured memory representation to optimize the organization, retrieval, and in-
tegration of information, akin to human cognitive schemas. MemTree organizes
memory hierarchically, with each node encapsulating aggregated textual content,
corresponding semantic embeddings, and varying abstraction levels across the
tree’s depths. Our algorithm dynamically adapts this memory structure by com-
puting and comparing semantic embeddings of new and existing information to
enrich the model’s context-awareness. This approach allows MemTree to handle
complex reasoning and extended interactions more effectively than traditional
memory augmentation methods, which often rely on flat lookup tables. Evalua-
tions on benchmarks for multi-turn dialogue understanding and document question
answering show that MemTree significantly enhances performance in scenarios
that demand structured memory management.

Figure 1: MemTree (subset) developed on the MultiHop dataset (Tang & Yang, 2024). MemTree
updates its structured knowledge when new information arrives, enhancing inference-time reasoning
capabilities of LLMs.

1 INTRODUCTION

Despite recent advances in large language models (LLMs) where the context window has expanded
to millions of tokens (Ding et al., 2024; Bulatov et al., 2023; Beltagy et al., 2020; Chen et al.,
2023; Tworkowski et al., 2024), these models continue to struggle with reasoning over long-term
memory (Sun et al., 2021; Liu et al., 2024; Kuratov et al., 2024). This challenge arises because LLMs
rely primarily on a key-value (KV) cache of past interactions, processed through a fixed number of
transformer layers, which lack the capacity to effectively aggregate extensive historical data. Unlike
LLMs, the human brain employs dynamic memory structures known as schemas, which facilitate the
efficient organization, retrieval, and integration of information as new experiences occur (Anderson,
2005; Ghosh & Gilboa, 2014; Gilboa & Marlatte, 2017). This dynamic restructuring of memory is
a cornerstone of human cognition, allowing for the flexible application of accumulated knowledge
across varied contexts.

A prevalent method to address the limitations of long-term memory in LLMs involves the use of
external memory. Weston et al. (2014) introduced the concept of utilizing external memory for
the storage and retrieval of relevant information. More recent approaches in LLM research have
explored various techniques to manage historical observations in databases, retrieving pertinent
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Figure 2: Illustration of MemTree. MemTree represents knowledge schema via a dynamic tree. Both
parent and leaf nodes archive textual content, summarizing information relevant to their respective
levels. Upon receiving new information, the system begins traversal from the root node. If the new
information is semantically akin to an existing leaf node under the current node, it is routed to that
node. Conversely, if it diverges from all existing leaf nodes under the current node, a new leaf node is
created under the current node, concluding the traversal. During this process, all ancestor nodes will
integrate the new information into the higher-level summaries they maintain.

data for given queries through vector similarity searches in the embedding space (Park et al., 2023;
Packer et al., 2023; Zhong et al., 2024). However, these methods primarily utilize a lookup table for
memory representation, which fails to capture the inherent structure in data. Consequently, each past
experience is stored as an isolated instance, lacking the interconnectedness and integrative capabilities
of the human brain’s schemas. This limitation becomes increasingly problematic as the size of the
memory grows or when relevant information is distributed across multiple instances.

In this work, we introduce MemTree, an algorithm designed to emulate the schema-like structures of
the human brain by maintaining a dynamically structured memory representation during interactions.
Within MemTree, each memory unit is represented as a node within a tree, containing node-level
information and links to child nodes.

Upon encountering new information, MemTree updates its memory structure starting from the root
node. It evaluates at each node whether to instantiate a new child node or integrate the information
into an existing child node. This decision process is governed by a traversal algorithm that efficiently
adds new information with an insertion complexity of O(log N), where N denotes the number of
conversational interactions. This structure facilitates the aggregation of knowledge at parent nodes,
which evolve to capture high-level semantics as the tree expands. For knowledge retrieval, MemTree
computes the cosine similarity between node embeddings and the query embedding. This method
maintains the retrieval time complexity comparable to existing approaches, ensuring efficiency.

We evaluated MemTree across four benchmarks, covering both conversational and document question-
answering tasks, and compared it against online and offline knowledge representation methods.
MemTree enables seamless dynamic updates as new data becomes available, a capability characteristic
of online methods. In contrast, offline methods require complete dataset access and are costly to
update, as they involve periodic rebuilding to incorporate new information.

• In extended conversations, MemTree consistently outperforms other online methods, including
MemoryStream (Park et al., 2023) and MemGPT (Packer et al., 2023), maintaining superior
accuracy as discussions progress.

• For document question-answering, MemTree excels in two key areas. On single-document
tasks, it outperforms other online methods and reduces the performance gap with offline models,
particularly surpassing RAPTOR (Sarthi et al., 2024) on challenging questions that require
deeper reasoning. In multi-document tasks, MemTree not only surpasses online methods but also
approaches the performance of offline models, particularly outperforming GraphRAG (Edge et al.,
2024). Moreover, on complex temporal queries requiring the analysis of event sequences across
multiple documents, MemTree exceeds all offline methods.

These results demonstrate that MemTree is a robust and scalable solution, delivering high accuracy
across diverse and challenging tasks while retaining the efficiency of online systems.
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2 RELATED WORK

Memory-Augmented LLMs Recent advancements in memory-augmented LLMs have introduced
various strategies for enhancing memory capabilities. Park et al. (2023) developed LLM-based
agents that log experiences as timestamped descriptions, retrieving memories based on recency,
importance, and relevance. Similarly, Cheng et al. (2023) developed Selfmem with a dedicated
memory selector. MemGPT (Packer et al., 2023) proposed automatic memory management through
LLM function-calling for conversational agents and document analysis, providing a pre-prompt
with detailed instructions on memory hierarchy and utilities, along with a schema for accessing
and modifying the memory database. Zhong et al. (2024) introduced MemoryBank, a long-term
memory framework that stores timestamped dialogues and uses exponential decay to forget outdated
information. Additionally, Mitchell et al. (2022) proposed storing model edits in an explicit memory
and learning to reason over them to adjust the base model’s predictions. These methods represent
common solutions for adding memory to LLMs, focusing on tabular memory storage and vector
similarity retrieval (Zhang et al., 2024). However, as memory scales or information becomes dispersed
across multiple entries, their unstructured representations reveal significant limitations.

Another line of work explores triplet-based memory. For example, Modarressi et al. (2023) proposed
encoding relationships in triplets, and Anokhin et al. (2024) extended this approach to graph-based
triplet memory for text-based games. While effective at encoding individual relations or scene graphs
at the object level, these methods struggle with scalability and generalization to more complex data
that do not fit neatly into a strict triplet format.

Structured Retrieval-Augmented Generation Approaches To address the limitations of unstruc-
tured memory representations, recent advances have integrated structured knowledge into RAG
models, enhancing navigation and summarization in complex QA tasks. Trajanoska et al. (2023)
leveraged LLMs to extract entities and relationships from unstructured text to construct knowledge
graphs. Similarly, Yao et al. (2023) proposed techniques to fill in missing links and nodes in existing
knowledge graphs by utilizing LLMs to infer unseen relationships. Ban et al. (2023) identified causal
relationships within textual data and represented them in graph form to enhance understanding of
causal structures. In the context of retrieval-augmented generation, Gao et al. (2023) provided a
comprehensive review of existing RAG methods, and Baek et al. (2023) utilized knowledge graphs as
indexes within RAG frameworks for efficient retrieval of structured information.

More relevant to our work, RAPTOR (Sarthi et al., 2024) organizes text into a recursive tree,
clustering and summarizing chunks at multiple layers to enable efficient retrieval of both high-level
themes and detailed information. GraphRAG (Edge et al., 2024) constructs a knowledge graph from
LLM-extracted entities and relations, partitioning it into modular communities that are independently
summarized and combined via a map-reduce framework. While these methods effectively structure
large textual data to improve retrieval and generation capabilities, they are limited to static corpora,
requiring full reconstruction to integrate new information, and do not support online memory updates.

In this work, we propose a novel structured memory representation that overcomes these limitations by
enabling dynamic updates and efficient retrieval in large-scale memory systems without necessitating
full reconstruction.

3 METHOD

MemTree represents memory as a tree T = (V,E), where V is the set of nodes, and E ⊆ V × V is
the set of directed edges representing parent-child relationships. Each node v ∈ V is represented as:

v = [Cv, ev, pv, Cv, dv]

where:

• cv: the textual content aggregated at node v.

• ev ∈ Rd: an embedding vector derived using an embedding model femb(cv).

• pv ∈ V : the parent of node v.

• Cv ⊆ V : the set of children of node v, with edges directed from v to each u ∈ Cv .

3
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• dv: the depth of node v from the root node v0.

Note that the root node v0 serves as a structural node, containing neither content nor embedding, i.e.,
cv0 = ∅ and ev0 = ∅.

MemTree utilizes this tree-structured representation to dynamically track and update the knowledge
exchanged between the user and the LLM. While less flexible than a generic graph architecture, the
tree structure inherently biases the model towards hierarchical representation. Additionally, trees
offer efficient complexity for insertion and traversal, making the algorithm suitable for real-time
online use cases.

When new information is observed, MemTree dynamically adapts by traversing the existing structure,
identifying the appropriate subtree for integration, and updating relevant nodes (Section 3.1). This
process, illustrated in Figure 2, ensures the proper integration of new information while preserving the
underlying context and hierarchical relationships within the memory. When retrieving information
from the memory, MemTree simply compares the embeddings of the query message with the
embeddings of each node in the tree, returning the most relevant nodes (Section 3.2).

3.1 MEMORY UPDATE

The memory update procedure in MemTree is triggered upon observing new information (e.g., a new
conversation). This procedure ensures that the tree structure dynamically adapts and integrates new
data while maintaining a coherent hierarchical representation. The complete memory update process
is outlined in Algorithm 1.

Attaching New Information by Traversing the Existing Tree To integrate new information, we
begin by creating a new node vnew with the textual content cvnew . Then we start tree traversal from the
root node. At each node v, MemTree evaluates the semantic similarity between the new information
cvnew and the children of the current node in the embedding space. This evaluation is performed
by computing the embedding evnew = femb(cvnew) for the new content cvnew and comparing it to the
embeddings of the child nodes C(v) of the current node v using cosine similarity.

This similarity evaluation drives the following decisions:

• Traverse Deeper: If a child node’s similarity exceeds a depth-adaptive threshold θ(dv), traversal
continues along that path. If multiple child nodes meet this criterion, the path with the highest
similarity score is chosen.

– Boundary: When traversal reaches a leaf node, the leaf is expanded to become a parent node,
accommodating both the original leaf node and vnew as children. The parent’s content is then
updated to aggregate both the original leaf node’s content and the new information cvnew . The
details of this aggregation process will be explained below.

• Create New Leaf Node: If all child nodes’ similarities are below the threshold θ(dv), vnew is
directly attached as a new leaf node under the current node.

The similarity threshold θ(d) is adaptive based on the node’s depth d, defined as:

θ(d) = θ0e
λd,

where θ0 is the base threshold, and λ controls the rate of increase with depth. This mechanism ensures
that deeper nodes, which represent more specific information, require a higher similarity for new data
integration, thereby preserving the tree’s hierarchical integrity. Further details, including specific
parameter values, are provided in the Appendix A.1.3.

Updating Parent Nodes Along the Traversal Path Once vnew is inserted, the content and embed-
dings of all parent nodes v along the traversal path are updated to reflect the new information. This is
achieved through a conditional aggregation function:

c′v ← Aggregate(cv, cnew | n),

where c′v is the updated content, and n = |C(v)| is the number of descendants of node v. The
aggregation function, implemented as an LLM-based operation, combines the existing content cv

4
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with the new content cnew, conditioned on n. As n increases, the aggregation abstracts the content
further to balance the existing and new information (see Appendix A.1.2 for more details).

The embedding of the parent node is then updated as:

ev ← femb(c
′
v),

ensuring that the parent node effectively represents both the new and existing information. This
process maintains the hierarchical organization of the memory as the tree expands, enabling MemTree
to adaptively and accurately represent the evolving conversation. A key advantage of this method is its
computational efficiency: once the traversal path is defined, the content aggregation and embedding
updates for parent nodes can be parallelized on the CPU. This significantly accelerates the update
process, reducing bottlenecks as the memory grows.

Connection to Online Hierarchical Clustering Algorithms Our memory update algorithm can be
viewed as an instance of online hierarchical clustering algorithms (Zhang et al., 1996; Kobren et al.,
2017). We draw inspiration from the OTD (Online Top-Down Clustering) algorithm proposed by
Menon et al. (2019), which enables efficient online updates by calculating inter- and intra-subtree
similarities during the insertion process. This algorithm is known to provably approximate the
Moseley-Wang revenue (Moseley & Wang, 2017). In this work, we relax the inter- and intra-subtree
similarity comparisons by utilizing semantic similarities in the embedding space. We achieve this by
formatting the subtree representation (parent nodes) with LLMs as we traverse the MemTree during
the memory update.

Theorem 1 (Approximation Guarantee of MemTree (Informal)). Assuming the data processed by
MemTree satisfies the β-well-separated condition (see Appendix B.4), the hierarchy maintained by
MemTree achieves a revenue

Rev(MemTree;W ) ≥ β/3 · Rev(T ∗;W ),

where T ∗ is the optimal hierarchy maximizing the Moseley-Wang revenue.

This alignment with OTD ensures a high-quality hierarchical memory representation in MemTree.
Further details and proofs are provided in Appendix B.

3.2 MEMORY RETRIEVAL

Efficient and effective retrieval of relevant information is crucial for ensuring that MemTree can
provide meaningful responses based on past conversations. Inspired by RAPTOR (Sarthi et al., 2024),
we adopt the collapsed tree retrieval method, which offers significant advantages over traditional tree
traversal-based retrieval.

Collapsed Tree Retrieval The collapsed tree approach enhances the search process by treating
all nodes in the tree as a single set. Instead of conducting a sequential, layer-by-layer traversal, this
method flattens the hierarchical structure, allowing for simultaneous comparison of all nodes. This
technique simplifies the retrieval process and ensures a more efficient search.

The retrieval process involves the following steps:

1. Query Embedding: Embed the query q using femb(q) to obtain eq .

2. Similarity Computation: Calculate cosine similarities between eq and all tree nodes.

3. Filtering: Exclude nodes with similarity scores below a threshold θretrieve.

4. Top-K Selection: Sort the remaining nodes by similarity and select the top-k most relevant nodes.

4 EXPERIMENTS

4.1 DATASETS

We evaluate the effectiveness of MemTree across various settings using four datasets: Multi-Session
Chat, Multi-Session Chat Extended, QuALITY, MultiHop RAG. These datasets were selected to
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represent different interactive contexts—dialogue interactions and information retrieval from multiple
texts, respectively, providing a comprehensive test bed for our model. Additional statistics for each
dataset can be found in Appendix A.2.1.

• Multi-Session Chat (MSC): The dataset was introduced by (Xu, 2021). In this work, we consider
the processed version provided by (Packer et al., 2023). The dataset consists of 500 sessions,
each featuring approximately 15 rounds of synthetic dialogue between two agents. Each session
includes follow-up questions that challenge the model to retrieve and utilize information from prior
dialogues within the same session. For each session, a memory representation is independently
built, capturing the dialogue rounds as they unfold.

• Multi-Session Chat Extended (MSC-E): To test the performance for even longer conversation
rounds, we expanded MSC by generating an additional 70 sessions, each containing about 200
rounds of dialogue. In these extended sessions, a follow-up question follows each conversation
round, demanding more precise and timely information retrieval across the dialogues. As in MSC,
memory representations are constructed independently for each session. We detail the extension
methodology in Appendix A.2.3.

• Single-Document Question Answering (QuALITY): The QuALITY dataset, introduced by Pang
et al. (2021), consists of context passages averaging 5,000 tokens, paired with multiple-choice
questions that require reasoning across entire documents to answer. A memory representation is
built independently for each document. The dataset is divided into two subsets: QuALITY-Easy
and QuALITY-Hard. The latter contains questions that most human annotators found challenging
to answer within the time constraints. While the original dataset was designed for multiple-choice
question answering, in this paper we explore the more difficult setting where the model must
generate the answer directly, without being provided with the four answer options.

• Multi-Document Question Answering (MultiHop RAG): This dataset comprises 609 distinct
news articles across six categories (Tang & Yang, 2024). It includes 2,556 multi-hop questions
requiring the integration of information from multiple articles to formulate comprehensive answers.
We consider three question types: inference, comparison, and temporal reasoning, each adding a
layer of complexity to the information retrieval process. All news articles are used to construct a
unified memory representation, which is queried to answer the multi-hop questions.

4.2 BASELINES

We compare MemTree with various baseline methods along with a naive baseline, which involves
concatenating all chat histories and feeding them into a large language model (LLM):

• MemoryStream: Park et al. (2023) proposes a flat lookup-table style memory that logs chat
histories through an embedding table. The primary distinction between MemTree and this baseline
is that MemTree utilizes a structured tree representation for the memory and models high-level
representations throughout the memory insertion process.

• MemGPT: (Packer et al., 2023) introduces a memory system designed to update and retrieve
information efficiently. It uses an OS paging algorithm to evict less relevant memory into external
storage. However, like MemoryStream, it does not format high-level representations.1

• RAPTOR: Sarthi et al. (2024) constructs a structured knowledge base using hierarchical clustering
over all available information. The key difference between MemTree and this baseline is that
MemTree operates as an online algorithm, updating the tree memory representation on-the-fly
based on incoming knowledge, while RAPTOR applies hierarchical clustering on a fixed dataset.2.

• GraphRAG: Edge et al. (2024) introduces a graph-based indexing approach designed to improve
query-focused summarization and extract global insights from large text corpora. Like RAPTOR,
GraphRAG assumes access to the entire corpus and applies the Leiden algorithm to identify
community structures within the document graph. However, while MemTree expands its memory
top-down to allow for efficient, online updates, GraphRAG generates community summaries in a
bottom-up fashion, which is less suited for real-time adaptability.3

1https://github.com/cpacker/MemGPT
2https://github.com/parthsarthi03/raptor
3https://github.com/microsoft/graphrag
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Table 1: Naive History Combination vs. External Memory on MSC. With only 15 dialogue rounds
(<1,000 tokens), concatenating the entire history to GPT-4o achieves the best performance. Among
query-only models, MemTree outperforms MemGPT and MemoryStream in accuracy and ROUGE.

Model Context Accuracy ⇑ ROUGE-L (R) ⇑
Results reported by (Packer et al., 2023)
GPT-4 Turbo Query + Full history summary 35 35
GPT-4 Turbo Query + Full history summary + MemGPT 93 82

Our results with GPT-4o and text-embedding-3-large
GPT-4o Query + Full history 95.6 88.0
GPT-4o Query + MemGPT 70.4 68.6
GPT-4o Query + MemoryStream 84.4 79.1
GPT-4o Query + MemTree 84.8 79.9

Table 2: Accuracy on MSC-E. The MSC-E dataset extends MSC from 15 to 200 dialogue rounds,
providing a better test for long-context reasoning. Both MemoryStream and MemTree outperform the
naive baseline, highlighting the importance of external memory. Overall accuracy and a breakdown
by evidence position are shown; standard deviations are in Figure A.1.

Model Context Position of the supporting evidence Overall
0-40 40-80 80-120 120-160 160-200

GPT-4o Query + Full history 84.5 78.3 75.5 74.4 76.7 78.0
GPT-4o Query + MemoryStream 78.5 81.0 81.0 81.4 81.8 80.7
GPT-4o Query + MemTree 82.1 82.1 82.3 82.3 84.2 82.5

To demonstrate the applicability of our approach, we consider both open-source and commercial
models in our experiments. For LLMs, we used OpenAI’s GPT-4o (version 2024-05-13) and
Llama-3.1-70B-Instruct (Dubey et al., 2024). For the embedding models, we employed
text-embedding-3-large and E5-Mistral-7B-Instruct (Wang et al., 2023). In each
experiment, we standardized the use of the LLM and embedding model across all baselines to
ensure that any performance differences observed were attributable to the memory management
methodologies, rather than variations in the models’ capabilities or embeddings.

4.3 IMPLEMENTATION DETAILS AND EVALUATION METRICS

Following previous work (Packer et al., 2023; Tang & Yang, 2024), we report the end-to-end question
answering performance. Given each context-question-answer tuple, the experimental procedure
involves four steps:

1. Load the corresponding dialogue/history into the memory.
2. Retrieve the relevant information from the memory based on the given query.
3. Use GPT-4o to answer the query based on the retrieved information.
4. Evaluate the generated answer using one of the following two metrics: 1) Use GPT-4o to compare

the generated answer with the reference answer, resulting in a binary accuracy score; 2) Evaluate
the ROUGE-L recall (R) metric of the generated answer compared to the relatively short gold
answer labels, without involving the LLM judge.

The detailed prompts for steps 3 and 4 can be found in Appendix A.2. Other implementation details
for MemTree can be found in Appendix A.1.

5 RESULTS

5.1 MULTI-SESSION CHAT

15-round dialogue We present the MSC results in Table 1. For the naive baseline, directly providing
the full history to GPT-4o yields the best result, achieving an accuracy of 96%. This outcome is
expected, given that the entire dialogue consists of only 15 rounds and fewer than one thousand
tokens. We also note that providing a summary of the chat history significantly drops performance

7
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Table 3: Accuracy on QuALITY. Performance is evaluated on (1) Easy questions, answerable with
surface-level information, and (2) Hard questions, requiring deeper reasoning. MemTree shows strong
overall performance, surpassing online methods and nearing offline methods in both categories.

Model Context Easy Hard Overall

Llama-3.1-70B Query + Full text 70.1 60.3 65.1

Offline Method
Llama-3.1-70B Query + RAPTOR 65.2 53.0 59.0
Llama-3.1-70B Query + GraphRAG 65.9 59.8 62.8

Online Method
Llama-3.1-70B Query + MemoryStream 46.7 41.0 43.8
Llama-3.1-70B Query + MemTree 63.3 56.5 59.8

to 35%, even for the more powerful GPT-4 Turbo model (Packer et al., 2023). This decline occurs
because the summary may not cover the topics the query is addressing. To directly compare the
performance of different memory management algorithms, we consider the setting where only the
query and the retrieved information are provided to the LLM. In this scenario, MemTree surpasses
both MemStream and MemGPT.4

200-round dialogue Table 2 presents the results on MSC-E. We observe that both MemoryStream
and MemTree achieve better overall accuracy than the naive baseline, which directly uses the full
history. This illustrates the importance of having an external memory system as the conversation
history grows. When we break down the accuracies based on the positions of the supporting evidence
within the entire dialogue, we find that the naive baseline performs best when the evidence is
presented early on, likely due to position bias (Liu et al., 2024). It is worth noting that since MemTree
updates the memory sequentially based on the order of the dialogue, it inherently favors more recent
conversations over older ones. This bias is demonstrated in Table 2, where the accuracy increases
from 82.1 to 84.2. Nevertheless, MemTree consistently outperforms MemoryStream across all
positions (see Figure A.1 for a visualization).

5.2 SINGLE-DOCUMENT QUESTION ANSWERING

Table 3 presents the accuracy of various models on the QuALITY benchmark. Llama-3.1 70B, which
processes the full text in a single pass, achieves the highest overall accuracy at 65.1%. This superior
performance is attributed to the dataset’s relatively short length (5000 tokens), a trend also observed
with the MSC dataset. Offline RAG methods such as RAPTOR and GraphRAG, designed for handling
knowledge retrieval over longer contexts, achieve lower accuracies of 59.0% and 62.8%, respectively.
The current online memory update method, MemoryStream, struggles with efficiently extracting
memory key-value pairs, resulting in a significantly lower accuracy of 43.8%. In contrast, our method,
MemTree, matches the offline performance of RAPTOR with a slightly higher accuracy of 59.8%,
especially excelling on hard questions that demand deeper reasoning and comprehension. Moreover,
MemTree retains the advantage of being an online method, allowing for continuous memory updates
at minimal computational cost. Refer to Figure A.2 for a visualization of the results.

5.3 MULTI-DOCUMENT QUESTION ANSWERING

Table 4 summarizes the end-to-end performance of MultiHop RAG using various memory retrieval
algorithms. All methods perform exceptionally well on inference-style questions, which focus on
fact-checking based on a single document, consistently achieving over 95% accuracy. However,
when it comes to more complex questions—those requiring the comparison of multiple documents or
temporal reasoning—MemTree significantly outperforms MemoryStream, achieving a 9.1 percentage
point advantage. Moreover, despite RAPTOR having full access to all information, MemTree’s
overall performance is within just 0.5 percentage points of this offline method. See Figure A.3 for a
detailed visualization of these results.

Another observation from the table is that while humans can annotate evidence fairly accurately
for inference and comparison-style questions, the annotated evidence for temporal questions is less

4We were unable to reproduce the results with the existing MemGPT GitHub codebase.
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Table 4: Accuracy on MultiHop RAG. Results are shown for (1) Inference queries, (2) Comparison
queries, and (3) Temporal queries. MemTree outperforms MemoryStream on comparison and
temporal queries, narrowing the gap to the offline RAPTOR.

Model Context Inference Comparison Temporal Overall

GPT-4o Human Annotated Evidence 98.4 80.1 55.6 79.2

Offline method
GPT-4o Query + RAPTOR 96.6 76.5 66.0 81.0
GPT-4o Query + GraphRAG 96.0 69.8 66.3 78.3

Online method
GPT-4o Query + MemoryStream 96.1 64.8 59.3 74.7
GPT-4o Query + MemTree 96.0 73.9 68.4 80.5

In an October 2023 friendly match, the 
U.S. Men's National Team (USMNT) 
faced Germany and suffered a 3-1 defeat 
… Concurrently, the U.S. women's team 
has appointed Emma Hayes as the new 
head coach …

Uber's Q3 2023 earnings report highlights 
a significant turnaround in profitability, 
transitioning from a $1.2 billion net loss 
last year to a net income of $219 million 
…

The housing market is facing a downturn, 
with existing home sales plunging to levels 
seen during the Great Recession. This 
decline is driven by reduced affordability 
…

Emma Hayes, the highly successful coach 
of Chelsea Women, has been appointed as 
the 10th full-time head coach of the U.S. 
Women's National Soccer Team 
(USWNT) …

In a friendly match on October 14, 2023, 
the USA men's national soccer team 
(USMNT) faced Germany and suffered a 
3-1 defeat at Rentschler Field in 
Hartford. Despite the loss, there were 
notable individual performances …

The particulars around timing and the 
plan moving forward have been one of the 
areas of discussion between Hayes and her 
representatives, Chelsea and US Soccer, 
that has continued through the start of 
November. Unless the situation changes 
drastically, Hayes will only have two 
camps, including four friendlies, with the 
USWNT ahead of the 2024 Olympics in 
Paris. She'll miss three international 
windows between Tuesday’s 
announcement and her planned start date, 
including the 2024 CONCACAF Gold 
Cup in February and March. US Soccer 
has a plan in place for the transition.

In his first 45 minutes of international football under Gregg Berhalter since the World Cup fallout, Gio 
Reyna was his usual self, drawing the attention of German defenders and proving visionary with his 
passing. He combined with Folarin Balogun on a number of occasions on the counter, which is a link-up 
that US fans have been begging for more of. Reyna was only fit for 45 minutes of play here as he returns 
from a leg injury, but it's no coincidence that Germany truly secured midfield dominance when he came off 
the field.

In their recent 3-1 defeat to Germany, the USMNT 
displayed a blend of offensive promise and defensive 
shortcomings. Christian Pulisic, with a stunning goal and 
high pass completion rate, and Tim Weah's speed and link-
up play, were offensive highlights. Gio Reyna also 
contributed creatively. However, the defensive side was 
problematic …

Figure 3: Visualization of the Learned MemTree Structure on the MultiHop RAG Dataset. Due to
space limitations, we display only a small subtree from the entire tree (a larger subtree is depicted in
Figure 1). As we traverse deeper into the tree, the content stored in the nodes becomes increasingly
specific. For instance, the three blue nodes shown in the bottom right corner begin with a general
summary of the USMNT’s 3-1 defeat to Germany, then branch into specific insights on individual
performances and team dynamics, and ultimately delve into a detailed analysis of Gio Reyna’s impact
during the match. Note that all intermediate contents in the parent nodes are generated by MemTree
during the node update step. This hierarchical organization demonstrates how MemTree efficiently
stores and retrieves information, progressing from overarching concepts to specific details.

precise. This results in worse performance than the model-derived memory for temporal questions.
Importantly, MemTree excels on temporal reasoning tasks, surpassing all baselines, including offline
approaches and human-annotated evidence.

Statistics of the Learned MemTree Table 5 presents statistics for the learned MemTree on
the Multihop RAG dataset, which consists of 609 documents. The resulting tree contains 3,154
nodes, with a maximum depth of 13 and an average branching factor of 2.1. Figure 4 illustrates
the distribution of nodes across different depth levels, revealing that the majority of nodes are
concentrated between depths 3 to 5. As the tree deepens, the information stored in the nodes increases
in length. For instance, at depth 1 (just below the root), the median token count is slightly over 200,
with a small deviation. By depth 10 and beyond, the median token count grows to around 800, with
greater variability (see Figure 4).
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Figure 4: Depth-based Stats of MemTree learned on Multi-
Hop RAG

MemTree Property Value

#Nodes 3164
#Leaf Nodes 1706
#Branching Nodes 1458

Depth (max) 13
Depth (average) 4.9

Branching Factor 2.1
Height to Width Ratio 6.5

Table 5: Overall Stats of MemTree
learned on MultiHop

Figure 5: Efficiency of MemTree vs. RAPTOR and GraphRAG: MemTree’s top-down insertion
strategy allows content aggregation and embedding updates to be parallelized on the CPU, significantly
accelerating memory updates as memory grows. Despite its cumulative cost being approximately
1.4x higher than the offline algorithms (RAPTOR and GraphRAG), it remains manageable. Results
are reported on the MultiHop dataset.

Hierarchical Representation of the MemTree The hierarchical structure of the learned MemTree
reflects a semantic organization. Higher-level nodes capture more abstract, generalized information,
while deeper nodes store finer details. Figures 1 and 3 further visualize this hierarchy. The model
effectively groups related concepts, with intermediate parent nodes summarizing high-level informa-
tion during memory insertion. This structure enables the MemTree to maintain a balance between
abstract representations at the top and specific details at the bottom.

Time Efficiency of Online Algorithm vs Offline Algorithm MemTree’s continuous updates
during conversations make it ideal for real-time scenarios. Once the traversal path is defined, its
top-down insertion allows parent node updates to be parallelized on the CPU, accelerating the update
process and reducing bottlenecks as memory grows. In contrast, RAPTOR and GraphRAG use
clustering in a RAG setup, making memory updates after index construction impossible or costly. As
shown in Figure 5, MemTree inserts new information in 10 seconds on average, while RAPTOR and
GraphRAG take over an hour to build the full memory tree, making it impractical for real-time use.
Although MemTree’s cumulative time cost is 1.4x higher than RAPTOR’s due to continuous updates,
this trade-off enables maintaining an up-to-date memory in real time.

6 CONCLUSION

MemTree effectively addresses the long-term memory limitations of large language models by
emulating the schema-like structures of the human brain through a dynamic tree-based memory
representation. This approach enables efficient integration and retrieval of extensive historical data,
as demonstrated by its superior performance on four benchmarks with different interactive contexts.
Our evaluations reveal that MemTree consistently maintains high performance and demonstrates
human-like knowledge aggregation by capturing the semantics of the context within its tree memory
structure. This advancement offers a promising solution for enhancing the reasoning capabilities of
LLMs in handling long-term memory.
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Ethical Statement In developing MemTree, we commit to ensuring that no private or proprietary
data is mishandled during our experiments, and all data used for training and evaluation are publicly
available. While our current research does not explicitly address principles such as transparency,
responsibility, inclusivity, bias mitigation, or user safety, we recognize that recent advancements in
these areas can be integrated into the memory learning component of our algorithm. We encourage
the research community to engage with these ethical considerations as we strive to enhance our
understanding and implementation of responsible AI practices.

Reproducibility Statement We provide comprehensive details for reproducing our results in Sec-
tion 4 and the Appendix, including our experimental setup, evaluation metrics, and implementation
settings. The code and scripts used in our experiments will be made publicly available upon accep-
tance. All external libraries and dependencies required for reproduction are specified. Our method
has been evaluated on both open-source and commercial models to demonstrate its applicability.
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A APPENDIX

A.1 MEMTREE DETAILS

Further details and parameter settings for our approach are outlined below. Unless otherwise specified,
these settings are consistent across all experiments presented in the paper.

A.1.1 MEMTREE ALGORITHM

The following outlines the algorithmic procedure for incrementally updating and restructuring
the memory representation in MemTree. This approach ensures that new information is efficiently
integrated into the existing memory hierarchy while dynamically adjusting based on content similarity
and structural depth.

Parameters:

• c: the textual content stored at a node or introduced as new information.
• e: the embedding vector representing the content, generated by an embedding function femb.
• v: a node in the memory tree, which contains content, embeddings, and connections to other

nodes. Note that the root is a structural node and does not hold content.
• d: the depth of a node in the tree.

Algorithm 1 Adding New Information to MemTree

Require: New information cnew, root node v0, threshold function θ(d)
1: enew ← femb(cnew)
2: INSERTNODE(v0, enew, cnew, 0)
3: procedure INSERTNODE(v, enew, cnew, d)
4: if v is a leaf then
5: Expand v into a parent
6: Create and attach child node vleaf with original content
7: end if
8: Compute similarity si = sim(enew, ei) for each child vi of v
9: vbest ← argmax(si), smax ← max(si)

10: if smax ≥ θ(d) then
11: cv ← Aggregate(cv, cnew)
12: ev ← femb(cv)
13: INSERTNODE(vbest, enew, cnew, d+ 1)
14: else
15: Create and attach new child node vchild with cnew
16: end if
17: end procedure

A.1.2 AGGREGATE OPERATION

When new information is added, the content of parent nodes along the traversal path is updated
through a conditional aggregation. This process combines the existing content of the parent node
with the new content, factoring in the number of its descendants. The aggregation operation is
implemented using the following prompt:

You will receive two pieces of information: New Information
is detailed, and Existing Information is a summary from
{n_children} previous entries. Your task is to merge these
into a single, cohesive summary that highlights the most
important insights.

- Focus on the key points from both inputs.

- Ensure the final summary combines the insights from both
pieces of information.
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- If the number of previous entries in Existing Information
is accumulating (more than 2), focus on summarizing more
concisely, only capturing the overarching theme, and getting
more abstract in your summary.

Output the summary directly.

[New Information]
{new_content}

[Existing Information (from {n_children} previous entries)]
{current_content}

[ Output Summary ]

A.1.3 ADAPTIVE SIMILARITY THRESHOLD

The adaptive similarity threshold ensures that deeper nodes, representing more specific information,
require higher similarity for new data integration, while shallower nodes are more abstract and accept
broader content. This mechanism preserves the tree’s hierarchical integrity by adjusting selectivity
based on the node’s depth. The threshold is computed as:

threshold = base_threshold× exp

(
rate× current_depth

max_depth

)
where:

• base_threshold = 0.4

• rate = 0.5

• current_depth is the depth of the current node.

• max_depth is the maximum depth of the tree.

A.1.4 RETRIEVAL

For the MSC experiment, the retrieval system returns the top k = 3 similar dialogues from 15-round
conversations, with a context length of 1000 tokens for all models. In the MSC-E dataset, due to
longer conversations, the retrieval returns the top k = 10 similar dialogues, with a context length of
8192 tokens to accommodate the models with full-chat history. This setting is similarly applied to the
Multihop RAG and QuALITY experimenst, where longer contexts are required.

A.2 FURTHER EXPERIMENTAL DETIALS

A.2.1 DATASET STATISTICS

We summarize the dataset statistics in Table A.1 to provide a clear overview of the scale and
complexity of the data used in our experiments. For the Multi-Session Chat (MSC) dataset, we
worked with 500 conversation sessions, each consisting of about 14 rounds, allowing us to evaluate the
model’s ability to handle multi-turn dialogues. A memory representation was independently built for
each session, capturing dialogues as the conversation progressed. In the extended version, MSC-E, we
expanded the original dataset by generating an additional 70 sessions, each containing over 200 rounds
of dialogue. For these longer sessions, a memory representation was similarly built for each session,
but the increased number of rounds presented a greater challenge in managing long-term information
across interactions. The QuALITY dataset, focusing on document comprehension, contains around
230 documents with an average of 5,000 tokens each. For each document, an independent memory
representation was built to facilitate reasoning across the entire document. Lastly, MultiHop RAG
includes 609 articles and over 2,500 multi-hop questions. A unified memory representation was
constructed across all the news articles, enabling the model to retrieve and integrate information from
multiple documents when answering complex multi-hop questions.

Further details about the configurations for each dataset are as follows:
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• MSC and MSC-E: For the MSC and MSC-E datasets, each conversation consists of multiple
rounds. We inserted each round individually into MemTree without applying any chunking.
For each new conversation, we built an independent MemTree.

• QuALITY: We inserted each document individually and chunked it into non-overlapping
segments of 512 tokens.

• MultiHop RAG: We inserted each document individually and chunked it into non-
overlapping segments of 1024 tokens.

Dataset Statistic Value

MSC (Packer et al., 2023)

Conversation Sessions 500
Rounds per Session 13.7 ± 0.6
Tokens per Dialogue 21.6 ± 11.9
Queries per Session 1

MSC-E

Conversation Sessions 70
Rounds per Session 200.3 ± 16.7
Tokens per Dialogue 29.5 ± 1.5
Queries per Session 101.9 ± 8.6

QuALITY (Pang et al., 2021)

Documents 230
Tokens per Document 5028.4 ± 1619.1
Queries per Document 9.0 ± 1.0

- Easy Queries 1021
- Hard Queries 1065

Multihop RAG (Pang et al., 2021)

Articles 609
Tokens per Article 2046.4 ± 189.0
Total Queries 2255

- Inference Queries 816
- Comparison Queries 856
- Temporal Queries 583

Table A.1: Dataset Statistics

A.2.2 EVALUATION METRICS

Predicted Response Generation: To assess retrieval performance, we configure the LLM to generate
a response to the query based solely on the retrieved content using the following prompt:

Write a high-quality short answer for the given question
using only the provided search results (some of which might
be irrelevant).

[ Question ]
{query}

[ Search Results ]
{retrieved_content}

[ Output ]

Binary Accuracy Evaluation: To measure binary accuracy across all experiments, we employed the
following prompt, instructing the model to evaluate the predicted response against the ground-truth
answer:

Your task is to check if the predicted answer appropriately
responds to the query in a similar way as the ground-truth
answer.

Instructions:

- Output ’1’ if the predicted answer addresses the query
similarly to the ground-truth answer. - Output ’0’ if it
does not. - Only output either ’0’ or ’1’. No explanations
or extra text.
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[ Query ]
{query}

[ Ground-Truth Answer ]
{gt_answer}

[ Predicted Answer ]
{predicted_answer}

[ Output ]

A.2.3 MSC-E DATA GENERATION

Building on the MSC dataset from Packer et al. (2023), we extend each conversation to 200 rounds
using the following iterative process. A sliding window of the most recent 8 turns is maintained, and
for each step, the next 2 rounds of dialogue are generated using the prompt below. This approach
allows for a natural progression of conversation while keeping the context manageable for the model:

Generate a continuation of the conversation between Alex and
Bob. Follow these guidelines:

1. Alternate strictly between Alex and Bob, starting with
Alex.

2. Alex should speak exactly {n_rounds} times, and Bob
should speak exactly {n_rounds} times.

3. Each turn should consist of 1-3 sentences.

4. Ensure that each response flows logically and
organically from the previous turn, avoiding forced
transitions or unnatural questions.

5. Focus on developing rapport between the characters. Use
a mix of statements, reactions, and occasional questions
to maintain a conversational tone.

6. Allow the conversation to transition smoothly between
topics, keeping it casual and coherent.

[ Conversation History ]
{recent_chat_hist}

[ Generated Dialogue ]

Output Example: Below is an excerpt from the MSC-E dataset, showcasing one session of a
conversation that spans 200 rounds in total.

Alex: Hi! How are you doing tonight?
Bob: I’m doing great. Just relaxing with my two dogs.
Alex: Great. In my spare time I do volunteer work.
Bob: That’s neat. What kind of volunteer work do you do?

...

Alex: That would be great! I’d love to try some of your
Thai recipes. Cooking can be such a creative outlet, don’t
you think?
Bob: Absolutely, it’s like a culinary adventure in your own
kitchen. Speaking of adventures, have you planned any trips
lately, maybe to explore new cuisines firsthand?
Alex: Not yet, but I’ve been dreaming of a trip to Italy to
indulge in the food and scenery. How about you, any travel
plans on the horizon?
Bob: I’ve been thinking about visiting Japan. I’m
fascinated by their culture and, of course, the sushi! It
would be an amazing experience to see it all in person.
Alex: Japan sounds incredible! The blend of traditional
and modern aspects in their culture is so intriguing.
You’ll have to share your experiences if you go.

17
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A.2.4 MSC-E QUERY GENERATION

To generate queries and ground-truth responses for evaluating memory retrieval quality, we apply the
following prompt to subsets of the conversation history. The generated questions will help assess
how effectively the memory captures and retrieves information from various points in the dialogue:

Based on the conversation between "Alex" and "Bob" below,
generate {n_q} unique questions that "Bob" can ask
"Alex," derived from the information "Alex" has shared.
Each question should be directly answerable using the
conversation’s content.

Output a JSON array where each element is an object with the
following keys:

- "question": The question for Alex.

- "response": The corresponding answer derived directly
from Alex’s information.

Ensure the output is valid JSON. Only output the JSON array.

[Conversation]
{chat_hist}

[Output]

A.3 FURTHER EXPERIMENTAL RESULTS

A.3.1 ACCURACY VS POSITION OF EVIDENCE (MSC-E)

We present accuracy results on the MSC-E dataset, focusing on how performance varies based on
the position of supporting evidence within the dialogue. This analysis demonstrates the model’s
ability to effectively retrieve and utilize information from different points in extended conversations,
highlighting its robustness in scenarios where a memory component is essential for maintaining
context.

Figure A.1: Accuracy on MSC-E.

A.3.2 PERFORMANCE VS QUESTION DIFFICULTY (QUALITY)

The experiment is conducted on the QuALITY benchmark to evaluate model performance on
questions of varying difficulty. Both single-pass and retrieval-augmented methods are tested, focusing
on the comparison between online and offline memory representation approaches. Llama-3.1 70B,
which processes the entire document in a single pass, serves as the baseline, while RAPTOR (Sarthi
et al., 2024), GraphRAG (Edge et al., 2024), MemoryStream (Park et al., 2023), and MemTree
(ours) are assessed for their ability to manage document comprehension with memory retrieval.
Offline methods (RAPTOR and GraphRAG) that need to be rebuilt from scratch to incorporate new
information are shaded in gray.

A.3.3 PERFORMANCE VS QUERY TYPE (MULTIHOP RAG)

We present results across three query types: (1) Inference queries, requiring reasoning from retrieved
information; (2) Comparison queries, which involve evaluating and comparing evidence within the
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Figure A.2: Accuracy on QuALITY

retrieved data; and (3) Temporal queries, analyzing time-related information to determine event
sequences. Here, we compare online and offline methods (shaded in gray). Note that offline methods
must be rebuilt from scratch to incorporate new information and cannot support real-time memory
updates like MemTree.

Figure A.3: Accuracy on MultiHop RAG.

A.3.4 LLM CALL EFFICIENCY COMPARISON

We evaluate the efficiency of each baseline method by measuring the number of LLM calls required
to load the Multihop RAG dataset. Online methods like MemoryStream and our proposed MemTree
support dynamic addition of new information to the memory representation, enabling efficient
and incremental updates. In contrast, offline methods must be rebuilt from scratch to incorporate
new information, which is both computationally expensive and time-consuming. For example,
incorporating a single new observation requires approximately 3,750 LLM calls for RAPTOR and
about 3,850 LLM calls for GraphRAG, as these methods assume a static knowledge base when
constructing the memory representation.

Our approach, MemTree, achieves a high level of accuracy on the Multihop RAG task while requiring
only an average of 3.27 LLM calls per insertion, highlighting its efficiency and scalability. Moreover,
MemTree’s node updates can be performed concurrently, further enhancing its performance. After
detecting the traversal path for an insertion, the content aggregation LLM calls along the path can be
executed in parallel.
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Table A.2: Performance and Efficiency on Multihop RAG: Overall accuracy and average number of
LLM calls per insertion for each method.

Method Accuracy (%) #LLM Calls

Offline Methods
RAPTOR 81.0 3753
GraphRAG 78.3 3858

Online Methods
MemoryStream 74.7 1 per insertion
MemTree 80.5 3.27 ± 2.38 per insertion

A.3.5 ABLATION: COLLAPSED RETRIEVAL VS. TRAVERSAL RETRIEVAL

We evaluate MemTree’s performance in the Multihop RAG experiment using two retrieval strategies:

1. Collapsed Retrieval: This approach flattens the tree hierarchy, treating all nodes as a single
set for comparison. Each node is directly evaluated against the query without considering
the tree’s structure (see Section 3.2).

2. Traversal Retrieval: This method traverses the structure of the tree. Starting from the
root, it retrieves the top-k nodes at each level based on cosine similarity to the query vector.
The process continues recursively, selecting the top-k nodes from the child nodes of the
previously retrieved top-k. Although straightforward, an implementation of this retrieval
method is available online.5

Figure A.4: Accuracy Comparison: MemTree’s accuracy on the MultiHop RAG task using collapsed
and traversal retrieval strategies.

The traversal retrieval method, while leveraging the hierarchical structure of MemTree, introduces
trade-offs between accuracy and coverage. By limiting the search space at each level to the top-
k nodes, traversal retrieval focuses on localized paths within the tree. However, this approach
necessitates careful tuning of the parameter k. As shown in Figure A.4, higher values of k (e.g.,
k = 10) achieve accuracy comparable to the collapsed retrieval method, which evaluates all nodes
simultaneously. In contrast, lower values of k (k ≤ 5) significantly compromise accuracy in
the Multihop RAG experiment by prematurely narrowing the search space and missing relevant
information, as seen in the accuracy drop for temporal queries.

5https://github.com/parthsarthi03/raptor/blob/master/raptor/tree_
retriever.py

20

https://github.com/parthsarthi03/raptor/blob/master/raptor/tree_retriever.py
https://github.com/parthsarthi03/raptor/blob/master/raptor/tree_retriever.py


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

While collapsed retrieval excels by evaluating all nodes simultaneously to identify information at
the appropriate level of granularity for complex queries, traversal retrieval biases the search towards
paths already established in the tree hierarchy. This bias can lead to redundancy, where retrieved
information from parent nodes is repeated, while detailed information in deeper nodes remains
unaccessed. Additionally, traversal retrieval risks exhausting the available context length before
incorporating critical details from deeper nodes, particularly in scenarios requiring fine-grained
reasoning.

A.3.6 ABLATION: ROBUSTNESS OF MEMTREE UNDER VARIOUS LLM AND EMBEDDING
MODELS

In the main paper, we constructed MemTree using two widely adopted LLMs,
GPT-4o and Llama-3.1-70B-Instruct, along with two embedding models,
text-embedding-3-large and E5-Mistral-7B-Instruct. In this section, we
further explore the robustness of MemTree when smaller models are used for its construction.

To evaluate how the structure of MemTree changes when built with smaller models, we
compare the statistics of the learned MemTree on the Multihop RAG dataset using smaller
LLMs (GPT-4o-mini and Llama-3.1-8B-Instruct) and a smaller embedding model
(text-embedding-3-small). As summarized in Table A.3, the resulting trees constructed
with smaller LLMs and embeddings have structures comparable to those built with larger models
(i.e., in terms of the number of nodes, branching factors, and average depths).

Figure A.5 illustrates the distribution of nodes across different depth levels, revealing that the majority
of nodes are concentrated between depths 3 and 5 across all models. Additionally, as the tree deepens,
the length of the information stored increases, highlighting that deeper nodes capture more abstract
and overarching themes within the MemTree hierarchy. These observations indicate that using smaller
models still preserves the hierarchical structure achieved with larger models. The consistency in
structural statistics suggests that MemTree’s construction process is robust to the choice of LLM and
embedding model sizes, maintaining effectiveness even with more resource-constrained models.

Furthermore, as shown in Table A.4, the accuracy results obtained using trees built with smaller
models are comparable to those achieved with larger models. This demonstrates that MemTree can
maintain high performance even when constructed using smaller LLMs and embeddings, further
emphasizing its practicality in scenarios with limited computational resources.

Figure A.5: Depth-based statistics of MemTree learned on the Multihop RAG dataset using different
LLM and embedding models. The distribution of nodes across depths and the increase in information
length at deeper levels are shown.

A.3.7 ABLATION: ADAPTIVE THRESHOLD PARAMETERS

MemTree employs an adaptive similarity threshold θ(d) that varies with node depth d to maintain
hierarchical integrity. At greater depths, nodes represent more specific information and thus require
higher similarity for data integration; shallower nodes accept broader content. The threshold function
is defined as: θ(d) = θ0e

λd, where θ0 is the base threshold at depth zero, and λ controls the rate of
increase with depth. Throughout our experiments (see Section A.1.3), we use θ0 = 0.4 and λ = 0.5.
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Table A.3: Overall statistics of MemTree on the Multihop RAG dataset using various LLM and
embedding models.

LLM Model GPT-4o GPT-4o-mini Llama-3.1-8B

Embedding Model text-embed-3-large text-embed-3-small text-embed-3-small

#Nodes 3,164 3,178 3,174
#Leaf Nodes 1,706 1,706 1,706
#Branching Nodes 1,458 1,472 1,468

Depth (max) 13 15 15
Depth (average) 4.9 5.0 5.0

Branching Factor 2.1 2.1 2.1
Height-to-Width Ratio 6.5 7.5 7.5

Table A.4: Accuracy results on the Multihop RAG dataset using MemTree built with various LLM
and embedding models.

LLM Model Embedding Model Inference Comparison Temporal Overall

GPT-4o text-embed-3-large 96.0 73.9 68.4 80.5

GPT-4o-mini text-embed-3-small 94.6 71.3 66.0 78.4
Llama-3.1-8B text-embed-3-small 94.9 71.0 65.0 78.1

In this section, we investigate how varying θ0 and λ affects MemTree’s structure and performance
in the MultiHop RAG experiment. Figure A.6 illustrates the impact on the tree structure. A high
base threshold (θ0 = 0.8) leads to a shallow tree with most nodes at depths 1–2 because the stringent
similarity requirement forces new nodes to closely match existing ones, resulting in horizontal
expansion. Reducing θ0 to 0.4 relaxes the similarity criterion, allowing new nodes to integrate at
deeper levels. Consequently, nodes are predominantly distributed at depths 4–6. Further decreasing
θ0 to 0.1 results in an even deeper tree, with most nodes at depths 8–14, as the lower similarity
threshold promotes vertical growth. In contrast, varying the rate parameter λ has a less pronounced
effect on the tree’s structure. For example, with θ0 = 0.8, increasing λ from 0.25 to 0.75 results in
a slightly shallower tree—the maximum depth decreases from 15 to 11—and the node distribution
becomes more concentrated around depth 5.

The impact of the adaptive threshold parameters on the overall accuracy in the MultiHop RAG
experiment is depicted in Figure A.7. There is a slight improvement when θ0 = 0.1 and λ = 0.25;
however, the differences are not statistically significant. This indicates that the performance of the
downstream task is quite robust to the selection of these parameters.

Figure A.6: Impact of adaptive threshold parameters on MemTree’s structure.
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Figure A.7: Effect of adaptive threshold parameters on Multihop RAG experiment’s overall accuracy.

A.3.8 HUMAN EVALUATION OF MEMTREE’S STRUCTURE

To evaluate how well MemTree’s hierarchical structure aligns with human perception of similarity,
we conducted a human evaluation study. Our goal was to determine whether the organization of
information within MemTree corresponds to how humans naturally group and relate concepts.

Experimental Design: We designed an experiment involving 500 questions, split evenly into 250
easy and 250 hard questions, with 5 annotators participating. The experiment consisted of the
following steps:

• Source Node: Randomly select a node from the MemTree.

• Alternative One: Randomly select a descendant of the Source Node at any depth.

• Alternative Two: Randomly select a node that is not a descendant of the Source Node but at
the same depth as Alternative One.

Participants were presented with the following task:

Question: Which of the following is more similar to [Source Node]?
Options:
(a) [Alternative One]
(b) [Alternative Two]

Question Tiers: We categorized the questions into two difficulty levels:

• Easy Questions: Alternative One and Alternative Two share only the root as their least
common ancestor. This implies they belong to different subtrees, making their content
clearly distinct and related to different topics.

• Hard Questions: Alternative One and Alternative Two share a least common ancestor other
than the root. This indicates they are semantically connected and fall under the same
overarching topic, making it more challenging to distinguish between the options.

Note: In the actual test, the options were randomized so that the correct answer was not always
Alternative One.

Example (Hard Question): Full content not shown for brevity.

Please read the following statement carefully:

“The USA vs Germany match showcased a mix of promising
individual performances and significant defensive lapses
from the USMNT. Christian Pulisic stood out with a stellar
performance, including a stunning first-half goal, and
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was a constant threat on the left wing. Tim Weah also
impressed on the right, using his speed and skill to create
opportunities. Gio Reyna, in his limited 45 minutes,
demonstrated his playmaking abilities, linking well with
Folarin Balogun, who showed potential but needs more
service. ...

Defensively, the USMNT struggled. Sergiño Dest was a
key culprit, making several critical errors that led to
German goals. Weston McKennie and Yunus Musah had moments
of brilliance in possession but were defensively frail,
contributing to the team’s vulnerabilities. ...

Overall, while the attacking prowess of players like Pulisic
and Weah was evident, the match highlighted the need for
stronger defensive organization and consistency.”

Which of the following options is more closely related?

(a) “...Player ratings for USMNT substitutes vs Germany
...Cameron Carter-Vickers provided much-needed stability at
the back and Brenden Aaronson added dynamism to the attack.
Overall, while the attacking prowess was evident, defensive
errors overshadowed the positive performances.”

(b) “...Gio Reyna was exceptional throughout the first half,
demonstrating his playmaking abilities. However, the U.S.
team faltered after his departure, highlighting the need for
stronger defensive organization. ...”

Figure A.8 presents the results of the human evaluation. Overall, participants consistently chose
the option that was a descendant of the Source Node as more similar, indicating a strong alignment
between MemTree’s structure and human perception.

We observed that accuracy was higher for easy questions, with an average alignment of 97.9%
for nodes at depths 2–5, reaching 100% for deeper nodes (depths 6–13). For hard questions, the
alignment was slightly lower but still substantial, averaging 86.2% for depths 2–5 and increasing
to over 89% for deeper nodes. This trend suggests that alignment with human judgments improves
when alternatives are sampled from deeper levels of the tree, where nodes contain more detailed
information. These results demonstrate that MemTree effectively captures hierarchical relationships
in a manner that aligns with human intuition.

Figure A.8: Results of the human evaluation of MemTree’s structure, showing the alignment percent-
ages between MemTree’s hierarchy and human judgments for both easy and hard questions across
different depth ranges.

A.3.9 PROMPT COMPRESSION

Prompt compression methods, such as LLMLingua Jiang et al. (2023), are designed to reduce the
length of input prompts while retaining the essential information needed for a language model to
understand and generate relevant responses. In this section, we evaluate the effect of applying
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LLMLingua prompt compression at various compression rates (0 < r ≤ 1, where lower rates
correspond to more aggressive compression) on the retrieved content. Our goal is to reduce the
number of tokens in the retrieved content when generating responses to queries in the Multihop RAG
and MSC-E experiments with online baseline method: our proposed MemTree and MemoryStream.

We observe that the task accuracy is highest when no compression is applied to the retrieved content
(r = 1), but it gradually decreases as the compression becomes more aggressive. Specifically,
for compression rates lower than 0.3 in the Multihop RAG experiments and lower than 0.7 in the
MSC-E experiments, the drop in accuracy is significant. Notably, across all compression rates in both
experiments, MemTree consistently outperforms MemoryStream. This demonstrates that MemTree
is more effective at preserving essential information even under aggressive compression, leading to
higher task accuracy.

These results indicate that while compression introduces a trade-off between prompt length and
accuracy, MemTree mitigates this trade-off more effectively than the baseline method. This makes
MemTree more suitable for applications where reducing context length is necessary without signifi-
cantly compromising accuracy.

Figure A.9: Impact of prompt compression rate on task accuracy for Multihop RAG and MSC-E
experiments using MemTree and MemoryStream. Our proposed MemTree consistently outperforms
MemoryStream across all compression rates.
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B THEORETICAL JUSTIFICATION OF MEMTREE VIA ONLINE HIERARCHICAL
CLUSTERING

In this appendix, we provide a theoretical justification for MemTree by connecting it to online
hierarchical clustering algorithms, specifically the Online Top-Down (OTD) algorithm proposed
by Menon et al. (2019). We demonstrate that MemTree aligns with this algorithm, inheriting its
theoretical properties, which ensures efficient and effective hierarchical memory management in large
language models (LLMs).

B.1 MEMTREE’S APPROXIMATION TO THE MOSELEY-WANG REVENUE

MemTree achieves an approximation to the optimal Moseley-Wang revenue (Section B.2) under a
data separation assumption (Assumption 1), ensuring a structured and theoretically sound hierarchy
formation. The following theorem summarizes this guarantee.
Theorem 1 (Approximation Guarantee of MemTree (Informal)). Assuming the data processed by
MemTree satisfies the β-well-separated condition (Assumption 1), the hierarchy maintained by
MemTree achieves a revenue

Rev(MemTree;W ) ≥ β

3
Rev(T ∗;W ),

where T ∗ is the optimal hierarchy maximizing the Moseley-Wang revenue.

This β/3-approximation ensures that MemTree effectively clusters similar data points, preserving the
quality of the hierarchy.

B.2 BACKGROUND: ONLINE HIERARCHICAL CLUSTERING AND MOSELEY-WANG REVENUE

Hierarchical clustering organizes data into a nested sequence of clusters, capturing relationships at
various levels of granularity. To evaluate the quality of such hierarchies, we utilize objective functions
like the Moseley-Wang revenue function (Moseley & Wang, 2017), which measures how well similar
data points are grouped together.

OTD Algorithm The Online Top-Down (OTD) clustering algorithm (Menon et al., 2019) is an
efficient online hierarchical clustering method that incrementally updates the hierarchy as new data
arrives. It operates as follows:

• Traversal: OTD traverses the hierarchy T from the root to determine where to insert a new
data point x.

• Decision Mechanism: At each node S in the hierarchy, OTD compares the intra-cluster
similarity w(S) with the inter-cluster similarity w(S, x). If w(S, x) ≤ w(S), it inserts x
as a sibling of S; otherwise, it continues traversing into the child subtree with the highest
similarity.

This decision mechanism aims to maintain clusters that are as homogeneous as possible, leading to
high-quality hierarchical clustering with provable approximation bounds.

Moseley-Wang Revenue Function Given data points X = {x1, x2, . . . , xn} and pairwise similar-
ity weights wij between points xi and xj , the Moseley-Wang revenue function quantifies the quality
of a hierarchy T over X .
Definition 1 (Moseley-Wang Revenue (Moseley & Wang, 2017)). Let lca(i, j) denote the least
common ancestor of xi and xj in T . The revenue is defined as:

Rev(T ;W ) =
∑

1≤i<j≤n

wij (n− |leaves (lca(i, j))|) ,

where |leaves (lca(i, j))| is the number of leaves under lca(i, j).

This function rewards hierarchies that place similar points (with high wij) together in clusters lower
in the hierarchy, maximizing the term n− |leaves (lca(i, j))|.
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Approximation Guarantees Menon et al. (2019) showed that under a certain data separation as-
sumption (Assumption 1), the OTD algorithm achieves a β/3-approximation to the optimal Moseley-
Wang revenue, meaning the revenue obtained by OTD is at least (β/3) times the maximum possible
revenue.

B.3 ALIGNMENT OF MEMTREE WITH THE OTD ALGORITHM

Both MemTree and the OTD algorithm adopt a top-down approach for integrating new data, utilizing
hierarchical traversal and similarity-based decision-making at each node. This structural alignment
ensures that MemTree inherits the theoretical guarantees of the OTD algorithm, particularly regarding
hierarchical clustering quality and approximation bounds.

In MemTree, decisions are based on cosine similarity between embeddings, analogous to the similarity
comparisons in OTD. Additionally, the content aggregation mechanism in MemTree plays a crucial
role in preserving or enhancing intra-cluster similarity, ensuring that the embeddings of parent nodes
reflect the collective content of their child nodes. Below, we summarize the traversal and insertion
mechanisms of both algorithms to highlight their similarities:

• OTD Algorithm:
– Traversal: Processes new data points by traversing the hierarchy from the root to

identify the appropriate location for insertion.
– Decision Making: At each node S, OTD compares the intra-cluster similarity w(S) with

the inter-cluster similarity w(S, x), where x is the new data point. If w(S, x) ≤ w(S),
the new point is inserted as a sibling; otherwise, OTD continues traversing into a child
subtree.

• MemTree:
– Traversal: Computes the embedding enew of the new information cnew and traverses

the tree from the root. At each node v, it compares enew with the embeddings of child
nodes using cosine similarity.

– Decision Making: Proceeds to the child node with the highest similarity if this similarity
exceeds a depth-adaptive threshold θ(dv); otherwise, it attaches a new leaf node under
v.

– Content Aggregation: After inserting the new data, MemTree updates the content
cv and embedding ev of parent nodes along the traversal path using an aggregation
function. This process can be interpreted as maintaining or enhancing the intra-cluster
similarity within each subtree, as the parent node’s representation integrates and reflects
the combined information of its child nodes.

Theoretical Justification By adopting a similar traversal and decision-making process as the
OTD algorithm, MemTree inherits the theoretical properties of OTD, including its approximation
guarantees for the Moseley-Wang revenue function. This alignment suggests that MemTree forms a
hierarchy that effectively clusters similar data, optimizing the revenue and maintaining a coherent,
structured memory system. The depth-adaptive threshold used in MemTree further reinforces this
structure, ensuring that clusters remain well-separated and that intra-cluster similarity is preserved or
enhanced as new data is incorporated.

B.4 DATA SEPARATION ASSUMPTION AND DEPTH-ADAPTIVE THRESHOLD

The OTD algorithm’s approximation guarantee relies on the data satisfying a β-well-separated
condition.
Assumption 1 (β-Well-Separated Data (Menon et al., 2019)). A hierarchy T over data points X is
β-well-separated (0 < β ≤ 1) if, for every subtree S with children A and B, and for any new point x,
the following holds:

If
w(S, x) > w(S) and w(A, x) ≤ w(B, x),

then
w(A) ≥ β · w(A, x),
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where:

• w(S, x) is the average similarity between x and points in S,

• w(S) is the average similarity among points in S,

• w(A, x) is the average similarity between x and points in A,

• w(B, x) is the average similarity between x and points in B,

• w(A) is the average similarity among points in A.

This assumption ensures that clusters are well-separated: if a new point is more similar to the parent
cluster than the average within it and more similar to one child over another, then the intra-cluster
similarity of the less similar child is sufficiently high relative to its similarity to the new point.

MemTree’s Depth-Adaptive Threshold In MemTree, the depth-adaptive threshold θ(d) = θ0e
λd

increases with the depth d of the node, enforcing stricter similarity requirements for deeper clusters.
This mechanism effectively creates well-separated clusters, analogous to satisfying Assumption 1.

Mathematical Derivation Consider the threshold function θ(d) = θ0e
λd, where θ0 > 0 and

λ > 0. At depth d, suppose that during traversal, the new point x does not proceed to child A because
w(A, x) ≤ θ(d), while it proceeds to child B because w(B, x) > θ(d). Additionally, the intra-cluster
similarity of A at depth d− 1 must satisfy w(A) ≥ θ(d− 1) = θ(d)e−λ. Then, we have:

w(A) ≥ e−λθ(d) ≥ e−λw(A, x),

since w(A, x) ≤ θ(d).

This implies:
w(A) ≥ e−λw(A, x),

meaning that β = e−λ in the data separation condition (Assumption 1).

Implications By appropriately setting θ0 and λ, we can control β and the clustering behavior:

• A larger λ (resulting in a smaller β) enforces stronger separation between clusters at deeper
levels.

• The parameter θ0 sets the baseline similarity threshold at the root, influencing clustering
decisions at higher levels. While θ0 does not explicitly appear in the expression for β, it is
essential in practice because, depending on the data, an improper choice of θ0 could violate
the data separation assumption, affecting the approximation guarantee.
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