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MMPOI: A Multi-Modal Content-Aware Framework for POI
Recommendations

ABSTRACT
The Point-of-Interest (POI) recommendation system, designed to
recommend potential future visits of users based on their check-
in sequences, faces the challenge of data scarcity. This challenge
primarily stems from the data sparsity issue, namely users interact
with only a small number of POIs. Most existing studies attempt to
solve this problem by focusing on POI check-in sequences, with-
out considering the substantial multi-modal content information
(e.g. textual and image data) commonly associated with POIs. In
this paper, we propose a novel multi-modal content-aware frame-
work for POI recommendation (MMPOI). Our approach addresses
the issue of data sparsity by incorporating multi-modal content
information about POIs from a new perspective. Specifically, MM-
POI leverages pre-trained models for inter-modal conversion and
employs a unified pre-trained model to extract modal-specific fea-
tures from each modality, effectively bridging the semantic gap
between different modalities. We propose to build a Multi-Modal
Trajectory Flow Graph (MTFG) which combines the multi-modal
semantic structure with check-in sequences. Moreover, we design
an adaptive multi-task Transformer that models users’ multi-modal
movement patterns and integrates them for the next POI recom-
mendation tasks. Extensive experiments on four real-world datasets
demonstrate that MMPOI outperforms state-of-the-art POI recom-
mendation methods. To facilitate reproducibility, we have released
both the code and the multi-modal POI recommendation datasets
we collect1.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
POI recommender systems are designed to capture the preference
of users based on their current and historical footprints, also known
1https://github.com/**blind**/MMPOI
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as check-ins, and many recent studies [19, 32, 41, 42] on POI rec-
ommendations aim to predict the next POI that users will be inter-
ested in. POI recommendation not only provides individuals with
a convenient exploration of unfamiliar locales but also empowers
businesses with sharpened marketing tactics [39]. The primary su-
pervisory signals used for training these model parameters typically
originate from interactions between users and POIs, manifested as
user check-in sequences. However, the sparsity issue arises as users
often visit only a few preferred POIs, which constitute a very small
portion of the entire POI database [16, 18]. Given the sparsity of
user check-in data, POI recommendation methods that solely rely
on such data can be heavily impacted by the data sparsity problem,
making it challenging to accurately predict the next POI a user
would visit.

The existing methods tend to incorporate side information such
as temporal information [20, 42, 45], geographical locations [32, 40],
categories [41, 44], and social relationships [6, 10, 21, 26] to alleviate
the issue of data sparsity. Some studies also utilize hypergraphs
[30, 38] and knowledge graphs [24, 31] to explore higher-order
user-POI relationships, or employ sampling techniques [4, 17] to
mitigate the challenge of sparse data. While these methods have
made considerable advancements, none of them consider the signif-
icant amount of multi-modal content information associated with
POIs (e.g., visual and textual content).

Inspired by the achievements of multi-modal recommendation
methods [43, 46] and pre-trained language models [8], we propose
to apply pre-trained models to effectively exploit the multi-modal
content information of POIs, and integrate such multi-modal in-
formation into check-in sequences to enhance the accuracy of POI
recommendation. However, incorporating the multi-modal content
information of POIs with existing POI recommendation frameworks
presents three noteworthy challenges. Firstly, there exist substan-
tial variations in the semantic spaces of different modal content.
For instance, the visual and textual contents of POIs are typically
represented in different semantic spaces, posing a challenge in
merging multi-modal features. Secondly, multi-modal data contains
a considerable volume of noise, which could introduce a significant
quantity of noise into POI recommendation tasks, thereby detrimen-
tally impacting the accuracy of recommendation. Thirdly, there is
a significant semantic difference between the multi-modal content
of POIs and user check-in sequences. The multi-modal contents
describe the common characteristics of POIs, while the check-in
sequences reflect the interaction behavior of users. These two types
of data have substantial semantic differences. The challenge lies in
how to effectively integrate these two types of data to model user
movement patterns.

To this end, we propose a novel Multi-Modal content-aware
framework for POI recommendation (MMPOI). To address the first
challenge, namely the different representation spaces between tex-
tual and visual modalities, MMPOI employs an image2text pre-
trained model to convert POI images into natural language de-
scriptions. Subsequently, a unified pre-trained language model is
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applied to extract features from each modality, thereby mapping
multi-modal content to a shared semantic representation space.
To address the second challenge of considerable noise intruding
from multi-modal content, we establish modal-specific similarity
structure graphs to model the latent semantic correlation of POIs,
and adopt the 𝑘NN sparsification method to filter out the impor-
tant relationships. This strategy effectively mitigates the impact of
multi-modal noise on the accuracy of recommendations. In order
to address the third challenge brought by the semantic difference
between multi-modal content and user check-in behavior, we pro-
pose a Multi-modal Trajectory Flow Graph (MTFG) that integrates
the multi-modal latent semantic relationships with check-in se-
quences. Additionally, we construct a Geographic Trajectory Flow
Graph (GTFG) to capture the geographical sequence relationships.
Finally, we design an adaptive multi-task Transformer by taking
into account various factors that influence user behavior, which is
employed to model the user’s comprehensive movement patterns
for the next POI recommendation. The primary contributions of
this paper can be summarized as follows:

• We propose a novel MMPOI model to address the issue of
data sparsity by incorporating the multi-modal content in-
formation of POIs. To the best of our knowledge, our study
represents the first attempt to utilize multi-modal content
information of POIs for the next POI recommendation.

• MMPOI leverages pre-trained models to map multi-modal
content to a shared semantic space, and constructs a multi-
modal trajectory flow graph to effectively integrate de-noised
multi-modal knowledge with check-in sequences. Moreover,
MMPOI establishes a geographic trajectory flow graph to
extract geographical sequence patterns and employs an adap-
tive multi-task Transformer to capture users’ comprehensive
movement patterns.

• To support multi-modal POI recommendation, we collected
mult-modal content for the widely used Foursquare dataset.
Experiments conducted on Foursquare and Yelp datasets
show that MMPOI can outperform the strongest baseline by
8% to 11% in recommendation accuracy.

2 RELATEDWORK
2.1 Next POI Recommendation
Next POI recommendation aims to predict the users’ next moves
based on users’ historical check-in data. Early work is built upon
the Markov chains and focuses on predicting users’ preferences
between POIs to recommend the next visit [5, 7]. Recent work of-
ten employs recurrent neural networks (RNN) and self-attention
mechanisms. For example, LSTPM [27] uses contextual information
of POIs to model users’ long-term preferences and a geo-dilated
RNN to model short-term preferences. STAN [22] learns the ex-
plicit spatio-temporal correlations within the user trajectory using
a bi-attention architecture. These methods focus on capturing the
spatio-temporal relationships between POIs in a single check-in
sequence, and the relationship among multiple check-in sequences
is not well exploited. To address this, some recent studies incor-
porate graph representation learning techniques. GETNext [39]
constructs a directed trajectory graph to represent the correlation

between multiple check-in sequences, and applies Graph Convolu-
tional Network (GCN) to learn the representations of POIs. AGRAN
[32] combines geographical dependencies learned from the adap-
tive graph and spatio-temporal information simultaneously for
capturing dynamic user preferences. STHGCN [38] introduces a hy-
pergraph to learn the trajectory-grain information from the user’s
historical trajectories and collaborative trajectories from other users.
However, existing POI recommendation methods ignore the multi-
modal content information associated with POIs. In this paper, we
introduce a multi-modal content-aware framework for POI recom-
mendation, marking the first attempt to exploit the multi-modal
content information for POI recommendations.

2.2 Multi-Modal Recommendation
Multi-modal recommendationmethods exploit massivemulti-modal
content information of items to improve recommendation perfor-
mance, which have been successfully applied to many applica-
tions, such as micro-video platforms, social media platforms, and e-
commerce [43]. Early approaches tend to integrate the multi-modal
content features of items into matrix factorization frameworks for
recommendation [2, 9, 37]. For example, VBPR [9] extends the ma-
trix factorization by extracting image features from item images to
improve the recommendation performance. VECF [2] introduces a
multi-modal attention network to capture users’ multiple interests
across both image regions and reviews. Recently, an increasing num-
ber of studies have incorporated GNNs to model multi-modal fea-
tures [34, 35, 43]. For example, MMGCN [35] utilizes modal-specific
graphs and graph convolutional operations to capture both modal-
specific user preferences and item representations. LATTICE [43]
combines multi-modal features to identify item-item graph struc-
tures and integrates these multi-modal similarity relationships with
the traditional collaborative filtering method. These methods model
the latent semantic relationships between items based on GCN,
but cannot be directly applied to spatio-temporal data. Addition-
ally, some studies introduce contrastive learning methods to fuse
multi-modal features for recommendation [28, 33, 46]. For example,
BM3 [46] utilizes a node discarding mechanism to perturb user
and item embeddings, and introduces a multi-modal contrastive
learning paradigm to align feature representations across different
modalities. MMSSL [33] specializes in modal-specific user and item
embeddings through adversarial perturbation and introduces cross-
modal contrastive learning for capturing inter-modality interaction
dependencies. Different from these multi-modal recommendation
methods, we utilize pre-trained models to map multi-modal data
into a shared semantic space. Then, we use the k-nearest neighbors
sparsification approach to filter out noise in the multi-modal data.
Moreover, we effectively integrate multi-modal content features of
POIs with check-in sequences to address the POI recommendation
task.

3 THE PROPOSED METHOD
In this section, we first formulate the problem and introduce our
proposed MMPOI framework. As shown in Figure 1, there are four
main components in our proposed MMPOI framework: (1) An im-
age2text pre-trained model is utilized to convert POI images into
textual descriptions, and then a unified pre-trained language model
is employed to extract modal-specific features from each modality.
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Figure 1: The model flow of our proposed MMPOI.

(2) Modal-specific features of POIs are aggregated and combined
with user check-in sequences, constructing a multi-modal trajec-
tory flow graph for POI representation learning. (3) A geographic
trajectory flow graph is established to model geographical sequence
relationships. Check-in representations are learned from spatial
location, multi-modal POI content, user preferences, and temporal
patterns. (4) An adaptive multi-task Transformer is proposed to
model the user movement patterns and provide POI recommenda-
tions.

3.1 Preliminaries
Let 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑁 } be the set of𝑁 POIs and𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑀 }
be the set of𝑀 users. Each user𝑢 ∈ 𝑈 has a check-in sequence𝐶𝑢 =

{𝑐1𝑢 , 𝑐2𝑢 , 𝑐3𝑢 , ...}, where a check-in is denoted as a tuple 𝑐 = (𝑢, 𝑝, 𝑡),
indicating that the user 𝑢 visits POI 𝑝 at time 𝑡 . The check-in se-
quences of all users can be represented as C = {𝐶𝑢1 ,𝐶𝑢2 , ...,𝐶𝑢𝑀

}.
Besides user-POI check-ins, we also innovatively consider the multi-
modal content information of POIs. Each POI 𝑝 ∈ 𝑃 is associ-
ated with a set of multi-modal content (V𝑝 ,R𝑝 ,M𝑝 ), where V𝑝 =

{𝑣1𝑝 , 𝑣2𝑝 , ..., 𝑣
|V𝑝 |
𝑝 },R𝑝 = {𝑟1𝑝 , 𝑟2𝑝 , ..., 𝑟

| R𝑝 |
𝑝 } andM𝑝 = {𝑚1

𝑝 ,𝑚
2
𝑝 , ...,𝑚

|M𝑝 |
𝑝 }

denote sets of images, reviews, and metadata for the POI 𝑝 , and
|V𝑝 |, |R𝑝 | and |M𝑝 | represent the number of images, reviews, and
metadata, respectively. Then, each POI 𝑝 ∈ 𝑃 can be denoted by a
tuple 𝑝 = (𝑙𝑎𝑡𝑝 , 𝑙𝑜𝑛𝑝 , 𝑐𝑎𝑡𝑝 ,V𝑝 ,R𝑝 ,M𝑝 ) of latitude, longitude, cate-
gory, and multi-modal contents, respectively. Given the check-in
sequence 𝐶𝑢 = {𝑐1𝑢 , 𝑐2𝑢 , ..., 𝑐

|𝐶𝑢 |
𝑢 } of the target user 𝑢, the goal of

POI recommendation is to predict the most likely future POIs that
user 𝑢 would visit next.

3.2 Multi-Modal Feature Extraction
As shown in Figure 1, our proposed method considers content infor-
mation from three POI modalities: images, reviews, and metadata.
To comprehensively utilize multi-modal data, it’s crucial to address
the semantic space differences between different modalities, es-
pecially between the visual and textual modalities. We employ a

pre-trained image2text model BLIP2 [15] to convert the image of
POIs into the corresponding textual descriptions:

V
′
𝑝 = {𝑣1𝑝

′
, 𝑣2𝑝

′
, ..., 𝑣

|V𝑝 |
𝑝

′

}

= {𝐵𝐿𝐼𝑃2(𝑣1𝑝 ), 𝐵𝐿𝐼𝑃2(𝑣2𝑝 ), ..., 𝐵𝐿𝐼𝑃2(𝑣
|V𝑝 |
𝑝 )}.

(1)

From the example presented in Figure 1, we can see that the
pre-trained BLIP2 model provides natural language descriptions
of entities and their relationships present in POI images, while
making inferences about the image scenes. Intuitively, we can ob-
serve a clear semantic consistency across different modalities of
the same POI after modality conversion. Then, we employ a uni-
fied pre-trained language model Sentence-BERT [25] to extract
modal-specific features from each modality. Specifically, consider-
ing that a POI can be associated with multiple images, we obtain
the image-modality representation of POI 𝑝 by feeding 𝑣𝑖𝑝

′
∈ V ′

𝑝

into Sentence-BERT and averaging the embedding results:

𝑒𝑣𝑝 =𝑚𝑒𝑎𝑛(𝑠𝑢𝑚(𝐵𝐸𝑅𝑇 (𝑣1𝑝
′
), 𝐵𝐸𝑅𝑇 (𝑣2𝑝

′
), ..., 𝐵𝐸𝑅𝑇 (𝑣 |V𝑝 |

𝑝

′

))), (2)

where 𝑒𝑣𝑝 ∈ R𝑑𝑚 is POI 𝑝’s image-modality representation, 𝑑𝑚
represents the dimension of the feature representation.

Similar to the image modality, the review-modality representa-
tion of POI 𝑝 can be obtained as follows:

𝑒𝑟𝑝 =𝑚𝑒𝑎𝑛(𝑠𝑢𝑚(𝐵𝐸𝑅𝑇 (𝑟1𝑝 ), 𝐵𝐸𝑅𝑇 (𝑟2𝑝 ), ..., 𝐵𝐸𝑅𝑇 (𝑟
| R𝑝 |
𝑝 ))). (3)

The metadata we primarily consider includes descriptions and
categories of POIs. As the metadata holds explicit semantics, we
extract semantic features from metadata as its meta-modality rep-
resentation:

𝑒𝑚𝑝 =𝑚𝑒𝑎𝑛(𝑠𝑢𝑚(𝐵𝐸𝑅𝑇 (𝑚1
𝑝 ), 𝐵𝐸𝑅𝑇 (𝑚2

𝑝 ), ..., 𝐵𝐸𝑅𝑇 (𝑚
|M𝑝 |
𝑝 ))) (4)

3.3 Multi-modal Trajectory Flow Graph
Existing POI recommendation methods typically rely on modeling
user check-in sequences to predict future user behaviors [22, 36, 39].
However, user check-in sequences are very sparse, which presents
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substantial challenges for model learning. In this paper, we aim to
leverage the multi-modal content information of POIs to alleviate
the data sparsity issue and improve recommendation performance.
Nevertheless, directly integrating multi-modal features inevitably
introduces a lot of noise. Therefore, inspired by [43], we construct
a modal-specific structure graph for each modality, which captures
modal-specific 𝑘-nearest-neighbor (𝑘NN) relationships between
POIs. This method serves to filter out noise and capture important
structural relationships among the latent features of POIs. To effec-
tively integrate the multi-modal features of POIs and the check-in
sequence features of users, we construct a denoised dense multi-
modal trajectory flow graph (MTFG) to learn the multi-modal rep-
resentations of POIs. The following sections will provide a detailed
introduction to the MTFG construction process.

3.3.1 Learning Modal-Specific Structure Graph. Given the modal-
specific representations {𝑒𝑜𝑝 }𝑝∈𝑃 for POIs in modality 𝑜 , where
𝑜 ∈ O, and O = {V,R,M} represents the set of modalities. We
compute the similarity score 𝑆𝑜

𝑖 𝑗
of POI pairs (𝑖, 𝑗) by employing a

cosine similarity function on their modal-specific representations
𝑒𝑜
𝑖
and 𝑒𝑜

𝑗
as follows:

𝑆𝑜𝑖 𝑗 =
(𝑒𝑜
𝑖
)⊤𝑒𝑜

𝑗

∥ 𝑒𝑜
𝑖
∥∥ 𝑒𝑜

𝑗
∥ . (5)

We denote the similarity matrix among 𝑁 POIs in modality 𝑜

as 𝑆𝑜 ∈ R𝑁×𝑁 , where 𝑆𝑜
𝑖 𝑗
is the element at the 𝑖-th row, 𝑗-th col-

umn. 𝑆𝑜 represents a homogeneous graph that characterizes the
similarity structures among POIs within modality 𝑜 . However, con-
sidering the substantial noise present in multi-modal data and the
computational and storage costs associated with a fully connected
graph, we employ 𝑘NN sparsification [1] on 𝑆𝑜 . For each POI node
𝑝𝑖 , we only keep edges with the top-𝑘 similarity scores:

𝑆𝑜𝑖 𝑗 =

{
𝑆𝑜
𝑖 𝑗
, 𝑆𝑜

𝑖 𝑗
∈ 𝑡𝑜𝑝-𝑘 (𝑆𝑜

𝑖
)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(6)

where 𝑆𝑜 = {𝑆𝑜
𝑖 𝑗
}𝑖, 𝑗∈[1,𝑁 ] is the sparsified graph adjacency matrix,

representing the denoised similarity structure among POIs within
modality 𝑜 . In this paper, we use 𝑆𝑜 to represent the 𝑜-modality
structure graph.

3.3.2 Aggregating Multi-Modal Structure Graph. In POI recommen-
dation scenarios, user behavior is significantly influenced by multi-
modal content information. For instance, when choosing a restau-
rant, users typically first consider the restaurant’s category (meta)
and then browse images of the restaurant’s ambiance and dishes
(image) to form sensory evaluations. Subsequently, they might read
other customers’ critiques of the restaurant (review) to evade po-
tential dissatisfaction and needless overspending. To model the
comprehensive influence of multi-modal factors, we combine the
obtained structure graph 𝑆𝑜 for each modality 𝑜 ∈ O to create a
multi-modal structure graph 𝑆𝑀 :

𝑆𝑀 =

| O |∑︁
𝑜=1

𝑆𝑜 , (7)

where 𝑆𝑀 ∈ R𝑁×𝑁 denotes the multi-modal structure graph that
reflects multi-modal semantic relationships of POIs. In particular,

to mitigate the issue of exploding or vanishing gradients [14], we
normalize 𝑆𝑀 as follows:

𝑆𝑀 = 𝐷− 1
2 𝑆𝑀𝐷− 1

2 , (8)
where 𝐷 ∈ R𝑁×𝑁 is the diagonal degree matrix of 𝑆𝑀 and 𝐷𝑖𝑖 =∑

𝑗 𝑆
𝑀
𝑖 𝑗
.

3.3.3 Building User Trajectory Graph. Considering that similar
movement patterns may exist among different users and the same
user may repeat certain historical behaviors multiple times. To
model the similarity relationships among these similar sequence
segments, we create a directed weighted user trajectory graph.

To be specific, given the set of user check-in sequences C =

{𝐶𝑢 }𝑢∈𝑈 , the user trajectory graph can be defined as a directed
weighted graph G𝑇 = (𝑉𝑇 , 𝐸𝑇 ,𝑤). 𝑉𝑇 = 𝑃 is the set of all POI
nodes. 𝐸𝑇 represents the set of directed edges (𝑝𝑖 , 𝑝 𝑗 ), which in-
dicates that POI 𝑝 𝑗 appears after POI 𝑝𝑖 in some user check-in
sequences, i.e. they are visited consecutively. The adjacency matrix
of G𝑇 can be denoted as 𝑆𝑇 = {𝑆𝑇

𝑖 𝑗
}𝑖, 𝑗∈[1,𝑁 ] , where

𝑆𝑇𝑖 𝑗 =

{
𝑤 (𝑝𝑖 , 𝑝 𝑗 ), (𝑝𝑖 , 𝑝 𝑗 ) ∈ C
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(9)

where𝑤 (𝑝𝑖 , 𝑝 𝑗 ) equals the number of occurrences of edge (𝑝𝑖 , 𝑝 𝑗 )
in user check-in sequences C. Similar to the multi-modal structure
graph 𝑆𝑀 , we normalize the user trajectory graph 𝑆𝑇 as:

𝑆𝑇 = (𝐷𝑡 )−
1
2 𝑆𝑇 (𝐷𝑡 )−

1
2 , (10)

where 𝐷𝑡 ∈ R𝑁×𝑁 is the diagonal degree matrix of 𝑆𝑇 and 𝐷𝑡
𝑖𝑖
=∑

𝑗 𝑆
𝑇
𝑖 𝑗
.

3.3.4 Multi-modal Trajectory Flow Graph (MTFG). To bridge the
semantic difference between POI multi-modal features and check-in
sequence features, we integrate the multi-modal structure graph
with the user trajectory graph, creating the multi-modal trajectory
flow graph G𝑀𝑇 as follows:

𝑆𝑀𝑇 = 𝛼𝑆𝑀 + (1 − 𝛼)𝑆𝑇 , (11)

where 𝑆𝑀𝑇 is the adjacency matrix of G𝑀𝑇 , 𝛼 is a hyper-parameter
used to integrate the multi-modal structural relationships and the
check-in sequence relationships between POIs. It’s noteworthy that
the MTFG we constructed is a mixed graph with both directed
and undirected edges, representing the two types of relationships
previously discussed. Due to the 𝑘NN sparsification employed in
multi-modal structure graphs, noise can be considerably mitigated.
Consequently, the constructed MTFG not only addresses the data
sparsity issue but also emphasizes multiple key relationships be-
tween POIs.

3.3.5 Multi-Modal POI Representation Learning. To take full ad-
vantage of the topological structure of MTFG, the spectral GCN
method [14] is adopted in MTFG to learn multi-modal POI repre-
sentations. Specifically, the multi-modal POI representations 𝐸 (𝑙+1)

𝑃
at the (𝑙 + 1)-th graph convolution layer is obtained as follows:

𝐸
(𝑙+1)
𝑃

= 𝜎 (𝑆𝑀𝑇 𝐸
(𝑙 )
𝑃

𝑊
(𝑙+1)
𝑃

+ 𝑏 (𝑙+1)
𝑃

), (12)

where 𝜎 (·) denotes the leaky ReLU activation function,𝑊 (𝑙+1)
𝑃

∈
R𝑑

(𝑙 )×𝑑 (𝑙+1)
is the weight matrix at the (𝑙 + 1)-th layer, 𝑏 (𝑙+1)

𝑃
∈

2023-10-11 15:20. Page 4 of 1–10.
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R𝑑
(𝑙+1)

represents the corresponding bias, and 𝑑 (𝑙 ) is the number
of channels in the 𝑙-th hidden layer.

In particular, considering that the ’category’ attribute in the
meta modality carries concise and explicit semantic information,
we utilize its semantic representation, denoted as 𝐸𝐶 ∈ R𝑁×𝑑𝑚 ,
to serve as the feature matrix for the input nodes, i.e., 𝐸 (0)

𝑃
= 𝐸𝐶 .

Details about the embedding of categories will be provided in the
following sections. Then, assuming GCN has a total of 𝐿 layers,
to enhance the model’s generalization ability, we apply random
dropout to the features before the final layer. Using this approach,
we can formulate the output of the GCN as follows:

𝐸𝑃 = 𝑆𝑀𝑇𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐸 (𝐿−1)
𝑃

, 𝜃𝐺𝐶𝑁 )𝑊 (𝐿)
𝑃

+ 𝑏 (𝐿)
𝑃

, (13)

where 𝐸𝑃 = {𝑒1𝑝 , 𝑒2𝑝 , ..., 𝑒𝑁𝑝 } ∈ R𝑁×𝑑 denotes the multi-modal POI
representations, 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (·) is an element-level dropout operation
applied to the feature representations, and 𝜃𝐺𝐶𝑁 represents its
dropout ratio. The learned multi-modal POI representations inte-
grate both the multi-modal semantic relationships and the check-in
sequence patterns between POIs. This contributes to a more com-
prehensive comprehension of user movement patterns in the POI
recommendation task.

3.4 Check-in Representation Learning
Many POI recommendation methods have demonstrated the sig-
nificance of considering the check-in context in predicting user
check-in behaviors [24, 32, 38]. In this section, we propose a check-
in representation learning approach that takes into account factors
such as spatial location, temporal information, multi-modal POI
features, and user preferences.

3.4.1 Geographic Trajectory Flow Graph. The check-in behavior
of users exhibits a strong regional dependence [19]. For example,
people usually prefer shopping at a local grocery store instead of
traveling a long distance to a remote one. To effectively leverage
the geographical information, we propose a Geographic Trajectory
Flow Graph (GTFG) to model geographical relationships in user
movement patterns. To be specific, we apply the publicly available
geocoding system Geohash2 to encode the spatial location of POIs.
Given a POI 𝑝 with location coordinates (𝑝𝑙𝑎𝑡 , 𝑝𝑙𝑛𝑔), 𝐺@𝑍 maps
(𝑝𝑙𝑎𝑡 , 𝑝𝑙𝑛𝑔) to the respective grid cell 𝑝𝐺 . These grid cells are of
equal size, and the precision parameter 𝑍 determines the size of
these fixed cells. As the value of 𝑍 increases, the size of these fixed
cells diminishes. To learn fine-grained spatial relationships, we set
the value of 𝑍 to 6 in our method. Given the set of user historical
check-in sequences C, GTFG can be denoted as G𝐺 = (𝑉𝐺 , 𝐸𝐺 ,𝑤),
where 𝑉𝐺 = {𝑝𝐺1 , 𝑝

𝐺
2 , ..., 𝑝

𝐺
|𝑉𝐺 | } represents the set of grid cells of

all POIs. 𝐸𝐺 is the set of directed edges (𝑝𝐺
𝑖
, 𝑝𝐺

𝑗
), which indicates

that the user visited the grid cell 𝑝𝐺
𝑗
after visiting the grid cell 𝑝𝐺

𝑖
.

The adjacency matrix of G𝐺 can be represented as:

𝑆𝐺 = {𝑆𝐺𝑖 𝑗 } =
{
𝑤 (𝑝𝐺

𝑖
, 𝑝𝐺

𝑗
), (𝑝𝐺

𝑖
, 𝑝𝐺

𝑗
) ∈ C

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(14)

2http://geohash.org/, where G@Z= 2 (1,251km × 625km), G@Z= 3 (156km × 156km),
G@Z= 4 (39km × 19.5km), G@Z= 5 (4.9km × 4.9km), G@Z= 6 (1.2km × 0.61km).

where 𝑤 (𝑝𝐺
𝑖
, 𝑝𝐺

𝑗
) represents the number of times edge (𝑝𝐺

𝑖
, 𝑝𝐺

𝑗
)

appears in C. We normalize the 𝑆𝐺 as follows:

𝑆𝐺 = (𝐷𝐺 )−
1
2 𝑆𝐺 (𝐷𝐺 )−

1
2 , (15)

where 𝐷𝐺 ∈ R𝑁×𝑁 is the diagonal degree matrix of 𝑆𝐺 and 𝐷𝐺
𝑖𝑖

=∑
𝑗 𝑆

𝐺
𝑖 𝑗
. Similar to the multi-modal POI representation learning, we

apply the spectral GCN method to the constructed GTFG to learn
the geographic representations. The graph convolution process and
the GCN output can be represented as follows:

𝐸
(𝑙+1)
𝐺

= 𝜎 (𝑆𝐺𝐸 (𝑙 )
𝐺

𝑊
(𝑙+1)
𝐺

+ 𝑏 (𝑙+1)
𝐺

), (16)

𝐸𝐺 = 𝑆𝐺𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐸 (𝐿−1)
𝐺

, 𝜃𝐺𝐶𝑁 )𝑊 (𝐿)
𝐺

+ 𝑏 (𝐿)
𝐺

, (17)

where 𝐸𝐺 = {𝑒1𝑔 , 𝑒2𝑔 , ..., 𝑒𝑁𝑔 } ∈ R𝑁×𝑑 is geographic representations

of all POIs,𝑊 (𝑙+1)
𝐺

and 𝑏 (𝑙+1)
𝐺

are the weight matrix and bias term
at the (𝑙 + 1)-th layer, respectively. We apply one-hot encoding to
the grid cells to initialize the geographic representation 𝐸

(0)
𝐺

.

3.4.2 Time and Category Embedding. Previous studies on user
movement patterns have demonstrated a significant correlation
between the time of user visits and the category of POIs visited.
[39]. For instance, users typically visit bars and similar venues dur-
ing the nighttime, whereas subway stations are busier during peak
commuting hours. Therefore, to model the relationship between
user movement patterns and both time and categories, we encode
visiting time and POI categories separately.

For the visiting time, we partition the 24-hour day into 48 slots,
each accounting for 30 minutes. We then apply the time2vector [12]
method to embed these slots, thereby obtaining the time embedding
representations 𝐸𝑇 = {𝑒1𝑡 , 𝑒2𝑡 , ..., 𝑒48𝑡 } ∈ R48×𝑑 .

For category information, we take into account the rich seman-
tics within categories. For example, consider the following four cat-
egories: "French restaurant", "Chinese restaurant", "restaurant", and
"dining establishment". Each of these categories holds a distinct tex-
tual description yet they also share notable similarities. Using one-
hot encoding for these categories would treat them as completely
separate entities. On the other hand, simplifying them under a gen-
eral "restaurant" category could ignore the important and nuanced
distinctions such as "Chinese" or "French". In this paper, we con-
sider categories as textual content and use the pre-trained natural
language model Sentence-BERT [25] to obtain the representations
of all POIs’ categories, denoted as 𝐸𝐶 = {𝑒1𝑐 , 𝑒2𝑐 , ..., 𝑒𝑁𝑐 } ∈ R𝑁×𝑑𝑚 .
It’s worth noting that the ’category’ has been completely incorpo-
rated into the POI learning process, where it’s deeply integrated
with multi-modal POI representations. Thus, we no longer need to
explicitly incorporate category features into the check-in represen-
tation.

3.4.3 Check-in Representation. We have taken into account factors
like multi-modal content, spatial location, and temporal informa-
tion. However, user check-in behavior, an active interaction with
POIs, may be impacted by multiple potential factors. To manage
these, we train an embedding layer 𝑓 (·) to generate a𝑑-dimensional
embedding for each user 𝑢:

𝑒𝑢 = 𝑓 (𝑢) ∈ R𝑑 . (18)
2023-10-11 15:20. Page 5 of 1–10.
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Then, we can represent user 𝑢’s check-in record 𝑐𝑖𝑢 by concate-
nating the corresponding factor embeddings:

𝑥𝑢 = 𝑓𝑒𝑚𝑏𝑒𝑑 (𝑐𝑖𝑢 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑒𝑢 , 𝑒𝑝 , 𝑒𝑔, 𝑒𝑡 ), (19)
where 𝑥𝑢 ∈ R4𝑑 represents check-in embedding, 𝑒𝑢 is user 𝑢’s
embedding, 𝑒𝑝 is the visited POI’s multi-modal representation, 𝑒𝑔
denotes the embedding of the grid cell where the check-in location
is situated, and 𝑒𝑡 represents the embedding of the check-in time.

3.5 Adaptive Multi-task Transformer
3.5.1 Transformer Encoder. To limit the risk of over-smoothing,
GCN is generally kept to a lower depth, which means that only
local features in check-in sequences are captured using GCN-based
methods. Therefore, we adopt a Transformer encoder to model
global user movement patterns. Given a user check-in sequence
𝐶𝑢 = {𝑐1𝑢 , 𝑐2𝑢 , ..., 𝑐

𝑙𝑚
𝑢 } containing up to 𝑙𝑚 check-ins, the correspond-

ing check-in embeddings are then systematically stacked to form
an input tensor X𝑢 = {𝑥1𝑢 , 𝑥2𝑢 , ..., 𝑥

𝑙𝑚
𝑢 } of the first encoder layer.

Considering that an accurate prediction of the next POI category
and grid cell could improve the model’s comprehension of user
preferences and movement patterns. In addition to the main task of
predicting the next POI, we develop several auxiliary tasks to aid
in the training of our proposed MMPOI. At the decoding stage, we
constructed a multi-head decoder based on Multi-Layer Perceptron
(MLP) to simultaneously perform multiple prediction tasks:

𝑌𝑝𝑜𝑖 = X𝑜𝑢𝑡𝑝𝑢𝑡𝑊𝑝𝑜𝑖 + 𝑏𝑝𝑜𝑖 , (20)

𝑌𝑔𝑒𝑜 = X𝑜𝑢𝑡𝑝𝑢𝑡𝑊𝑔𝑒𝑜 + 𝑏𝑔𝑒𝑜 , (21)
𝑌𝑐𝑎𝑡 = X𝑜𝑢𝑡𝑝𝑢𝑡𝑊𝑐𝑎𝑡 + 𝑏𝑐𝑎𝑡 , (22)

where𝑊𝑝𝑜𝑖 ∈ R4𝑑×𝑁 ,𝑊𝑔𝑒𝑜 ∈ R4𝑑×|𝑉𝐺 | , and𝑊𝑐𝑎𝑡 ∈ R4𝑑×𝑑 are
weights of MLPs,X𝑜𝑢𝑡𝑝𝑢𝑡 represents the output of the Transformer
encoder, and |𝑉𝐺 | is the number of grid cells. 𝑌𝑝𝑜𝑖 , 𝑌𝑔𝑒𝑜 and 𝑌𝑐𝑎𝑡
are respectively the model’s predictions for the POI, the grid cell,
and the category for the next check-in.

3.5.2 Adaptive Multi-task Learning. During model training, we si-
multaneously consider the prediction loss from multiple decoders.
Cross entropy is utilized as the loss function for both the next
POI and the next grid cell prediction tasks. Furthermore, Kullback-
Leibler (KL) divergence serves as an evaluation metric for category
prediction performance. To balance the weights of multiple losses,
most POI recommendation methods tend to sum up losses for each
individual task with weighted linear combinations, which typi-
cally necessitates manual weight adjustments. Nonetheless, the
model performance is greatly influenced by these parameters, and
fine-tuning these parameters manually is a time-consuming and
challenging task in practice.

To this end, we introduce a multi-task learning method based
on task-dependent uncertainty [13], which effectively trains the
model through adaptively adjusted multi-task weights. Finally, the
overall loss function of the proposed model can be written as:

L =
1

2𝜎21
L𝑝𝑜𝑖 +

1
2𝜎22

L𝑐𝑎𝑡 +
1

2𝜎23
L𝑔𝑒𝑜 + 𝑙𝑜𝑔𝜎1𝜎2𝜎3, (23)

where 𝜎1, 𝜎2, and 𝜎3 denote learnable uncertainty in three predic-
tion tasks, respectively. It can be deduced that the larger 𝜎 , the
higher the uncertainty of the task, and consequently, the smaller
the weight assigned to that specific task. This implies that during

Table 1: Statistics of the datasets. #Seq. denotes the number
of check-in sequences.

Dataset #User #POI #Check-in #Seq. Density
NYC 1,080 4,637 115,134 32,546 0.01016
TKY 2,291 7,219 387,304 90,242 0.00286

New_orleans 1,011 2,816 44,821 2,188 0.01574
Philadelphia 3,315 6,563 147,152 7,418 0.00676

the training process, the model will prioritize learning simple tasks
that have less noise and are easier to optimize. However, it’s im-
portant to note that noisier and more challenging tasks are not
disregarded. We will explore the impact of introducing multi-task
uncertainty on model learning through our experiments.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on four public datasets:
FourSquare-NYC3, FourSquare-TKY3, Yelp-New_orleans4, and Yelp-
Philadelphia4. The two Yelp datasets are obtained by splitting the
original Yelp dataset according to cities. For all datasets, we first
perform 10-core filtering, which means removing unpopular POIs
and low-interaction users with less than 10 check-in records. Then,
we collect multi-modal content information such as images and
reviews for POIs to ensure that every POI in the dataset contains
content information from three modalities: image, review, and meta-
data (description or/and category). Moreover, we split the user’s
check-in sequence at intervals of 24 hours. In particular, we filter
out sequences with only 1 check-in after splitting. Finally, we divide
the datasets into training and testing sets with a ratio of 8:2. Table
1 presents statistics for these datasets.

4.1.2 Evaluation Metrics. To evaluate the performance of the next
POI prediction, we adopt two common ranking evaluation meth-
ods, Hit Ratio (HR) and Normalized Discounted Cumulative Gain
(NDCG), to evaluate the quality of the recommendation list. HR@K
is a metric commonly used in previous POI recommender systems
[19, 39] to determine whether the target user’s next check-in loca-
tion appears within the top-K recommendation list. NDCG@K is
a widely accepted measure for evaluating recommendation algo-
rithms [29, 43]. It takes into account both ranking precision and
the position of ratings in its evaluation.

4.1.3 Baselines. To evaluate the performance of our proposed
model MMPOI, we select three categories of methods as baselines:
multi-modal recommendation methods (LATTICE [43],MMSSL
[33]), sequential recommendation methods (SASRec [11], ICLR
[3]), and POI recommendation methods (LSTPM [27], STAN [22],
PLSPL [36], GETNext [39], DisenPOI [23]). Detailed descriptions
of these methods will be provided in the appendix.
4.1.4 Implementation Details. We implement our proposed model
by PyTorch, and set the feature embedding dimension 𝑑 to 128. We
utilize Adam as the optimizer and fix the batch size to 64 for all
models. For a fair comparison, we carefully tune the parameters
of each model following their published papers. As we employ

3https://sites.google.com/site/yangdingqi/home/foursquare-dataset
4https://www.yelp.com/dataset

2023-10-11 15:20. Page 6 of 1–10.
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Table 2: Performance of baselines in terms of HR@k and NDCG@k on four datasets.

Method NYC TKY New_orleans Philadelphia
HR@5 HR@20 NG@20 HR@5 HR@20 NG@20 HR@5 HR@20 NG@20 HR@5 HR@20 NG@20

SASRec [11] 0.34724 0.46892 0.29420 0.19345 0.28738 0.17051 0.02229 0.06834 0.02209 0.01221 0.03891 0.01520
ICLR [3] 0.36540 0.49338 0.30462 0.21948 0.32758 0.20495 0.02572 0.07633 0.02638 0.01563 0.04934 0.01877
LATTICE [43] 0.32182 0.38071 0.27353 0.16704 0.26360 0.15844 0.02091 0.06065 0.02044 0.01098 0.03574 0.01412
MMSSL [33] 0.33763 0.45260 0.28437 0.18504 0.27463 0.16578 0.02172 0.06645 0.02145 0.01193 0.03809 0.01489
LSTPM [27] 0.35654 0.47823 0.29819 0.20310 0.30176 0.17870 0.02360 0.07097 0.02308 0.01315 0.04170 0.01628
PLSPL [36] 0.40702 0.52563 0.32011 0.21532 0.32192 0.18856 0.02463 0.07420 0.02383 0.01337 0.04246 0.01652
STAN [22] 0.45969 0.59120 0.35932 0.24183 0.36700 0.21721 0.02803 0.08550 0.02750 0.01568 0.05064 0.01861
DisenPOI [23] 0.46741 0.60217 0.36294 0.24735 0.37451 0.21914 0.02898 0.08636 0.02869 0.01660 0.05133 0.01962
GETNext [39] 0.47973 0.63973 0.38436 0.27876 0.40645 0.24194 0.03167 0.09314 0.03325 0.01741 0.05508 0.02158
MMPOI 0.51410 0.71004 0.42352 0.30539 0.44092 0.26199 0.03334 0.10001 0.03743 0.01821 0.06038 0.02379

Table 3: The recommendation performance of MMPOI and its variants on four datasets. Bold text indicates the best performance,
while a wavy line represents the lowest performance.

Methods NYC TKY New_orleans Philadelphia
HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20 HR@20 NDCG@20

MMPOI 0.710037 0.423524 0.440923 0.261991 0.100015 0.037428 0.060380 0.023789
MMPOI𝑤/𝑜 𝐼2𝑇 0.701595 0.418959 0.430189 0.250883 0.090528 0.034913 0.058113 0.023099
MMPOI𝑤/𝑜𝑀𝑀 0.688130 0.409545 0.417135 0.245984

:::::::
0.085437

::::::
0.033078

:::::::
0.052038

::::::
0.021044

MMPOI𝑤/𝑜𝑀𝑒𝑡𝑎 0.693301 0.412886 0.414959 0.239766 0.089957 0.034433 0.056757 0.022714
MMPOI𝑤/𝑜𝐺𝑒𝑜 :::::::

0.684234
::::::
0.400607

:::::::
0.394583

::::::
0.237148 0.087709 0.034067 0.054538 0.021687

MMPOI𝑤/𝑜𝐶𝑎𝑡 0.686919 0.403356 0.409613 0.241524 0.093593 0.035867 0.057789 0.022297

adaptive multi-task learning, our model has relatively fewer hyper-
parameters to adjust. We perform a grid search on the learning
rate in {1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6}. The other optimal hyper-
parameters are also determined through grid searches and reported
in the experiment analysis. We fixed the number of layers for both
GCN and Transformer to 2. All models are evaluated on a Tesla
V100 32G GPU card.

4.2 Performance Comparison
The performance of various recommendation methods on all four
datasets is summarized in Table 2. In the table, the performance of
MMPOI is highlighted in bold, while the best-performing baseline
is underlined. From the table, we have the following observations:

Firstly, the proposed MMPOI model significantly outperforms
the state-of-the-art sequential recommendation, multi-modal rec-
ommendation, and POI recommendation methods on each dataset.
Specifically, MMPOI improves the best baseline in terms of HR@20
by 11%, 8.5%, 7.4%, and 9.6% inNYC, TKY, New_orleans, and Philadel-
phia, respectively. We credit the performance improvement to the
effective integration of multi-modal content information of POIs
with the check-in sequence and the application of our adaptive
multi-task Transformer. Furthermore, the majority of recently pro-
posed GCN-based POI recommendation algorithms perform better
than those only using self-attention. This highlights the effective-
ness of graph techniques in modeling relationships across multiple
sequences.

Secondly, considering that most POI recommendation algorithms
follow the sequential recommendation paradigm. Consequently,
in our experiments, two advanced sequential recommendation al-
gorithms (SASRec and ICLR) are selected as baselines. The exper-
imental results indicate that directly applying sequential recom-
mendation algorithms to the POI recommendation scenarios does

not yield satisfactory performance. The underlying reason is that
sequential recommendation algorithms do not consider the con-
textual information in the POI recommendation scenario, such as
visiting time, spatial location, and POI category. This highlights the
significance of considering the contextual information of check-in
sequences in POI recommendations.

Thirdly, two state-of-the-art multi-modal recommendation al-
gorithms (LATTICE and MMSSL) are selected as baseline models.
These methods aim to improve item and user representations by
modeling multi-modal content information. From the experimental
results, it can be observed that the effectiveness of the multi-modal
recommendation methods is inferior to that of the POI recommen-
dation algorithms. Nonetheless, the multi-modal recommendation
methods still exhibit certain effectiveness in the execution of the
next POI recommendation tasks. These experiments emphasize the
importance of integrating multi-modal content information when
making POI recommendations.

4.3 Ablation Study
In this section, we design five variants of our method to justify the
significance of key components in MMPOI: 1) MMPOI𝑤/𝑜 𝐼2𝑇 : It
uses the pre-trained image2text model to embed images directly,
without converting them into textual descriptions. 2)MMPOI𝑤/𝑜𝑀𝑀 :
It does not consider the multi-modal structural relationships of POIs
when learning the POI representations. In other words, it only uti-
lizes the user trajectory graph to learn the POI representations.
3) MMPOI𝑤/𝑜𝑀𝑒𝑡𝑎: It performs one-hot encoding for categories
as opposed to embedding them with textual semantics, then uti-
lizes them to initialize the nodes in the multi-modal trajectory flow
graph. 4) MMPOI𝑤/𝑜𝐺𝑒𝑜 and 5) MMPOI𝑤/𝑜𝐶𝑎𝑡 : They remove the
auxiliary prediction tasks for grid cell and category in adaptive
multi-task learning, respectively.
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Figure 2: Effects of 𝛼 on the four datasets, where Normalized HR@20 (or NDCG@20) is obtained by dividing each HR@20 (or
NDCG@20) to the maximum value of that metric.
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Figure 3: Effects of the adaptive multi-task learning on NYC (a-b) and TKY (c-d) datasets.

Table 3 summarizes the recommendation performance of MM-
POI and its variants on all four experimental datasets. As shown in
Table 3, MMPOI consistently outperforms five variants, which veri-
fies the effectiveness of each key component in MMPOI. Specifically,
MMPOI𝑤/𝑜 𝐼2𝑇 and MMPOI𝑤/𝑜𝑀𝑒𝑡𝑎 both exhibit a certain perfor-
mance decrease compared to the full model MMPOI, indicating the
effectiveness of bridging modal semantic differences and modeling
textual semantic features for POI recommendation. Additionally,
the performance of MMPOI𝑤/𝑜𝑀𝑀 , which does not take into ac-
count the multi-modal structure graph, decreases sharply compared
with MMPOI. It demonstrates the strength of our designed multi-
modal trajectory flow graph and the effectiveness of considering
the multi-modal content of POIs. Moreover, as indicated in Table
3, the importance of multi-modal content and adaptive multi-task
learning varies with datasets. In the Yelp dataset, considering the
structural features of multi-modal content has the most significant
impact on model performance, while in the FourSquare dataset,
adaptive auxiliary prediction tasks are the most crucial for the
model.

4.4 Discussion
In this section, we investigate the sensitivity of the parameter 𝛼
and analyze the effectiveness and convergence of adaptive multi-
task learning. Sensitivity analysis for other hyper-parameters (e.g.
𝑘NN-𝑘 and dropout ratio) will be provided in the appendix.

4.4.1 Effect of the parameter 𝛼 . As presented in Section 3.3.4, 𝛼
plays an important role in our method, as it serves to integrate
multi-modal structural relationships and check-in sequence rela-
tionships between POIs during the learning process of multi-modal
POI representations. 𝛼 is selected from the range of [0.1, 0.2, ...,
0.9]. As shown in Figure 2, optimal 𝛼 values vary across differ-
ent datasets. The evaluation results indicate the effectiveness of
considering multi-modal content features of POIs in the next POI
recommendations.

4.4.2 Effect of adaptive multi-task learning. The uncertainty-based
adaptive multi-task learning strategy will tend to learn the eas-
ier tasks first. We initialize 𝜙1, 𝜙2, and 𝜙3 to 0.5, and select the
weight of the main task (i.e. the next POI prediction task) as a ref-
erence baseline. As demonstrated in Figure 3, the weight assigned
to the grid cell prediction task consistently exceeds that of the cate-
gory prediction task, implying that the grid cell prediction task is
associated with lower uncertainty. Intuitively, user movement is
constrained by geographical distance, resulting in relatively lower
uncertainty and making it easier to predict users’ spatial movement.
Additionally, with the dynamic changes in multi-task weights, the
model trains and converges rapidly. In conclusion, the experimen-
tal results align with intuitive expectations, and demonstrate the
effectiveness of adaptive multi-task learning.

5 CONCLUSION
In this paper, we propose a novel multi-modal content-aware frame-
work for POI recommendations, which introduces the multi-modal
content information of POIs into the next POI recommendation
algorithm, effectively alleviating the data sparsity issue. In partic-
ular, we fully exploit pre-trained models to bridge the semantic
differences between multi-modal contents and employ 𝑘NN sparsi-
fication to filter out noise. Moreover, we construct a multi-modal
trajectory flow graph to effectively integrate multi-modal structural
features with check-in sequential features, and design an adaptive
multi-task Transformer to model user movement patterns. Addi-
tionally, we have collected and released datasets that contain multi-
modal content information for multi-modal POI recommendation
tasks. Extensive experiments on these datasets demonstrate the
effectiveness of our proposed method from various perspectives.
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A EXPERIMENT BASELINES
To evaluate the performance of our proposed model MMPOI, we
compare it with the following baseline methods which can be di-
vided into three groups.
1) Multi-modal recommendation methods:

• LATTICE [43] learns item-item structures for each modality
and aggregates multi-modal information to model the latent
semantic features of items.

• MMSSL [33] employs contrastive learning to discover self-
supervised signals and learns modality-aware user prefer-
ence and cross-modal dependencies.

2) Sequential recommendation methods:
• SASRec [11] applies self-attention mechanisms to the se-
quential recommendation and adaptively considers previous
items for prediction.

• ICLR [3] employs contrastive self-supervised learning to
capture user intent for sequence recommendation.

3) POI recommendation methods:
• LSTPM [27] introduces a context-aware nonlocal network
structure to capture users’ long-term preferences, and design
a geo-dilated RNN for modeling their short-term preferences.

• STAN [22] introduces a bi-attention architecture to explicitly
learn the spatio-temporal correlations within user trajecto-
ries.

• PLSPL [36] considers both long-term and short-term user
interests, incorporating contextual information such as cate-
gories and check-in time for the next POI prediction.

• GETNext [39] constructs a directed trajectory graph to rep-
resent the correlation between multiple check-in sequences,
and applies GCN to learn the representations of POIs.

• DisenPOI [23] constructs dual graphs for sequential and
geographical relationships, and utilizes contrastive learning
to enhance POI recommendation.

B SENSITIVITY ANALYSIS
B.1 Effect of 𝑘NN-𝑘
To mitigate the impact of noise in the multi-modal content in-
formation, we employ a 𝑘-nearest neighbors (𝑘NN) sparsification
approach to pruning the multi-modal structural graph. In this
subsection, we investigate the influence of 𝑘 by varying it from
[1, 5, 25, 50, 100]. As we can see in Table 4, our method performs
the best with 𝑘 = 5 for all datasets. A small value of 𝑘 (e.g., 𝑘=1)
introduces only a small amount of multi-modal features and cannot
effectively address the data sparsity issue. Conversely, increasing 𝑘
leads to the introduction of more noise, resulting in a decrease in
model performance. Experimental results indicate that introducing
an appropriate amount of multi-modal features could improve the
accuracy of POI recommendations.

B.2 Effect of dropout ratio
We tune the dropout ratio in the GCN and Transformer from
[0.1, 0.3, 0.5, 0.7, 0.9] to control the model’s robustness to various
influencing factors. Figure 4 shows the normalized performance
achieved by MMPOI under various combinations of diverse dropout
ratios for GCN and Transformer. We note that a smaller dropout

Table 4: The impact of 𝑘NN-𝑘 on recommendation perfor-
mance in terms of HR@20.

Datasets 𝑘NN-𝑘
1 5 25 50 100

NYC 0.70906 0.71004 0.70940 0.70781 0.70749
TKY 0.43320 0.44092 0.42618 0.38667 0.39317

New_orleans 0.09794 0.10001 0.09765 0.09794 0.09850
Philadelphia 0.06024 0.06038 0.05943 0.05957 0.06024

ratio of Transformer generally improves the accuracy of our pro-
posed MMPOI. On the other hand, the optimum performance is
obtained when the GCN’s dropout ratio is set to 0.3.
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Figure 4: The effect of dropout ratio in GCN and Transformer.
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