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Abstract

Diffusion models (DMs) are capable of generating
remarkably high-quality samples by iteratively de-
noising a random vector, a process corresponding
to moving along the probability flow ordinary dif-
ferential equation (PF ODE). Interestingly, DMs
can also invert an input image to noise by mov-
ing backward along the PF ODE, a key operation
for downstream tasks such as interpolation and
image editing. However, the iterative nature of
this process restricts its speed. Recently, Consis-
tency Models (CMs) have emerged to address this
challenge by approximating the integral of the PF
ODE, largely reducing the number of iterations in
generation. Yet, the absence of an explicit ODE
solver complicates the inversion process. To ad-
dress this limitation, we introduce Bidirectional
Consistency Model (BCM), which learns a sin-
gle neural network that enables both forward and
backward traversal along the PF ODE, unifying
generation and inversion tasks within one frame-
work. Our proposed method supports one-step
generation and inversion while allowing the use
of additional steps to enhance generation quality
or reduce reconstruction error. Its bidirectional
consistency also broadens its applications, allow-
ing, for instance, interpolation between two real
images - a task beyond the reach of previous CMs.

1 Introduction
Two key components in image generation and manipulation
are generation and its inversion. Generation aims to learn a
mapping from simple noise distributions, such as Gaussian,
to complex ones, like the distribution encompassing all real-
world images. In contrast, inversion seeks to find the reverse
mapping, transforming real data back into the corresponding
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noise1. Recent breakthroughs in deep generative models
(Goodfellow et al., 2014; Kingma & Welling, 2013; Ho
et al., 2020; Song et al., 2021a;b) not only have achieved
remarkable success in synthesizing high-fidelity samples
across various modalities (Karras et al., 2021; Rombach
et al., 2022; Kong et al., 2021; OpenAI, 2024), but have
proven effective in downstream applications, such as image
editing, by leveraging the inversion (Mokady et al., 2023;
Huberman-Spiegelglas et al., 2023; Hertz et al., 2023).

Particularly, score-based diffusion models (DMs) (Song &
Ermon, 2019; Ho et al., 2020; Song et al., 2021a;b; Karras
et al., 2022) have stood out among their counterparts for
generation (Dhariwal & Nichol, 2021). However, DMs typi-
cally require hundreds of iterations to produce high-quality
generation results. This issue was recently addressed by con-
sistency models (CMs) (Song et al., 2023; Song & Dhariwal,
2024), which directly compute the integral of PF ODE tra-
jectory from any time step to zero. Similar to CMs, Kim
et al. (2024) introduced the Consistency Trajectory Model
(CTM), which estimates the integral between any two time
steps along the trajectory towards the denoising direction.
Through these approaches, the consistency model family
enables image generation with only a single Number of
Function Evaluation (NFE, i.e., number of network forward
passes) while offering a trade-off between speed and quality.

Unfortunately, the inversion direction remains challenging.
First, the generation process in many DMs (Ho et al., 2020;
Karras et al., 2022) is stochastic and hence non-invertible;
second, even for methods that employ an ODE-based de-
terministic sampling (Song et al., 2021a), it necessitates
hundreds of iterations for a small reconstruction error; third,
although CMs and CTM accelerate the generation process
by solving the integral directly, this integration is strongly
non-linear, making the inversion process even more difficult.

Therefore, in this work, we aim to bridge this gap through
natural yet non-trivial extensions to CMs and CTM. Specifi-
cally, they possess a key feature of self-consistency: points
along the same PF ODE trajectory map back to the same
initial point. Inspired by this, we pose the questions: is there
a stronger consistency where points on the same trajectory

1The inversion problem also refers to restoring a high-quality
image from a degraded one. However, in this paper, we define it
narrowly as the task to find the corresponding noise for an image.
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can map to each other, regardless of their time steps’ order?

In this work, we affirmatively answer the question with our
proposed Bidirectional Consistency Model (BCM). Con-
cretely, we train a single neural network that enables both
forward and backward traversal along the PF ODE, unify-
ing the generation and inversion tasks into one framework.
BCM can generate or invert an image with a single NFE, and
can achieve improved sample quality or lower reconstruc-
tion error by multiple time steps. Additionally, we apply
BCM for image interpolation, demonstrating its potential
applications enabled by its bidirectional consistency.

2 Background and Preliminary
Before launching into the details of the Bidirectional Con-
sistency Model (BCM), we describe some preliminaries, in-
cluding a brief introduction to Score-based Diffusion Mod-
els (DMs), Consistency Models (CMs), and Consistency
Trajectory Model (CTM) in the following.

Score-based Diffusion Models. Score-based Diffusion
Models (DMs) sample from the target data distribution by
progressively removing noise from a random Gaussian vec-
tor. Song et al. (2021b) showed that this process can be
viewed as solving an ordinary differential equation, dubbed
the Probability Flow (PF) ODE, defined as:

dxt{dt “ µpxt, tq ´ 1{2σ2ptq∇ log ptpxtq. (1)

where t P r0, T s2, and pt is the marginal density of xt gen-
erated by diffusing the data distribution pdatapxq through the
diffusion SDE dxt “ µpxt, tqdt` σptqdwt. During train-
ing, DMs learn to estimate ∇ log ptpxtq with a score model
spxt, tq with score matching (Hyvärinen & Dayan, 2005;
Song et al., 2021b). During sampling, DMs solve Equa-
tion (1) from time T to 0 numerically. Following Karras
et al. (2022), we set µ “ 0, σ “

?
2t, T “ 80.

Consistency Models, Consistency Training, and im-
proved Consistency Training. The generation of DMs
typically requires hundreds of evaluations of the network
spxt, tq and hence bottlenecks the speed. To this end, Song
et al. (2023) proposed Consistency Models (CMs) that train
a network to estimate the integral of the PF ODE, i.e.,

fθpxt, tq « x0 “ xt `
ş0

t
pdxs{dsq ds (2)

The network can be trained either by distillation or from
scratch with consistency training (CT). We describe CT in
more detail since it lays the foundation of our proposed
method: to begin, consistency training discretizes the time
horizon r0, T s into N ´ 1 sub-intervals, with boundaries

2To avoid numerical issues, we always set t in r0.002, T s in
practice. However, to keep the notation simple, we will ignore this
small value 0.002 when describing our methods in this paper.

0 “ t1 ă ¨ ¨ ¨ ă tN “ T . Then, the CT loss is given by

LN
CT pθ,θ´q (3)

“Ez,x,nrλptnqdpfθpx ` tn`1z, tn`1q,fθ´ px ` tnz, tnqqs.

θ and θ´ represents the parameters of the online network
and a target network, respectively. The target network is
obtained by θ´ Ð stopgrad pµθ´ ` p1 ´ µqθq at each
iteration. λp¨q is a reweighting function, x represents the
training data sample, and z „ N p0, Iq is a random Gaussian
noise. During training, N is gradually increased, allowing
the model to learn self-consistency incrementally.

In a follow-up work, Song & Dhariwal (2024) suggested
to use the Pseudo-Huber loss for d, along with other tech-
niques that include setting µ “ 0, proposing a better sched-
uler function for N , adapting a better reweighting function
λptnq “ 1{|tn ´ tn`1|. Dubbed improved Consistency Train-
ing (iCT), these modifications significantly improve perfor-
mance, and hence we inherit these improving techniques in
our work unless otherwise stated.

Consistency Trajectory Model. Unlike CMs, which learn
the integral from an arbitrary starting time to 0, the Con-
sistency Trajectory Model (CTM) (Kim et al., 2024) learns
the integral between any two time steps along the PF ODE
trajectory towards the denoising direction:

fθpxt, t, uq « xu “ xt `
şu

t
pdxs{dsq ds, u ď t. (4)

CTM demonstrates that it is possible to learn a stronger
consistency: two points xt and xu along the same trajectory
not only can map back to the same initial point x0, but also
can map from xt to xu, provided u ď t. This inspires us for
a stronger consistency with a bijection between xt and xu.

3 Methods
In this section, we describe the details of BCM. In a nut-
shell, we train a network fθpxt, t, uq that traverses along
the probability flow (PF) ODE from time t to time u, i.e.,
fθpxt, t, uq « xu “ xt `

şu

t
dxs

ds ds. This is similar to
Equation (4), but since we aim to learn both generation and
inversion, we do not set constraints on t and u, except for
t ‰ u. To this end, we adjust the network parameteriza-
tion and the training objective of consistency training (Song
et al., 2023; Song & Dhariwal, 2024).

3.1 Network Parameterization

Our network takes in three arguments: 1) the sample xt at
time t, 2) the current time step t, and 3) the target time step
u, and outputs the sample at time u, i.e., xu. To achieve this,
we directly expand the models used in Consistency Models
(CMs) (Song et al., 2023; Song & Dhariwal, 2024) with
an extra argument u. In CMs, the networks first calculate
Fourier embeddings (Tancik et al., 2020) or positional em-
beddings (Vaswani et al., 2017) for the time step t, followed
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by two dense layers. Here, we simply concatenate the em-
beddings of t and u, and double the dimensionality of the
dense layers correspondingly.

Similar to CMs (Song et al., 2023; Song & Dhariwal, 2024)
and EDM (Karras et al., 2022), instead of directly learn-
ing fθ, we train Fθ and let fθpxt, t, uq “ cskippt, uqxt `

coutpt, uqFθpcinpt, uqxt, t, uq, where we set cinpt, uq “

1?
σ2

data`t2
, coutpt, uq “

σdatapt´uq?
σ2

data`t2
, cskippt, uq “

σ2
data`tu

σ2
data`t2

. No-

tice that cskippt, tq “ 1 and coutpt, tq “ 0, which explicitly
enforce the boundary condition fθpxt, t, tq “ xt. We detail
the derivations for this parameterization in Appendix F.

3.2 Bidirectional Consistency Training
We now discuss the training of BCM, which we dub as
Bidirectional Consistency Training (BCT). Following Song
& Dhariwal (2024), we discretize the time horizon r0, T s

into N ´ 1 intervals, with boundaries 0 “ t1 ă t2 ă ¨ ¨ ¨ ă

tN “ T , and increase N gradually during training.

Our training objective has two terms. The first term takes
the same form as Equation (3), enforcing the consistency
between any points on the trajectory and the starting point.
We restate it here for easier reference:

LN
CT pθq (5)

“Ez,x,tn rλptnqdpfθpx ` tn`1z, tn`1, 0q,fθ̄px ` tnz, tn, 0qqs,

where x is one training sample, z „ N p0, Iq, θ̄ represents
the same parameter θ with the stop gradient operation, and
λptnq “ 1{|tn ´ tn`1|. Note, that we replace θ´ in Equa-
tion (3) with θ̄ according to Song & Dhariwal (2024).

The second term explicitly sets constraints between any
two points on the trajectory. Specifically, given a training
example x, we randomly sample two time steps t and u,
and want to construct a mapping from xt to xu, where
xt and xu represent the results at time t and u along the
Probability Flow (PF) ODE trajectory, respectively. Note,
that the model learns to denoise (i.e., generate) when u ă t,
and to add noise (i.e., inverse) when u ą t. Therefore, this
single term unifies the generative and inverse tasks within
one framework, and with more t and u sampled during
training, we achieve consistency over the entire trajectory.
To construct such a mapping, we hope to minimize the
distance

d pfθpxt, t, uq,xuq . (6)

However, Equation (6) will have different scales for different
u values, leading to a high variance during training. There-
fore, inspired by Kim et al. (2024), we map both fθpxt, t, uq

and xu to time 0, and minimize the distances between these
two back-mapped images, i.e.,

d pfθ̄pfθpxt, t, uq, u, 0qq,fθ̄pxu, u, 0qq , (7)

where θ̄ is the same θ with stop gradient operation. We
denote this as a “soft” trajectory constraint. Unfortunately,
directly minimizing Equation (7) without a pre-trained DM
is still problematic. This is because, without a pre-trained
DM, we can only generate xt and xu from the diffusion
SDE, i.e., by adding Gaussian noise to x. However, xt and
xu generated by the diffusion SDE do not necessarily lie on
the same PF ODE trajectory, and hence Equation (7) still
fails to build the desired bidirectional consistency. Instead,
we notice that when the CT loss defined in Equation (5)
converges, we have fθ̄pxu, u, 0q « fθ̄pxt, t, 0q « x. We
therefore optimize:

d pfθ̄pfθpxt, t, uq, u, 0qq,fθ̄pxt, t, 0qq . (8)

Empirically, we found Equation (8) plays a crucial role
in ensuring accurate inversion performance. We provide
experimental evidence for this loss choice in Appendix C.1.

Finally, we recognize that the term fθ̄px ` tnz, tn, 0q in
Equation (5) and the term fθ̄pxt, t, 0q in Equation (8) have
exactly the same form. We thus set t “ tn to reduce one
forward pass. Putting together, we define our objective as

LN
BCT pθq “ Ez,x,tn,tn1 rℓCT ` ℓsofts, (9)

ℓCT “ λptnqdpfθpx ` tn`1z, tn`1, 0q,fθ̄px ` tnz, tn, 0qq

ℓsoft “ λ1
ptn, tn1 qd pfθ̄pfθpx ` tnz, tn, tn1 q, tn1 , 0qq,fθ̄px ` tnz, tn, 0qq ,

where we set reweighting as λ1ptn, tn1 q “ 1{|tn ´ tn1 |.

Regarding other training settings, encompassing the sched-
uler function for N , the sampling probability for tn (aka the
noise schedule ppnq in (Song et al., 2023; Song & Dhariwal,
2024)), the EMA rate, and more, we follow Song & Dhari-
wal (2024), and include details in Appendix D.1. We sum-
marize our training algorithm in Algorithm 1 and compare
the training of CT, CTM, and BCT in Table 2 in Appendix B.

4 Experiments

4.1 Image Generation

We evaluate BCM’s generation on CIFAR-10 dataset
(Krizhevsky et al., 2009), with hyperparameters in Ap-
pendix D.2. As our BCM supports both forward and back-
ward traversal along the PF ODE, we can employ more
complicated sampling procedures compared to CMs to en-
hance the sample quality. We therefore propose three sam-
pling schemes: ancestral sampling, zigzag sampling, and
their combination. From a high-level perspective, ancestral
sampling removes noise iteratively, while zigzag sampling
interchanges between denoising steps and noising steps. Dif-
ferent from the zigzag sampling in CMs, where the noising
steps are achieved by manually adding Gaussian noise and
hence will alter the image content, BCM uses the network to
amplify a small noise, which can improve the sample quality
while largely preserving the image content. We detail these
three approaches in Appendix A.2.
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Table 1. NFE and sample quality on CIFAR-10. ˚Results estimated
from Figure 13 in Kim et al. (2024). :For BCM and BCM-deep, we
use ancestral sampling when NFE=2, zigzag sampling when NFE=3,
and their combination when NFE=4.
METHOD NFE (Ó) FID (Ó) IS (Ò)

DPM-solver-fast (Lu et al., 2022) 10 4.70 -
AMED-plugin (Zhou et al., 2023) 5 6.61 -
Progressive Distillation (Salimans & Ho, 2022) 1 8.34 8.69

CD (LPIPS) (Song et al., 2023) 1 3.55 9.48
2 2.93 9.75

CTM (LPIPS, GAN loss) (Kim et al., 2024) 1 1.98 -
2 1.87 -

CTM (LPIPS, w/o GAN loss) (Kim et al., 2024) 1 ą 5.00˚ -

CT (LPIPS) (Song et al., 2023) 1 8.70 8.49
2 5.83 8.85

CTM (LPIPS, GAN loss) (Kim et al., 2024) 1 2.39 -

iCT (Song & Dhariwal, 2024) 1 2.83 9.54
2 2.46 9.80

iCT (deep) (Song & Dhariwal, 2024) 1 2.51 9.76
2 2.24 9.89

BCM (ours):

1 3.10 9.45
2 2.39 9.88
3 2.50 9.82
4 2.29 9.92

BCM (ours, deep):

1 2.64 9.67
2 2.36 9.86
3 2.19 9.94
4 2.07 10.02
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Figure 1. Reconstruction error on CIFAR-10 test set. Left: uncon-
ditional models; Right: conditional models.

We report the NFE/FID/IS in Table 1 and provide visualiza-
tion of generated samples in Appendix H. We can see BCM
yields competitive FID with just 1 NFE and can achieve bet-
ter generation quality with more steps. Compared with fast
solver or distillation on DMs, including DPM-solver-fast
(Lu et al., 2022), AMED (Zhou et al., 2023), and Progres-
sive Distillation (Salimans & Ho, 2022), BCM achieves
better results with fewer NFEs. Compared within the con-
sistency model family, iCT (Song & Dhariwal, 2024) sur-
passes BCM for 1-step sampling. However, as the number
of function evaluations (NFEs) increases, BCM starts to out-
perform. On the other hand, our model’s performance still
falls short of CTM’s (Kim et al., 2024). However, we note
that CTM relies heavily on adversarial loss, and also uses
LPIPS (Zhang et al., 2018) as the distance measure, which
may cause feature leakage and performance overestimation
(Song & Dhariwal, 2024; Kynkäänniemi et al., 2023).

4.2 Inversion and Reconstruction
As highlighted earlier, a distinctive feature of BCM is its
ability to invert an input image back to a noise image

Figure 2. Interpolation between two real images.

and then reconstruct the same image using notably few
NFEs. Here, we evaluate BCM’s capability for inversion on
the CIFAR-10 test set and report the per-dimension mean
squared error (scaled to [0,1]) in Figure 1. We include the re-
sults by DDIM (Song et al., 2021a) and EDM (Karras et al.,
2022) for comparison. We detail the inversion algorithm
in Appendix A.3 and present the hyperparameters in Ap-
pendix D.2. We can see both unconditional and conditional
BCMs achieve a lower reconstruction error than ODE-based
diffusion models, with significantly fewer NFEs. We also
visualize the noise generated by BCM at Figure 9 in Ap-
pendix G, from which we can verify that BCM Gaussianizes
the input image as desired.

4.3 Interpolation
Leveraging the bidirectional consistency, our BCM can in-
terpolate between two given real images. This is a more
meaningful application compared with CMs, which can only
perform interpolations between generated images (Song
et al., 2023). Specifically, we first invert the given images
into noises, smoothly interpolate the noises, and then map
the noises back to images. We illustrate some results in
Figure 2 and provide more examples in Figure 11. We defer
more details and discussions to Appendix D.3.

5 Conclusions and Limitations
In this work, we introduce the Bidirectional Consistency
Model (BCM), enhancing upon existing consistency models
(Song et al., 2023; Song & Dhariwal, 2024; Kim et al., 2024)
by establishing a stronger consistency. This consistency en-
sures that points along the same trajectory of the probability
flow (PF) ODE map to each other, thereby unifying genera-
tion and inversion tasks within one framework.

However, BCM still faces several limitations. First, similar
to CMs, while employing more steps in generation or inver-
sion can initially enhance results, the performance tends to
plateau quickly. Additionally, our method sometimes deliv-
ers imperfect inversion, which may alter the image content.
Another limitation of BCM is its expensive training cost,
particularly for higher-resolution images. Future work can
involve employing the parameterization and tricks proposed
by Kim et al. (2024), developing accurate inversion meth-
ods, like the approach by Wallace et al. (2023), and applying
BCM in the latent space to accelerate training, similar to the
latent consistency model (Luo et al., 2023).
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A Algorithms

A.1 Bidirectional Consistency Training

We provide the training algorithms of BCM in this section.

Algorithm 1 Bidirectional Consistency Training (Orange indicates differences from CT/iCT (Song et al., 2023; Song &
Dhariwal, 2024)

Input: Training set D, initial model parameter θ, learning rate η, step schedule Np¨q, noise schedule pp¨q, EMA rate µEMA,
distance metric dp¨, ¨q, reweighting function λp¨q and λ1p¨, ¨q.

Output: Model parameter θEMA.
Initialize: θEMA Ð θ, k Ð 0.

repeat until convergence
# Sample training example, time steps, and random noise:
Sample x P D, n „ ppn|Npkqq.
Sample n1 „ p̃pn1|Npkqq, where p̃pn1|Npkqq9

#

0, if n1
“ n,

ppn1
|Npkqq, otherwise.Sample z „ N p0, Iq.

# Calculate and optimize BCT loss:
LCTpθq Ð λptnqdpfθpx ` tn`1z, tn`1, 0q,fθ̄px ` tnz, tn, 0qq;
LSTpθq Ð λ1ptn, tn1 qd pfθ̄pfθpx ` tnz, tn, tn1 q, tn1 , 0qq,fθ̄px ` tnz, tn, 0qq;
Lpθq Ð LCTpθq ` LSTpθq;
θ Ð θ ´ η∇θLpθq;
# Update the EMA parameter and the iteration number:
θEMA Ð µEMAθEMA ` p1 ´ µEMAqθ, k Ð k ` 1;

end repeat

A.2 BCM’s Sampling Algorithms

In this section, we detail BCM’s sampling algorithms.

First, BCM supports 1-step sampling, similar to CMs and CTM. More interestingly, BCM’s capability to navigate both
forward and backward along the PF ODE trajectory allows us to design multi-step sampling strategies to improve the sample
quality. We present two schemes and a combined approach that has empirically demonstrated superior performance in the
following.

Ancestral Sampling. The most straightforward way for multi-step sampling is to remove noise sequentially. Specifically,
we first divide the time horizon r0, T s into N sub-intervals with boundaries 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T . Then, we sample
a noise image xT „ N p0, T 2Iq, and sequentially remove noise with the network: xtn´1 Ð fθpxtn , tn, tn´1q, n “

N,N ´ 1, ..., 1. We note that the discretization strategy may differ from the one used during the training of BCM. Since this
sampling procedure can be viewed as drawing samples from the conditional density pxtn´1

|xtn
pxtn´1

|xtnq, we dub it as
ancestral sampling, and summarize it in Algorithm 2. We can also view 1-step sampling as ancestral sampling, where we
only divide the time horizon into a single interval.

Zigzag Sampling. Another effective sampling method (Algorithm 1 in (Song et al., 2023)) is to iteratively re-add noise after
denoising. Similar to ancestral sampling, we also define a sequence of time steps t1 ă ¨ ¨ ¨ ă tN “ T . However, different
from ancestral sampling where we gradually remove noise, we directly map xT to x0 by fθpxT , T, 0q. We then add a fresh
Gaussian noise to x0, mapping it from time 0 to time tn´1, i.e., xtn´1

“ x0 ` tn´1σ, where σ „ N p0, Iq. This process
repeats in this zigzag manner until all the designated time steps are covered. The two-step zigzag sampler effectively reduces
FID in CMs (Song et al., 2023) and is theoretically supported (Lyu et al., 2023). However, the injected fresh noise can alter
the content of the image after each iteration, which is undesirable, especially considering that our tasks will both include
generation and inversion. One may immediately think that setting the injected noise to be the same as the initial random
noise can fix this issue. However, we reveal that this will significantly damage the quality of the generated images.

Fortunately, our proposed BCM provides a direct solution, leveraging its capability to traverse both forward and backward
along the PF ODE. Specifically, rather than manually reintroducing a large amount of fresh noise, we initially apply a small
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Algorithm 2 BCM’s ancestral sampling

Input: Network fθp¨, ¨, ¨q, time steps 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T , initial noise xT .
Output: Generated image xt0 .
xtN Ð xT .
for n “ N, ¨ ¨ ¨ , 1 do

xtn´1 Ð fθpxtn , tn, tn´1q. Ź Denoise image from time step tn to tn´1.
end for
Return: xt0 .

Algorithm 3 BCM’s zigzag sampling

Input: Network fθp¨, ¨, ¨q, time steps t1 ă ¨ ¨ ¨ ă tN “ T , manually-added noise scale at each time step ε1, . . . , εN´1,
initial noise xT .

Output: Generated image x.
xtN Ð xT .
for n “ N, ¨ ¨ ¨ , 2 do

x Ð fθpxtn , tn, 0q. Ź Denoise image from time step tn to 0.
σ „ N p0, Iq, and xεn´1

Ð x ` εn´1σ. Ź Add small fresh noise.
xtn´1 Ð fθpxεn´1 , εn´1, tn´1q. Ź Amplify noise by network.

end for
x Ð fθpxt1 , t1, 0q.
Return: x.

Algorithm 4 Combination of ancestral and zigzag sampling

Input: Network fθp¨, ¨, ¨q, ancestral time steps t1 ă ¨ ¨ ¨ ă tN “ T , zigzag time steps τ1 ă ¨ ¨ ¨ ă τM “ t1, manually-
added noise scale at each time step ε1, . . . , εM´1, initial noise xT .

Output: Generated image x.
xtN Ð xT .
# Ancestral sampling steps
for n “ N, ¨ ¨ ¨ , 2 do

xtn´1
Ð fθpxtn , tn, tn´1q. Ź Denoise image from time step tn to tn´1.

end for
# Zigzag sampling steps
xτM Ð xt1 .
for m “ M, ¨ ¨ ¨ , 2 do

x Ð fθpxτm , τm, 0q. Ź Denoise image from time step τm to 0.
σ „ N p0, Iq, and xεm´1

Ð x ` εm´1σ. Ź Add small fresh noise.
xτm´1

Ð fθpxεm´1
, εm´1, τm´1q. Ź Amplify noise by network.

end for
x Ð fθpxτ1 , τ1, 0q.
Return: x.

Algorithm 5 BCM’s inversion

Input: Network fθp¨, ¨, ¨q, time steps ε “ t1 ă ¨ ¨ ¨ ă tN ď T , initial image x0.
Output: Noise xtN .
σ „ N p0, Iq, xt1 Ð x ` εσ.
for n “ 2, ¨ ¨ ¨ , N do

xtn Ð fθpxtn´1
, tn´1, tnq. Ź Add noise to image from time step tn´1 to tn.

end for
Return: xtN .
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(a) (b) (c) (d)

Figure 3. Comparison of different strategies of adding fresh noise in zigzag sampling. (a) 1-step generation. (b) Zigzag sampling with
manually added fresh noise, where the new noises drastically alter the content. (c) Zigzag sampling with manually added, fixed noise, i.e.,
we fix the injected fresh noise in each iteration to be the same as the initial one. We can see that the quality significantly deteriorates. (d)
Zigzag sampling with BCM. At each iteration, we apply a small amount of noise and let the network amplify it. We can see that the image
content is mostly maintained.

amount and let the network amplify it. In a nutshell, for iteration n (n “ N,N ´ 1, ¨ ¨ ¨ , 2), we have

x0 Ð fθpxtn , tn, 0q, xεn´1
Ð x0 ` εn´1σ, xtn´1

Ð fθpxεn´1
, εn´1, tn´1q. (10)

where εn´1 is the scale of the small noises we add in n-th iteration, and σ „ N p0, Iq is a fresh Gaussian noise. We detail
this scheme in Algorithm 3. To verify its effectiveness, in Figure 3, we illustrate some examples to compare the generated
images by 1) manually adding fresh noise, 2) manually adding fixed noise, and 3) our proposed sampling process, i.e.,
adding a small noise and amplifying it with the network. We can clearly see our method maintains the generated content.

Combination of Both. Kim et al. (2024) note that long jumps along the PF ODE in zigzag sampling can lead to accumulative
errors, especially at high noise levels, which potentially hampers further improvements in sample quality. Therefore, we
propose a combination of ancestral sampling and zigzag sampling. Specifically, we first perform ancestral sampling to
rapidly reduce the large initial noise to a more manageable noise scale and then apply zigzag sampling within this reduced
noise level. We describe this combined process in Algorithm 4, and empirically find it results in superior sample quality
compared to employing either ancestral sampling or zigzag sampling in isolation.

A.3 BCM’s Inversion Algorithms

BCM inverts an image following the same principle of sampling. Specifically, we also set an increasing sequence of noise
scales ε “ t1 ă t2 ă ¨ ¨ ¨ ă tN ď T . Note that, in contrast to the generation process, it is not always necessary for tN to
equal T . Instead, we can adjust it as a hyperparameter based on the specific tasks for which we employ inversion. Then,
given an image x0, we first inject a small Gaussian noise by xt1 “ x0 ` εσ, and then sequentially add noise with the
network, i.e., xtn`1

“ fpxtn , tn, tn`1q, n “ 1, 2, ¨ ¨ ¨ , N ´1. The adoption of small initial noise is due to the observation
that the endpoint of the time horizon is less effectively covered and learned during training, as discussed in Appendix C.3.
Empirically, we find this minor noise does not change the image’s content and leads to lower reconstruction errors when
ε « 0.07. One may also include denoising steps interleaved with noise magnifying steps, like zigzag sampling, but we find
it helps little in improving inversion quality. We summarize the inversion procedure in Algorithm 5.

B Comparing Training of CM, CTM, and BCM
We compare the training objective of CT, CTM and our proposed BCT in Table 2, where we can see how our method
naturally extends CT and differs from CTM.
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Table 2. Comparison of CT, CTM training, and BCT training methodology. The figures illustrate the main objective of each method,
where θ̄ stands for stop gradient operation. Note that for BCM, there are two possible scenarios corresponding to the denoising and
diffusion direction, respectively.

Model Illustration of Training Objective Detailed Form of Loss

CT

𝑡𝑛𝑡𝑛+1

𝜽

ഥ𝜽
0

𝑑

LCT “ Etn,xrλptnqds,

x is the training sample,
λp¨q is the reweighting function,
tn, d are illustrated in the left plot.

CTM

ഥ𝜽

𝑡𝑛′′ 𝑡𝑛′0 𝑡𝑛

𝜽
ഥ𝜽

ഥ𝜽
pretrained 

model

𝑑

LCTM “Etn,tn1 ,tn2 ,xrds

` λGANLGAN ` λDSMLDSM

LDSM is the adversarial loss,
LDSM is Denoising Score Matching loss (Song et al., 2021b; Vincent, 2011),

λGAN , λDSM are the reweighting functions,
tn, tn1 , tn2 , d are illustrated in the left plot.

BCT 𝑡𝑛𝑡𝑛+1

𝜽

ഥ𝜽

0 𝑡𝑛′
ഥ𝜽

𝜽
𝑑2
𝑑1

𝑡𝑛𝑡𝑛+1

𝜽

ഥ𝜽

0 𝑡𝑛′
ഥ𝜽

𝜽
𝑑2
𝑑1

LBCT “ Etn,tn1 ,xrλptnqd1 ` λ1ptn, tn1 qd2s,

λp¨q, λ1p¨, ¨q are the reweighting functions,
tn, tn1 , d1, d2 are illustrated in the left plot.

C Ablation Studies and Additional Conclusions

0 100000 200000 300000 400000
training iteration

0.0

0.2

0.4

0.6

lo
ss

BCT Loss
BCT Loss with Eq (7)

BCT w/o CT Loss
iCT Loss

Figure 4. Tracking the loss with different objection functions. We include the loss curve of iCT (Song & Dhariwal, 2024) for reference.
We can see that the model with BCT loss defined in Equation (9) converges well. Conversely, the model applying Equation (7) instead of
Equation (8) for the soft constraint has a much higher loss at the end of the optimization. While the one without CT loss totally diverges.
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C.1 Comparison between Loss defined with Equation (7) and Equation (8)

(a) original images (b) Inversion w. NFE=1 (c) Inversion w. NFE=4 (d) Inversion w. NFE=12

Figure 5. Inversion and reconstruction by BCM trained with Equation (7). We can see the model trained fails to provide an accurate
inversion. Even though the images start to look plausible with NFE=12, the content compared with the original images has been
significantly changed.

In Section 3.2, we discussed that we optimize Equation (8) instead of Equation (7). Here we provide experimental evidence
for our design choice.

We track the loss by models trained with both choices in Figure 4, where we can see that the model trained with Equation (7)
features a much higher loss in the end. This echoes its failure in the inversion process: as shown in Figure 5, the model
trained with Equation (7) fails to provide an accurate inversion. This is because Equation (7) contains two trajectories,
starting from xu and xt. While both of them are along the SDE trajectories starting from the same x0, they do not necessarily
reside on the same PF ODE trajectory; in fact, the probability that they are on the same PF ODE trajectory is 0. On the
contrary, Equation (8) bypasses this issue since it only involves trajectories starting from the same xt.

C.2 Ablation of CT loss

Recall our final loss function has two terms, the soft trajectory constraint term and the CT loss term. We note that the soft
constraint defined in Equation (8) can, in principle, cover the entire trajectory, so it should also be able to learn the mapping
from any time step t to 0, which is the aim of CT loss. However, we find it crucial to include CT loss in our objective. We
provide the loss curve trained without CT loss term in Figure 4, where we can see the training fails to converge. For further
verification, we also visualize the images generated by the model trained with full BCM loss and the model trained without
CT loss term after 200k iterations in Figure 6. We can clearly see that the model without CT loss cannot deliver meaningful
outcomes.

(a) (b)

Figure 6. Images generated by (a) the model trained with full BCM loss for 200k iterations, and (b) the model trained without CT loss
term for 200k iterations.
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C.3 Coverage of Trajectory during Training
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(b)

Figure 7. Probability mass of ptn, tn1 q pair being selected during BCT. We transfer the time axes to log space in (b) for a clearer
visualization.

In Figure 7, we visualize the probability of selecting a ptn, tn1 q pair during the BCT process, where ptn, tn1 q is defined in
Equation (9). This offers insights into how well the entire trajectory is covered and trained. We can see that most of the
probability mass is concentrated in small-time regions. This reveals some of our observations in the experiments:

• first, in the generation process, we find the combination of a zigzag and ancestral sampling yields optimal performance
because the ancestral sampler can rapidly jump over the large-time regions, which we cover less in training;

• second, it also explains why adding a small initial noise in inversion helps: simply adding a small ε « 0.085 noise
increases the probability of being selected during BCT by more than a thousandfold;

• third, it offers insights into the necessity of incorporating CT loss into our final objective, as defined in Equation (9):
while theoretically, the soft constraint is expected to cover the entire trajectory, including boundary conditions, it is
highly inefficient in practice. Therefore, explicitly including CT loss to learn the mapping from any noise scale t to 0 is
crucial.

This also points out some future directions to improve BCM. For example, we can design a better sampling strategy during
training to ensure a better coverage of the entire trajectory. Or using different sampling strategy for CT loss term and the
soft trajectory constraint term.

D Experiment Details
In this section, we provide the experiment details omitted from the main paper.

D.1 Training Settings

For all the experiments on CIFAR-10, following the optimal settings in Song & Dhariwal (2024), we use a batch size of
1,024 with the student EMA decay rate of 0.99993, scale parameter in Fourier embedding layers of 0.02, and dropout rate
of 0.3 for 400,000 iterations with RAdam optimizer (Liu et al., 2020) using learning rate 0.0001. We use the NCSN++
network architecture proposed by Song et al. (2021b), with the modification described in Section 3.1. In our network
parameterization, we set σdata “ 0.5 following Karras et al. (2022) and Song et al. (2023). Regarding other training settings,
including the scheduler function for Np¨q, the sampling probability for tn (aka the noise schedule ppnq in (Song et al., 2023;
Song & Dhariwal, 2024)), the distance measure dp¨, ¨q, we follow exactly Song & Dhariwal (2024), and restate below for
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completeness’s sake:

dpx,yq “
a

||x´ y||2 ` c2 ´ c, c “ 0.00054
?
d, d is data dimensionality, (11)

ppnq9erf
ˆ

logptn`1 ´ Pmeanq
?
2Pstd

˙

´ erf
ˆ

logptn ´ Pmeanq
?
2Pstd

˙

, Pmean “ ´1.1, Pstd “ 2.0, (12)

Npkq “ minps02
tk{K1u, s1q ` 1, s0 “ 10, s1 “ 1280, K 1 “

Z

K

log2rs1{s0s ` 1

^

, (13)

K is the total training iterations

tn “

ˆ

t
1{ρ

min `
n´ 1

Npkq ´ 1

´

t
1{ρ
max ´ t

1{ρ

min

¯

˙ρ

, tmin “ 0.002, tmax “ 80, ρ “ 7. (14)

We implement our model and training algorithm based on the codes released by Song et al. (2023) at https://github.
com/openai/consistency_models_cifar10 (Apache-2.0 License).

D.2 Sampling and Inversion Configurations

Here we provide hyperparameters for all the experiments on CIFAR-10 to reproduce the results in the main paper.

Sampling. For unconditional BCM, we use ancestral sampling with t1 “ 1.2 for NFE“ 2, zigzag sampling with ε1 “

0.2, t1 “ 0.8 for NFE“ 3 and the combination of ancestral sampling and zigzag sampling with t1 “ 1.2, ε1 “ 0.1, τ1 “ 0.3
for NFE“ 4. For BCM-deep, we use ancestral sampling with t1 “ 0.7 for NFE“ 2, zigzag sampling with ε1 “ 0.4, t1 “ 0.8
for NFE“ 3 and the combination with t1 “ 0.6, ε1 “ 0.14, τ1 “ 0.3 for NFE“ 4.

Inversion. For both unconditional and conditional BCM, we set ε “ t1 “ 0.07, t2 “ 6.0 and t3 “ T “ 80.0 for NFE“ 2
and t2 “ 1.5, t3 “ 4.0, t4 “ 10.0, t5 “ T “ 80.0 for NFE“ 4. These hyperparameters are tuned on 2,000 training samples,
and we find them generalize well to all test images. We use 1-step generation to map the inverted noise to reconstructed
images and evaluate the per-dimension MSE between the original images and their reconstructed counterparts.

We highlight that the hyperparameters are relatively robust for 2-step sampling/inversion, and the trend that the combination
of ancestral and zigzag sampling is superior is also general. However, to achieve optimal performance with more steps, the
tuning of each specific time step may require great effort. We should note that similar effort is also required in CMs, where
Song et al. (2023) use ternary search to optimize the time steps.

Inversion Baselines. For DDIM, we use the reported MSE by Song et al. (2021a); for EDM, we load the checkpoint provided
in the official implementation at https://github.com/NVlabs/edm?tab=readme-ov-file (CC BY-NC-SA
4.0 License), and re-implement a deterministic ODE solver following Algorithm 1 in (Karras et al., 2022).

D.3 Interpolation

We first invert the two given images x1 and x2 to noise at T “ 80.0 using Algorithm 5. To avoid subscript overloading, in
this section, we denote their noise as z1 and z2, respectively. Specifically, we find that adopting a 3-step inversion with
ε “ t1 “ 0.07, t2 “ 1.5, t3 “ 6.0, and t4 “ T “ 80.0 is sufficient for good reconstruction results.

Since BCMs learn to amplify the two initial Gaussian i.i.d. noises, it is reasonable to hypothesize that the amplified noises
(i.e., the embeddings) z1 and z2 reside on the same hyperspherical surface as if z1 and z2 are directly sampled from
N p0, T 2Iq. Therefore, following Song et al. (2023), we use spherical linear interpolation as

z “
sinrp1 ´ αqψs

sinpψq
z1 `

sinrαψs

sinpψq
z2, (15)

in which α P r0, 1s and ψ “ arccos
´

zT
1 z2

}z1}2}z2}2

¯

.

Here, we note a caveat in the implementation of BCM’s interpolation: recall that when inverting an image, we first inject
a small initial noise, as described in Appendix A.3. In the context of interpolation, we find it crucial to inject different
initial noises for each of the two given images, i.e., we sample σ1,σ2 „ N p0, Iq,σ1 ‰ σ2 when inverting x1 and x2

respectively. A possible reason is that if using σ1 “ σ2 for inversion, the inverted noises z1 and z2 may reside on an
unknown submanifold instead of the hyperspherical surface of Gaussian, and hence Equation (15) cannot yield ideal
interpolation results. In Appendix E, we present visualization and discussions on the geometric properties of the noise space.
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We include results by using the same initial noise in Figure 12. As we can see, the interpolated images are blurry compared
to the results obtained using different initial noises (Figure 11).

E Understanding the Learned Noise (“Embedding”) Space
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30

15

0
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(a) images inverted with the same initial noise are shown in
the same color

30 15 0 15 30
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15

0
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(b) images with the same class label are shown in the same
color

Figure 8. t-SNE of the inverted noise generated from 500 randomly selected CIFAR images.

This section provides some insights into the learned “embedding” space. Recall that during inversion (Algorithm 5), we first
inject a small Gaussian noise to the image. Here we investigate the influence of this noise and the original image content on
the noise generated by inversion.

We randomly select 500 CIFAR-10 images, and randomly split them into 10 groups. We then invert the images to their
corresponding noise by Algorithm 5. We inject the same initial noise during inversion for images in the same group. Figure 8
visualize the t-SNE results (Van der Maaten & Hinton, 2008) of the inversion outcomes. In Figure 8a, images injected with
the same initial noise are shown in the same color; while in Figure 8b, we color the points according to their class label (i.e.,
airplane, bird, cat, ...).

Interestingly, we can see that images inverted with the same initial noise are clustered together. We, therefore, conjecture
that each initial noise corresponds to a submanifold in the final “embedding” space. The union of all these submanifolds
constitutes the final “embedding” space, which is the typical set of N p0, T 2Iq, closed to a hypersphere. This explains why
applying the same initial noise is suboptimal in interpolation, as discussed in Section 4.3 and Appendix D.3.

F Network Parameterization
In this section, we provide more details about our network parameterization design. To start with, recall that in Song et al.
(2023), they parameterize the consistency model using skip connections as

fθpxt, tq “ cskipptqxt ` coutptqFθpcinptqxt, tq, (16)

in which

cinptq “
1

a

σ2
data ` t2

, coutptq “
σdatapt´ εq
a

σ2
data ` t2

, cskipptq “
σ2

data

σ2
data ` pt´ εq2

, (17)
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that ensures

coutpεq “ 0, cskippεq “ 1 (18)

to hold at some very small noise scale ε « 0 so fθpx0, εq “ x0
3. Since we expect the output is a noise image of target noise

scale u, we expand the parameterization of cskip, cout and cin to make them related to u, as

fθpxt, t, uq “ cskippt, uqxt ` coutpt, uqFθpcinpt, uqxt, t, uq. (19)

Our derivation of network parameterization shares the same group of principles in EDM (Karras et al., 2022). Specifically,
we first require the input to the network Fθ to have unit variance. Following Eq. (114) „ (117) in EDM paper (Karras et al.,
2022), we have

cinpt, uq “
1

a

σ2
data ` t2

. (20)

Then, as we discussed in the main text, we expect the model to achieve consistency in Equation (6) along the entire trajectory.
According to Lemma 1 in Song et al. (2023), we have

∇ log ptpxtq “
1

t2
pErx|xts ´ xtq (21)

piq
«

1

t2
px ´ xtq (22)

“ ´
σ

t
, (23)

in which we follow Song et al. (2023) to estimate the expectation with x in piq. When u and t are close, we can use the
Euler solver to estimate xu, i.e,

xu « xt ´ tpu´ tq∇ log ptpxtq (24)
“ xt ` pu´ tqσ (25)
“ x ` uσ. (26)

Therefore, when u and t are close, and base on Song et al. (2023)’s approximation in piq, we can rewrite the consistency
defined in Equation (6) as

d pfθpx ` tσ, t, uq,x ` uσq (27)
“ |fθpx ` tσ, t, uq ´ px ` uσq| (28)
“ |cskippt, uqpx ` tσq ` coutpt, uqFθpcinpt, uqpx ` tσq, t, uq ´ px ` uσq| (29)
“ |coutpt, uqFθpcinpt, uqpx ` tσq, t, uq ´ px ` uσ ´ cskippt, uqpx ` tσqq| (30)

“ |coutpt, uq| ¨

ˇ

ˇ

ˇ

ˇ

Fθpcinpt, uqpx ` tσq, t, uq

´
1

coutpt, uq
pp1 ´ cskippt, uqqx ` pu´ cskippt, uqtqσq

ˇ

ˇ

ˇ

ˇ

. (31)

For simplicity, we set dp¨, ¨q to L1 norm in Equation (28). Note that, in practice, for D-dimensional data, we follow Song
& Dhariwal (2024) to use Pseudo-Huber loss dpa,bq “

a

||a ´ b||2 ` 0.000542D ´ 0.00054
?
D, which can be well

approximated by L1 norm.

We should note that Equation (27) is based on the assumption that u and t are reasonably close. This derivation is only for
the pursuit of reasonable parameterization and should not directly serve as an objective function. Instead, one should use
the soft constraint we proposed in Equation (8) as the objective function.

3While the parameterization written in the original paper of Song et al. (2023) did not explicitly include cinptq, we find it is actually
included in its official implementation at https://github.com/openai/consistency_models_cifar10/blob/main/
jcm/models/utils.py#L189 in the form of Equations (16) and (17).
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The approximate effective training target of network Fθ is therefore

1

coutpt, uq
pp1 ´ cskippt, uqqx ` pu´ cskippt, uqtqσq . (32)

Following Karras et al. (2022), we require the effective training target to have unit variance, i.e.,

Var

„

1

coutpt, uq
pp1 ´ cskippt, uqqx ` pu´ cskippt, uqtqσq

ȷ

“ 1, (33)

so we have

c2outpt, uq “ Var rp1 ´ cskippt, uqqx ` pu´ cskippt, uqtqσs (34)

“ p1 ´ cskippt, uqq2σ2
data ` pu´ cskippt, uqtq2 (35)

“ pσ2
data ` t2qc2skippt, uq ´ 2pσ2

data ` tuqcskippt, uq ` pσ2
data ` u2q, (36)

which is a hyperbolic function of cskippt, uq. Following Karras et al. (2022), we select cskippt, uq to minimize |coutpt, uq| so
that the errors of Fθ are amplified as little as possible, as

cskippt, uq “ argmin
cskippt,uq

|coutpt, uq| “ argmin
cskippt,uq

c2outpt, uq. (37)

So we have

pσ2
data ` t2qcskippt, uq “ σ2

data ` tu (38)

cskippt, uq “
σ2

data ` tu

σ2
data ` t2

. (39)

Substituting Equation (39) into Equation (35), we have

c2outpt, uq “
σ2

datat
2pt´ uq2

pσ2
data ` t2q

2 `

ˆ

σ2
datat` t2u

σ2
data ` t2

´ u

˙2

(40)

“
σ2

datat
2pt´ uq2 ` σ4

datapt´ uq2

pσ2
data ` t2q

2 (41)

“
σ2

datapt´ uq2

σ2
data ` t2

, (42)

and finally

coutpt, uq “
σdatapt´ uq
a

σ2
data ` t2

. (43)

One can immediately verify that when u “ t, cskippt, uq “ 1 and coutpt, uq “ 0 so that the boundary condition

fθpxt, t, tq “ xt (44)

holds.

On the side of CMs, setting u “ ε will arrive at exactly the same form of cinpt, uq and coutpt, uq in Equation (17). While
cskippt, uq does not degenerate exactly to the form in Equation (17) when taking u “ ε and t ą ε, this inconsistency is
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negligible when ε « 0, as

ˇ

ˇcBCM
skip pt, εq ´ cCM

skipptq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

σ2
data ` tε

σ2
data ` t2

´
σ2

data

σ2
data ` pt´ εq2

ˇ

ˇ

ˇ

ˇ

(45)

“

ˇ

ˇ

`

σ2
data ` pt´ εq2

˘ `

σ2
data ` tε

˘

´ σ2
data

`

σ2
data ` t2

˘
ˇ

ˇ

pσ2
data ` t2q pσ2

data ` pt´ εq2q
(46)

“

ˇ

ˇε2σ2
data ´ εtσ2

data ` εtpt´ εq2
ˇ

ˇ

pσ2
data ` t2q pσ2

data ` pt´ εq2q
(47)

“
εpt´ εq

ˇ

ˇpt´ εqt´ σ2
data

ˇ

ˇ

pσ2
data ` t2q pσ2

data ` pt´ εq2q
(48)

ă
εpt´ εqmax

␣

pt´ εqt, σ2
data

(

pσ2
data ` t2q pσ2

data ` pt´ εq2q
(49)

ď
εpt´ εqmax

␣

t2, σ2
data

(

pσ2
data ` t2q pσ2

data ` pt´ εq2q
(50)

ă
εpt´ εq

σ2
data ` pt´ εq2

(51)

“
ε

σ2
data

t´ε ` pt´ εq
(52)

ď
ε

2σdata
. (53)

Therefore, we conclude that our parameterization is compatible with CM’s parameterization, so with the same CT target
of Equation (5), any CT techniques (Song et al., 2023; Song & Dhariwal, 2024) should directly apply to our model and it
should inherit all properties from CMs just by setting u “ ε, which is a clear advantage compared with models that adopt
completely different parameterizations (e.g., CTM (Kim et al., 2024)).

G Additional Results

(a) (b)

Figure 9. Visualization of the noise images generated by inversion with BCM. Each line corresponds to a noise scale of
0, 0.2, 0.5, 1.0, 2.0, 80.0, respectively. In (a), we truncate the image to r´1, 1s, while in (b) we normalize the image to r´1, 1s.
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(a) Ground Truth

(b) BCM inversion and reconstruction with 1 NFE (MSE=0.00526)

(c) BCM inversion and reconstruction with 2 NFE (MSE=0.00451)

(d) BCM inversion and reconstruction with 3 NFE (MSE=0.00377)

(e) BCM inversion and reconstruction with 4 NFE (MSE=0.00362)

(f) EDM inversion and reconstruction with 9 NFE (MSE=0.01326)

(g) EDM inversion and reconstruction with 19 NFE (MSE=0.00421)

Figure 10. Reconstructed images and their residual with unconditional BCM on CIFAR-10. We include EDM’s results in (e) and (f) for
comparison.
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Figure 11. Interpolation between two real CIFAR-10 images (injecting different initial noise in inversion).
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Figure 12. Interpolation between two real CIFAR-10 images (injecting the same initial noise in inversion).
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H Generation Results

(a) 1-step generation (FID=3.10)

(b) 2-step generation (FID=2.39)

(c) 3-step generation (FID=2.50)

(d) 4-step generation (FID=2.29)

Figure 13. Uncurated CIFAR-10 samples generated by BCM. We can observe that our sampling methods improve the FID while largely
preserving the content.
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(a) 1-step generation (FID=2.68)

(b) 2-step generation (FID=2.44)

(c) 3-step generation (FID=2.28)

(d) 4-step generation (FID=2.20)

Figure 14. Uncurated CIFAR-10 samples generated by BCM-conditional. Each line corresponds to one class.
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(a) 1-step generation (FID=2.64)

(b) 2-step generation (FID=2.36)

(c) 3-step generation (FID=2.19)

(d) 4-step generation (FID=2.07)

Figure 15. Uncurated CIFAR-10 samples generated by BCM-deep. We can observe that our sampling methods improve the FID while
largely preserving the content.
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