

000 TABULAR FEATURE DISCOVERY WITH REASONING 001 002 TYPE EXPLORATION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Feature engineering for tabular data remains a critical yet challenging step in
011 machine learning. Recently, large language models (LLMs) have been used to
012 automatically generate new features by leveraging their vast knowledge. However,
013 existing LLM-based approaches often produce overly simple or repetitive features,
014 partly due to inherent biases in the transformations the LLM chooses and the lack
015 of structured reasoning guidance during generation. In this paper, we propose a
016 novel method REFEAT, which guides an LLM to discover diverse and informative
017 features by leveraging multiple types of reasoning to steer the feature generation
018 process. Experiments on 59 benchmark datasets demonstrate that our approach
019 not only achieves higher predictive accuracy on average, but also discovers
020 more diverse and meaningful features. These results highlight the promise of
021 incorporating rich reasoning paradigms and adaptive strategy selection into
022 LLM-driven feature discovery for tabular data.

023 024 1 INTRODUCTION

025 Automated feature engineering (AutoFE) has the potential to significantly improve model performance
026 on tabular datasets by creating new predictive features, but it traditionally requires exploring a vast
027 space of transformations Horn et al. (2019); Kanter & Veeramachaneni (2015); Khurana et al. (2016;
028 2018); Zhang et al. (2023). Recent advances in large language models (LLMs) offer a new approach to
029 this challenge: using LLMs' embedded knowledge to propose candidate features in natural language
030 or code Han et al. (2024); Hollmann et al. (2023); Nam et al. (2024). Early work in this direction
031 showed that providing an LLM with context about the dataset and task can yield meaningful, human-
032 interpretable features that boost prediction accuracy. For example, an LLM can be prompted with a
033 dataset's description and asked to suggest a formula or grouping that might correlate with the target
034 variable, producing features that a human expert might derive Hollmann et al. (2023).

035 However, existing LLM-based feature engineering methods have important limitations. One issue
036 is that LLMs tend to generate simple or repetitive features Küken et al. (2024). Due to implicit
037 biases in LLM training, they often overuse basic operations (e.g. linear combinations) and rarely
038 utilize more complex transformations, which can lead to diminishing returns. Another limitation is
039 the lack of structured reasoning guidance in current approaches. Most methods prompt the LLM
040 in a relatively straightforward way - for instance, asking for a new feature given the task - and use
041 validation performance to accept or reject features Abhyankar et al. (2025). They do not explicitly
042 encourage the LLM to reason in diverse ways about the data. As a result, the generation process may
043 miss creative insights; without guidance, the LLM might default to surface-level patterns or well-trod
044 heuristics, rather than considering deeper relationships (causal factors, analogies to known problems,
045 hypothetical what-if scenarios, etc.).

046 In this work, we propose a new method REFEAT (**R**easoning **E**xploration for **F**eature **d**iscovery)
047 to address these challenges by adopting multiple reasoning strategies with adaptive prompt selection
048 for LLM-driven feature discovery. Our key insight is that different reasoning paradigms can inspire
049 the LLM to generate different kinds of features, and that an adaptive approach can decide which type
050 of reasoning is most fruitful for a given task. Specifically, we design reasoning-type-specific meta-
051 prompts that each frame the feature generation task through a particular lens of reasoning: inductive,
052 deductive, abductive, analogical, counterfactual, and causal reasoning Peirce (1903); Neuberg (2003);
053 Gentner (1983); Lewis (1973). For example, an inductive prompt might say, "Examine these examples

054 and hypothesize a new feature that distinguishes the classes based on observed patterns,” whereas a
 055 causal prompt might ask, “Identify a factor that could be a direct cause of the target, and formulate a
 056 feature to measure that cause.” By crafting prompts in this way, we guide LLM to follow different
 057 reasoning paths, with the aim of generating a wider variety of candidate features - including those
 058 that a single, generic prompting approach might overlook.

059 Moreover, our approach includes an adaptive prompt selection mechanism that learns which
 060 reasoning strategy works best over time. We cast the choice of reasoning prompt as a multi-armed
 061 bandit problem Slivkins et al. (2019), where each “arm” corresponds to one of the reasoning types.
 062 At each iteration of feature generation, the bandit must decide which type of reasoning prompt to
 063 deploy, where the reward signal for the bandit comes from the performance of the new feature on
 064 a holdout validation set. This bandit-driven approach enables dynamic guidance of the LLM: unlike
 065 static prompting or fixed cycles of reasoning types, the strategy adapts based on which prompts are
 066 actually leading to good features for each task.

067 We conduct comprehensive experiments on 59 real-world tabular datasets from OpenML, spanning
 068 binary classification, multi-class classification, and regression tasks. Results show that our method
 069 consistently outperforms several baseline methods, including traditional automated feature engineer-
 070 ing tools and LLM-based baselines. We also found that the proposed method discovers features that
 071 have higher complexity and greater mutual information with the target on average, indicating they
 072 carry more novel signal. Codes will be available soon via GitHub repository.

074 2 RELATED WORK

076 2.1 AUTOMATED FEATURE ENGINEERING

078 The challenge of automatically generating new features from raw tabular data has been studied in
 079 the AutoML community. Traditional AutoFE approaches do not use language models, but rather
 080 algorithmic search over transformation compositions Fan et al. (2010); Kanter & Veeramachaneni
 081 (2015); Khurana et al. (2016; 2018); Luo et al. (2019); Shi et al. (2020). For example, OpenFE is
 082 a recent tool that integrates a feature boosting method with a two-stage pruning strategy to efficiently
 083 evaluate candidate features Zhang et al. (2023). It incrementally builds and tests new features, aiming
 084 to achieve expert-level performance without human intervention. Another example is AutoFeat Horn
 085 et al. (2019), which generates a large pool of non-linear transformed features (combinations of
 086 original features through arithmetic, polynomial, or trigonometric functions) and then selects a subset
 087 based on model improvement.

088 Such methods can discover complex features, but they often require brute-force exploration of the
 089 search space and lack semantic understanding of the domain Hollmann et al. (2023). They treat
 090 feature construction as purely a mathematical optimization, which can miss intuition-driven features
 091 that humans might create using domain knowledge. Moreover, these methods might struggle when
 092 the space of possible transformations is huge, since they must handcraft or enumerate candidate
 093 operations Overman et al. (2024); Qi et al. (2023).

094 2.2 LLM-BASED FEATURE ENGINEERING

096 With the rise of powerful LLMs, researchers have started to leverage their knowledge and reasoning
 097 abilities for feature engineering in tabular data. One of the pioneering works is CAAFE Hollmann et al.
 098 (2023). CAAFE iteratively queries an LLM (such as GPT-3) to propose new features by providing
 099 it with the dataset’s description, feature meanings, and the prediction task. This method showed that
 100 even a relatively simple prompting strategy can yield performance improvements on many datasets,
 101 demonstrating the LLM’s ability to produce semantically meaningful features. Another example is
 102 OCTree Nam et al. (2024), which provides a mechanism for the LLM to get feedback from past exper-
 103 iments in a human-readable form. It translates the performance of previously generated features into
 104 a decision tree representation, then feeds that textual summary back into the LLM for the next round.

105 There are also notable efforts exploring feature engineering in few-shot and unsupervised learning
 106 contexts. FeatLLM Han et al. (2024), designed for few-shot learning scenarios, prompts an LLM
 107 with a handful of labeled examples and asks it to extract rules or conditions that differentiate the
 classes. More recently, TST-LLM Han et al. (2025) has been proposed for improving self-supervised

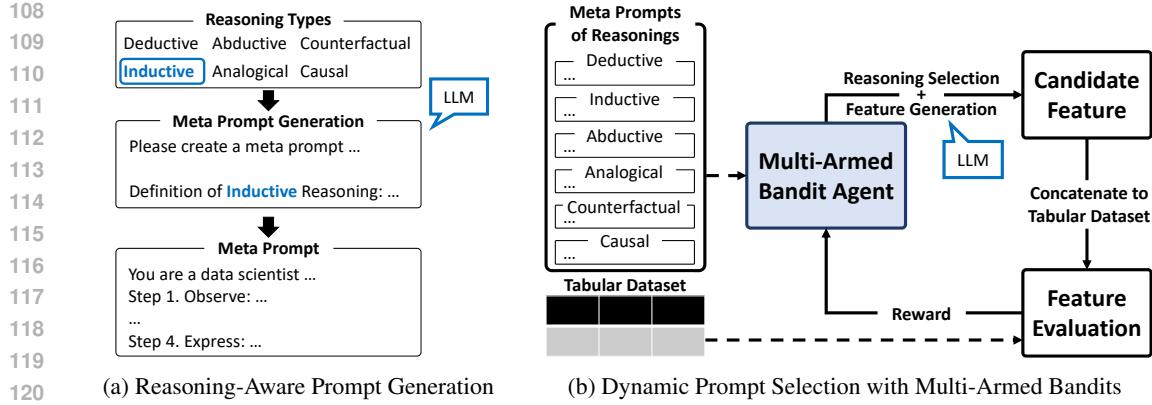


Figure 1: Illustration of REFEAT. (a) Meta prompts for each reasoning type are generated using an LLM. These prompts provide guidance on the reasoning steps associated with each strategy. (b) A multi-armed bandit agent selects a reasoning strategy and generates a feature using the LLM and the corresponding meta prompt. The generated feature is concatenated with the original tabular dataset, and the evaluation gain is fed back to the bandit agent as a reward.

learning on tabular data. TST-LLM similarly uses an LLM to generate additional features or labels that are relevant to a given task even before seeing the true labels.

In summary, the literature shows a progression from direct prompting of general LLMs to more sophisticated integration of LLMs in the feature generation loop. Our work builds on these ideas by using an LLM as the generator but focuses on a new dimension: guiding the mode of reasoning the LLM uses. By introducing multiple reasoning-oriented prompts, we aim to circumvent the mode collapse or bias problem and to inject a richer set of heuristic patterns for the model to draw on.

3 METHOD

Problem Formulation. Let $D = \{(x_i, y_i)\}_{i=1}^N$ be a dataset in which each raw instance $x_i \in \mathbb{R}^d$ is described by d original features and the corresponding target y_i is either categorical (classification) or real-valued (regression). A candidate transformation $g \in \mathcal{F}$ is a function that maps the original feature vector to a new scalar: $\varphi = g(x)$. Our aim is to construct a sequence of transformations $G = (g_1, \dots, g_K)$ and augment the data with new features $X^+ = [X, \varphi_1, \dots, \varphi_K]$. Denote by \mathcal{M} a chosen downstream learner (e.g., linear regression or XGBoost Chen & Guestrin (2016)) and by $\mathcal{L}(\cdot)$ its empirical risk - accuracy loss for classification or squared error for regression - estimated on a validation split D_{val} . The main objective is to discover

$$G^* = \arg \min_{G \subset \mathcal{F}} \mathcal{L}(\mathcal{M}; X^+(G), D_{\text{val}}). \quad (1)$$

Overview. The proposed method REFEAT includes a reasoning-aware prompt library with an adaptive controller to navigate the transformation space efficiently. At each iteration, our method's controller (1) selects an appropriate reasoning type, (2) instantiates the corresponding meta-prompt using dataset context, (3) queries the LLM to produce an executable transformation, (4) evaluates the transformation's marginal utility on the validation set, and (5) updates its controller with the observed gain. Because different reasoning types favor different kinds of transformations, an adaptive scheduler is essential: it learns which reasoning type is most promising for the current task while still reserving budget to probe less-tried alternatives. Concretely, we model prompt selection as a multi-armed bandit whose arms correspond to reasoning types and whose rewards are validation-set performance gains. Figure 1 illustrates the overall workflow of REFEAT.

3.1 REASONING-AWARE PROMPT GENERATION

The first stage of our approach is constructing a list of meta-prompts that translate high-level reasoning principles into concrete instructions for the LLM. We guide the LLM with instructions corresponding

162 to six reasoning types drawn from cognitive science and logical problem solving Peirce (1903);
 163 Neuberg (2003); Gentner (1983); Lewis (1973). Below, we briefly define each reasoning type and
 164 how it influences feature generation:

- 166 • **Deductive Reasoning.** Derives new features by applying general rules or mathematical principles
 167 that are known to hold. The focus is on generating logically valid transformations that follow
 168 from established premises.
- 169 • **Inductive Reasoning.** Infers features by generalizing patterns observed in a few-shot examples.
 170 It emphasizes discovering trends or correlations that appear consistently across the data samples.
- 171 • **Abductive Reasoning.** Proposes features that represent the most plausible hidden causes
 172 explaining the observed data. It generates hypotheses that could account for surprising or
 173 non-obvious relationships in the dataset.
- 174 • **Analogical Reasoning.** Creates new features by drawing parallels to known constructs or
 175 transformations from similar domains. It transfers relational patterns or formulas from analogous
 176 situations to the current context.
- 177 • **Counterfactual Reasoning.** Constructs features by imagining alternative scenarios where
 178 certain variables take different values. It reflects how outcomes might change under hypothetical
 179 interventions or modifications.
- 180 • **Causal Reasoning.** Generates features that express potential cause-and-effect relationships
 181 among variables. It aims to capture mechanisms or mediators that explain how one variable
 182 influences another.

184 For each reasoning type, we pre-define a natural-language template which guides the LLM to favor
 185 the kind of logical operation characteristic of that reasoning type. To minimize researcher bias, we
 186 bootstrap these prompts with GPT-4.1-mini Achiam et al. (2023) itself; the model receives the formal
 187 definition of the reasoning mode and is asked to produce a short template that instructs the model to
 188 adopt that reasoning perspective and returns a transformation. During feature discovery, the template
 189 is filled with task-specific context: task descriptions, feature names, feature descriptions, few-shot
 190 examples, performance results from previous iteration’s feature discovery, and any constraints on
 191 allowable libraries (see Appendix A for full prompt examples). By explicitly framing the generation
 192 step through a chosen reasoning lens, we encourage the LLM to traverse qualitatively distinct regions
 193 (e.g., inductive prompts tend to propose empirically driven aggregates, while causal prompts seek
 194 transformations suggestive of mechanistic influence).

195 3.2 DYNAMIC PROMPT SELECTION WITH MULTI-ARMED BANDITS

197 Next, we frame the selection of reasoning types as a multi-armed bandit problem Slivkins et al.
 198 (2019), where each “arm” corresponds to one of the six reasoning types. The goal is to adaptively
 199 allocate more trials to the reasoning modes that yield better features, while still exploring all options.
 200 Let $\mathcal{R} = \{ded, ind, abd, ana, cnt, cau\}$ denotes the set of reasoning categories and $Q_t(r)$ denote
 201 the estimated value of category $r \in \mathcal{R}$ after t feature evaluations. We employ an ε -greedy bandit
 202 strategy Kuleshov & Precup (2014) with a decaying exploration rate:

$$203 r_t = \begin{cases} \arg \max_{r \in \mathcal{R}} Q_t(r), \text{ with prob. } 1 - \varepsilon_t, \\ 204 \text{a uniformly random } r \in \mathcal{R}, \text{ with prob. } \varepsilon_t. \end{cases} \quad (2)$$

206 Specifically, at the beginning of the feature generation process ($t = 0$), the exploration probability
 207 ε_t is set to 1 (i.e. 100% exploration, which means the reasoning type for the first iteration is chosen
 208 uniformly at random). As iterations proceed, ε_t is linearly decayed from 1 to 0, gradually shifting
 209 from exploration to exploitation. Every category is given an optimistic value for the first time visit
 210 $Q_0(r_t)$ so that untried reasoning types are sampled early.

211 After choosing a reasoning type for the current iteration, we retrieve the corresponding meta-prompt
 212 constructed in Section 3.1 and query the LLM to generate candidate features φ . Each proposed
 213 feature is essentially a definition (e.g., a formula or transformation) that can be applied to the
 214 dataset’s existing features. We immediately evaluate the utility of each generated feature φ along
 215 with original features using a validation set. Specifically, we train a simple predictive model (e.g.,
 linear regression or XGBoost) on the training set using the original features plus each new feature

(i.e., $[X, \varphi]$), and measure the performance on the validation set. We compare this to a baseline model trained on the original features alone. The performance gain Δ_t associated with feature φ at iteration t is computed as the difference in validation metrics (i.e., accuracy gain ratio for classification or RMSE reduction ratio for regression). This evaluation procedure treats each new feature individually, measuring its marginal benefit when added to the model.

Then, the controller updates its estimate for the current reasoning type via

$$Q_{t+1}(r_t) \leftarrow Q_t(r_t) + \alpha(\Delta_t - Q_t(r_t)), \quad (3)$$

where α is a learning rate; all other Q values remain unchanged. Bounded reward magnitudes and the short bandit horizon makes this simple update rule sufficient Sutton et al. (1998); Gray et al. (2020). In practice we set α to the harmonic step $1/n_{r_t}$, where n_{r_t} counts how many times category r_t has been chosen.

Over the course of multiple iterations (e.g., 20), we maintain a global list of all generated features and their validation performance gains. After all iterations, we rank the candidate features by their Δ_t values and select the top- K features overall. The final chosen features are then added to the original dataset, yielding an augmented feature matrix $X^+ = [X, \varphi_1, \dots, \varphi_K]$. This augmented dataset is used to train the final predictive model whose performance is reported on the test set.

4 RESULTS

4.1 PERFORMANCE EVALUATION

Datasets. We evaluate on 59 publicly-available tabular datasets sourced from OpenML¹. The corpus spans 51 classification tasks (i.e., binary and multi-class) and 8 regression tasks, covering domains such as finance (e.g., *credit-g* Kadra et al. (2021), *bank* Moro et al. (2014)), health (e.g., *diabetes* Smith et al. (1988)), scientific simulations (e.g., *climate-model-simulation-crashes* Lucas et al. (2013)), and sensor logs (e.g., *gesture* Madeo et al. (2013)). The full list is provided in Appendix B. Task metadata (i.e., input schema, feature descriptions, suggested target) is extracted from OpenML’s official documentation.

Baselines. We compare REFEAT with GPT-4.1-mini against six baselines: the raw dataset with no additional features (i.e., ORIGINAL); conventional AutoFE systems AUTOFEAT Horn et al. (2019) and OPENFE Zhang et al. (2023); and three LLM-based methods—CAAFE Hollmann et al. (2023), FEATLLM Han et al. (2024), and OCTREE Nam et al. (2024). Each method is allowed to generate up to 10 features; we retain candidates that yield the highest validation improvement when concatenated to the original features.

Evaluation. For classification we report accuracy; for regression we report root-mean-squared error (RMSE, lower is better). We employ two downstream models of contrasting capacity: (1) logistic/linear regression to test linear separability, and (2) XGBoost to examine gains under a powerful non-linear learner. To facilitate dataset-wise aggregation, we compute two aggregate statistics: (1) the win matrix, where entry $W[i, j]$ is the ratio of datasets on which method i strictly outperforms j (ties excluded); and (2) the mean and median relative performance gain. In detail, we define the relative gain of method i on each dataset as

$$\Delta_i^{(cls)} = \frac{\text{Acc}(i) - \text{Acc(orig)}}{\text{Acc(orig)}}, \quad \Delta_i^{(reg)} = \frac{\text{RMSE(orig)} - \text{RMSE}(i)}{\text{RMSE(orig)}}, \quad (4)$$

where $\Delta_i^{(cls)}$ is for classification tasks and $\Delta_i^{(reg)}$ is for regression tasks.

Results. Figure 2 shows the pair-wise win matrix averaged over the two learners, while Table 1 reports aggregate improvement statistics. Our model achieves the highest average win ratio and wins against every baseline in more than 67.04% of pair-wise comparisons. Concretely, across the 59 classification tasks it boosts performance by a mean of +4.65% and a median of +1.17%

¹All datasets and baseline models used are publicly available for research and used in accordance with their licenses.

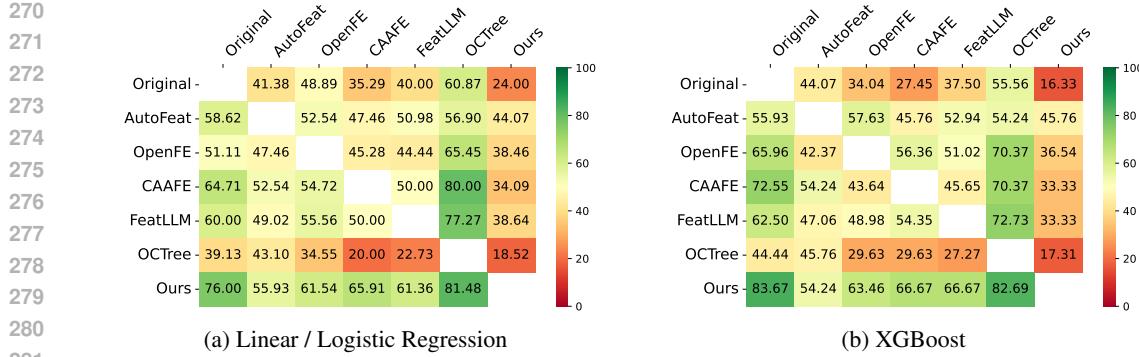


Figure 2: Win matrices comparing feature engineering methods against each other with (a) linear/logistic regression and (b) XGBoost. Tabular feature engineering methods are aligned on the x-axis and the y-axis while the numbers represent the winning ratio of the x-axis model against the y-axis model. Full results are reported in the Appendix H.

	Gain (%)	AutoFeat	OpenFE	CAAFE	FeatLLM	OCTree	Ours	Gain (%)	AutoFeat	OpenFE	CAAFE	FeatLLM	OCTree	Ours
Mean	-13.99	-3.06	1.74	1.59	-0.22	5.66		Mean	-10.47	-2.26	1.90	1.67	-1.99	5.42
Median	0.89	0.03	0.37	0.00	-0.11	1.23		Median	0.40	0.00	0.23	0.00	0.00	0.85

(a) Linear / Logistic Regression

(b) XGBoost

Table 1: Mean and median gain (%) of tabular feature engineering methods compared to ORIGINAL, using (a) linear/logistic regression and (b) XGBoost. The best results are highlighted in bold.

relative to ORIGINAL. These gains persist for both linear and tree-based learners, underscoring that the discovered features complement a variety of model architectures. The out-performance over AUTOFEAT and OPENFE indicates that LLM guidance supplies richer semantic transformations than heuristic operator search, while the margin over recent LLM baselines highlights the value of reasoning diversity and adaptive prompt selection. Note that for AUTOFEAT and OPENFE, overfitting occurred on some small-sized datasets, leading to a significant drop in performance on average. Steering the LLM with multiple reasoning lenses and a simple bandit policy consistently uncovers features that generalize across heterogeneous datasets and model families.

4.2 ABLATION STUDY

We next dissect our design choices by comparing four reduced variants on the same 59 dataset benchmark:

- **Baseline (No-Guide):** removes reasoning prompts and instead follows a generic feature-engineering prompt (functionally equivalent to CAAFE);
- **Single-Type:** runs six separate models, each fixed to one reasoning type (e.g., *Abductive*);
- **Uniform-Select:** cycles through all reasoning types with equal probability, foregoing bandit adaptation; and
- **Full:** Our model with full components.

All other hyper-parameters, feature budgets, and evaluation settings mirror the previous performance evaluation experiment.

Results. Table 2 summarizes the results. Our model delivers the largest mean (+5.42%) and median (+0.85%) performance gain. Removing reasoning guidance (No-Guide) cuts the average gain more than half, confirming that explicitly framing the task through distinct reasoning paradigms is crucial. Among single-type variants, Analogical and Causal prompts perform best but still trail the full model by 3.68%–4.85% in average gain, suggesting complementary benefits across types. Uniform-Select improves over any single fixed type yet lags the bandit strategy, indicating that adaptive exploitation of high-payoff reasoning modes is beneficial. In summary, we found that both components are necessary:

Gain (%)	Baseline	Abductive	Analogical	Causal	Counterfactual	Deductive	Inductive	Uniform selection	Ours
Mean	1.90	4.91	3.68	4.85	3.55	4.20	4.31	4.73	5.42
Median	0.23	0.53	0.61	0.74	0.27	0.53	0.38	0.53	0.85

Table 2: Mean and median performance gain of our full model and its ablations compared to ORIGINAL. Baseline denotes feature engineering without a specific reasoning strategy, while abductive, analogical, causal, counterfactual, deductive, and inductive represent single-type reasoning, each corresponding to its respective reasoning type. Uniform selection applies all reasoning strategies with equal probability. The best results are highlighted in bold.

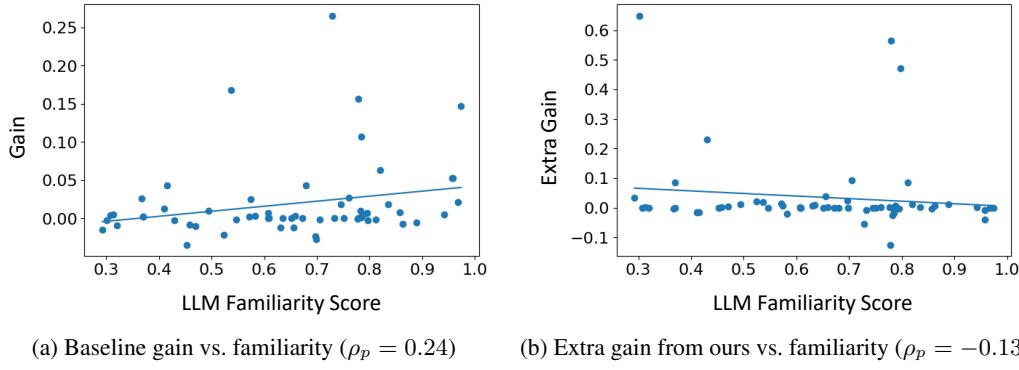


Figure 3: Scatter plots relating each dataset’s LLM-familiarity score to the performance gain; (a) Baseline gain without any reasoning guidance, (b) Extra gain above the baseline achieved when our reasoning guidance is applied. Each dot corresponds to a single dataset and ρ_p denotes the Pearson correlation.

reasoning-aware prompting diversifies the search space, and the bandit controller focuses exploration on the most promising reasoning patterns for a given dataset, together yielding robust performance improvements.

5 DISCUSSION

5.1 LLM FAMILIARITY VS. PERFORMANCE GAIN

A natural assumption is that if the LLM is more familiar with a dataset, it will generate better features. To examine this, we first analyze the relationship between LLM familiarity and the performance gain of a baseline LLM-based feature generation method without reasoning guidance over the original features (ORIGINAL). Following the strategy of prior work Bordt et al. (2024), we estimate how much the pretrained LLM “already knows” about a tabular dataset via two completion tests:

- **Header completion.** We show the model the column headers and the first t rows, then ask it to reproduce row $t+1$.
- **Row completion.** Starting from a random pivot row r , we prompt the LLM to generate row $r+1$ exactly as it appears in the file.

For each test, we compute the normalized Levenshtein distance between the model’s output and the ground-truth row. Let $d_{\text{head},k}$ and $d_{\text{row},k}$ denote these distances for dataset k . We aggregate them into a single familiarity score

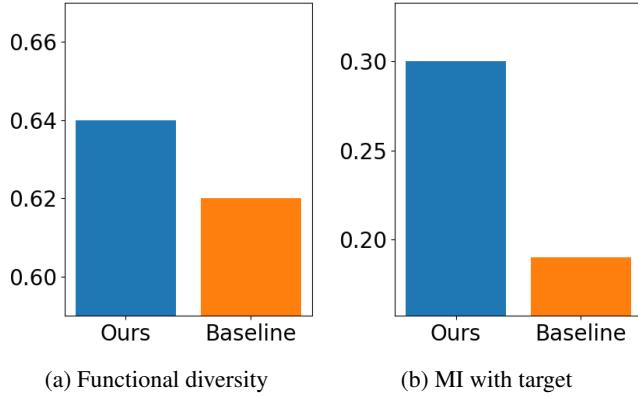
$$F_k = 1 - \frac{d_{\text{head},k} + d_{\text{row},k}}{2}, \quad (5)$$

where $F_k \in [0, 1]$ captures how closely the LLM’s prior matches the dataset structure.

As shown in Figure 3a, there is a clear positive correlation between LLM familiarity and the performance gain of the baseline model, confirming that pretrained knowledge generally helps with

	Num_ops	Depth
Baseline (No Guide)	3.74	2.43
Ours	4.87	3.11

382 Table 3: Structural properties of features generated by LLMs with and without reasoning guidance.
 383 Num_ops indicates the average number of operations per feature, while Depth indicates the depth of
 384 nested function calls



400 Figure 4: Semantic quality of features discovered with and without reasoning guidance.
 401
 402
 403

404 feature generation. Then, The next question is: When does the guidance on reasoning strategy provide
 405 additional benefit over the baseline? To answer this, we compare LLM familiarity with the relative
 406 performance gain of our model over the baseline (Figure 3b). Interestingly, we observe a negative
 407 correlation - the relative gain is higher when the LLM is less familiar with the dataset. This indicates
 408 that our approach is particularly effective in domains where the LLM’s pretrained knowledge is
 409 limited, as it can adaptively explore multiple reasoning strategies to compensate for the lack of prior
 410 knowledge.

412 5.2 COMPARISON OF GENERATED FEATURES

414 To understand how reasoning guidance influences the feature generation process, we compare the
 415 feature sets produced by our method and a baseline LLM-based approach without such guidance.
 416 Our analysis focuses on two dimensions: structural complexity and semantic quality of the features.

417 First, we examine the structural properties of the generated features, focusing on two metrics: the
 418 number of operations per feature (Num_ops) and the depth of nested function calls (Depth). As
 419 shown in Table 3, features generated by our method exhibit higher values for both metrics, reflecting
 420 a tendency to explore more complex and compositional transformations. This increased structural
 421 complexity may enable the model to capture patterns that are less accessible through simpler, shallow
 422 constructions, contributing to improved predictive performance.

423 Then, we assess the semantic quality of the features using two complementary measures: functional
 424 diversity and mutual information with target. Functional diversity is obtained by first computing
 425 the Pearson correlation for every pair of newly generated features, averaging those correlations,
 426 and then subtracting the result from one—so higher values indicate that the discovered features are
 427 less redundant and span a broader functional space. Mutual information with target is estimated by
 428 calculating the mutual information between each new feature and the ground-truth target label, then
 429 averaging these values across all discovered features to give an overall relevance score. Figure 4 shows
 430 that our method achieves higher scores on both metrics compared to the unguided baseline. These
 431 results suggest that reasoning-guided generation not only promotes richer functional exploration, but
 also yields features that are more informative with respect to the target task.

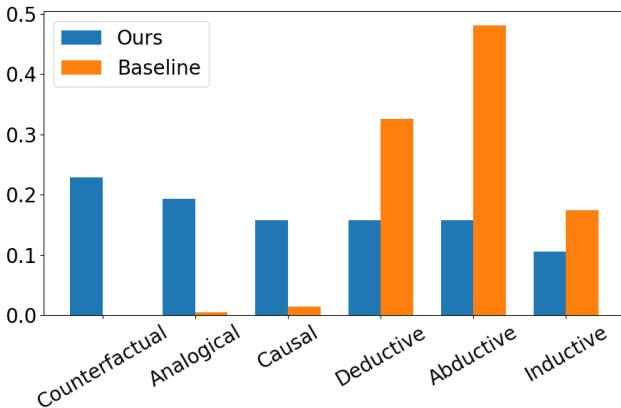


Figure 5: Distribution of reasoning types selected during feature discovery with and without reasoning guidance.

5.3 EFFECT OF DIFFERENT LLM BACKBONE

To test whether our reasoning-guided pipeline is tied to a specific LLM backbone model, we repeated the entire feature-generation procedure with two alternative backbones; DEEPSEEK-CHAT and LLAMA3.3-70B-INSTRUCT. Table 4 reports the relative performance increase with linear classifier over the original features. Note that results with XGBoost display the same trend (DeepSeek: +1.76% vs. +4.95%, Llama 3: -0.12% vs. +0.35%).

	Gain (%)	Baseline	Ours
DeepSeek-Chat	1.97 (avg) / 0.69 (med)	5.31 / 1.04	
LLAMA3.3-70B	0.09 (avg) / 0.19 (med)	4.32 / 0.78	

Table 4: Average and median percentage improvement over the original feature set for different LLM backbones after feature discovery.

5.4 SELECTED REASONING TYPE BY DATASET

We analyze which reasoning strategies were finally selected across different datasets, as determined by our bandit. Figure 5 shows the distribution of selected strategies across datasets, comparing our model and the baseline. For the baseline, we extracted the chain-of-thought attached to each iteration, then fed that trace back to the LLM and asked it to label which of the six reasoning types it best matched. Compared to the baseline, which tends to heavily focus on a small subset of strategies (i.e., abductive, inductive, deductive), our method exhibits a more balanced usage across the full set of available reasoning styles. This suggests that our adaptive strategy selection mechanism effectively leverages different reasoning modes depending on the dataset characteristics.

6 CONCLUSION

This paper introduced REFEAT, a framework that discovers informative features for tabular learning. By casting feature construction as a reasoning-type allocation problem, our method dynamically selects reasoning types with a stochastic bandit, and finds candidate features that demonstrably boost validation performance. Comprehensive experiments on 59 OpenML datasets—far broader than those typically used in prior work—show that our method wins against contemporary baselines and achieves the largest mean and median performance gains for both linear and tree-based learners. These results confirm that reasoning diversity and data-driven prompt selection yield consistent improvements irrespective of the downstream model family, offering a practical path toward cost-effective, LLM-guided feature engineering.

486 REFERENCES
487

488 Nikhil Abhyankar, Parshin Shojaee, and Chandan K Reddy. Llm-fe: Automated feature engineering
489 for tabular data with llms as evolutionary optimizers. *CoRR*, 2025.

490 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
491 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
492 *arXiv preprint arXiv:2303.08774*, 2023.

493

494 Sebastian Bordt, Harsha Nori, Vanessa Cristiny Rodrigues Vasconcelos, Besmira Nushi, and Rich
495 Caruana. Elephants never forget: Memorization and learning of tabular data in large language
496 models. In *First Conference on Language Modeling*, 2024.

497 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*
498 *22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,
499 2016.

500

501 Wei Fan, Erheng Zhong, Jing Peng, Olivier Verscheure, Kun Zhang, Jiangtao Ren, Rong Yan, and
502 Qiang Yang. Generalized and heuristic-free feature construction for improved accuracy. In
503 *Proceedings of the 2010 SIAM International Conference on Data Mining*, pp. 629–640. SIAM,
504 2010.

505

506 Dedre Gentner. Structure-mapping: A theoretical framework for analogy. *Cognitive science*, 7(2):
507 155–170, 1983.

508

509 Robert C Gray, Jichen Zhu, and Santiago Ontañón. Regression oracles and exploration strategies
510 for short-horizon multi-armed bandits. In *2020 IEEE Conference on Games (CoG)*, pp. 312–319.
IEEE, 2020.

511

512 Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can
513 automatically engineer features for few-shot tabular learning. In *International Conference on*
514 *Machine Learning*, pp. 17454–17479. PMLR, 2024.

515

516 Sungwon Han, Seungeon Lee, Meeyoung Cha, Sercan O Arik, and Jinsung Yoon. Llm-guided self-
517 supervised tabular learning with task-specific pre-text tasks. *Transactions on Machine Learning*
518 *Research (TMLR)*, 2025.

519

520 Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data
521 science: Introducing caafe for context-aware automated feature engineering. *Advances in Neural*
522 *Information Processing Systems*, 36:44753–44775, 2023.

523

524 Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
525 engineering and selection. In *Joint European Conference on Machine Learning and Knowledge*
526 *Discovery in Databases*, pp. 111–120. Springer, 2019.

527

528 Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
529 tabular datasets. *Advances in neural information processing systems*, 34:23928–23941, 2021.

530

531 James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
532 science endeavors. In *2015 IEEE international conference on data science and advanced analytics*
533 *(DSAA)*, pp. 1–10. IEEE, 2015.

534

535 Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasarathy. Cognito: Auto-
536 mated feature engineering for supervised learning. In *2016 IEEE 16th international conference on*
537 *data mining workshops (ICDMW)*, pp. 1304–1307. IEEE, 2016.

538

539 Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive modeling
540 using reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
volume 32, 2018.

Jaris Küken, Lennart Purucker, and Frank Hutter. Large language models engineer too many simple
features for tabular data. In *NeurIPS 2024 Third Table Representation Learning Workshop*, 2024.

540 Volodymyr Kuleshov and Doina Precup. Algorithms for multi-armed bandit problems. *arXiv preprint*
 541 *arXiv:1402.6028*, 2014.

542

543 David Lewis. Counterfactuals and comparative possibility. In *IFS: Conditionals, Belief, Decision,*
 544 *Chance and Time*, pp. 57–85. Springer, 1973.

545 DD Lucas, R Klein, J Tannahill, D Ivanova, S Brandon, D Domyancic, and Y Zhang. Failure analysis
 546 of parameter-induced simulation crashes in climate models. *Geoscientific Model Development*, 6
 547 (4):1157–1171, 2013.

548

549 Yuanfei Luo, Mengshuo Wang, Hao Zhou, Quanming Yao, Wei-Wei Tu, Yuqiang Chen, Wenyuan Dai,
 550 and Qiang Yang. Autocross: Automatic feature crossing for tabular data in real-world applications.
 551 In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &*
 552 *Data Mining*, pp. 1936–1945, 2019.

553

554 Renata CB Madeo, Clodoaldo AM Lima, and Sarajane M Peres. Gesture unit segmentation using
 555 support vector machines: segmenting gestures from rest positions. In *Proceedings of the 28th*
 556 *Annual ACM Symposium on Applied Computing*, pp. 46–52, 2013.

557

558 Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
 559 telemarketing. *Decision Support Systems*, 62:22–31, 2014.

560

561 Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jaehyung Kim, and Jinwoo Shin.
 562 Optimized feature generation for tabular data via llms with decision tree reasoning. *Advances in*
 563 *Neural Information Processing Systems*, 37:92352–92380, 2024.

564

565 Leland Gerson Neuberg. Causality: models, reasoning, and inference, by judea pearl, cambridge
 566 university press, 2000. *Econometric Theory*, 19(4):675–685, 2003.

567

568 Tom Overman, Diego Klabjan, and Jean Utke. Iife: Interaction information based automated feature
 569 engineering. *arXiv preprint arXiv:2409.04665*, 2024.

570

571 Charles S Peirce. Harvard lectures on pragmatism. *Collected Papers*, 5:188–189, 1903.

572

573 D Qi, J Peng, Y He, and J Wang. Auto-fp: An experimental study of automated feature preprocessing
 574 for tabular data. *Advances in Database Technology-EDBT*, 27(1):129–142, 2023.

575

576 Benjamin Schäfer, Carsten Grabow, Sabine Auer, Jürgen Kurths, Dirk Witthaut, and Marc Timme.
 577 Taming instabilities in power grid networks by decentralized control. *The European Physical*
 578 *Journal Special Topics*, 225:569–582, 2016.

579

580 Qitao Shi, Ya-Lin Zhang, Longfei Li, Xinxing Yang, Meng Li, and Jun Zhou. Safe: Scalable automatic
 581 feature engineering framework for industrial tasks. In *2020 IEEE 36th International Conference*
 582 *on Data Engineering (ICDE)*, pp. 1645–1656. IEEE, 2020.

583

584 Aleksandrs Slivkins et al. Introduction to multi-armed bandits. *Foundations and Trends® in Machine*
 585 *Learning*, 12(1-2):1–286, 2019.

586

587 Jack W Smith, James E Everhart, WC Dickson, William C Knowler, and Robert Scott Johannes.
 588 Using the adap learning algorithm to forecast the onset of diabetes mellitus. In *Proceedings*
 589 *of the annual symposium on computer application in medical care*, pp. 261. American Medical
 590 Informatics Association, 1988.

591

592 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 593 press Cambridge, 1998.

594

595 Amy E Taylor, Rebecca C Richmond, Teemu Palviainen, Anu Loukola, Robyn E Wootton, Jaakko
 596 Kaprio, Caroline L Relton, George Davey Smith, and Marcus R Munafò. The effect of body mass
 597 index on smoking behaviour and nicotine metabolism: a mendelian randomization study. *Human*
 598 *molecular genetics*, 28(8):1322–1330, 2019.

599

600 Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei Cao,
 601 and Li Jian. Openfe: Automated feature generation with expert-level performance. In *International*
 602 *Conference on Machine Learning*, pp. 41880–41901. PMLR, 2023.

594
595

APPENDIX

596
597

A FULL PROMPT EXAMPLES

598
599
600
601

The below is the set of prompt examples for our proposed method, REFEAT, for each reasoning type. The blue-highlighted portion indicates the part of the prompt that varies depending on the reasoning type.

602
603
604
605
606
607

You are a data scientist tasked with discovering meaningful new features from tabular data.

You will be shown a small number of data rows, each consisting of multiple columns. You are also given general domain knowledge or predefined rules. Your goal is to deductively derive useful new features by systematically applying known rules or definitions to the data. Given the examples and background knowledge, follow these steps:

608
609

Step 1. Recall: Identify relevant rules, formulas, or domain principles that could be applied to the given data.

610
611

Step 2. Apply: Use those rules to derive new features from existing columns.

612

Step 3. Explain: For each proposed feature, clearly explain the logic and rule that supports it.

613
614
615

Step 4. Express: Provide a formula or logic (in words or pseudo-code) for computing each new feature from the original columns.

616
617

Here below is the supported operation_type.

618
619
620
621
622
623
624
625
626
627
628
629

```
| Type | "Desc" | "Example" |
| --- | --- | --- |
| "addition" | "A+B" | df["A"]+df["B"] |
| "subtraction" | "A-B" | df["A"]-df["B"] |
| "multiplication" | "AB" | df["A"]*df["B"] |
| "division" | "A/B" | df["A"]/df["B"] |
| "logarithm" | "log(A)" | np.log1p(df["A"]) |
| "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |
| "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |
| "combination_logical" | "A>val & B<val" | (df["A"]>5)&(df["B"]<3) |
| "groupby_agg" | "group-mean" | df.groupby("G")["A"].mean() |
| "interaction_logical" | "valflag" | df["A"]*(df["B"]>0) |
| "ranking" | "rank, qcut" | df["A"].rank() |
```

630
631

Task: <TASK DESCRIPTION>
Input columns: <FEATURE DESCRIPTION>

632

<FEW-SHOT EXAMPLES>

633
634
635

Previous features performance on validation:
[PREVIOUS FEATURE RESULTS]

636
637
638
639
640
641

Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]</Result> ONLY return a single Python EXPRESSION with pandas notation using 'df' for "code". Do NOT include "df['new']= ...", use only columns listed in the metadata, and do NOT include TARGET variable in the EXPRESSION.

642
643
644
645
646
647

Figure 6: Example prompt for feature discovery via deductive reasoning.

648
 649
 650
 651
 652
 653
 654

655 You are a data scientist tasked with discovering meaningful new features from tabular data.
 656 You will be shown a small number of data rows, each consisting of multiple columns. Your goal is to
 657 inductively infer useful new features by identifying patterns and generalizing across the examples.
 658 Given the examples, follow these steps:

659 Step 1. Observe: Carefully examine how values across columns in the examples relate to each other
 660 across different rows. Explicitly refer to the corresponding examples for explanation.

661 Step 2. Induce: Propose new feature(s) that capture general patterns or derived quantities not explicitly
 662 represented in the original columns.

663 Step 3. Explain: For each proposed feature, clearly explain the reasoning behind it and how it
 664 generalizes across rows.

665 Step 4. Express: Provide a formula or logic (in words or pseudo-code) for computing each new feature
 666 from the original columns.

667 Here below is the supported operation_type.

668

```
| Type | "Desc" | "Example" |
| --- | --- | --- |
| "addition" | "A+B" | df["A"]+df["B"] |
| "subtraction" | "A-B" | df["A"]-df["B"] |
| "multiplication" | "AB" | df["A"]*df["B"] |
| "division" | "A/B" | df["A"]/df["B"] |
| "logarithm" | "log(A)" | np.log1p(df["A"]) |
| "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |
| "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |
| "combination_logical" | "A>val & B<val" | (df["A"]>5)&(df["B"]<3) |
| "groupby_agg" | "group-mean" | df.groupby("G")["A"].mean() |
| "interaction_logical" | "valflag" | df["A"]*(df["B"]>0) |
| "ranking" | "rank, qcut" | df["A"].rank() |
```

669 Task: <TASK DESCRIPTION>
 670 Input columns: <FEATURE DESCRIPTION>
 671
 672 <FEW-SHOT EXAMPLES>
 673
 674 Previous features performance on validation:
 675 [PREVIOUS FEATURE RESULTS]
 676
 677 Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not
 678 in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]
 679 </Result> ONLY return a single Python EXPRESSION with pandas notation using 'df' for "code". Do
 680 NOT include "df['new']= ...", use only columns listed in the metadata, and do NOT include TARGET
 681 variable in the EXPRESSION.

682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695 Figure 7: Example prompt for feature discovery via inductive reasoning.
 696
 697
 698
 699
 700
 701

702
703
704
705
706
707
708

You are a data scientist tasked with discovering meaningful new features from tabular data.
You will be shown a small number of data rows, each consisting of multiple columns. Your goal is to use abductive reasoning to hypothesize the most plausible hidden causes or explanations for the observed data patterns, and propose new features accordingly. Given the examples, follow these steps:

712
713
714
715
716
717
718
719
720
721
722
723
724

Step 1. Observe: Carefully examine surprising or non-obvious patterns or correlations in the data.

Step 2. Hypothesize: Suggest possible latent variables or derived quantities that could plausibly explain the observed outcomes.

Step 3. Infer: Propose new features that would serve as those explanatory factors.

Step 4. Explain: Justify your hypothesis and explain how the new feature accounts for the observed data.

Step 5. Express: Provide a formula or logic (in words or pseudo-code) for computing the proposed feature from existing columns.

Here below is the supported operation_type.

```
| Type | "Desc" | "Example" |
| --- | --- | --- |
| "addition" | "A+B" | df["A"]+df["B"] |
| "subtraction" | "A-B" | df["A"]-df["B"] |
| "multiplication" | "AB" | df["A"]*df["B"] |
| "division" | "A/B" | df["A"]/df["B"] |
| "logarithm" | "log(A)" | np.log1p(df["A"]) |
| "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |
| "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |
| "combination_logical" | "A>val & B<val" | (df["A"]>5)&(df["B"]<3) |
| "groupby_agg" | "group-mean" | df.groupby("G")["A"].mean() |
| "interaction_logical" | "valflag" | df["A"]*(df["B"]>0) |
| "ranking" | "rank, qcut" | df["A"].rank()
```

Task: <TASK DESCRIPTION>

Input columns: <FEATURE DESCRIPTION>

<FEW-SHOT EXAMPLES>

Previous features performance on validation:

[PREVIOUS FEATURE RESULTS]

Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]</Result> ONLY return a single Python EXPRESSION with pandas notation using 'df' for "code". Do NOT include "df['new']=...", use only columns listed in the metadata, and do NOT include TARGET variable in the EXPRESSION.

748
749
750
751
752
753
754
755

Figure 8: Example prompt for feature discovery via abductive reasoning.

756
757
758
759
760
761
762

763 You are a data scientist tasked with discovering meaningful new features from tabular data.
764 You will be shown a small number of data rows, each consisting of multiple columns. Your goal is
765 to use analogical reasoning to propose new features by identifying relational patterns between data
766 columns and applying similar transformations in new contexts. Given the examples, follow these steps:
767
768 Step 1. Identify: Find a relationship or transformation between two or more columns in one or more rows.
769
770 Step 2. Map: Check if similar relationships exist across other rows (i.e., establish analogies).
771
772 Step 3. Generalize: Propose a new feature that captures the underlying analogy consistently across rows.
773
774 Step 4. Explain: Describe the analogy and why the proposed feature fits the observed relational pattern.
775
776 Step 5. Express: Provide a formula or logic (in words or pseudo-code) for computing the new feature
777 from the original columns.

778 Here below is the supported operation_type.
779

```
| Type | "Desc" | "Example" |
| --- | --- | --- |
| "addition" | "A+B" | df["A"]+df["B"] |
| "subtraction" | "A-B" | df["A"]-df["B"] |
| "multiplication" | "AB" | df["A"]*df["B"] |
| "division" | "A/B" | df["A"]/df["B"] |
| "logarithm" | "log(A)" | np.log1p(df["A"]) |
| "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |
| "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |
| "combination_logical" | "A>val & B<val" | (df["A"]>5)&(df["B"]<3) |
| "groupby_agg" | "group-mean" | df.groupby("G")["A"].mean() |
| "interaction_logical" | "valflag" | df["A"]*(df["B"]>0) |
| "ranking" | "rank, qcut" | df["A"].rank() |
```

789
790 Task: <TASK DESCRIPTION>
791 Input columns: <FEATURE DESCRIPTION>

792 <FEW-SHOT EXAMPLES>
793

794 Previous features performance on validation:
795 [PREVIOUS FEATURE RESULTS]

796
797 Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not
798 in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]
799 </Result> ONLY return a single Python EXPRESSION with pandas notation using 'df' for "code". Do
800 NOT include "df['new']=...", use only columns listed in the metadata, and do NOT include TARGET
variable in the EXPRESSION.

801
802
803
804
805
806
807
808
809

Figure 9: Example prompt for feature discovery via analogical reasoning.

810
 811
 812
 813
 814
 815 You are a data scientist tasked with discovering meaningful new features from tabular data.
 816 You will be shown a small number of data rows, each consisting of multiple columns. Your goal is
 817 to use counterfactual reasoning to generate features that estimate what would have happened under
 818 alternative scenarios, by imagining changes to certain variables while keeping others fixed. Given the
 819 examples, follow these steps:
 820
 821 Step 1. Select: Choose a key variable that may be the cause of an observed outcome.
 822
 823 Step 2. Intervene: Imagine how the outcome would change if that variable had taken a different value
 (counterfactual intervention).
 824
 825 Step 3. Compare: Contrast the actual outcome with the counterfactual outcome.
 826
 827 Step 4. Construct: Propose a new feature that captures this difference or counterfactual scenario.
 828
 829 Step 5. Explain: Justify your reasoning and how this counterfactual feature could help model alternative
 behaviors or fairness.
 830
 831 Step 6. Express: Provide a formula or logic (in words or pseudo-code) for computing the counterfactual-
 832 based feature.
 833 Here below is the supported operation_type.
 834
 835 | Type | "Desc" | "Example" |
 836 | — | — | — |
 837 | "addition" | "A+B" | df["A"]+df["B"] |
 838 | "subtraction" | "A-B" | df["A"]-df["B"] |
 839 | "multiplication" | "AB" | df["A"]*df["B"] |
 840 | "division" | "A/B" | df["A"]/df["B"] |
 841 | "logarithm" | "log(A)" | np.log1p(df["A"]) |
 842 | "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |
 843 | "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |
 844 | "combination_logical" | "A>val & B<val" | (df["A"]>5)&(df["B"]<3) |
 845 | "groupby_agg" | "group-mean" | df.groupby("G")["A"].mean() |
 846 | "interaction_logical" | "valflag" | df["A"]*(df["B"]>0) |
 847 | "ranking" | "rank, qcut" | df["A"].rank() |
 848
 849 Task: <TASK DESCRIPTION>
 850 Input columns: <FEATURE DESCRIPTION>
 851
 852 <FEW-SHOT EXAMPLES>
 853
 854 Previous features performance on validation:
 855 [PREVIOUS FEATURE RESULTS]
 856
 857 Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not
 858 in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]
 859 </Result> ONLY return a single Python EXPRESSION with pandas notation using 'df' for "code". Do
 860 NOT include "df['new']= ...", use only columns listed in the metadata, and do NOT include TARGET
 861 variable in the EXPRESSION.
 862
 863

Figure 10: Example prompt for feature discovery via counterfactual reasoning.

864
 865
 866
 867
 868
 869
 870 You are a data scientist tasked with discovering meaningful new features from tabular data.
 871 You will be shown a small number of data rows, each consisting of multiple columns. Your goal is to
 872 use causal reasoning to infer and construct features that reflect causal relationships — that is, variables
 873 that directly influence others in the dataset. Given the examples, follow these steps:
 874
 875 Step 1. Identify: Look for potential causal relationships — i.e., where one variable might directly affect
 876 another.
 877
 878 Step 2. Justify: Provide reasoning or evidence from the data (e.g., monotonic patterns, interventions,
 879 domain knowledge) that supports the causal interpretation.
 880
 881 Step 3. Construct: Propose new features that represent either (a) the inferred cause, (b) the causal
 882 mechanism, or (c) a mediating factor between cause and effect.
 883
 884 Step 4. Explain: Clearly describe the assumed causal structure and how the new feature fits into it.
 885
 886 Step 5. Express: Provide a formula or logic (in words or pseudo-code) for computing the feature from
 887 original columns.
 888
 889 Here below is the supported operation_type.
 890
 891 | 'Type' | "Desc" | "Example" |
 892 | — | — | — |
 893 | "addition" | "A+B" | df["A"]+df["B"] |
 894 | "subtraction" | "A-B" | df["A"]-df["B"] |
 895 | "multiplication" | "AB" | df["A"]*df["B"] |
 896 | "division" | "A/B" | df["A"]/df["B"] |
 897 | "logarithm" | "log(A)" | np.log1p(df["A"]) |
 898 | "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |
 899 | "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |
 900 | "combination_logical" | "A>val & B<val" | (df["A"]>5)&(df["B"]<3) |
 901 | "groupby_agg" | "group-mean" | df.groupby("G")["A"].mean() |
 902 | "interaction_logical" | "valflag" | df["A"]*(df["B"]>0) |
 903 | "ranking" | "rank, qcut" | df["A"].rank() |
 904
 905 Task: <TASK DESCRIPTION>
 906 Input columns: <FEATURE DESCRIPTION>
 907
 908 <FEW-SHOT EXAMPLES>
 909
 910 Previous features performance on validation:
 911 [PREVIOUS FEATURE RESULTS]
 912
 913 Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not
 914 in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]
 915 </Result> ONLY return a single Python EXPRESSION with pandas notation using 'df' for "code". Do
 916 NOT include "df['new']=...", use only columns listed in the metadata, and do NOT include TARGET
 917 variable in the EXPRESSION.

Figure 11: Example prompt for feature discovery via causal reasoning.

918 **B DATASET DETAILS**
919920 The table below summarizes the basic statistics of the 59 benchmark datasets used in our work. It
921 covers a total of 51 classification tasks and 8 regression tasks, with diverse ranges in both the number
922 of samples and the number of features.
923924 **Table 5: Statistics of datasets used in our work.**
925

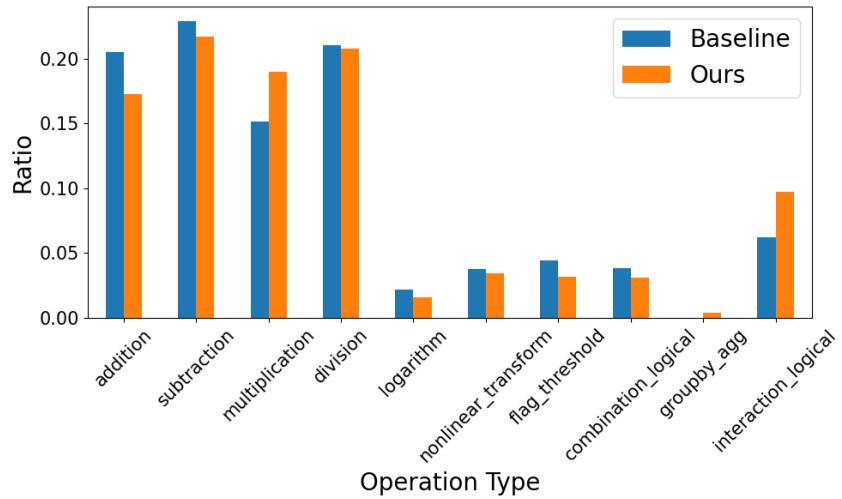
Data	Number of samples	Number of features (cat/num)	Task type
adult	48842	8/6	binary classification
authorship	841	0/69	multi-class classification
balance-scale	625	0/4	multi-class classification
bank	45211	9/7	binary classification
blood	748	0/4	binary classification
breast-w	683	0/9	binary classification
car	1728	6/0	multi-class classification
churn	5000	0/20	binary classification
climate-model-simulation-crashes	540	0/20	binary classification
cmc	1473	0/9	multi-class classification
connect-4	67557	0/42	multi-class classification
credit-a	666	9/6	binary classification
credit-g	1000	13/7	binary classification
cylinder-bands	378	19/20	binary classification
diabetes	768	0/8	binary classification
dmft	661	2/2	multi-class classification
dresses-sales	500	11/1	binary classification
electricity	45312	0/8	binary classification
eucalyptus	641	5/14	multi-class classification
first-order-theorem-proving	6118	0/51	multi-class classification
gesture	9873	0/32	multi-class classification
heart	918	5/6	binary classification
ilpd	583	1/9	binary classification
junglechess	44819	0/6	multi-class classification
kc2	522	0/21	binary classification
kr-vs-kp	3196	36/0	binary classification
letter	20000	0/16	multi-class classification
mfeat-fourier	2000	0/76	multi-class classification
mfeat-karhunen	2000	0/64	multi-class classification
mfeat-morphological	2000	0/6	multi-class classification
mfeat-ternike	2000	0/47	multi-class classification
myocardial	686	84/7	binary classification
numeraid	96320	0/21	binary classification
optdigits	5620	0/64	multi-class classification
ozone-level-8hr	1847	0/72	binary classification
pendigits	10992	0/16	multi-class classification
phishing	11055	0/30	binary classification
phoneme	5404	0/5	binary classification
qsar-biodeg	1055	0/41	binary classification
segment	2310	0/19	multi-class classification
spambase	4601	0/57	binary classification
splice	3190	60/0	multi-class classification
steel-plates-fault	1941	0/27	multi-class classification
texture	5500	0/40	multi-class classification
tic-tac-toe	958	9/0	binary classification
vehicle	846	0/18	multi-class classification
vowel	990	2/10	multi-class classification
wall-robot-navigation	5456	0/24	multi-class classification
wdbc	569	0/30	binary classification
wilt	4839	0/5	binary classification
wine	6497	1/11	multi-class classification
bike	17379	0/12	regression
crab	3893	1/7	regression
forest-fires	517	2/10	regression
grid-stability	10000	0/12	regression
housing	20433	1/8	regression
insurance	1338	3/3	regression
mpg	398	1/6	regression
satimage	6430	0/36	regression

966 **C IMPLEMENTATION DETAILS**
967968 Our proposed model, REFEAT, generates features over 20 iterations, using GPT-4.1-mini as the
969 LLM backbone. From the generated candidates, we select the top-10 features that yield the highest
970 validation performance for final evaluation. For the baselines, including AUTOFEAT, OPENFE,
971 CAAFE, FEATLLM, and OCTREE, we followed the default settings provided in their respective

972 papers, except that we unify the LLM backbone and fix the number of generated features to 10 to
 973 ensure a fair comparison. The downstream predictors, including linear and logistic regression as
 974 well as XGBoost, were also used with their default parameters. Each dataset is split into training,
 975 validation, and test sets with a ratio of 6:2:2.
 976

977 D DISTRIBUTION OF OPERATION TYPES

978 We compare the distribution of operation types used in the features generated by our method and
 979 the baseline LLM feature generation without reasoning guidance. Operation types include a mix of
 980 arithmetic operations (e.g., addition, multiplication), non-linear transformations (e.g., logarithm),
 981 logical constructs (e.g., threshold flags, logical combinations), and aggregations (e.g., group-by,
 982 ranking). As shown in Figure 12, the overall distribution patterns are broadly similar across both
 983 methods, without significant difference.
 984



1002 Figure 12: Histogram of operation type ratios used in feature discovery, comparing our model
 1003 (REFEAT) and the baseline (without reasoning type exploration).
 1004

1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026 **E QUALITATIVE ANALYSES**

1028 This section provides a comprehensive qualitative analysis of features generated by our REFEAT
 1029 method compared to the baseline approach across 57 real-world datasets. Our analysis examines
 1030 timing patterns and top-performing features. Key findings reveal that REFEAT achieves 2.95 times
 1031 higher maximum performance gains over the validation set (47.84% vs 16.22%) and 2.41 times
 1032 higher average gains (3.59% vs 1.49%) with similar feature generation volumes (i.e., # of selected
 1033 features = 10) from the baseline.

1034 **E.1 FEATURE GENERATION TIMING AND LEARNING PATTERNS**

1035 Analysis of iteration-based performance reveals REFEAT’s superior learning dynamics throughout
 1036 the feature discovery process. In early iterations (1-10) presented in Table 6, REFEAT already
 1037 demonstrates substantial advantages with 3.26% average gain compared to the baseline’s 1.42%. This
 1038 gap widens in later iterations (11-20), where REFEAT achieves 3.94% compared to the baseline’s
 1039 1.56%; unlike baseline approaches that show diminishing returns, REFEAT continues discovering
 1040 better features throughout the exploration phase. Furthermore, the results demonstrate that our model
 1041 converges faster by the inference strategy; our model’s peak performance occurs on the iteration 7,
 1042 where REFEAT reaches 7.41% gain; ours reached to the peak earlier than the baseline on the iteration
 1043 13, indicating effective bandit learning and adaptation.

Phase	Iterations	REFEAT Gain	Relative Gain	Observation
Early Discovery	1-10	3.26% (Avg.)	+128.9%	Quick adaptation
Late Optimization	11-20	3.94% (Avg.)	+153.0%	Continued learning
Peak Performance (Baseline)	13	2.51%	+17.9%	Baseline convergence
Peak Performance (REFEAT)	7	7.41%	+437.9%	Bandit convergence

1051 Table 6: Iteration-based performance analysis over the validation set. Bold is the best value.

1054 **E.2 TOP PERFORMING FEATURES ANALYSIS**

1055 Table 7 presents the highest-performing features from both methods, revealing stark qualitative
 1056 differences. REFEAT’s top features demonstrate semantic meaningfulness, mathematical sophis-
 1057 tication, and domain integration. The best-performing feature, `responsiveness_index` (47.84%
 1058 gain), implements control theory principles through multi-ratio aggregation Schäfer et al. (2016).
 1059 Features like `high_bmi_smoker_flag` (42.47% gain) capture compound risk factors with clinical
 1060 relevance Taylor et al. (2019). In contrast, baseline features tend toward simple arithmetic operations
 1061 with generic naming patterns. REFEAT features consistently exhibit interpretable, domain-relevant
 1062 names that reflect understanding of field-specific relationships.

Rank	Method	Feature Name	Gain (%)	Dataset	Reasoning Type
1	REFEAT	<code>responsiveness_index</code>	47.84	grid-stability	Causal
2	REFEAT	<code>high_bmi_smoker_flag</code>	42.47	insurance	Counterfactual
3	REFEAT	<code>weighted_tau_std</code>	40.83	grid-stability	Causal
1	Baseline	<code>DMFT_Trend</code>	16.22	dmft	N/A
2	Baseline	<code>Improvement_Male_Interaction</code>	10.81	dmft	N/A
3	Baseline	<code>Female_DMFT_Begin_Interaction</code>	10.81	dmft	N/A

1071 Table 7: Top-5 performing features comparison over the validation set.

1080
1081

E.3 KEY QUALITATIVE INSIGHTS

1082
1083
1084
1085
1086
1087
1088

REFEAT demonstrates semantic intelligence by generating meaningful, interpretable feature names that reflect domain understanding. Features exhibit mathematical sophistication through complex multi-step operations rather than simple transformations. Domain awareness manifests in features that capture field-specific relationships and established principles. Also, different reasoning types demonstrate complementary strengths across domains, with the adaptive bandit strategy successfully identifying optimal reasoning for each dataset. The absence of a single dominant strategy validates the multi-reasoning approach and highlights the importance of reasoning diversity.

1089
1090
1091
1092
1093
1094

For practical implications, the generated features are production-ready with interpretable and auditable properties. The method successfully transfers across diverse application domains while producing expert-level quality features that typically require human domain expertise. Meanwhile, limitations exist too with the proposed method. The approach requires 20 iterations for convergence compared to single-shot methods, creating computational overhead. Quality depends on underlying LLM capabilities, and highly specialized domains may require additional expert guidance.

1095
1096
1097
1098
1099
1100

F LIMITATION

1101
1102
1103
1104
1105
1106
1107
1108

The main limitation of our approach is the need for multiple interaction rounds with the LLM to identify the most suitable reasoning type for a given task. A promising remedy is to endow the LLM with a built-in “reasoning-type prior.” In detail, one could fine-tune a LLM model on meta-examples where the input is a compact task description and the output is the reasoning strategy that ultimately produced the highest gain during past searches. We leave this fast-start variant and an investigation of how well it generalizes to entirely new domains as important future work.

1109
1110
1111
1112
1113

Additionally, while our current work does not explicitly address biases in LLMs or training data, nor human-centered values, we acknowledge these risks as important considerations. A more thorough risk and ethics analysis, including human-centered evaluation and mitigation of unintended outcomes, remains an open direction for future work.

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

G THE USE OF LLMs IN PAPER WRITING

We use LLMs in the paper writing only to polish writing.

1134 **H FULL RESULTS**
1135

1136

Dataset	Base	CAAFE	FeatLLM	OpenFE	OCTree	AutoFeat	Ours
Adult	0.8543	0.8592	0.8611	0.8647	0.8533	0.7979	0.8614
Authorship	0.9882	0.9941	0.9941	0.9941	0.9941	1.0000	0.9941
Balance-Scale	0.8640	0.9920	1.0000	0.8640	0.8560	0.9333	1.0000
Bank	0.9013	0.9008	0.9038	0.8863	0.9015	0.9003	0.9029
Blood	0.7667	0.8000	0.8067	0.7867	0.7667	0.7656	0.8000
Breast-W	0.9635	0.9635	0.9635	0.9562	0.9562	0.9780	0.9635
Car	0.9017	0.9509	0.9566	0.0405	0.9046	0.9199	0.9364
Churn	0.8700	0.8720	0.8870	0.9000	0.8710	0.8637	0.8880
Climate-Model-Simulation-Crashes	0.9630	0.9537	0.9537	0.9630	0.9537	0.9383	0.9537
Cmc	0.5390	0.5864	0.5322	0.5627	0.5458	0.5617	0.5763
Connect-4	0.6607	0.6953	0.6607	0.7259	0.6609	0.6613	0.6694
Credit-A	0.8134	0.8060	0.8134	0.8209	0.8134	0.8972	0.8284
Credit-G	0.7050	0.6950	0.7000	0.7200	0.7200	0.7867	0.7050
Cylinder-Bands	0.8026	0.6974	0.8158	0.8026	0.7368	0.9204	0.8026
Diabetes	0.7143	0.7208	0.7468	0.7273	0.7273	0.7652	0.7273
Dmft	0.2406	0.2782	0.2481	0.1429	0.2556	0.2390	0.2556
Dresses-Sales	0.6100	0.5900	0.5800	0.6000	0.6200	0.7833	0.6300
Electricity	0.7567	0.7573	0.7612	0.7597	0.7570	0.7527	0.7547
Eucalyptus	0.6357	0.6589	0.6357	0.6202	0.6124	0.5313	0.6589
First-Order-Theorem-Proving	0.4935	0.4935	0.5114	0.5033	0.4975	0.5210	0.4877
Gesture	0.4689	0.4759	0.4719	0.4800	0.4668	0.4266	0.4800
Heart	0.8859	0.8913	0.8859	0.8261	0.8804	0.8782	0.8804
Ilpd	0.6923	0.6923	0.6410	0.6923	0.7179	0.7278	0.7009
Junglechess	0.6756	0.7130	0.7282	0.6193	0.6778	0.7115	0.7063
Kc2	0.8190	0.8000	0.8090	0.8190	0.8095	0.8526	0.8190
Kr-Vs-Kp	0.9625	0.9672	0.9625	0.7422	0.9641	0.9724	0.9688
Letter	0.7695	0.7893	0.8130	0.7903	0.7673	0.7108	0.7913
Mfeat-Fourier	0.8050	0.8075	0.7875	0.8100	0.7875	0.8417	0.8050
Mfeat-Karhunen	0.9575	0.9500	0.9350	0.9600	0.9596	1.0000	0.9550
Mfeat-Morphological	0.7200	0.7250	0.7200	0.7275	0.7050	0.6808	0.7250
Mfeat-Zernike	0.8325	0.8100	0.8225	0.8300	0.8125	0.7408	0.8450
Myocardial	0.7681	0.7899	0.7681	0.8043	0.7899	0.8832	0.7754
Numerai	0.5163	0.5166	0.5172	0.5165	0.5180	0.5247	0.5172
Optdigits	0.9689	0.9760	0.9671	0.9715	0.9689	0.9947	0.9795
Ozone-Level-8Hr	0.9378	0.9378	0.9378	0.9351	0.9297	0.9431	0.9405
Pendigits	0.9454	0.9673	0.9636	0.9686	0.9432	0.6644	0.9764
Phishing	0.9285	0.9313	0.9340	0.9249	0.9290	0.9430	0.9380
Phoneme	0.7364	0.7678	0.7835	0.7937	0.7401	0.8054	0.7567
Qsar-Biodeg	0.8626	0.8531	0.8578	0.8436	0.8531	0.9005	0.8626
Segment	0.9372	0.9589	0.9416	0.9610	0.9372	0.9286	0.9524
Spambase	0.9294	0.9294	0.9229	0.9338	0.9229	0.9457	0.9370
Splice	0.9451	0.9389	0.9436	0.5188	0.9326	0.9963	0.9404
Steel-Plates-Fault	0.7275	0.7481	0.7249	0.7326	0.7224	0.5687	0.7249
Texture	0.9927	0.9964	0.9927	0.9927	0.9927	0.9806	0.9927
Tic-Tac-Toe	0.9740	0.9427	0.9740	0.3490	0.9688	0.9826	0.9740
Vehicle	0.8176	0.8235	0.8471	0.8353	0.8294	0.7179	0.8176
Vowel	0.7727	0.9040	0.7626	0.7273	0.7525	0.9394	0.9091
Wall-Robot-Navigation	0.6923	0.8782	0.9139	0.9212	0.6969	0.9404	0.8480
Wdbc	0.9649	0.9737	0.9737	0.9649	0.9737	0.9677	0.9737
Wilt	0.9618	0.9855	0.9700	0.9866	0.9556	0.9459	0.9835
Wine	0.5415	0.5446	0.5492	0.5700	0.5392	0.5381	0.5538

1175 Table 8: Evaluation results (Accuracy) of tabular feature engineering models using a linear model as
1176 the downstream predictor on 51 classification datasets.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188	Dataset	Base	CAAFE	FeatLLM	OpenFE	OCTree	AutoFeat	Ours
1189	Adult	0.8538	0.8601	0.8512	0.8663	0.8536	0.8542	0.8611
1190	Authorship	0.9882	0.9882	0.9882	0.9882	0.9882	1.0000	0.9882
1191	Balance-Scale	0.8720	1.0000	1.0000	0.8720	0.8720	0.8933	1.0000
1192	Bank	0.9014	0.9008	0.9021	0.8936	0.9018	0.8830	0.9028
1193	Blood	0.7667	0.8000	0.7967	0.8000	0.7667	0.7656	0.8000
1194	Breast-W	0.9635	0.9562	0.9635	0.9489	0.9562	0.9804	0.9635
1195	Car	0.9364	0.9566	0.9682	0.0867	0.9306	0.9402	0.9566
1196	Churn	0.8700	0.8720	0.8870	0.8960	0.8720	0.8643	0.8850
1197	Climate-Model-Simulation-Crashes	0.9630	0.9537	0.9722	0.9630	0.9722	0.9846	0.9537
1198	Cmc	0.5390	0.5966	0.5356	0.5661	0.5559	0.5493	0.5864
1199	Connect-4	0.6607	0.6955	0.6607	0.7258	0.6607	0.6613	0.6695
1200	Credit-A	0.8134	0.7910	0.7836	0.8060	0.7910	0.9048	0.7910
1201	Credit-G	0.7050	0.6900	0.7050	0.7000	0.7250	0.8033	0.7050
1202	Cylinder-Bands	0.6974	0.6974	0.7895	0.7368	0.6974	1.0000	0.6974
1203	Diabetes	0.7143	0.7273	0.7403	0.7273	0.7273	0.7848	0.7273
1204	Dmft	0.2406	0.2782	0.2481	0.2030	0.2556	0.2369	0.2481
1205	Dresses-Sales	0.5800	0.5600	0.5500	0.5500	0.6600	0.8367	0.5600
1206	Electricity	0.7570	0.7575	0.7613	0.7568	0.7573	0.7570	0.7556
1207	Eucalyptus	0.6124	0.6512	0.6124	0.6047	0.5969	0.8177	0.6589
1208	First-Order-Theorem-Proving	0.4959	0.5008	0.5131	0.5000	0.4943	0.5264	0.4877
1209	Gesture	0.4694	0.4739	0.4704	0.4820	0.4653	0.5306	0.4795
1210	Heart	0.8859	0.8750	0.8804	0.4837	0.8750	0.8764	0.8804
1211	Ipd	0.6838	0.6752	0.6325	0.6923	0.6838	0.7163	0.7009
1212	Junglechess	0.6758	0.7115	0.7281	0.6197	0.6780	0.7237	0.7063
1213	Kc2	0.8190	0.8000	0.8095	0.8190	0.7905	0.8558	0.8190
1214	Kr-Vs-Kp	0.9797	0.9844	0.9797	0.8703	0.4781	0.9828	0.9859
1215	Letter	0.7643	0.7855	0.8103	0.7838	0.7650	0.7538	0.7868
1216	Mfeat-Fourier	0.7975	0.8075	0.7900	0.7975	0.7850	0.1000	0.7950
1217	Mfeat-Karhunen	0.9450	0.9500	0.9350	0.9450	0.9317	1.0000	0.9525
1218	Mfeat-Morphological	0.7325	0.7250	0.7300	0.7325	0.7200	0.7075	0.7275
1219	Mfeat-Zernike	0.8250	0.8125	0.8225	0.8150	0.8075	0.6500	0.8400
1220	Myocardial	0.7754	0.7754	0.7754	0.7754	0.7754	0.2214	0.7826
1221	Numerai	0.5163	0.5184	0.5170	0.5170	0.5183	0.4948	0.5184
1222	Optdigits	0.9689	0.9760	0.9582	0.9680	0.9609	0.0985	0.9724
1223	Ozone-Level-8Hr	0.9432	0.9351	0.9432	0.9405	0.9432	0.9503	0.9378
1224	Pendigits	0.9432	0.9668	0.9618	0.9650	0.9441	0.9503	0.9732
1225	Phishing	0.9285	0.9322	0.9344	0.9236	0.9281	0.9426	0.9371
1226	Phoneme	0.7364	0.7678	0.7789	0.7882	0.7401	0.8057	0.7558
1227	Qsar-Biodeg	0.8531	0.8531	0.8578	0.8294	0.8578	0.8847	0.8531
1228	Segment	0.9545	0.9567	0.9481	0.9654	0.9459	0.9452	0.9567
1229	Spambase	0.9273	0.9349	0.9197	0.9327	0.9164	0.3942	0.9327
1230	Splice	0.9201	0.9232	0.9185	0.6489	0.9216	0.9995	0.9248
1231	Steel-Plates-Fault	0.7326	0.7352	0.7301	0.7275	0.7172	0.4794	0.7198
1232	Texture	0.9964	0.9964	0.9964	0.9982	0.9964	0.9833	0.9964
1233	Tic-Tac-Toe	0.9740	0.9688	0.9740	0.3490	0.6510	0.9861	0.9792
1234	Vehicle	0.8235	0.8235	0.8412	0.8412	0.8294	0.6608	0.8235
1235	Vowel	0.7828	0.9141	0.7980	0.7222	0.7828	0.9697	0.9293
1236	Wall-Robot-Navigation	0.6932	0.8773	0.9112	0.9148	0.6859	0.8921	0.8397
1237	Wdbc	0.9737	0.9737	0.9737	0.9737	0.6316	0.9795	0.9649
1238	Wilt	0.9638	0.9886	0.9793	0.9866	0.9618	0.9480	0.9866
1239	Wine	0.5362	0.5462	0.5408	0.5338	0.5362	0.5117	0.5477

Table 9: Evaluation results (Accuracy) of tabular feature engineering models using a XGboost model as the downstream predictor on 51 classification datasets.

Dataset	Base	CAAFE	FeatLLM	OpenFE	OCTree	AutoFeat	Ours
Bike	1.938E+04	1.935E+04	N/A	1.938E+04	1.940E+04	1.863E+04	8.438E+03
Crab	4.641	4.640	N/A	4.558	4.657	10.170	4.456
Forest-Fires	1.161E+04	1.174E+04	N/A	1.161E+04	1.155E+04	2.256E+03	1.164E+04
Grid-Stability	0.0005	0.0005	N/A	0.0005	0.0005	0.0013	0.0002
Housing	4.800E+09	4.800E+09	N/A	4.800E+09	4.805E+09	1.310E+10	4.400E+09
Insurance	3.360E+07	3.463E+07	N/A	3.360E+07	3.375E+07	1.200E+08	1.798E+07
Mpg	10.53	10.41	N/A	10.53	11.08	12.70	9.33
Satimage	1.387	1.387	N/A	1.135	1.395	4.895	1.065

Table 10: Evaluation results (RMSE) of tabular feature engineering models using a linear model as the downstream predictor on 8 regression datasets. Note that FeatLLM is applicable only to classification tasks.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263

Dataset	Base	CAAFE	FeatLLM	OpenFE	OCTree	AutoFeat	Ours
Bike	1.939E+04	1.939E+04	N/A	1.939E+04	1.940E+04	1.865E+04	8.442E+03
Crab	4.874	4.862	N/A	4.568	4.874	10.849	4.452
Forest-Fires	1.163E+04	1.165E+04	N/A	1.163E+04	1.157E+04	2.257E+03	1.166E+04
Grid-Stability	0.0005	0.0005	N/A	0.0003	0.0005	0.0000	0.0002
Housing	4.800E+09	4.810E+09	N/A	4.800E+09	4.811E+09	1.310E+10	4.400E+09
Insurance	3.360E+07	3.368E+07	N/A	3.360E+07	3.375E+07	1.200E+08	1.788E+07
Mpg	10.30	10.31	N/A	10.30	10.69	13.58	9.36
Satimage	1.387	1.390	N/A	1.163	1.387	1.387	1.069

1271
 1272 Table 11: Evaluation results (RMSE) of tabular feature engineering models using a XGBoost model
 1273 as the downstream predictor on 8 regression datasets. Note that FeatLLM is applicable only to
 1274 classification tasks.

1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295