Under review as a conference paper at ICLR 2026

TABULAR FEATURE DISCOVERY WITH REASONING
TYPE EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Feature engineering for tabular data remains a critical yet challenging step in
machine learning. Recently, large language models (LLMs) have been used to
automatically generate new features by leveraging their vast knowledge. However,
existing LLM-based approaches often produce overly simple or repetitive features,
partly due to inherent biases in the transformations the LLM chooses and the lack
of structured reasoning guidance during generation. In this paper, we propose a
novel method REFEAT, which guides an LLM to discover diverse and informative
features by leveraging multiple types of reasoning to steer the feature generation
process. Experiments on 59 benchmark datasets demonstrate that our approach
not only achieves higher predictive accuracy on average, but also discovers
more diverse and meaningful features. These results highlight the promise of
incorporating rich reasoning paradigms and adaptive strategy selection into
LLM-driven feature discovery for tabular data.

1 INTRODUCTION

Automated feature engineering (AutoFE) has the potential to significantly improve model performance
on tabular datasets by creating new predictive features, but it traditionally requires exploring a vast
space of transformations |Horn et al.| (2019); [Kanter & Veeramachaneni| (2015)); Khurana et al.| (2016;
2018));Zhang et al.| (2023). Recent advances in large language models (LLMs) offer a new approach to
this challenge: using LLMs’ embedded knowledge to propose candidate features in natural language
or code Han et al.| (2024); Hollmann et al.| (2023)); [Nam et al.| (2024). Early work in this direction
showed that providing an LLM with context about the dataset and task can yield meaningful, human-
interpretable features that boost prediction accuracy. For example, an LLM can be prompted with a
dataset’s description and asked to suggest a formula or grouping that might correlate with the target
variable, producing features that a human expert might derive [Hollmann et al.[(2023).

However, existing LLM-based feature engineering methods have important limitations. One issue
is that LLMs tend to generate simple or repetitive features |Kiiken et al.| (2024). Due to implicit
biases in LLM training, they often overuse basic operations (e.g. linear combinations) and rarely
utilize more complex transformations, which can lead to diminishing returns. Another limitation is
the lack of structured reasoning guidance in current approaches. Most methods prompt the LLM
in a relatively straightforward way - for instance, asking for a new feature given the task - and use
validation performance to accept or reject features|Abhyankar et al.| (2025). They do not explicitly
encourage the LLM to reason in diverse ways about the data. As a result, the generation process may
miss creative insights; without guidance, the LLM might default to surface-level patterns or well-trod
heuristics, rather than considering deeper relationships (causal factors, analogies to known problems,
hypothetical what-if scenarios, etc.).

In this work, we propose a new method REFEAT (Reasoning type Exploration for Feature discovery)
to address these challenges by adopting multiple reasoning strategies with adaptive prompt selection
for LLM-driven feature discovery. Our key insight is that different reasoning paradigms can inspire
the LLM to generate different kinds of features, and that an adaptive approach can decide which type
of reasoning is most fruitful for a given task. Specifically, we design reasoning-type-specific meta-
prompts that each frame the feature generation task through a particular lens of reasoning: inductive,
deductive, abductive, analogical, counterfactual, and causal reasoning [Peirce] (1903)); Neuberg| (2003);
Gentner|(1983); |[Lewis|(1973). For example, an inductive prompt might say, “Examine these examples

Under review as a conference paper at ICLR 2026

and hypothesize a new feature that distinguishes the classes based on observed patterns,” whereas a
causal prompt might ask, “Identify a factor that could be a direct cause of the target, and formulate a
feature to measure that cause.” By crafting prompts in this way, we guide LLM to follow different
reasoning paths, with the aim of generating a wider variety of candidate features - including those
that a single, generic prompting approach might overlook.

Moreover, our approach includes an adaptive prompt selection mechanism that learns which
reasoning strategy works best over time. We cast the choice of reasoning prompt as a multi-armed
bandit problem |Slivkins et al.|(2019), where each “arm” corresponds to one of the reasoning types.
At each iteration of feature generation, the bandit must decide which type of reasoning prompt to
deploy, where the reward signal for the bandit comes from the performance of the new feature on
a holdout validation set. This bandit-driven approach enables dynamic guidance of the LLM: unlike
static prompting or fixed cycles of reasoning types, the strategy adapts based on which prompts are
actually leading to good features for each task.

We conduct comprehensive experiments on 59 real-world tabular datasets from OpenML, spanning
binary classification, multi-class classification, and regression tasks. Results show that our method
consistently outperforms several baseline methods, including traditional automated feature engineer-
ing tools and LLM-based baselines. We also found that the proposed method discovers features that
have higher complexity and greater mutual information with the target on average, indicating they
carry more novel signal. Codes will be available soon via GitHub repository.

2 RELATED WORK

2.1 AUTOMATED FEATURE ENGINEERING

The challenge of automatically generating new features from raw tabular data has been studied in
the AutoML community. Traditional AutoFE approaches do not use language models, but rather
algorithmic search over transformation compositions |[Fan et al. (2010); |Kanter & Veeramachaneni
(2015); [Khurana et al.| (20165 [2018)); [Luo et al.| (2019)); |Shi et al.| (2020). For example, OpenFE is
a recent tool that integrates a feature boosting method with a two-stage pruning strategy to efficiently
evaluate candidate features Zhang et al.|(2023)). It incrementally builds and tests new features, aiming
to achieve expert-level performance without human intervention. Another example is AutoFeat|Horn
et al.| (2019), which generates a large pool of non-linear transformed features (combinations of
original features through arithmetic, polynomial, or trigonometric functions) and then selects a subset
based on model improvement.

Such methods can discover complex features, but they often require brute-force exploration of the
search space and lack semantic understanding of the domain [Hollmann et al.| (2023). They treat
feature construction as purely a mathematical optimization, which can miss intuition-driven features
that humans might create using domain knowledge. Moreover, these methods might struggle when
the space of possible transformations is huge, since they must handcraft or enumerate candidate
operations |(Overman et al.|(2024); Q1 et al.| (2023).

2.2 LLM-BASED FEATURE ENGINEERING

With the rise of powerful LLMs, researchers have started to leverage their knowledge and reasoning
abilities for feature engineering in tabular data. One of the pioneering works is CAAFE |Hollmann et al.
(2023)). CAAFE iteratively queries an LLM (such as GPT-3) to propose new features by providing
it with the dataset’s description, feature meanings, and the prediction task. This method showed that
even a relatively simple prompting strategy can yield performance improvements on many datasets,
demonstrating the LLM’s ability to produce semantically meaningful features. Another example is
OCTree Nam et al.| (2024), which provides a mechanism for the LLM to get feedback from past exper-
iments in a human-readable form. It translates the performance of previously generated features into
a decision tree representation, then feeds that textual summary back into the LLM for the next round.

There are also notable efforts exploring feature engineering in few-shot and unsupervised learning
contexts. FeatLLM Han et al.| (2024), designed for few-shot learning scenarios, prompts an LLM
with a handful of labeled examples and asks it to extract rules or conditions that differentiate the
classes. More recently, TST-LLM |Han et al.|(2025) has been proposed for improving self-supervised

Under review as a conference paper at ICLR 2026

Meta Prompts

Reasoning Types

Deductive Abductive Counterfactual of Reasonings
-) Deductive
Inductive | Analogical Causal - Reasonin-g'_SeIection Candidate
! ::: | Inductive i
. Feature G t
Meta Prompt Generation F - _] I cature Generation Feature
Please create a meta prompt ... Abductive .
- Multi-Armed
|: Analogical j - -
Definition of Inductive Reasoning: ... Bandit Agent Concatenate to
1 r__(_:ounterfactual] Tabular Dataset
—— Meta Prompt ——— Causal l
You are a data scientist ...
Step 1. Observe: .. Tabular Dataset Feature
I e ——] _Fetur
Step 4. Express:... | . mem e e e em e m e m = === » Fvaluation
(a) Reasoning-Aware Prompt Generation (b) Dynamic Prompt Selection with Multi-Armed Bandits

Figure 1: Illustration of REFEAT. (a) Meta prompts for each reasoning type are generated using an
LLM. These prompts provide guidance on the reasoning steps associated with each strategy. (b) A
multi-armed bandit agent selects a reasoning strategy and generates a feature using the LLM and the
corresponding meta prompt. The generated feature is concatenated with the original tabular dataset,
and the evaluation gain is fed back to the bandit agent as a reward.

learning on tabular data. TST-LLM similarly uses an LLM to generate additional features or labels
that are relevant to a given task even before seeing the true labels.

In summary, the literature shows a progression from direct prompting of general LLMs to more
sophisticated integration of LLMs in the feature generation loop. Our work builds on these ideas by
using an LLM as the generator but focuses on a new dimension: guiding the mode of reasoning the
LLM uses. By introducing multiple reasoning-oriented prompts, we aim to circumvent the mode
collapse or bias problem and to inject a richer set of heuristic patterns for the model to draw on.

3 METHOD

Problem Formulation. Let D = {(z;,y;)}}_, be a dataset in which each raw instance z; € R?
is described by d original features and the corresponding target y; is either categorical (classification)
or real-valued (regression). A candidate transformation g € is a function that maps the original
feature vector to a new scalar: ¢ = g(x). Our aim is to construct a sequence of transformations
G = (g1, --,9x) and augment the data with new features X+ = [X, 1, ..., pK]. Denote by M
a chosen downstream learner (e.g., linear regression or XGBoost|Chen & Guestrinl (2016)) and by
L(+) its empirical risk - accuracy loss for classification or squared error for regression - estimated
on a validation split Dy, . The main objective is to discover

G* = argcr;ncir} L(M; XT(G), Dya). €))

Overview. The proposed method REFEAT includes a reasoning-aware prompt library with an
adaptive controller to navigate the transformation space efficiently. At each iteration, our method’s
controller (1) selects an appropriate reasoning type, (2) instantiates the corresponding meta-prompt
using dataset context, (3) queries the LLM to produce an executable transformation, (4) evaluates
the transformation’s marginal utility on the validation set, and (5) updates its controller with the
observed gain. Because different reasoning types favor different kinds of transformations, an adaptive
scheduler is essential: it learns which reasoning type is most promising for the current task while
still reserving budget to probe less-tried alternatives. Concretely, we model prompt selection as a
multi-armed bandit whose arms correspond to reasoning types and whose rewards are validation-set
performance gains. Figure [T]illustrates the overall workflow of REFEAT.

3.1 REASONING-AWARE PROMPT GENERATION

The first stage of our approach is constructing a list of meta-prompts that translate high-level reasoning
principles into concrete instructions for the LLM. We guide the LLM with instructions corresponding

Under review as a conference paper at ICLR 2026

to six reasoning types drawn from cognitive science and logical problem solving [Peirce| (1903));
Neuberg (2003); (Gentner| (1983)); Lewis|(1973)). Below, we briefly define each reasoning type and
how it influences feature generation:

* Deductive Reasoning. Derives new features by applying general rules or mathematical principles
that are known to hold. The focus is on generating logically valid transformations that follow
from established premises.

* Inductive Reasoning. Infers features by generalizing patterns observed in a few-shot examples.
It emphasizes discovering trends or correlations that appear consistently across the data samples.

* Abductive Reasoning. Proposes features that represent the most plausible hidden causes
explaining the observed data. It generates hypotheses that could account for surprising or
non-obvious relationships in the dataset.

* Analogical Reasoning. Creates new features by drawing parallels to known constructs or
transformations from similar domains. It transfers relational patterns or formulas from analogous
situations to the current context.

¢ Counterfactual Reasoning. Constructs features by imagining alternative scenarios where
certain variables take different values. It reflects how outcomes might change under hypothetical
interventions or modifications.

¢ Causal Reasoning. Generates features that express potential cause-and-effect relationships
among variables. It aims to capture mechanisms or mediators that explain how one variable
influences another.

For each reasoning type, we pre-define a natural-language template which guides the LLM to favor
the kind of logical operation characteristic of that reasoning type. To minimize researcher bias, we
bootstrap these prompts with GPT-4.1-mini|Achiam et al.[(2023) itself; the model receives the formal
definition of the reasoning mode and is asked to produce a short template that instructs the model to
adopt that reasoning perspective and returns a transformation. During feature discovery, the template
is filled with task-specific context: task descriptions, feature names, feature descriptions, few-shot
examples, performance results from previous iteration’s feature discovery, and any constraints on
allowable libraries (see Appendix [A]for full prompt examples). By explicitly framing the generation
step through a chosen reasoning lens, we encourage the LLM to traverse qualitatively distinct regions
(e.g., inductive prompts tend to propose empirically driven aggregates, while causal prompts seek
transformations suggestive of mechanistic influence).

3.2 DYNAMIC PROMPT SELECTION WITH MULTI-ARMED BANDITS

Next, we frame the selection of reasoning types as a multi-armed bandit problem Slivkins et al.
(2019), where each “arm” corresponds to one of the six reasoning types. The goal is to adaptively
allocate more trials to the reasoning modes that yield better features, while still exploring all options.
Let R = {ded,ind, abd, ana, cnt, cau} denotes the set of reasoning categories and Q;(r) denote
the estimated value of category r € R after ¢ feature evaluations. We employ an e-greedy bandit
strategy |[Kuleshov & Precup| (2014) with a decaying exploration rate:

arg max,cr @Q:(r), with prob. 1 — &,
Ty = (2

a uniformly random r € R, with prob. ¢;.

Specifically, at the beginning of the feature generation process (¢t = 0), the exploration probability
et is setto 1 (i.e. 100% exploration, which means the reasoning type for the first iteration is chosen
uniformly at random). As iterations proceed, ¢, is linearly decayed from 1 to 0, gradually shifting
from exploration to exploitation. Every category is given an optimistic value for the first time visit
Qo(r¢) so that untried reasoning types are sampled early.

After choosing a reasoning type for the current iteration, we retrieve the corresponding meta-prompt
constructed in Section [3.1] and query the LLM to generate candidate features (. Each proposed
feature is essentially a definition (e.g., a formula or transformation) that can be applied to the
dataset’s existing features. We immediately evaluate the utility of each generated feature along
with original features using a validation set. Specifically, we train a simple predictive model (e.g.,
linear regression or XGBoost) on the training set using the original features plus each new feature

Under review as a conference paper at ICLR 2026

(i.e., [X, ¢]), and measure the performance on the validation set. We compare this to a baseline model
trained on the original features alone. The performance gain A; associated with feature ¢ at iteration
t is computed as the difference in validation metrics (i.e., accuracy gain ratio for classification or
RMSE reduction ratio for regression). This evaluation procedure treats each new feature individually,
measuring its marginal benefit when added to the model.

Then, the controller updates its estimate for the current reasoning type via

Qui1(re) + Qulre) + (A — Qu(ry)), (3)

where « is a learning rate; all other () values remain unchanged. Bounded reward magnitudes and the
short bandit horizon makes this simple update rule sufficient|Sutton et al.|(1998)); Gray et al.|(2020).
In practice we set « to the harmonic step 1/n,,, where n,., counts how many times category r; has
been chosen.

Over the course of multiple iterations (e.g., 20), we maintain a global list of all generated features and
their validation performance gains. After all iterations, we rank the candidate features by their A;
values and select the top-K features overall. The final chosen features are then added to the original
dataset, yielding an augmented feature matrix X = [X, @1, ..., px]. This augmented dataset is
used to train the final predictive model whose performance is reported on the test set.

4 RESULTS

4.1 PERFORMANCE EVALUATION

Datasets. We evaluate on 59 publicly-available tabular datasets sourced from OpenMIﬂ The
corpus spans 51 classification tasks (i.e., binary and multi-class) and 8 regression tasks, covering
domains such as finance (e.g., credit-g Kadra et al.| (2021)), bank [Moro et al|(2014))), health (e.g.,
diabetes|Smith et al.| (1988))), scientific simulations (e.g., climate-model-simulation-crashes |Lucas
et al.| (2013)), and sensor logs (e.g., gesture Madeo et al.| (2013)). The full list is provided in
Appendix B] Task metadata (i.e., input schema, feature descriptions, suggested target) is extracted
from OpenML’s official documentation.

Baselines. We compare REFEAT with GPT-4.1-mini against six baselines: the raw dataset with
no additional features (i.e., ORIGINAL); conventional AutoFE systems AUTOFEAT Horn et al.| (2019)
and OPENFE [Zhang et al.| (2023)); and three LLM-based methods—C A AFE [Hollmann et al.|(2023)),
FEATLLM Han et al.|(2024)), and OCTREE |Nam et al.|(2024). Each method is allowed to generate up
to 10 features; we retain candidates that yield the highest validation improvement when concatenated
to the original features.

Evaluation. For classification we report accuracy; for regression we report root-mean-squared
error (RMSE, lower is better). We employ two downstream models of contrasting capacity: (1)
logistic/linear regression to test linear separability, and (2) XGBoost to examine gains under a powerful
non-linear learner. To facilitate dataset-wise aggregation, we compute two aggregate statistics: (1) the
win matrix, where entry Wi, 5] is the ratio of datasets on which method i strictly outperforms j (ties
excluded); and (2) the mean and median relative performance gain. In detail, we define the relative
gain of method ¢ on each dataset as

_ Acc(i) — Acc(orig) A9 _ RMSE((orig) — RMSE(%)

A (_cls)
Acc(orig) ’ : RMSE(orig) ’

2

“

where Agds) is for classification tasks and Agmg) is for regression tasks.

Results. Figure [2 shows the pair-wise win matrix averaged over the two learners, while Table T]
reports aggregate improvement statistics. Our model achieves the highest average win ratio and
wins against every baseline in more than 67.04% of pair-wise comparisons. Concretely, across
the 59 classification tasks it boosts performance by a mean of +4.65% and a median of +1.17%

'All datasets and baseline models used are publicly available for research and used in accordance with their
licenses.

Under review as a conference paper at ICLR 2026

Original - 41.38 48.89 35.29 40.00 60.87 24.00
AutoFeat - 58.62 52.54 47.46 50.98 56.90 44.07 - 80
OpenFE- 51.11 47.46 4528 44.44 65.45 38.46
CAAFE - 64.71 52.54 54.72 50.00 |80.00 34.09
FeatLLM- 60.00 49.02 55.56 50.00 77.27 38.64
OCTree- 39.13 43.10 34.55 20.00 22.73 - IZO
0

Ours-76.00 55.93 61.54 65.91 61.36 81.48

(a) Linear / Logistic Regression

Original -

! | | | | 100
44.07 34.04 27.45 37.50 55.56- I

AutoFeat - 55.93 57.63 45.76 52.94 54.24 45.76 - 80

OpenFE - 65.96 42.37 56.36 51.02 70.37 36.54 | co

CAAFE-72.55 54.24 43.64 45.65 70.37 33.33

FeatLLM- 62.50 47.06 48.98 54.35 72.73 33.33

- [20
0

OCTree- 44.44 45.76 29.63 29.63 27.27

OUI‘S- 54.24 63.46 66.67 66.67-

(b) XGBoost

Figure 2: Win matrices comparing feature engineering methods against each other with (a)
linear/logistic regression and (b) XGBoost. Tabular feature engineering methods are aligned on the
x-axis and the y-axis while the numbers represent the winning ratio of the x-axis model against the
y-axis model. Full results are reported in the Appendix@

Gain (%) AutoFeat OpenFE CAAFE FeatLLM OCTree Ours

Mean -13.99 -3.06 1.74 1.59 -0.22 5.66
Median 0.89 0.03 0.37 0.00 -0.11 1.23

Gain (%) AutoFeat OpenFE CAAFE FeatLLM OCTree Ours

Mean -1047 -2.26 1.90 1.67 -1.99 542
Median 0.40 0.00 0.23 0.00 0.00 0.85

(a) Linear / Logistic Regression (b) XGBoost

Table 1: Mean and median gain (%) of tabular feature engineering methods compared to ORIGINAL,
using (a) linear/logistic regression and (b) XGboost. The best results are highlighted in bold.

relative to ORIGINAL. These gains persist for both linear and tree-based learners, underscoring that
the discovered features complement a variety of model architectures. The out-performance over
AUTOFEAT and OPENFE indicates that LLM guidance supplies richer semantic transformations
than heuristic operator search, while the margin over recent LLM baselines highlights the value of
reasoning diversity and adaptive prompt selection. Note that for AUTOFEAT and OPENFE, overfitting
occurred on some small-sized datasets, leading to a significant drop in performance on average.
Steering the LLM with multiple reasoning lenses and a simple bandit policy consistently uncovers
features that generalize across heterogeneous datasets and model families.

4.2 ABLATION STUDY

We next dissect our design choices by comparing four reduced variants on the same 59 dataset
benchmark:

e Baseline (No-Guide): removes reasoning prompts and instead follows

feature-engineering prompt (functionally equivalent to CAAFE);

a generic

* Single-Type: runs six separate models, each fixed to one reasoning type (e.g., Abductive);

¢ Uniform-Select: cycles through all reasoning types with equal probability, foregoing bandit
adaptation; and

* Full: Our model with full components.

All other hyper-parameters, feature budgets, and evaluation settings mirror the previous performance
evaluation experiment.

Results. Table |Z| summarizes the results. Our model delivers the largest mean (+5.42%) and median
(+0.85%) performance gain . Removing reasoning guidance (No-Guide) cuts the average gain more
than half, confirming that explicitly framing the task through distinct reasoning paradigms is crucial.
Among single-type variants, Analogical and Causal prompts perform best but still trail the full model
by 3.68%—4.85% in average gain, suggesting complementary benefits across types. Uniform-Select
improves over any single fixed type yet lags the bandit strategy, indicating that adaptive exploitation of
high-payoff reasoning modes is beneficial. In summary, we found that both components are necessary:

Under review as a conference paper at ICLR 2026

Gain (%) Baseline Abductive Analogical Causal Counterfactual Deductive Inductive Uniform selection Ours

Mean 1.90 491 3.68 4.85 3.55 4.20 431 4.73 5.42
Median 0.23 0.53 0.61 0.74 0.27 0.53 0.38 0.53 0.85

Table 2: Mean and median performance gain of our full model and its ablations compared to ORIG-
INAL. Baseline denotes feature engineering without a specific reasoning strategy, while abductive,
analogical, causal, counterfactual, deductive, and inductive represent single-type reasoning, each
corresponding to its respective reasoning type. Uniform selection applies all reasoning strategies with
equal probability. The best results are highlighted in bold.

0.25 ‘ 06 .
0.20 0.5 .
. 0.4
0.15 . . £
£ & o3
G o1 ¢ £ 02 :
0.05 ° - ¢ [é 0.1 ° . .
- s ° ®e . 0.0 .—W\..‘.‘o"m
0.00 & P 028000 o 00 Ne % ° .
N . . -0.1 .
03 04 05 06 07 08 09 10 03 04 05 06 07 08 09 10
LLM Familiarity Score LLM Familiarity Score
(a) Baseline gain vs. familiarity (p, = 0.24) (b) Extra gain from ours vs. familiarity (p, = —0.13)

Figure 3: Scatter plots relating each dataset’s LLM-familiarity score to the performance gain; (a)
Baseline gain without any reasoning guidance, (b) Extra gain above the baseline achieved when our
reasoning guidance is applied. Each dot corresponds to a single dataset and p,, denotes the Pearson
correlation.

reasoning-aware prompting diversifies the search space, and the bandit controller focuses exploration
on the most promising reasoning patterns for a given dataset, together yielding robust performance
improvements.

5 DISCUSSION

5.1 LLM FAMILIARITY VS. PERFORMANCE GAIN

A natural assumption is that if the LLM is more familiar with a dataset, it will generate better features.
To examine this, we first analyze the relationship between LLM familiarity and the performance gain
of a baseline LLM-based feature generation method without reasoning guidance over the original
features (ORIGINAL). Following the strategy of prior work Bordt et al.[(2024), we estimate how
much the pretrained LLM “already knows’’ about a tabular dataset via two completion tests:

¢ Header completion. We show the model the column headers and the first ¢ rows, then ask it
to reproduce row t+1.

* Row completion. Starting from a random pivot row r, we prompt the LLM to generate row
r+1 exactly as it appears in the file.

For each test, we compute the normalized Levenshtein distance between the model’s output and
the ground-truth row. Let dyeaq, and drow, 1 denote these distances for dataset k. We aggregate them
into a single familiarity score

Ahead,k + drow,k
2 b

where F}, € [0, 1] captures how closely the LLM’s prior matches the dataset structure.

F =1 — 5)

As shown in Figure [3a] there is a clear positive correlation between LLM familiarity and the per-
formance gain of the baseline model, confirming that pretrained knowledge generally helps with

Under review as a conference paper at ICLR 2026

Num_ops Depth

Baseline (No Guide) 3.74 2.43
Ours 4.87 3.11

Table 3: Structural properties of features generated by LLMs with and without reasoning guidance.
Num_ops indicates the average number of operations per feature, while Depth indicates the depth of
nested function calls

0.661
0.30
0.64
0.251
0.62
0.20
0.60
Ours Baseline Ours Baseline
(a) Functional diversity (b) MI with target

Figure 4: Semantic quality of features discovered with and without reasoning guidance.

feature generation. Then, The next question is: When does the guidance on reasoning strategy provide
additional benefit over the baseline? To answer this, we compare LLM familiarity with the relative
performance gain of our model over the baseline (Figure 3b). Interestingly, we observe a negative
correlation - the relative gain is higher when the LLM is less familiar with the dataset. This indicates
that our approach is particularly effective in domains where the LLM’s pretrained knowledge is
limited, as it can adaptively explore multiple reasoning strategies to compensate for the lack of prior
knowledge.

5.2 COMPARISON OF GENERATED FEATURES

To understand how reasoning guidance influences the feature generation process, we compare the
feature sets produced by our method and a baseline LLM-based approach without such guidance.
Our analysis focuses on two dimensions: structural complexity and semantic quality of the features.

First, we examine the structural properties of the generated features, focusing on two metrics: the
number of operations per feature (Num_ops) and the depth of nested function calls (Depth). As
shown in Table[3] features generated by our method exhibit higher values for both metrics, reflecting
a tendency to explore more complex and compositional transformations. This increased structural
complexity may enable the model to capture patterns that are less accessible through simpler, shallow
constructions, contributing to improved predictive performance.

Then, we assess the semantic quality of the features using two complementary measures: functional
diversity and mutual information with target. Functional diversity is obtained by first computing
the Pearson correlation for every pair of newly generated features, averaging those correlations,
and then subtracting the result from one—so higher values indicate that the discovered features are
less redundant and span a broader functional space. Mutual information with target is estimated by
calculating the mutual information between each new feature and the ground-truth target label, then
averaging these values across all discovered features to give an overall relevance score. Figure] shows
that our method achieves higher scores on both metrics compared to the unguided baseline. These
results suggest that reasoning-guided generation not only promotes richer functional exploration, but
also yields features that are more informative with respect to the target task.

Under review as a conference paper at ICLR 2026

0.5
I Ours
0.4 Baseline
0.3
0.2
0.1
0.0 \ \ \
\)3 £ 0 0 N N2 L2
@ a0 B o e o
0(\‘6 e O Y A\
o

Figure 5: Distribution of reasoning types selected during feature discovery with and without reasoning
guidance.

5.3 EFFECT OF DIFFERENT LLM BACKBONE

To test whether our reasoning-guided pipeline is tied to a specific LLM backbone model, we re-
peated the entire feature-generation procedure with two alternative backbones; DEEPSEEK-CHAT
and LLAMA3.3-70B-INSTRUCT. Table [reports the relative performance increase with linear classi-
fier over the original features. Note that results with XGBoost display the same trend (DeepSeek:
+1.76% vs. +4.95%, Llama 3: —0.12% vs. +0.35%).

Gain (%) Baseline Ours

DeepSeek-Chat 1.97 (avg) / 0.69 (med) 5.31/1.04
Llama3.3-70B 0.09 (avg) /0.19 (med) 4.32/0.78

Table 4: Average and median percentage improvement over the original feature set for different LLM
backbones after feature discovery.

5.4 SELECTED REASONING TYPE BY DATASET

We analyze which reasoning strategies were finally selected across different datasets, as determined
by our bandit. Figure 5] shows the distribution of selected strategies across datasets, comparing our
model and the baseline. For the baseline, we extracted the chain-of-thought attached to each iteration,
then fed that trace back to the LLM and asked it to label which of the six reasoning types it best
matched. Compared to the baseline, which tends to heavily focus on a small subset of strategies (i.e.,
abductive, inductive, deductive), our method exhibits a more balanced usage across the full set of
available reasoning styles. This suggests that our adaptive strategy selection mechanism effectively
leverages different reasoning modes depending on the dataset characteristics.

6 CONCLUSION

This paper introduced REFEAT, a framework that discovers informative features for tabular learning.
By casting feature construction as a reasoning-type allocation problem, our method dynamically
selects reasoning types with a stochastic bandit, and finds candidate features that demonstrably boost
validation performance. Comprehensive experiments on 59 OpenML datasets—far broader than
those typically used in prior work—show that our method wins against contemporary baselines and
achieves the largest mean and median performance gains for both linear and tree-based learners.
These results confirm that reasoning diversity and data-driven prompt selection yield consistent
improvements irrespective of the downstream model family, offering a practical path toward cost-
effective, LLM-guided feature engineering.

Under review as a conference paper at ICLR 2026

REFERENCES

Nikhil Abhyankar, Parshin Shojaee, and Chandan K Reddy. Llm-fe: Automated feature engineering
for tabular data with llms as evolutionary optimizers. CoRR, 2025.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Sebastian Bordt, Harsha Nori, Vanessa Cristiny Rodrigues Vasconcelos, Besmira Nushi, and Rich
Caruana. Elephants never forget: Memorization and learning of tabular data in large language
models. In First Conference on Language Modeling, 2024.

Tianqgi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

Wei Fan, Erheng Zhong, Jing Peng, Olivier Verscheure, Kun Zhang, Jiangtao Ren, Rong Yan, and
Qiang Yang. Generalized and heuristic-free feature construction for improved accuracy. In
Proceedings of the 2010 SIAM International Conference on Data Mining, pp. 629-640. SIAM,
2010.

Dedre Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive science, 7(2):
155-170, 1983.

Robert C Gray, Jichen Zhu, and Santiago Ontafién. Regression oracles and exploration strategies
for short-horizon multi-armed bandits. In 2020 IEEE Conference on Games (CoG), pp. 312-319.
IEEE, 2020.

Sungwon Han, Jinsung Yoon, Sercan O Arik, and Tomas Pfister. Large language models can
automatically engineer features for few-shot tabular learning. In International Conference on
Machine Learning, pp. 17454—17479. PMLR, 2024.

Sungwon Han, Seungeon Lee, Meeyoung Cha, Sercan O Arik, and Jinsung Yoon. Llm-guided self-
supervised tabular learning with task-specific pre-text tasks. Transactions on Machine Learning
Research (TMLR), 2025.

Noah Hollmann, Samuel Miiller, and Frank Hutter. Large language models for automated data
science: Introducing caafe for context-aware automated feature engineering. Advances in Neural
Information Processing Systems, 36:44753-44775, 2023.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
engineering and selection. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 111-120. Springer, 2019.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. Advances in neural information processing systems, 34:23928-23941, 2021.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analytics
(DSAA), pp. 1-10. IEEE, 2015.

Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy. Cognito: Auto-
mated feature engineering for supervised learning. In 2016 IEEE 16th international conference on
data mining workshops (ICDMW), pp. 1304-1307. IEEE, 2016.

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive modeling
using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Jaris Kiiken, Lennart Purucker, and Frank Hutter. Large language models engineer too many simple
features for tabular data. In NeurIPS 2024 Third Table Representation Learning Workshop, 2024.

10

Under review as a conference paper at ICLR 2026

Volodymyr Kuleshov and Doina Precup. Algorithms for multi-armed bandit problems. arXiv preprint
arXiv:1402.6028, 2014.

David Lewis. Counterfactuals and comparative possibility. In IFS: Conditionals, Belief, Decision,
Chance and Time, pp. 57-85. Springer, 1973.

DD Lucas, R Klein, J Tannahill, D Ivanova, S Brandon, D Domyancic, and Y Zhang. Failure analysis
of parameter-induced simulation crashes in climate models. Geoscientific Model Development, 6
(4):1157-1171, 2013.

Yuanfei Luo, Mengshuo Wang, Hao Zhou, Quanming Yao, Wei-Wei Tu, Yuqiang Chen, Wenyuan Dai,
and Qiang Yang. Autocross: Automatic feature crossing for tabular data in real-world applications.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1936-1945, 2019.

Renata CB Madeo, Clodoaldo AM Lima, and Sarajane M Peres. Gesture unit segmentation using
support vector machines: segmenting gestures from rest positions. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, pp. 46-52, 2013.

Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62:22-31, 2014.

Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jachyung Kim, and Jinwoo Shin.
Optimized feature generation for tabular data via llms with decision tree reasoning. Advances in
Neural Information Processing Systems, 37:92352-92380, 2024.

Leland Gerson Neuberg. Causality: models, reasoning, and inference, by judea pearl, cambridge
university press, 2000. Econometric Theory, 19(4):675-685, 2003.

Tom Overman, Diego Klabjan, and Jean Utke. life: Interaction information based automated feature
engineering. arXiv preprint arXiv:2409.04665, 2024.

Charles S Peirce. Harvard lectures on pragmatism. Collected Papers, 5:188—189, 1903.

D Qi, J Peng, Y He, and J Wang. Auto-fp: An experimental study of automated feature preprocessing
for tabular data. Advances in Database Technology-EDBT, 27(1):129-142, 2023.

Benjamin Schifer, Carsten Grabow, Sabine Auer, Jiirgen Kurths, Dirk Witthaut, and Marc Timme.
Taming instabilities in power grid networks by decentralized control. The European Physical
Journal Special Topics, 225:569-582, 2016.

Qitao Shi, Ya-Lin Zhang, Longfei Li, Xinxing Yang, Meng Li, and Jun Zhou. Safe: Scalable automatic
feature engineering framework for industrial tasks. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE), pp. 1645-1656. IEEE, 2020.

Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in Machine
Learning, 12(1-2):1-286, 2019.

Jack W Smith, James E Everhart, WC Dickson, William C Knowler, and Robert Scott Johannes.
Using the adap learning algorithm to forecast the onset of diabetes mellitus. In Proceedings
of the annual symposium on computer application in medical care, pp. 261. American Medical
Informatics Association, 1988.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Amy E Taylor, Rebecca C Richmond, Teemu Palviainen, Anu Loukola, Robyn E Wootton, Jaakko
Kaprio, Caroline L Relton, George Davey Smith, and Marcus R Munafo. The effect of body mass
index on smoking behaviour and nicotine metabolism: a mendelian randomization study. Human
molecular genetics, 28(8):1322—-1330, 2019.

Tianping Zhang, Zheyu Aqa Zhang, Zhiyuan Fan, Haoyan Luo, Fengyuan Liu, Qian Liu, Wei Cao,

and Li Jian. Openfe: Automated feature generation with expert-level performance. In International
Conference on Machine Learning, pp. 41880—41901. PMLR, 2023.

11

Under review as a conference paper at ICLR 2026

APPENDIX

A FuULL PROMPT EXAMPLES

The below is the set of prompt examples for our proposed method, REFEAT, for each reasoning type.
The blue-highlighted portion indicates the part of the prompt that varies depending on the reasoning

type.

You are a data scientist tasked with discovering meaningful new features from tabular data.

You will be shown a small number of data rows, each consisting of multiple columns. You are also
given general domain knowledge or predefined rules. Your goal is to deductively derive useful new
features by systematically applying known rules or definitions to the data. Given the examples and
background knowledge, follow these steps:

Step 1. Recall: Identify relevant rules, formulas, or domain principles that could be applied to the given
data.

Step 2. Apply: Use those rules to derive new features from existing columns.
Step 3. Explain: For each proposed feature, clearly explain the logic and rule that supports it.

Step 4. Express: Provide a formula or logic (in words or pseudo-code) for computing each new feature
from the original columns.

Here below is the supported operation_type.

| Type | "Desc" | "Example" |

| —1—1—1

| "addition" | "A+B" | df["A"]+df["B"] |

| "subtraction” | "A-B" | df["A"]-df["B"] |

| "multiplication” | "TAB" | df["A"]*df["B"] |

| "division" | "A/B" | df["A"]/df["B"] |

| "logarithm" | "log(A)" | np.log1p(df["A"]) |

| "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |

| "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |

"combination_logical"	"A>val & B<val"	(df["A"]>5)&(df["B"]<3)
"groupby_agg"	"group-mean"	df.groupby("G")["A"].mean()
"interaction_logical"	"valflag"	df["A"]*(df["B"]>0)

| "ranking" | "rank, gcut" | df["A"].rank() |

Task: <TASK DESCRIPTION>
Input columns: <FEATURE DESCRIPTION>

<FEW-SHOT EXAMPLES>

Previous features performance on validation:
[PREVIOUS FEATURE RESULTS]

Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not
in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]
</Result> ONLY return a smgle Python EXPRESSION with pandas notation usmg ‘df for' code" Do
NOT include "df['new’]=...", use only columns listed in the metadata, and do NOT include TARGET
variable in the EXPRESSION.

Figure 6: Example prompt for feature discovery via deductive reasoning.

12

Under review as a conference paper at ICLR 2026

You are a data scientist tasked with discovering meaningful new features from tabular data.

You will be shown a small number of data rows, each consisting of multiple columns. Your goal is to
inductively infer useful new features by identifying patterns and generalizing across the examples.
Given the examples, follow these steps:

Step 1. Observe: Carefully examine how values across columns in the examples relate to each other
across different rows. Explicitly refer to the corresponding examples for explanation.

Step 2. Induce: Propose new feature(s) that capture general patterns or derived quantities not explicitly
represented in the original columns.

Step 3. Explain: For each proposed feature, clearly explain the reasoning behind it and how it
generalizes across rows.

Step 4. Express: Provide a formula or logic (in words or pseudo-code) for computing each new feature
from the original columns.

Here below is the supported operation_type.

| Type | "Desc" | "Example" |

| —I—1—1

| "addition" | "A+B" | df["A"]+df["B"] |

| "subtraction" | "A-B" | df["A"]-df["B"] |

| "multiplication” | "TAB" | df["A"]*df["B"] |

| "division" | "A/B" | df["A")/df["B"] |

| "logarithm" | "log(A)" | np.log1p(df["A"]) |

| "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |

| "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |

"combination_logical"	"A>val & B<val"	(df["A"]>5)&(df["B"]<3)
"groupby_agg"	"group-mean"	df.groupby("G")["A"].mean()
"interaction_logical"	"valflag"	df["A"]*(df["B"]>0)

| "ranking" | "rank, gcut" | df["A"].rank() |

Task: <TASK DESCRIPTION>
Input columns: <FEATURE DESCRIPTION>

<FEW-SHOT EXAMPLES>

Previous features performance on validation:
[PREVIOUS FEATURE RESULTS]

Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not
in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]
</Result> ONLY return a smgle Python EXPRESSION with pandas notation usmg ‘df > for ' code" Do
NOT include "df[’'new’]= ...", use only columns listed in the metadata, and do NOT include TARGET
variable in the EXPRESSION.

Figure 7: Example prompt for feature discovery via inductive reasoning.

13

Under review as a conference paper at ICLR 2026

You are a data scientist tasked with discovering meaningful new features from tabular data.

You will be shown a small number of data rows, each consisting of multiple columns. Your goal is
to use abductive reasoning to hypothesize the most plausible hidden causes or explanations for the
observed data patterns, and propose new features accordingly. Given the examples, follow these steps:

Step 1. Observe: Carefully examine surprising or non-obvious patterns or correlations in the data.

Step 2. Hypothesize: Suggest possible latent variables or derived quantities that could plausibly explain
the observed outcomes.

Step 3. Infer: Propose new features that would serve as those explanatory factors.

Step 4. Explain: Justify your hypothesis and explain how the new feature accounts for the observed
data.

Step 5. Express: Provide a formula or logic (in words or pseudo-code) for computing the proposed
feature from existing columns.

Here below is the supported operation_type.

| Type | "Desc" | "Example" |

| —1—1—1

| "addition" | "A+B" | df["A"]+df["B"] |

| "subtraction" | "A-B" | df["A"]-df["B"] |

| "multiplication” | "TAB" | df["A"]*df["B"] |

| "division" | "A/B" | df["A"]/df["B"] |

| "logarithm" | "log(A)" | np.loglp(df["A"]) |

| "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |

| "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |

"combination_logical"	"A>val & B<val"	(df["A"]>5)&(df["B"]<3)
"groupby_agg"	"group-mean"	df.groupby("G")["A"].mean()
"interaction_logical"	"valflag"	df["A"]*(df["B"]>0)

| "ranking" | "rank, gcut" | df["A"].rank() |

Task: <TASK DESCRIPTION>
Input columns: <FEATURE DESCRIPTION>

<FEW-SHOT EXAMPLES>

Previous features performance on validation:
[PREVIOUS FEATURE RESULTS]

Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not
in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]
</Result> ONLY return a smgle Python EXPRESSION with pandas notation usmg ‘df for' code" Do
NOT include "df[’'new’]= ...", use only columns listed in the metadata, and do NOT include TARGET
variable in the EXPRESSION .

Figure 8: Example prompt for feature discovery via abductive reasoning.

14

Under review as a conference paper at ICLR 2026

You are a data scientist tasked with discovering meaningful new features from tabular data.

You will be shown a small number of data rows, each consisting of multiple columns. Your goal is
to use analogical reasoning to propose new features by identifying relational patterns between data
columns and applying similar transformations in new contexts. Given the examples, follow these steps:

Step 1. Identity: Find a relationship or transformation between two or more columns in one or more rows.
Step 2. Map: Check if similar relationships exist across other rows (i.e., establish analogies).

Step 3. Generalize: Propose a new feature that captures the underlying analogy consistently across rows.
Step 4. Explain: Describe the analogy and why the proposed feature fits the observed relational pattern.

Step 5. Express: Provide a formula or logic (in words or pseudo-code) for computing the new feature
from the original columns.

Here below is the supported operation_type.

| Type | "Desc" | "Example" |

| —I—1—1

| "addition" | "A+B" | df["A"]+df["B"] |

| "subtraction" | "A-B" | df["A"]-df["B"] |

| "multiplication”" | "AB" | df["A"]*df["B"] |

| "division" | "A/B" | df["A"]/df["B"] |

| "logarithm" | "log(A)" | np.loglp(df["A"]) |

| "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |

| "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |

"combination_logical"	"A>val & B<val"	(df["A"]>5)&(df["B"]<3)
"groupby_agg"	"group-mean"	df.groupby("G")["A"].mean()
"interaction_logical"	"valflag"	df["A"]*(df["B"]>0)

| "ranking" | "rank, gcut" | df["A"].rank() |

Task: <TASK DESCRIPTION>
Input columns: <FEATURE DESCRIPTION>

<FEW-SHOT EXAMPLES>

Previous features performance on validation:
[PREVIOUS FEATURE RESULTS]

Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not
in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]
</Result> ONLY return a single Python EXPRESSION with pandas notation using ‘df” for "code". Do
NOT include "df[’new’]=...", use only columns listed in the metadata, and do NOT include TARGET

variable in the EXPRESSION.

Figure 9: Example prompt for feature discovery via analogical reasoning.

15

Under review as a conference paper at ICLR 2026

You are a data scientist tasked with discovering meaningful new features from tabular data.

You will be shown a small number of data rows, each consisting of multiple columns. Your goal is
to use counterfactual reasoning to generate features that estimate what would have happened under
alternative scenarios, by imagining changes to certain variables while keeping others fixed. Given the
examples, follow these steps:

Step 1. Select: Choose a key variable that may be the cause of an observed outcome.

Step 2. Intervene: Imagine how the outcome would change if that variable had taken a different value
(counterfactual intervention).

Step 3. Compare: Contrast the actual outcome with the counterfactual outcome.
Step 4. Construct: Propose a new feature that captures this difference or counterfactual scenario.

Step 5. Explain: Justify your reasoning and how this counterfactual feature could help model alternative
behaviors or fairness.

Step 6. Express: Provide a formula or logic (in words or pseudo-code) for computing the counterfactual-
based feature.

Here below is the supported operation_type.

| Type | "Desc" | "Example" |

| —l—1—1

| "addition" | "A+B" | df["A"]+df["B"] |

| "subtraction" | "A-B" | df["A"]-df["B"] |

| "multiplication” | "TAB" | df["A"]*df["B"] |

| "division" | "A/B" | df["A"]/df["B"] |

| "logarithm" | "log(A)" | np.log1p(df["A"]) |

| "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |

| "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |

"combination_logical"	"A>val & B<val"	(df["A"]>5)&(df["B"]<3)
"groupby_agg"	"group-mean"	df.groupby("G")["A"].mean()
"interaction_logical"	"valflag"	df["A"]*(df["B"]>0)

| "ranking" | "rank, gcut" | df["A"].rank() |

Task: <TASK DESCRIPTION>
Input columns: <FEATURE DESCRIPTION>

<FEW-SHOT EXAMPLES>

Previous features performance on validation:
[PREVIOUS FEATURE RESULTS]

Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not
in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]
</Result> ONLY return a smgle Python EXPRESSION with pandas notation usmg ‘df for' code" Do
NOT include "df[’new’]=...", use only columns listed in the metadata, and do NOT include TARGET
variable in the EXPRESSION.

Figure 10: Example prompt for feature discovery via counterfactual reasoning.

16

Under review as a conference paper at ICLR 2026

You are a data scientist tasked with discovering meaningful new features from tabular data.

You will be shown a small number of data rows, each consisting of multiple columns. Your goal is to
use causal reasoning to infer and construct features that reflect causal relationships — that is, variables
that directly influence others in the dataset. Given the examples, follow these steps:

Step 1. Identify: Look for potential causal relationships — i.e., where one variable might directly affect
another.

Step 2. Justify: Provide reasoning or evidence from the data (e.g., monotonic patterns, interventions,
domain knowledge) that supports the causal interpretation.

Step 3. Construct: Propose new features that represent either (a) the inferred cause, (b) the causal
mechanism, or (c) a mediating factor between cause and effect.

Step 4. Explain: Clearly describe the assumed causal structure and how the new feature fits into it.

Step 5. Express: Provide a formula or logic (in words or pseudo-code) for computing the feature from
original columns.

Here below is the supported operation_type.

| Type | "Desc" | "Example" |

| —1—1—1

| "addition" | "A+B" | df["A"]+df["B"] |

| "subtraction" | "A-B" | df["A"]-df["B"] |

| "multiplication” | "AB" | df["A"]*df["B"] |

| "division" | "A/B" | df["A"]/df["B"] |

| "logarithm" | "log(A)" | np.log1p(df["A"]) |

| "nonlinear_transform" | "sqrt, square" | np.sqrt(df["A"]) |

| "flag_threshold" | "A>val" | (df["A"]>10).astype(int) |

"combination_logical"	"A>val & B<val"	(df["A"]>5)&(df["B"]<3)
"groupby_agg"	"group-mean"	df.groupby("G")["A"].mean()
"interaction_logical"	"valflag"	df["A"]*(df["B"]>0)

| "ranking" | "rank, gcut" | df["A"].rank() |

Task: <TASK DESCRIPTION>
Input columns: <FEATURE DESCRIPTION>

<FEW-SHOT EXAMPLES>

Previous features performance on validation:
[PREVIOUS FEATURE RESULTS]

Provide your reasoning step in <thinking> </thinking>, then return your new top-3 feature results (not
in the original data) in the following JSON format:<Result> [{"feature_name": "...", "code": "..."}, ...]
</Result> ONLY return a smgle Python EXPRESSION with pandas notation us1ng ‘df > for ' code" Do
NOT include "df[’new’]=...", use only columns listed in the metadata, and do NOT include TARGET
variable in the EXPRESSION.

Figure 11: Example prompt for feature discovery via causal reasoning.

17

Under review as a conference paper at ICLR 2026

B DATASET DETAILS

The table below summarizes the basic statistics of the 59 benchmark datasets used in our work. It
covers a total of 51 classification tasks and 8 regression tasks, with diverse ranges in both the number
of samples and the number of features.

Table 5: Statistics of datasets used in our work.

Data | Number of samples Number of features (cat/num) Task type

adult 48842 8/6 binary classification
authorship 841 0/69 multi-class classification
balance-scale 625 0/4 multi-class classification
bank 45211 97 binary classification
blood 748 0/4 binary classification
breast-w 683 0/9 binary classification
car 1728 6/0 multi-class classification
churn 5000 0/20 binary classification
climate-model-simulation-crashes 540 0/20 binary classification
cme 1473 0/9 multi-class classification
connect-4 67557 0/42 multi-class classification
credit-a 666 9/6 binary classification
credit-g 1000 13/7 binary classification
cylinder-bands 378 19/20 binary classification
diabetes 768 0/8 binary classification
dmft 661 2/2 multi-class classification
dresses-sales 500 1111 binary classification
electricity 45312 0/8 binary classification
eucalyptus 641 5/14 multi-class classification
first-order-theorem-proving 6118 0/51 multi-class classification
gesture 9873 0/32 multi-class classification
heart 918 5/6 binary classification
ilpd 583 1/9 binary classification
junglechess 44819 0/6 multi-class classification
ke2 522 0/21 binary classification
kr-vs-kp 3196 36/0 binary classification
letter 20000 0/16 multi-class classification
mfeat-fourier 2000 0/76 multi-class classification
mfeat-karhunen 2000 0/64 multi-class classification
mfeat-morphological 2000 0/6 multi-class classification
mfeat-zernike 2000 0/47 multi-class classification
myocardial 686 84/7 binary classification
numerai 96320 0/21 binary classification
optdigits 5620 0/64 multi-class classification
ozone-level-8hr 1847 0/72 binary classification
pendigits 10992 0/16 multi-class classification
phishing 11055 0/30 binary classification
phoneme 5404 0/5 binary classification
gsar-biodeg 1055 0/41 binary classification
segment 2310 0/19 multi-class classification
spambase 4601 0/57 binary classification
splice 3190 60/0 multi-class classification
steel-plates-fault 1941 0/27 multi-class classification
texture 5500 0/40 multi-class classification
tic-tac-toe 958 9/0 binary classification
vehicle 846 0/18 multi-class classification
vowel 990 2/10 multi-class classification
wall-robot-navigation 5456 0/24 multi-class classification
wdbc 569 0/30 binary classification
wilt 4839 0/5 binary classification
wine 6497 1/11 multi-class classification
bike 17379 0/12 regression

crab 3893 177 regression
forest-fires 517 2/10 regression
grid-stability 10000 0/12 regression
housing 20433 1/8 regression
insurance 1338 3/3 regression

mpg 398 1/6 regression
satimage 6430 0/36 regression

C IMPLEMENTATION DETAILS

Our proposed model, REFEAT, generates features over 20 iterations, using GPT-4.1-mini as the
LLM backbone. From the generated candidates, we select the top-10 features that yield the highest
validation performance for final evaluation. For the baselines, including AUTOFEAT, OPENFE,
CAAFE, FEATLLM, and OCTREE, we followed the default settings provided in their respective

18

Under review as a conference paper at ICLR 2026

papers, except that we unify the LLM backbone and fix the number of generated features to 10 to
ensure a fair comparison. The downstream predictors, including linear and logistic regression as
well as XGBoost, were also used with their default parameters. Each dataset is split into training,
validation, and test sets with a ratio of 6:2:2.

D DISTRIBUTION OF OPERATION TYPES

We compare the distribution of operation types used in the features generated by our method and
the baseline LLM feature generation without reasoning guidance. Operation types include a mix of
arithmetic operations (e.g., addition, multiplication), non-linear transformations (e.g., logarithm),
logical constructs (e.g., threshold flags, logical combinations), and aggregations (e.g., group-by,
ranking). As shown in Figure[12] the overall distribution patterns are broadly similar across both
methods, without significant difference.

I Baseline
@ Qurs

Operation Type

Figure 12: Histogram of operation type ratios used in feature discovery, comparing our model
(REFEAT) and the baseline (without reasoning type exploration).

19

Under review as a conference paper at ICLR 2026

E QUALITATIVE ANALYSES

This section provides a comprehensive qualitative analysis of features generated by our REFEAT
method compared to the baseline approach across 57 real-world datasets. Our analysis examines
timing patterns and top-performing features. Key findings reveal that REFEAT achieves 2.95 times
higher maximum performance gains over the validation set (47.84% vs 16.22%) and 2.41 times
higher average gains (3.59% vs 1.49%) with similar feature generation volumes (i.e., # of selected
features = 10) from the baseline.

E.1 FEATURE GENERATION TIMING AND LEARNING PATTERNS

Analysis of iteration-based performance reveals REFEAT’s superior learning dynamics throughout
the feature discovery process. In early iterations (1-10) presented in Table [6] REFEAT already
demonstrates substantial advantages with 3.26% average gain compared to the baseline’s 1.42%. This
gap widens in later iterations (11-20), where REFEAT achieves 3.94% compared to the baseline’s
1.56%; unlike baseline approaches that show diminishing returns, REFEAT continues discovering
better features throughout the exploration phase. Furthermore, the results demonstrate that our model
converges faster by the inference strategy; our model’s peak performance occurs on the iteration 7,
where REFEAT reaches 7.41% gain; ours reached to the peak earlier than the baseline on the iteration
13, indicating effective bandit learning and adaptation.

Phase Iterations REFEAT Gain Relative Gain Observation
Early Discovery 1-10 3.26% (Avg.) +128.9% Quick adaptation
Late Optimization 11-20 3.94% (Avg.) +153.0% Continued learning
Peak Performance (Baseline) 13 2.51% +17.9% Baseline convergence
Peak Performance (REFEAT) 7 7.41% +437.9% Bandit convergence

Table 6: Iteration-based performance analysis over the validation set. Bold is the best value.

E.2 ToP PERFORMING FEATURES ANALYSIS

Table [7] presents the highest-performing features from both methods, revealing stark qualitative
differences. REFEAT’s top features demonstrate semantic meaningfulness, mathematical sophis-
tication, and domain integration. The best-performing feature, responsiveness_index (47.84%
gain), implements control theory principles through multi-ratio aggregation [Schifer et al.| (2016).
Features like high_bmi_smoker_flag (42.47% gain) capture compound risk factors with clinical
relevance Taylor et al.|(2019)). In contrast, baseline features tend toward simple arithmetic operations
with generic naming patterns. REFEAT features consistently exhibit interpretable, domain-relevant
names that reflect understanding of field-specific relationships.

Rank Method Feature Name Gain (%) Dataset Reasoning Type
1 REFEAT responsiveness_index 47.84 grid-stability Causal
2 REFEAT high_bmi_smoker_flag 42.47 insurance Counterfactual
3 REFEAT weighted_tau_std 40.83 grid-stability Causal
1 Baseline DMFT_Trend 16.22 dmft N/A
2 Baseline Improvement_Male_Interaction 10.81 dmft N/A
3 Baseline Female DMFT_Begin_Interaction 10.81 dmft N/A

Table 7: Top-5 performing features comparison over the validation set.

20

Under review as a conference paper at ICLR 2026

E.3 KEY QUALITATIVE INSIGHTS

REFEAT demonstrates semantic intelligence by generating meaningful, interpretable feature names
that reflect domain understanding. Features exhibit mathematical sophistication through complex
multi-step operations rather than simple transformations. Domain awareness manifests in features
that capture field-specific relationships and established principles. Also, different reasoning types
demonstrate complementary strengths across domains, with the adaptive bandit strategy successfully
identifying optimal reasoning for each dataset. The absence of a single dominant strategy validates
the multi-reasoning approach and highlights the importance of reasoning diversity.

For practical implications, the generated features are production-ready with interpretable and
auditable properties. The method successfully transfers across diverse application domains while
producing expert-level quality features that typically require human domain expertise. Meanwhile,
limitations exist too with the proposed method. The approach requires 20 iterations for convergence
compared to single-shot methods, creating computational overhead. Quality depends on underlying
LLM capabilities, and highly specialized domains may require additional expert guidance.

F LIMITATION

The main limitation of our approach is the need for multiple interaction rounds with the LLM to
identify the most suitable reasoning type for a given task. A promising remedy is to endow the LLM
with a built-in “reasoning-type prior.” In detail, one could fine-tune a LLM model on meta-examples
where the input is a compact task description and the output is the reasoning strategy that ultimately
produced the highest gain during past searches. We leave this fast-start variant and an investigation of
how well it generalizes to entirely new domains as important future work.

Additionally, while our current work does not explicitly address biases in LLMs or training data, nor
human-centered values, we acknowledge these risks as important considerations. A more thorough
risk and ethics analysis, including human-centered evaluation and mitigation of unintended outcomes,
remains an open direction for future work.

G THE USE OF LLMS IN PAPER WRITING

We use LLMs in the paper writing only to polish writing.

21

Under review as a conference paper at ICLR 2026

H FULL RESULTS

Dataset Base CAAFE FeatLLM OpenFE OCTree AutoFeat Ours

Adult 0.8543 0.8592 0.8611 0.8647 0.8533 0.7979 0.8614
Authorship 0.9882 0.9941 0.9941 0.9941 0.9941 1.0000 0.9941
Balance-Scale 0.8640 0.9920 1.0000 0.8640 0.8560 0.9333 1.0000
Bank 0.9013 0.9008 0.9038 0.8863 0.9015 0.9003 0.9029
Blood 0.7667 0.8000 0.8067 0.7867 0.7667 0.7656 0.8000
Breast-W 0.9635 0.9635 0.9635 0.9562 0.9562 0.9780 0.9635
Car 0.9017 0.9509 0.9566 0.0405 0.9046 0.9199 0.9364
Churn 0.8700 0.8720 0.8870 0.9000 0.8710 0.8637 0.8880
Climate-Model-Simulation-Crashes 0.9630 0.9537 0.9537 0.9630 0.9537 0.9383 0.9537
Cmc 0.5390 0.5864 0.5322 0.5627 0.5458 0.5617 0.5763
Connect-4 0.6607 0.6953 0.6607 0.7259 0.6609 0.6613 0.6694
Credit-A 0.8134 0.8060 0.8134 0.8209 0.8134 0.8972 0.8284
Credit-G 0.7050 0.6950 0.7000 0.7200 0.7200 0.7867 0.7050
Cylinder-Bands 0.8026 0.6974 0.8158 0.8026 0.7368 0.9204 0.8026
Diabetes 0.7143 0.7208 0.7468 0.7273 0.7273 0.7652 0.7273
Dmft 0.2406 0.2782 0.2481 0.1429 0.2556 0.2390 0.2556
Dresses-Sales 0.6100 0.5900 0.5800 0.6000 0.6200 0.7833 0.6300
Electricity 0.7567 0.7573 0.7612 0.7597 0.7570 0.7527 0.7547
Eucalyptus 0.6357 0.6589 0.6357 0.6202 0.6124 0.5313 0.6589
First-Order-Theorem-Proving 0.4935 0.4935 0.5114 0.5033 0.4975 0.5210 0.4877
Gesture 0.4689 0.4759 0.4719 0.4800 0.4668 0.4266 0.4800
Heart 0.8859 0.8913 0.8859 0.8261 0.8804 0.8782 0.8804
Ilpd 0.6923 0.6923 0.6410 0.6923 0.7179 0.7278 0.7009
Junglechess 0.6756 0.7130 0.7282 0.6193 0.6778 0.7115 0.7063
Kc2 0.8190 0.8000 0.8090 0.8190 0.8095 0.8526 0.8190
Kr-Vs-Kp 0.9625 0.9672 0.9625 0.7422 0.9641 0.9724 0.9688
Letter 0.7695 0.7893 0.8130 0.7903 0.7673 0.7108 0.7913
Mfeat-Fourier 0.8050 0.8075 0.7875 0.8100 0.7875 0.8417 0.8050
Mfeat-Karhunen 0.9575 0.9500 0.9350 0.9600 0.9596 1.0000 0.9550
Mfeat-Morphological 0.7200 0.7250 0.7200 0.7275 0.7050 0.6808 0.7250
Mfeat-Zernike 0.8325 0.8100 0.8225 0.8300 0.8125 0.7408 0.8450
Myocardial 0.7681 0.7899 0.7681 0.8043 0.7899 0.8832 0.7754
Numerai 0.5163 0.5166 0.5172 0.5165 0.5180 0.5247 0.5172
Optdigits 0.9689 0.9760 0.9671 09715 0.9689 0.9947 0.9795
Ozone-Level-8Hr 0.9378 0.9378 0.9378 0.9351 0.9297 0.9431 0.9405
Pendigits 0.9454 0.9673 0.9636 0.9686 0.9432 0.6644 0.9764
Phishing 0.9285 09313 0.9340 0.9249 0.9290 0.9430 0.9380
Phoneme 0.7364 0.7678 0.7835 0.7937 0.7401 0.8054 0.7567
Qsar-Biodeg 0.8626 0.8531 0.8578 0.8436 0.8531 0.9005 0.8626
Segment 09372 0.9589 0.9416 09610 0.9372 0.9286 0.9524
Spambase 0.9294 0.9294 0.9229 0.9338 0.9229 0.9457 0.9370
Splice 0.9451 0.9389 0.9436 0.5188 0.9326 0.9963 0.9404
Steel-Plates-Fault 0.7275 0.7481 0.7249 0.7326 0.7224 0.5687 0.7249
Texture 0.9927 0.9964 0.9927 0.9927 0.9927 0.9806 0.9927
Tic-Tac-Toe 0.9740 0.9427 0.9740 0.3490 0.9688 0.9826 0.9740
Vehicle 0.8176 0.8235 0.8471 0.8353 0.8294 0.7179 0.8176
Vowel 0.7727 0.9040 0.7626 0.7273 0.7525 0.9394 0.9091
Wall-Robot-Navigation 0.6923 0.8782 0.9139 09212 0.6969 0.9404 0.8480
Wdbc 0.9649 0.9737 0.9737 0.9649 0.9737 0.9677 0.9737
Wilt 0.9618 0.9855 0.9700 0.9866 0.9556 0.9459 0.9835
Wine 0.5415 0.5446 0.5492 0.5700 0.5392 0.5381 0.5538

Table 8: Evaluation results (Accuracy) of tabular feature engineering models using a linear model as
the downstream predictor on 51 classification datasets.

22

Under review as a conference paper at ICLR 2026

Dataset Base CAAFE FeatLLM OpenFE OCTree AutoFeat Ours

Adult 0.8538 0.8601 0.8512 0.8663 0.8536 0.8542 0.8611
Authorship 0.9882 0.9882 0.9882 0.9882 0.9882 1.0000 0.9882
Balance-Scale 0.8720 1.0000 1.0000 0.8720 0.8720 0.8933 1.0000
Bank 0.9014 0.9008 0.9021 0.8936 0.9018 0.8830 0.9028
Blood 0.7667 0.8000 0.7967 0.8000 0.7667 0.7656 0.8000
Breast-W 0.9635 0.9562 0.9635 0.9489 0.9562 0.9804 0.9635
Car 0.9364 0.9566 0.9682 0.0867 0.9306 0.9402 0.9566
Churn 0.8700 0.8720 0.8870 0.8960 0.8720 0.8643 0.8850
Climate-Model-Simulation-Crashes 0.9630 0.9537 0.9722 0.9630 0.9722 0.9846 0.9537
Cmc 0.5390 0.5966 0.5356 0.5661 0.5559 0.5493 0.5864
Connect-4 0.6607 0.6955 0.6607 0.7258 0.6607 0.6613 0.6695
Credit-A 0.8134 0.7910 0.7836 0.8060 0.7910 0.9048 0.7910
Credit-G 0.7050 0.6900 0.7050 0.7000 0.7250 0.8033 0.7050
Cylinder-Bands 0.6974 0.6974 0.7895 0.7368 0.6974 1.0000 0.6974
Diabetes 0.7143 0.7273 0.7403 0.7273 0.7273 0.7848 0.7273
Dmft 0.2406 0.2782 0.2481 0.2030 0.2556 0.2369 0.2481
Dresses-Sales 0.5800 0.5600 0.5500 0.5500 0.6600 0.8367 0.5600
Electricity 0.7570 0.7575 0.7613 0.7568 0.7573 0.7570 0.7556
Eucalyptus 0.6124 0.6512 0.6124 0.6047 0.5969 0.8177 0.6589
First-Order-Theorem-Proving 0.4959 0.5008 0.5131 0.5000 0.4943 0.5264 0.4877
Gesture 0.4694 0.4739 0.4704 0.4820 0.4653 0.5306 0.4795
Heart 0.8859 0.8750 0.8804 0.4837 0.8750 0.8764 0.8804
Ilpd 0.6838 0.6752 0.6325 0.6923 0.6838 0.7163 0.7009
Junglechess 0.6758 0.7115 0.7281 0.6197 0.6780 0.7237 0.7063
Kc2 0.8190 0.8000 0.8095 0.8190 0.7905 0.8558 0.8190
Kr-Vs-Kp 0.9797 0.9844 0.9797 0.8703 0.4781 0.9828 0.9859
Letter 0.7643 0.7855 0.8103 0.7838 0.7650 0.7538 0.7868
Mfeat-Fourier 0.7975 0.8075 0.7900 0.7975 0.7850 0.1000 0.7950
Mfeat-Karhunen 0.9450 0.9500 0.9350 0.9450 0.9317 1.0000 0.9525
Mfeat-Morphological 0.7325 0.7250 0.7300 0.7325 0.7200 0.7075 0.7275
Mfeat-Zernike 0.8250 0.8125 0.8225 0.8150 0.8075 0.6500 0.8400
Myocardial 0.7754 0.7754 0.7754 0.7754 0.7754 0.2214 0.7826
Numerai 0.5163 0.5184 0.5170 0.5170 0.5183 0.4948 0.5184
Optdigits 0.9689 0.9760 0.9582 0.9680 0.9609 0.0985 0.9724
Ozone-Level-8Hr 09432 0.9351 0.9432 0.9405 0.9432 0.9503 0.9378
Pendigits 0.9432 0.9668 0.9618 0.9650 0.9441 0.9503 0.9732
Phishing 0.9285 0.9322 0.9344 0.9236 0.9281 0.9426 0.9371
Phoneme 0.7364 0.7678 0.7789 0.7882 0.7401 0.8057 0.7558
Qsar-Biodeg 0.8531 0.8531 0.8578 0.8294 0.8578 0.8847 0.8531
Segment 0.9545 0.9567 0.9481 0.9654 0.9459 0.9452 0.9567
Spambase 0.9273 0.9349 0.9197 0.9327 09164 03942 0.9327
Splice 0.9201 0.9232 0.9185 0.6489 0.9216 0.9995 0.9248
Steel-Plates-Fault 0.7326 0.7352 0.7301 0.7275 0.7172 0.4794 0.7198
Texture 0.9964 0.9964 0.9964 0.9982 0.9964 0.9833 0.9964
Tic-Tac-Toe 0.9740 0.9688 0.9740 0.3490 0.6510 0.9861 0.9792
Vehicle 0.8235 0.8235 0.8412 0.8412 0.8294 0.6608 0.8235
Vowel 0.7828 09141 0.7980 0.7222 0.7828 0.9697 0.9293
Wall-Robot-Navigation 0.6932 0.8773 0.9112 09148 0.6859 0.8921 0.8397
Wdbc 0.9737 0.9737 0.9737 0.9737 0.6316 0.9795 0.9649
Wilt 0.9638 0.9886 0.9793 0.9866 0.9618 0.9480 0.9866
Wine 0.5362 0.5462 0.5408 0.5338 0.5362 0.5117 0.5477

Table 9: Evaluation results (Accuracy) of tabular feature engineering models using a XGboost model
as the downstream predictor on 51 classification datasets.

Dataset Base CAAFE FeatLLM OpenFE OCTree AutoFeat Ours
Bike 1.938E+04 1.935E+04 N/A 1.938E+04 1.940E+04 1.863E+04 8.438E+03
Crab 4.641 4.640 N/A 4.558 4.657 10.170 4.456
Forest-Fires 1.161E+04 1.174E+04 N/A 1.161E+04 1.155E+04 2.256E+03 1.164E+04
Grid-Stability 0.0005 0.0005 N/A 0.0005 0.0005 0.0013 0.0002
Housing 4.800E+09 4.800E+09 N/A 4.800E+09 4.805E+09 1.310E+10 4.400E+09
Insurance 3.360E+07 3.463E+07 N/A 3.360E+07 3.375E+07 1.200E+08 1.798E+07
Mpg 10.53 10.41 N/A 10.53 11.08 12.70 9.33
Satimage 1.387 1.387 N/A 1.135 1.395 4.895 1.065

Table 10: Evaluation results (RMSE) of tabular feature engineering models using a linear model as the
downstream predictor on 8 regression datasets. Note that FeatLLM is applicable only to classification
tasks.

23

Under review as a conference paper at ICLR 2026

Dataset Base CAAFE FeatLLM OpenFE OCTree AutoFeat Ours
Bike 1.939E+04 1.939E+04 N/A 1.939E+04 1.940E+04 1.865E+04 8.442E+03
Crab 4.874 4.862 N/A 4.568 4.874 10.849 4.452
Forest-Fires 1.163E+04 1.165E+04 N/A 1.163E+04 1.157E+04 2.257E+03 1.166E+04
Grid-Stability 0.0005 0.0005 N/A 0.0003 0.0005 0.0000 0.0002
Housing 4.800E+09 4.810E+09 N/A 4.800E+09 4.811E+09 1.310E+10 4.400E+09
Insurance 3.360E+07 3.368E+07 N/A 3.360E+07 3.375E+07 1.200E+08 1.788E+07
Mpg 10.30 10.31 N/A 10.30 10.69 13.58 9.36
Satimage 1.387 1.390 N/A 1.163 1.387 1.387 1.069

Table 11: Evaluation results (RMSE) of tabular feature engineering models using a XGBoost model
as the downstream predictor on 8 regression datasets. Note that FeatLLM is applicable only to
classification tasks.

24

	Introduction
	Related Work
	Automated Feature Engineering
	LLM-Based Feature Engineering

	Method
	Reasoning-Aware Prompt Generation
	Dynamic Prompt Selection With Multi-Armed Bandits

	Results
	Performance Evaluation
	Ablation Study

	Discussion
	LLM Familiarity vs. Performance Gain
	Comparison of Generated Features
	Effect of Different LLM Backbone
	Selected Reasoning Type by Dataset

	Conclusion
	Full Prompt Examples
	Dataset Details
	Implementation Details
	Distribution of Operation Types
	Qualitative Analyses
	Feature generation timing and learning patterns
	Top performing features analysis
	Key qualitative insights

	Limitation
	The Use of LLMs in Paper Writing
	Full Results

