
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KEYVID: KEYFRAME-AWARE VIDEO DIFFUSION FOR
AUDIO-SYNCHRONIZED VISUAL ANIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generating video from various conditions, such as text, image, and audio, en-
ables precise spatial and temporal control, leading to high-quality generation re-
sults. Most existing audio-to-visual animation models rely on uniformly sampled
frames from video clips. Such a uniform sampling strategy often fails to capture
key audio-visual moments in videos with dramatic motions, causing unsmooth
motion transitions and audio-visual misalignment. To address these limitations,
we introduce KeyVID, a keyframe-aware audio-to-visual animation framework
that adaptively prioritizes the generation of keyframes in audio signals to improve
the generation quality. Guided by the input audio signals, KeyVID first localizes
and generates the corresponding visual keyframes that contain highly dynamic
motions. The remaining frames are then synthesized using a motion interpolation
module, effectively reconstructing the full video sequence. This design enables
the generation of high frame-rate videos that faithfully align with audio dynam-
ics, while avoiding the cost of directly training with all frames at a high frame
rate. Through extensive experiments, we demonstrate that KeyVID significantly
improves audio-video synchronization and video quality across multiple datasets,
particularly for highly dynamic motions.

1 INTRODUCTION

Recent years have witnessed remarkable progress in video generation, driven by advancements in
diffusion-based models (Xing et al., 2024; Chen et al., 2023a; 2024; He et al., 2022; Singer et al.,
2023; Ho et al., 2022b; Guo et al., 2024; Hong et al., 2022; Yang et al., 2024; Fan et al., 2025;
Blattmann et al., 2023a;b). These frameworks typically condition the generation process on text
prompts and/or image inputs, where the text provides semantic guidance (e.g., actions, objects, or
stylistic cues), while the image specifies spatial composition (e.g., object layout, scene structure or
visual styles). Despite their success, these methods largely focus on aligning visual outputs with
static text or images, leaving dynamic, time-sensitive modalities such as audio underexplored.

Audio-Synchronized Visual Animation (ASVA) (Zhang et al., 2024b) aims to animate a static image
into a video with objects’ motion dynamics that are semantically aligned and temporally synchro-
nized with the input audio. It utilizes audio cues to provide more fine-grained semantic and temporal
control for video generation, which requires deep understanding of audio semantics, audio-visual
correlations, and object dynamics. To achieve precise audio-visual synchronization in ASVA, it is
crucial to align key visual actions accurately with their corresponding audio signals. For example,
given an audio clip of hammering sounds, the hammer in the video should strike the nail exactly
when the impact sound occurs. However, this synchronization is constrained by the frame rates of
the video generation models. For example, AVSyncD (Zhang et al., 2024b) is trained to generate
videos at 6 FPS, posing a significant challenge for audio-synchronized video generation. Since au-
dio carries fine-grained temporal information, the key moments in the audio can be lost in uniformly
sampled low frame rate videos (see Fig. 1(a)), leading to compromised audio-video synchronization.

A straightforward solution is to train a video generation model on high frame rate data to match
the fine-grained temporal information in audio. However, this brute-force approach treats all time
steps equally and introduces redundant frames in low-motion regions. It also fails to leverage the
structural information in the input audio to focus the model capacity on salient moments, which is
crucial for audio-visual synchronization. In addition, this approach incurs substantial computational
costs in terms of GPU memory and training time. To alleviate this, a two-stage strategy has been
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Figure 1: (a) Uniform frames vs. keyframes. Top: Uniformly sampled sparse frames, which fail to
capture the key moments evident in the corresponding audio (Middle). Bottom: Keyframes precisely
aligned with the hammer striking down, matching the critical moments in the audio waveform. (b)
KeyVID video generation pipeline. KeyVID first detects keyframe time steps from the audio input
with the keyframe localizer and then utilizes a keyframe generator to generate the corresponding
visual keyframes. Intermediate frames are generated with the motion interpolator.

proposed that first generates low frame rate videos and then applies frame interpolation to obtain
high frame rate videos (Blattmann et al., 2023a; Singer et al., 2023; Ho et al., 2022a). And a random
frame rate strategy is proposed to use random frame sampling rates while maintaining a small, fixed
number of frames during training (Singer et al., 2023; Zhou et al., 2022). However, the two-stage
approach struggles in modeling highly dynamic sequences, where critical events may be lost due to
the sparsity of the initial uniform frames, and the random frame rate strategy fails to model long-term
temporal dependency at high frame rates due to the limited number of total frames.
In this work, instead of sampling uniform frames, we propose KeyVID, a Keyframe-aware VIdeo
Diffusion framework that adaptively selects and generates sparse yet informative keyframes guided
by audio cues to capture critical audio-visual events (Fig. 1(b)). We first develop a keyframe
selection strategy that identifies critical moments in the video sequence based on an optical
flow-based motion score. We train a keyframe localizer that predicts such keyframe positions
directly from the input audio cue. Next, instead of applying uniform downsampling to video frames,
we select the keyframes to train a keyframe generator. The keyframe generator explicitly captures
crucial moments of dynamic motion that might otherwise be missed with uniform sampling without
requiring an excessively high number of frames. Then, we train a specialized motion interpolator
to synthesize intermediate frames between the keyframes to generate high frame rate videos. The
motion interpolator ensures smooth motion transition and precise audio-visual synchronization
throughout the sequence. This approach is similar to how the animation industry creates smooth
and dynamic movements, where the Key Animator establishes key moments in a scene and the
Inbetweener fills in the gaps to ensure that the movements appear seamless and fluid. This selective
temporal focus enables smoother motion transitions and sharper audio-visual synchronization
without the overhead of dense uniform sampling.
We conducted extensive experiments across diverse datasets featuring varying degrees of motion
dynamics and audio-visual synchronization. We demonstrate that our keyframe-aware approach
outperforms state-of-the-art methods in video generation quality and audio-video synchronization.
In particular, on the AVSync15 dataset (Zhang et al., 2024b), we achieve an FVD score (Unterthiner
et al., 2018) of 263.3, and a RelSync score (Zhang et al., 2024b) of 49.06, outperforming the state-
of-the-art by absolute margins of 85.8, and 3.54, respectively. Our user study demonstrates a clear
preference towards videos generated by KeyVID over those produced by baseline methods.

The main contributions of our work are as follows:

• We propose a novel keyframe-aware audio-to-visual animation framework that first local-
izes keyframe positions from the input audio and then generates the corresponding video
keyframes using a diffusion model.

• We design a keyframe generator network that selectively produces sparse keyframes from
the input image and audio, effectively capturing crucial motion dynamics.

• Comprehensive experiments demonstrate our superior performance in audio-synchronized
video generation, particularly in highly dynamic scenes with distinct audio-visual events.
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2 RELATED WORK

Video Diffusion Models. Diffusion models (Xing et al., 2024; Chen et al., 2023a; 2024; He et al.,
2022; Singer et al., 2023; Ho et al., 2022b; Guo et al., 2024; Hong et al., 2022; Yang et al., 2024;
Fan et al., 2025; Blattmann et al., 2023a;b) emerge as powerful tools to generate high-quality videos.
For the data sample x0 ∼ pdata(x), Gaussian noise is added over T steps, creating a noisy version
xT . A model ϵθ is trained to invert this process by predicting and subtracting the noise. For latent
video generation (Xing et al., 2024; Zhang et al., 2023; He et al., 2022; Blattmann et al., 2023b),
x is encoded into a latent vector z using an encoder E(·) to reduce computation. The noise-adding
diffusion process and the learned reverse process are conducted on z instead. Recent advancements
in video diffusion models leverage pre-trained text encoders (Radford et al., 2021; Raffel et al.,
2020) to inject text conditions into the denoising process for text-to-video generations (Blattmann
et al., 2023b; Hong et al., 2022; Chen et al., 2023a; Luo et al., 2023). Moreover, image conditioning
can also be introduced to enhance video generation by providing visual features that control the
visual contents (Wu et al., 2024a; Yang et al., 2023; Li et al., 2023b; Chen et al., 2023b; Wei et al.,
2023) or frame conditions (Xing et al., 2024; Chen et al., 2024; Guo et al., 2024; Zhang et al., 2020;
Voleti et al., 2022; Franceschi et al., 2020; Babaeizadeh et al., 2018).

Audio-to-Video Generation. Compared to text and image, audio provides not only semantic cues
but also fine-grained temporal signals for motion generation. Prior studies explored domain-specific
audio-conditioned motion synthesis in 2D and 3D (Sun et al., 2023; Zhang et al., 2024a; Wu et al.,
2024b; Sung-Bin et al., 2024; Richard et al., 2023; Liu et al., 2024), and more recent works leverage
pretrained audio encoders (Girdhar et al., 2023; Elizalde et al., 2023) for general video generation.
Existing methods either treat audio as a global feature for style/semantic control (Hertz et al., 2023;
Kim et al., 2023; Wu et al., 2023) or enforce uniform temporal alignment with audio clips (Lee et al.,
2022; Ruan et al., 2023; Zhang et al., 2024b). However, their motion quality is often limited by low
frame rates or costly uniform sampling strategies, especially in highly dynamic scenes. In contrast,
we introduces a keyframe-aware framework that localizes audio-critical moments, generates visual
keyframes accordingly, and interpolates intermediate frames. This selective temporal focus enables
smoother motion transitions and sharper audio-visual synchronization without the overhead of dense
uniform sampling.

Keyframe-based Video Processing. In video processing, keyframes are pivotal in compressing
video clips by retaining essential features, thereby facilitating efficient analysis of lengthy videos
or high-dynamic motions (Kulhare et al., 2016; Shen et al., 2024; Lee et al., 2024; Xu et al.,
2024; Ataallah et al., 2024). In the realm of video generation, keyframes serve as foundational
references, enabling the synthesis of intermediate frames that ensure temporal coherence and visual
consistency. For long video generation, current approaches employ keyframe-based generation
pipelines to enhance long-term coherence in video synthesis (Zheng et al., 2024; Yin et al., 2023).
Others focus on interpolation techniques from keyframes, which predict missing frames between
keyframes input, ensuring motion realism and visual consistency in dynamical motions (Geng et al.,
2024; Jain et al., 2024).

3 METHODS

In this section, we present our keyframe-aware audio-conditioned video generation framework
KeyVID. Given an input audio and the first frame of a video, we follow a three-stage generation
process (Fig. 1(b)) and train three separate models: (1) Keyframe Localizer predicts a motion score
curve from the input audio and detects the keyframe positions (Sec. 3.1); (2) Keyframe Generator
generates keyframe images at detected keyframe positions conditioned on the input image and audio
(Sec. 3.2); (3) Motion Interpolator synthesizes intermediate frames to reconstruct a smooth video
with dense frames conditioned on the generated keyframe images and input audio (Sec. 3.3).

3.1 KEYFRAME LOCALIZATION FROM AUDIO

We train a keyframe localizer to infer keyframe locations from input by exploiting the correlation
between acoustic events and motion changes. For instance, a hammer striking a table generates a
sharp sound that often aligns with a sudden visual transition. The network learns to predict motion
scores from the input audido and then localizes keyframes from the motion score sequence.

Optical Flow based Motion Score. To train the keyframe localizer, we first generate keyframe
labels by analyzing optical flow from training video sequences, as shown in Fig. 2(a). We first
obtain a motion score for each frame by calculating the optical flow and averaging it across
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Figure 2: Motion score computation and predic-
tion. (a) We compute motion scores as the aver-
age of the optical flow of each frame and localize
keyframe from the peaks and valleys. (b) Keyframe
localizer is trained to predict motion scores from
audio to identify keyframe locations.

all pixels to represent the motion intensity of
the frame. These scores collectively form a
temporal motion curve across the frames.

Specifically, we employ a pre-trained RAFT
model (Teed & Deng, 2020) as the optical flow
estimator. Given a video clip consisting of
frames {Ij}Tj=1, RAFT computes the optical
flow field OFt between two frames Ij and
Ij+1. The optical field consists of horizon-
tal (ut) and vertical (vt) components at each
pixel, and the motion score M(t) of frame t is
calculated as:

M(t) =
∑
i,j

(|ut(h,w)|+ |vt(h,w)|) , (1)

where t = 1, . . . , T − 1 denotes the time step
of the video with T frames. (h,w) represents
the pixel location.
Motion Score Prediction. We train the
keyframe localizer to predict motion scores
from input audio, enabling it to learn the underlying relationship between motion dynamics and
acoustic cues. As shown in Fig. 2(b), the keyframe localizer first converts the raw audio into a spec-
trogram and extract audio features using a pretrained Transformer-based encoder (Girdhar et al.,
2023). To better align the audio features with the temporal resolution of motion cues, we modify
the patchify stride to increase the number of patches and interpolate the positional embeddings of
the encoder (see Appendix A). The audio features are then passed through fully connected layers to
predict motion scores. We train the model with L1 loss between the prediction and the ground-truth
motion score calculated by Eq. (1).

Keyframe Selection. Given motion scores {M(t)}Tt=1 of the video frames, we select TK ≪ T
keyframes that capture salient motion dynamics with minimal redundancy. Keyframes are iden-
tified from local maxima (“peaks”) and minima (“valleys”), which indicate dramatic motion
changes (Wolf, 1996; Kulhare et al., 2016). We first include the initial frame and sample up to
TK

2 − 1 peaks; if fewer peaks exist, all are used. For each pair of peaks, we select one valley to pre-
serve motion completeness. The remaining keyframes are obtained by evenly sampling across frame
bins. This design ensures robustness to sequences with smooth motion or weak audio cues. Further
details and examples are provided in Appendix A and D. We use the selected TK keyframes to train
the keyframe generator and the keyframe indices {ti}TK

i=1 serve as additional input conditions.

3.2 AUDIO-CONDITIONED KEYFRAME GENERATION

We propose a novel keyframe generator network to generate TK keyframes for a video sequence of
length T from the input audio and first frame image. Unlike previous video generation models (Xing
et al., 2024; Zhang et al., 2024b) that are trained on uniformly downsampled frames, the keyframe
generator aims to generate sparse keyframes that captures crucial motions. To enable this, we pro-
pose two key designs: (1) Frame Index Conditioning - we introduce keyframe index embedding
that encodes each frame’s absolute position, which provides explicit temporal anchors and ensures
coherence when generating non-uniformly distributed frames; (2) Keyframe-aligned Feature Extrac-
tion - we extract image and audio features that are aligned with the corresponding keyframe time
steps to serve as accurate conditions for keyframe generation. In the following, we first provide an
overview of the keyframe generator and explain the input conditioning in details.
Overview. We leverage the image dynamic prior of pretrained text-to-video latent diffusion models,
and inject the input audio, first frame, and keyframe indices as additional input conditions. The
model architecture is shown in Fig. 3(b). We encode the selected keyframes into a latent code
z0 ∈ RTk×C×H×W with a pretrained encoder E , where H and W denotes the spatial dimensions,
and C denotes the feature channels. The denoising U-Net learns to iteratively denoise the noisy
latent code zt, and the input conditions are encoded and injected into each denoising U-Net block.
The final keyframes are generated from the denoised latent code using the pretrained decoder D.
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Figure 3: Keyframe data selection and keyframe generator. (a) We select keyframes based
on the local maxima and minima of the motion score. (b) The keyframe generator is trained to
generate these sparse keyframes conditioned on the audios, first frame image, text, and keyframe
indices. These conditions are encoded and passed into the denoising U-Net. In each denoising U-Net
block, the index embeddings are added with video features and passed into Residual convolutional
block (Res. Conv.). The following layers contain a spatial self-attention (SA) and spatial cross
attention (CA) on each three conditional features. The output of each CA is followed by a gating
with learnable weights λ1 and λ2. Please see details in Sec. 3.2.

Frame Index Embedding. Off-the-shelf video diffusion models assume uniformly sampled frames
and cannot directly handle sparsely distributed keyframes. To address this, we introduce a frame
index embedding layer that encodes the absolute index of each keyframe {ti}TK

i=1 within the original
video sequence into frame index embedding femb ∈ RTK×C . femb is added with the latent video
features z before passing into the denoising U-Net blocks, ensuring explicit positional information
is provided to the network for global temporal consistency and accurate cross-modal alignment.

Audio Feature Condition. We use a pretrained ImageBind audio encoder (Girdhar et al., 2023) to
extract audio features for video synthesis. Given an input spectrogram A ∈ RCA×TA , the encoder
splits it into overlapping patches of size (ca, ta) with a stride ∆t < ta and encodes it into a sequence
of feature embeddings {hi}Ni=1 using Transformer layers. We decrease the patchify stride ∆t of the
pretrained encoder to obtain finer-grained temporal embeddings. We segment the extracted audio
features into T time steps to match the full video length, resulting in faudio ∈ RT×C×M , where M is
the number of audio features in each time step. Using the keyframe indices {it}TK

t=1, we extract the
corresponding TK audio features from the full T -length sequence and obtain the keyframe-aligned
audio features f key

audio = {f (it)audio}
TK
t=1. These keyframe-aligned audio features are fused with text and

image conditions via cross-attention layers in the U-Net, ensuring accurate synchronization between
generated keyframes and their associated audio cues.

Image Feature Condition. The first frame image I is injected into the keyframe generation process
via two pathways. First, we extract the image feature using a frozen CLIP image encoder (Rad-
ford et al., 2021). We project the image features into T frame-specific image conditions using a
Q-Former Li et al. (2023a) projection layer, yielding fimg ∈ RT×C×H×W . We then select the cor-
responding TK features using keyframe indices {it}TK

t=1 to obtain keyframe-aligned image feature
f key

img ∈ RTK×C×H×W . Second, we encode the image with the encoder E , concatenate it with noisy
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latent code zt, and feed them to the denoising U-Net. This provides additional visual details from I
to guide the keyframe generation (Xing et al., 2024).

Text Feature Condition. Following prior work, we encode the text prompt of the video using a
frozen CLIP text encoder ((Radford et al., 2021). The extracted text embedding ftext is repeated for
all TK keyframe to provide consistent semantic guidance during the denoising process.

Feature Fusion. Each conditioning feature (f key
audio, f key

img, and ftext) is processed separately through
spatial cross-attention layers in the U-Net blocks. Given input latent features Fin, we compute query
projections Q = FinWQ and apply spatial attention to text, image, and audio features:

Fout = SA(Q,Ktext,Vtext) + λ1 · SA(Q,Kaudio,Vaudio) + λ2 · SA(Q,Kimg,Vimg). (2)

where SA stands for spatial attention, K and V are the key and value projections for each modality,
and λ1, λ2 are learnable fusion weights. The fused features are then processed through a feedforward
network (FFN) and temporal self-attention to ensure spatial and temporal consistency.

3.3 MOTION INTERPOLATION

After generating TK keyframes, we use a motion interpolator to generate the missing frames to
obtain the a full video sequence of length T . Interpolation has been widely used in uniform frame
generation (Blattmann et al., 2023a; Xing et al., 2024), where a model predicts a fixed number of
intermediate frames given the first and last frame. However, for keyframe-based generation, the
positions of missing and available frames vary, introducing additional challenges. To address this,
we adapt our keyframe generator diffusion model into a motion interpolator model that generates
TK frames at once using masked frame conditioning. The overall architecture remains mostly the
same, with the primary difference in how image conditions are incorporated. Rather than condition-
ing solely on the first frame, the model utilizes the features of generated keyframes as conditions,
thereby learning to synthesize the missing frames in between. This approach facilitates interpolation
between non-uniformly distributed keyframes while maintaining temporal consistency. Details can
be found in Appendix C. To generate a full video with T frames in a single pass, we incorporate
FreeNoise (Qiu et al., 2023) to increase the number of output frames during inference. This allows
the interpolation model to take all generated keyframes as conditioning inputs and predict all miss-
ing frames in one single step. Further details on the training and inference time of this model are
provided in the Appendix G.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. We train and evaluate our method on three datasets: AVSync15 (Zhang et al., 2024b),
Greatest Hits (Owens et al., 2016), and Landscapes (Lee et al., 2022). AVSync15 is a subset of the
VGG-Sound (Chen et al., 2020) dataset, consisting of fifteen classes of activities with highly syn-
chronized audio and video captured in the wild. Some activities have more intense motions, such
as hammer hitting and capgun shooting. Greatest Hits contains videos of humans hitting various
objects with a drumstick, producing hitting sounds that are temporally aligned with the motions.
Landscapes is a collection of natural environment videos with corresponding ambient sounds with-
out synchronized video motion. We sample two-second audio-video pairs from these datasets for
experiments. Videos were sampled at 24 fps with 48 frames, and resized to 320× 512. Audios were
sampled at 16kHz and converted into 128-d spectrograms. We set TK = 12 as the temporal length
of keyframe generation and interpolations.

Training. We adopted the pre-trained DynamiCrafter (Xing et al., 2024) as the backbone video
diffusion model and pre-trained ImageBind (Girdhar et al., 2023) as the audio encoder. All models
were trained using Adam optimizer with a batch size of 64 and a learning rate of 1× 10−5.

Baselines. We follow (Zhang et al., 2024b) to compare our method with the simple static base-
line where the input frame is repeated to form a video, as well as state-of-the-art video generation
models with different input modalities: (1) T+A is the video generation model conditioned only on
text and audio, such as TPoS (Jeong et al., 2023) and TempoToken (Yariv et al., 2024). (2) I+T
includes many state-of-the-art video generation models, which are conditioned on images and text
prompts. We compare with I2VD (Zhang et al., 2024b), VideoCrafter (Chen et al., 2023a) and Dy-
namiCrafter (Xing et al., 2024). (3) I+T+A takes image, text and audio inputs for video generation,
which includes CoDi (Tang et al., 2023), TPoS (Jeong et al., 2023), AADiff (Lee et al., 2023) and
AVSyncD (Zhang et al., 2024b).
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Table 1: Performance on the AVSync15 and the Greatest Hits datasets. Best is marked in bold.

Input Model AVSync15 Greatest Hits
FID↓ IA↑ IT↑ FVD↓ AlignSync↑ RelSync↑ FID↓ IA↑ IT↑ FVD↓ AlignSync↑ RelSync↑

T+A TPoS 13.5 23.38 24.83 2671.0 19.52 42.50 33.85 11.50 17.90 3327.90 21.48 44.90
TempoToken 12.2 18.84 17.45 4466.4 19.74 44.05 25.90 4.88 9.28 3300.53 21.56 45.38

I+T I2VD 12.1 - 30.35 398.2 21.80 43.92 9.10 - 13.42 425.0 22.05 44.58
DynamiCrafter 11.7 - 30.02 400.7 21.76 43.68 12.40 - 13.73 337.71 22.82 45.85

I+T+A

CoDi 14.5 28.15 23.42 1522.6 19.54 41.51 21.78 12.01 14.11 1336.00 22.30 45.35
TPoS 11.9 38.36 30.73 1227.8 19.67 39.62 28.43 9.36 13.19 1370.57 22.04 45.55
AADiff 18.8 34.23 28.97 978.0 22.11 45.48 - - - - - -
AVSyncD 11.7 38.53 30.45 349.1 22.62 45.52 8.70 12.07 13.31 249.30 22.83 45.95
KeyVID (Ours) 11.1 39.21 30.12 263.3 24.44 49.06 12.10 12.40 15.66 202.10 22.91 46.03

Static - 39.76 30.39 1220.4 21.83 43.66 - 13.33 16.56 348.9 24.36 48.73
Groundtruth - 40.06 30.31 - 25.04 50.00 - 13.52 16.49 - 25.02 50.00

Metrics. We use the Frechet Image Distance (FID) (Heusel et al., 2017) and Frechet Video Distance
(FVD) (Unterthiner et al., 2018) to evaluate the visual quality of the individual frames and videos.
We also compare the average image-text (IT) and image-audio (IA) semantic alignment scores of
video frames using CLIP (Radford et al., 2021) and ImageBind (Girdhar et al., 2023). To mea-
sure audio-video synchronization, we evaluate the generated videos with RelSync and AlignSync
proposed by Zhang et al. (2024b).

4.2 QUANTITATIVE RESULTS

Table 1 presents the quantitative evaluation results on the AVSync15 and Greatest Hits datasets. Re-
sults on the Landscape dataset can be found in the Appendix ??. On the AVSync15 dataset, KeyVID
demonstrates superior performance across both audio-visual synchronization and visual quality met-
rics. It achieves the highest synchronization scores with AlignSync of 24.44 and RelSync of 49.06,
substantially outperforming the previous state-of-the-art AVSyncD (22.62 and 45.52, respectively).
These improvements highlight the effectiveness of our keyframe-aware strategy in capturing critical
dynamic moments that align with audio events. In terms of visual quality, KeyVID also excels with
an FID score of 11.00 and FVD score of 263.3, representing the best performance among all com-
pared methods. Additionally, our approach achieves the highest image-audio semantic alignment
score (IA: 39.21), demonstrating strong correspondence between generated visual content and audio
input. The Greatest Hits dataset presents a particularly challenging scenario with distinct percussive
audio events that require precise temporal alignment with visual motions. KeyVID achieves com-
petitive performance across all evaluation metrics. Notably, KeyVID attains the best FVD score of
202.10, indicating superior visual quality in the generated videos. For audio-visual synchronization,
KeyVID achieves AlignSync and RelSync scores of 22.91 and 46.03, respectively, outperforming
most baseline methods while maintaining strong visual quality with competitive FID performance.

4.3 ABLATION STUDY

Keyframe vs. Uniform Sampling. To validate the effectiveness of keyframe-aware gen-
eration, we compare KeyVID with a uniform sampling baseline, KeyVID-Uniform, where
KeyVID-Uniform generates 12 uniform frames instead of keyframes before motion interpola-
tion.As shown in Table 2, KeyVID consistently outperforms KeyVID-Uniform across all metrics,

Table 2: Ablation study results on AVSync15.

Setting FID↓ FVD↓ AlignSync↑ RelSync↑

KeyVID 11.1 263.3 24.44 49.06
KeyVID-Uniform 11.0 273.4 23.53 47.23

(-0.9%) (+3.8%) (-3.7%) (-3.7%)
w/o Frame Index 11.0 258.9 23.93 47.90

(-0.9%) (-1.7%) (-2.1%) (-2.4%)
w/o First Frame 11.7 265.5 24.02 48.49

(+5.4%) (+0.8%) (-1.7%) (-1.2%)

with larger improvements in audio-
visual synchronization scores Align-
Sync and RelSync, while maintain-
ing competitive visual quality metrics.
In addition, KeyVID achieves greater
improvement in high-intensity motion
scenarios as shown in Fig. 5. These re-
sults confirm our hypothesis that strate-
gically selecting keyframes based on
audio and motion cues leads to superior
audio-visual synchronization.
Frame Conditioning. We further analyze the contribution of two components in our frame condi-
tioning mechanism in Table 2. Removing the frame index embedding leads to degraded audio-visual
synchronization, with AlignSync and RelSync scores decreasing by 2.1% and 2.4%, respectively.
This demonstrates that frame index embedding provides crucial temporal information that helps the
model understand the sequential ordering of keyframes during generation.
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Removing the first-frame condition from the motion interpolator results in significant performance
degradation, particularly in visual quality metrics. The FID increases by 5.4% and FVD increases
by 0.80%, indicating that the first frame serves as an essential reference for maintaining visual con-
sistency during interpolation. The combination of both components achieves optimal performance,
confirming the importance of our complete frame conditioning design.

4.4 VISUALIZATION

Fig. 4 presents qualitative comparisons between KeyVID and baseline approaches on different type
of motions. Our keyframe-aware approach more accurately captures motion peaks that align with
audio events, such as the exact moment of impact in hammering or the smoke in gun shooting. Com-
pared to the uniform frame sampling variant KeyVID-Uniform, KeyVID better preserves temporal
coherence by focusing on key moments of motion. In sequences like dog barking and frog croak-
ing, KeyVID ensures that mouth movements align precisely with sound peaks, whereas KeyVID-
Uniform and AVSyncD introduce temporal misalignment or missing frames. For subtle motions,
such as playing the trombone or violin, our model still produces smooth and stable movements,
even during sustained notes or brief pauses in the audio, where motion cues are weak and baselines
tend to jitter or freeze. Additional video visualizations for intensive, moderate, and subtle motions
are provided in the supplementary material.

(1) Machine gun shooting (2) Hammering

(b)Ground Truth

(c)KeyVID (Ours)

(d)KeyVID - Uniform

(e)AVSyncD

(f) Dynamicrafter

(a) Audio

(b)Ground Truth

(c)KeyVID (Ours)

(d)KeyVID - Uniform

(e)AVSyncD

(f) Dynamicrafter

(a) Audio

(b)Ground Truth

(c)KeyVID (Ours)

(d)KeyVID - Uniform

(e)AVSyncD

(f) Dynamicrafter

(a) Audio

(5) Playing trombone (6) Playing violin

(3) Dog barking (4) Frog croaking

Figure 4: Qualitative comparison of KeyVID and baseline methods. We crop key motions on the
audio waveform in (a) and the corresponding ground truth video in (b) as references and compare the
generated video clips between models from (c) to (f). KeyVID with keyframe awareness (c) shows
better alignment with motion peaks in audio signals—for example, the hammer striking, gunshots
producing smoke, or facial movements when dogs bark or frogs croak. For subtle motion scenarios
such as playing the trombone or violin, our model is also able to produce smooth, stable motion
during the brief pauses or sustained notes.
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4.5 EFFECTS OF MOTION INTENSITY

To analyze how KeyVID performs across different motion types, we categorize the 15 classes in the
AVSync15 dataset into three intensity levels based on their average motion scores: Subtle, Moder-
ate, and Intense, with five classes each. The Intense level includes highly dynamic motions such
as hammering and dog barking, while the Subtle level consists of activities with slow movement,
such as playing the violin or trumpet. Fig. 5 compares RelSync scores across these motion intensi-
ties for KeyVID, KeyVID-Uniform, and AVSyncD. KeyVID shows increasing improvements over
KeyVID-Uniform as motion intensity rises, with RelSync gains of 1.50, 1.59, and 2.01 for Sub-
tle, Moderate, and Intense motions, respectively. This demonstrates the effectiveness of keyframes
in capturing audio rapid motion transitions Compared to AVSyncD, KeyVID consistently achieves
superior synchronization with RelSync gains of 3.86, 3.18, and 3.07 across all intensity levels.

Figure 5: RelSync scores across motion inten-
sity levels. KeyVID improves audio synchro-
nization score on all motion intensity.

Table 3: User study results. Participants voted
for the best method based on audio synchro-
nization (AS), visual quality (VQ), and tem-
poral consistency (TC). The numbers represent
the percentage of votes each model received for
each metric.

Models AS VQ TC

KeyVID 66.25% 65.00% 65.00%
KeyVID-Uniform 17.92% 22.08% 21.67%
AVSyncD 11.67% 7.08% 7.92%
DynamiCrafter 4.17% 5.83% 5.42%

4.6 USER STUDY

We conducted a user study with twelve participants to assess the quality of generated videos. Each
participant was shown twenty randomly selected video samples, where each sample contained re-
sults from four models presented in a random order with the same inputs. They were asked to choose
which video exhibited better audio-visual synchronization, visual quality, and temporal consistency.
We aggregated all 12× 20 = 240 votes for each metric and computed the percentage of votes each
model received, as shown in Tab. 3. Further details on the user study can be found in Appendix F.

4.7 OPEN-DOMAIN AUDIO-SYNCHRONIZED VISUAL ANIMATION
Audio of hittingmetal surface

(a1)

(b1)

(a2)

(b2)

…

…

First frame

First frame

Audio of hittingwooden surface

Figure 6: Open-domain video generation.
Given the same first frame and different au-
dio inputs (a1) and (a2), KeyVID synthesizes
videos that align with the audio’s semantic
meaning and motion pattern in (b1) and (b2).

We show KeyVID’s ability to animate open-domain
inputs beyond its training distribution. As illus-
trated in Fig. 6, we use the first frame from a Sora-
generated video clip, where a hammer is held in the
air before striking down. We control the visual ani-
mation through two distinct hammering audio clips:
the first contains metallic strike sounds, while the
second captures impacts on a wooden surface. Our
model not only successfully generates videos that
match the temporal pattern of strikes, but also adapts
the motion based on the material properties inferred
from the audio: the first video shows hammering on
metal nails, while the second shows hammering on
a wooden table. These results demonstrate the gen-
eralization capability of KeyVID to open-domain in-
puts and its ability to accurately follow the audio se-
mantics for visual animation.

5 CONCLUSION

In this paper, we introduced a keyframe-aware audio-synchronized visual animation model which
enhances video generation quality and audio alignment, particularly for highly dynamic motions.
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Our approach first localizes keyframes from audio and generates corresponding frames using a diffu-
sion model. Then we synthesize intermediate frames to obtain smooth high-frame-rate videos while
maintaining memory efficiency. Experimental results demonstrate superior performance across mul-
tiple datasets, especially in scenarios with intensive motion. Compared to previous methods, our
model significantly improves audio-visual synchronization and visual quality.
Acknowledgement. Although our method does not rely on simple amplitude-based cues, the
keyframe localizer inevitably learns data-driven statistical correspondences between audio signals
and motion change patterns, since it is supervised using optical flow derived motion scores.
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A DETAILS OF KEYFRAME LOCALIZER

In the Sec. 3.1 of the main paper, we introduce that we need to know the position of the key frame at
the beginning of inference by predicting optical motion scores. Here is the detailed structure of this
network. The network processes raw audio by converting it into a spectrogram A ∈ RCA×TA , where
CA denotes the number of frequency channels and TA represents the temporal length. The original
ImageBind preprocessing pipeline applies a CNN with a kernel stride of (10, 10) to patchify the
input spectrogram, producing feature embeddings that are then processed by a transformer-based
encoder faudio ∈ RB×T×C . However, this results in T (e.g., T=19) being misaligned with the
temporal resolution of the dense motion curve sequence (e.g., 48).

To address this, we modify the CNN stride to (10, 4), increasing the temporal resolution of extracted
features (e.g., increase to 46). The transformer encoder then processes the updated feature sequence:

Faudio = faudio(A), Faudio ∈ RB×T ′×C , (3)

where T ′ > T reflects the increased temporal resolution. Since the transformer relies on positional
embeddings, we interpolate the pretrained positional embeddings to match the new sequence length
T ′
A and keep them frozen during training.

The extracted features are passed through fully connected layers to predict a sequence of confidence
scores s ∈ RB×T ′

, where each st represents the likelihood of a keyframe occurring at time step t:

s = σ(WFaudio + b), (4)

where W ∈ RC×1 and b ∈ RT ′
A are learnable parameters, and σ(·) is the sigmoid activation

function. The model is trained using an L1 loss:

L = ∥s− ŝ∥1 , (5)

where ŝ represents the ground-truth keyframe labels derived from optical flow analysis.

B DETAILS OF KEYFRAME SELECTION

B.1 DETECT PEAK AND VALLEY

To identify the local maxima (peaks) and minima (valleys) from a one-dimensional motion score
{M(t)}Tt=1, we perform the following steps:

1. Smoothing: Convolve the raw score M(t) with a short averaging filter with a window size
5, producing a smoothed label M̃(t). This helps reduce noise and minor fluctuations.

2. Peak Detection: Finds all local maxima by simple comparison of neighboring values for
M̃(t). We force a minimum distance of 5 frames between any two detected peaks and
require a prominence (height relative to its surroundings) of at least 0.1. This returns the
indices of the local maxima.

3. Valley Detection: Repeat the same peak-finding procedure on the negative of the smoothed
signal.

B.2 SAMPLE KEYFRAMES

In the main text, we discuss the process of selecting TK ≪ T keyframes based on the motion
score M(t) for each frame. Specifically, we first pick the initial frame, then select up to TK

2 − 1
peaks among all detected ones (or all peaks if fewer are found). Next, we include a valley between
each consecutive pair of selected peaks. Finally, we sample any remaining frames by an evenly
distributed (proportional) strategy, which approximates uniform downsampling if few peaks and
valleys are present. This approach ensures that smooth motion or weak audio signals, producing
limited peaks and valleys, do not degrade the consistency of training for video diffusion models.
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Algorithm 1 is the detailed pseudo-code for the full procedure, including both peak and valley se-
lection and the final proportional allocation of remaining key frames.

Algorithm 1: Keyframe Selection Algorithm

Input: Motion scores {M(t)}Tt=1, desired keyframe count TK ≪ T .
Output: A set of TK keyframes.

1 Step 1: Detect peaks and valleys based on M(t).
2 Step 2: Initialize keyframe list:

Keyframes← {first frame}.
3 Step 3: Randomly select peaks

Choose up to
⌊
TK

2 − 1
⌋

from the detected peaks and add to Keyframes.
4 Step 4: Insert valleys

for each pair of consecutive peaks in Keyframes do
Select one valley in between and add it to Keyframes.

5 Step 5: Compute how many more keyframes are needed:
R← TK −

∣∣Keyframes
∣∣.

6 if R > 0 then
7 Define a list of N remaining frames (unselected) with some weights {w1, . . . , wN}.
8 W ←

∑N
i=1 wi

9 for i← 1 to N do
ideal sharei ← R · wi

W ;
allocatedi ← ⌊ideal sharei⌋;

10 r ← R−
∑N

i=1 allocatedi ; // Remainder after flooring
11 if r > 0 then

for i← 1 to N do
fraci ← ideal sharei − allocatedi;

Sort frames by fraci in descending order.
for j ← 1 to r do

i∗ ← index of the j-th largest fraci;
allocatedi∗ ← allocatedi∗ + 1;

12 for i← 1 to N do
if allocatedi > 0 then

Keyframes← Keyframes ∪ {framei};

13 return Keyframes

C STRUCTURE OF MOTION INTERPOLATION

As shown in Fig. 7, we present the pipeline of motion interpolation network as introduced in Sec. 3.3

D MOTION SCORE PREDICTION EVALUATION

Quantitative result. We evaluate the keypoint detected from the predicted motion score with the
ground truth score. We calculate the average precision with a distance threshold t. In this way, for
each keypoint in ground truth motion score curve, if it can match with a predicted keypoint with
distance lower than t, it will be consider as a successful match. The average precision means the
the average of Nmatch/N(total) across all instance, denoted as AP@t We achieve the AP@3 =
60.57% and AP@5 = 77.92%.

Visualization. We provide visualization of modtion score prediction in Fig. 8.
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[Public]

𝒛𝒕 𝒛𝒕−𝟏

Denoise

Repeat Concatenation

First frame

Concatenation

Generated key frames

Frame Index

0, 2, 5, 9, …44

(a)

(b)

Figure 7: The frame interpolation model shares the same structure as the original keyframe gen-
eration model but uses different image features for concatenation. (a) For keyframe generation
(Sec. 3.2), the first-frame features are repeated to match the length of the latent vector; (b) For frame
interpolation, the condition features from keyframes are padded with zero tensors between keyframe
locations to align with the frame length.

𝑖 = 0

𝑖 = 14 𝑖 = 24

𝑖 = 4 𝑖 = 9

𝑖 = 19

…

𝑖 = 0 𝑖 = 5 𝑖 = 9

𝑖 = 16 𝑖 = 22 𝑖 = 26

(a) (b)

Figure 8: Visualization of (a) Predicted motion score from audio with the ground truth caluate from
video data; and (b) the generated video keyframe by diffusion network described in Sec. 3.2 before
interpolations.

E MORE QUALITATIVE RESULTS OF VIDEO GENERATION

As the generation result need to be watch with audio for the best experience, we have put more
visualization result into the supplementary as mp4 files.
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F DETAILS OF USER STUDY

As described in the main paper (Sec. 4.6), we conduct a user study to evaluate the performance
of four video generation models in terms of audio synchronization, visual quality, and temporal
frame consistency. We invite 12 participants and design an online survey to collect responses. In
the survey, we randomly select 20 video instances and present the generation results from four mod-
els—KeyVID, KeyVID-Uniform, AVSyncD, and Dynamicrafter—in a row for comparison, with the
order randomly shuffled. The videos generated by KeyVID, KeyVID-Uniform, and AVSyncD use
the same audio, image, and text conditions, whereas Dynamicrafter generates videos using only text
and image conditions. For each instance, participants are asked to select the best video based on
three evaluation metrics. This results in a total of 20 × 12 = 240 votes for each metric across all
models. Sample survey questions are illustrated in Fig. 9.

[Public]

Figure 9: Sample survey question used in the user study.

G EXPERIMENTAL DETAILS

For the experiments of KeyVID on the three datasets AVSyncD, Landscape , and TheGreatestHit,
we train at a resolution of 320× 512, following Dynamicrafter Xing et al. (2024). During inference,
we use DDIM sampling with 90 steps. The temporal length of both the keyframe generation and
interpolation models is 12. Since our interpolation module adopts the FreeNoise Qiu et al. (2023)
technique, we are able to generate the final 48 frames in a single run. To accommodate this temporal
length, we set the window size to 12 and the stride to 6.

H MULTIMODAL CLASSIFIER FREE GUIDANCE

Similar to Xing et al. (2024), we introduce three guidance scales simg, stxt, and saud to extend video
generation with additional audio control. These scales allow balancing the influence of different
conditioning modalities in video generation. The modified noise estimation function is defined as:

ϵ̂θ (zt, cimg, ctxt, caud) = ϵθ (zt,∅,∅,∅) (6)

+simg (ϵθ (zt, cimg,∅,∅)− ϵθ (zt,∅,∅,∅))

+stxt (ϵθ (zt, cimg, ctxt,∅)− ϵθ (zt, cimg,∅,∅))
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+saud (ϵθ (zt, cimg, ctxt, caud)− ϵθ (zt, cimg, ctxt,∅)) .

Here, cimg, ctxt, and caud represent image, text, and audio conditioning, respectively. The newly
introduced audio guidance scale saud enables the model to integrate temporal audio cues, ensuring
synchronized motion generation in audio-reactive video synthesis. By adjusting these guidance
parameters, we can control the relative impact of each modality in the final video output.

In our experiments, we set the audio guidance scale to 7.5 and the image guidance scale to 2.0 for
both the keyframe generation and frame interpolation networks. Since audio guidance is introduced
as a new feature, we further compare results across different audio guidance scales ranging from 4.0
to 11.0, as shown in Tab. 4. While higher audio guidance values yield better audio synchronization
scores (RelSync and AlignSync), we ultimately select the configuration that provides the best visual
quality (FVD and FID) while still achieving competitive audio synchronization performance.

Table 4: Performance metrics for different guidance values.

saud FID↓ FVD↓ AlignSync↑ RelSync↑

4.0 11.4 270.5 48.18 24.14
7.5 11.0 262.3 48.33 24.08
9.0 11.1 277.2 48.55 24.16

11.0 11.1 278.6 48.66 24.22

I DETAILS OF MOTION INTENSITY

To analyze motion intensity in AVSyncD, we cluster 15 classes based on their average motion scores across
all instances (motion score result in Tab. reftab:motion). The classes are grouped into three motion intensity
levels:

• Subtle: playing trumpet, playing violin, playing cello, playing trombone, toilet flushing.

• Moderate: lions roaring, cap gun shooting, frog croaking, chicken crowing, baby crying.

• Intensive: striking bowling, dog barking, hammering, sharpening knife, machine gun.

This classification provides insights into motion intensity distribution within AVSyncD, aiding in evaluating
synchronization across different motion levels.

Subtle Motion

Classes playing trumpet toilet flushing playing cello playing violin playing trombone

Motion Score 2.79 4.13 5.32 5.56 6.24

Moderate Motion

Classes cap gun shooting chicken crowing lions roaring frog croaking baby crying

Motion Score 8.47 8.54 9.16 9.24 10.45

Intensive Motion

Classes machine gun sharpen knife striking bowling dog barking hammering

Motion Score 13.16 16.74 17.16 20.32 32.70

Table 5: Motion categories with classes and motion scores.

J LLM USAGE

We used large language models (LLMs) to assist in the preparation of this paper. Their role was limited to
language editing such as proofreading and rephrasing. All ideas, experiments, and analyses were conceived
and conducted by the authors.
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