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ABSTRACT

Recently, multivariate time series forecasting tasks have garnered increasing atten-
tion due to their significant practical applications, leading to the emergence of var-
ious deep forecasting models. However, real-world time series exhibit pronounced
non-stationary distribution characteristics. These characteristics are not solely
limited to time-varying statistical properties highlighted by non-stationary Trans-
former but also encompass three key aspects: nested periodicity, absence of peri-
odic distributions, and hysteresis among time variables. In this paper, we begin by
validating this theory through wavelet analysis and propose the Transformer-based
TwinS model, which consists of three modules to address the non-stationary pe-
riodic distributions: Wavelet Convolution, Period-Aware Attention, and Channel-
Temporal Mixed MLP. Specifically, The Wavelet Convolution models nested peri-
ods by scaling the convolution kernel size like wavelet transform. The Period-
Aware Attention guides attention computation by generating period relevance
scores through a convolutional sub-network. The Channel-Temporal Mixed MLP
captures the overall relationships between time series through channel-time mix-
ing learning. TwinS achieves SOTA performance on eight datasets compared to
mainstream TS models, with a maximum improvement in MSE of 25.8% over
PatchTST. We have open-sourced our code to facilitate reproducibility for future
research: https://anonymous.4open.science/r/TwinS-BBA3/.

1 INTRODUCTION
Multivariate time series forecasting (MTSF) has gained widespread prominence in real-world appli-
cations, such as weather prediction, financial risk assessment, and traffic forecasting. Transformers
(Vaswani et al., 2017) have emerged as the most popular approach for this task, primarily attributed
to their power in capturing temporal dependencies Wen et al. (2023). Recent advances (Wu et al.,
2021; Liu et al., 2021a; Zhou et al., 2022; Nie et al., 2023) have further bolstered the popularity.

A long-lasting challenge in the realm of MTSF lies in effectively mitigating the non-stationarity in-
herent in real-world time series. In general, non-stationary time series exhibits a persistent alteration
in its statistical attributes (e.g., mean and variance) and joint distribution across time, thereby dimin-
ishing its predictability. In previous work, several models have utilized time series pre-processing
techniques (Passalis et al., 2019; Kim et al., 2021) to achieve stationarity or involved statistical guid-
ance during model training (Liu et al., 2022b), resulting in significant performance enhancements.

Though promising, the above endeavors still fall short of modeling the non-stationary period distri-
bution. To verify this point, we empirically leverage the Morlet wavelet transform on the Weather
dataset (Wu et al., 2021), leading to the energy distribution in Fig 1. We observe that (i) Non-
stationary time series comprises multiple nested and overlapping periods, with diverse periodic pat-
terns and varying strengths at each time step. (ii) Non-stationary time series exhibit distinct periodic
patterns segmented, indicating that a particular occurrence may only happen during specific stages
or time intervals. For instance, in the left plot, the information exhibiting a periodicity ranging from
4 to 8 is exclusively observed within the time range of 180 to 330. (iii) Within time series, there are
similarities in the period components but significant hysteresis in periodic distribution.

For challenge (i), although existing methods have attempted to model time series features from mul-
tiple scales using techniques such as sequence splitting (Liu et al., 2022a), downsampling (Wang
et al., 2022), tree structures (Liu et al., 2021a), and pyramid architecture (Zhang et al., 2023a), they
only decouple the time series information in the temporal domain and are still unable to effectively
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Figure 1: Examples of the wv and wd variables in the Weather dataset. The x-axis is the shared time steps.
The graph above shows the variable values over time. The one below is the wavelet level plot, representing the
strength of the signal’s energy at different time-frequency scales.

decouple the nested periodic information in the frequency domain. For challenge (ii), traditional at-
tention mechanisms primarily rely on explicitly modeling period information through the values of
each time step, which can easily lead to the model incorrectly aggregating noise data into the tempo-
ral representation when modeling the multi-periodic non-stationary distribution. For challenge (iii),
both existing channel-dependent (Wu et al., 2022; Wang et al., 2022) or independent (Zhang & Yan,
2022; Nie et al., 2023) models neglect the hysteresis among different time series. So, designing a
model that can decouple nested periods, model missing states of periodicity, and capture intercon-
nections with hysteresis among time series are the keys to further improving the performance of
transformers in the MTSF task.

In this paper, we propose the TwinS, which comprises three key modules to address these challenges:
The Wavelet Convolution Module simulates wavelet transform techniques to extract information
from multiple nested periods during the initial embedding process; The Periodic Aware Attention
Module, incorporates a convolution-based scoring sub-network. Building upon the wavelet convolu-
tion embedding, this mechanism effectively models non-stationary periodic distributions at various
window scales. It enables TwinS to identify and understand the complex, non-stationary periodic
patterns inherent in the time series data; The Channel-Temporal Mixer Module treats the time series
as a holistic entity and employs a Multi-Layer Perceptron to capture overall correlations among time
variables. The contributions lie in three folds:

• Upon revisiting the MTSF task, we recognized that the critical factor for improving the perfor-
mance of transformer models lies in addressing nested periodicity, modeling missing states in non-
stationary periodic distributions, and capturing interrelationships with hysteresis among MTS;

• We propose TwinS, a novel approach that incorporates Wavelet Convolution, Periodic Aware At-
tention, and Temporal-Channel Mixer MLP to model nonstationary period distribution;

• TwinS consistently outperforms eight mainstream models on eight popular datasets, and demon-
strates the efficacy of each module within the framework;

2 RELATED WORK

Deep Times Series Models for Periodic Learning: Effectively modeling the underlying periodic
information is crucial in MTSF tasks. Traditional transformer-based models (Zerveas et al., 2021)
employ self-attention mechanisms to capture periodicity. TimesNet (Wu et al., 2022) transforms
1D time series into 2D representations using CNN to extract periodic features. Models like Pray-
former (Liu et al., 2021a), Informer (Zhou et al., 2021), MICN (Wang et al., 2022), and Scaleformer
(Shabani et al., 2022) extract periodic features at different scales. Autoformer (Wu et al., 2021)
introduces the Auto-Correlation Mechanism for frequency domain periodic modeling. FEDformer
(Zhou et al., 2022) enhances frequency domain attention with the Fourier neural operator. Non-
stationary transformer (Liu et al., 2022b) addresses period distribution shift issues, and models like
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Figure 2: Overall architecture of TwinS with detailed structure of Periodic Aware Attention and Encoder-Layer.

Dlinear (Zeng et al., 2023) use linear layers for effective periodic modeling. Unlike previous meth-
ods, TwinS takes a novel perspective, starting from wavelet analysis to model the non-stationary
periodic distribution in time series.

Non-stationarity in Time Series data: Real-world time series are often non-stationary, posing
significant challenges for MTSF tasks. Traditional statistical methods like ARIMA (Box et al., 2015)
use differencing to stabilize time series, while in deep models, stabilization techniques are widely
employed for data preprocessing. DAIN (Passalis et al., 2019) uses non-linear neural networks and
observed training distribution to stabilize time series. Revin (Kim et al., 2021) introduces trainable
stabilization and destabilization layers. Non-stationary transformer (Liu et al., 2022b) incorporates
De-stationary Attention. However, these methods focus on non-stationarity caused by evolving
statistical features and overlook the non-stationary periodic distribution issues. Our model presents
the first attempt to address these issues explicitly.

Channel-Dependent (CD) and Channel-Independent (CI) Models: In MTSF tasks, two com-
monly employed strategies are channel-dependent and channel-independent. The CD strategy, as
highlighted in the works of (Wu et al., 2022; Zhou et al., 2022; 2021), involves constructing a model
that predicts future values for each series by leveraging historical information from all the series.
Conversely, as employed in the studies of (Zhang & Yan, 2022; Nie et al., 2023), the CI strategy
employs separate modeling techniques to capture temporal dependencies for each individual series.
However, the CD strategy often faces challenges such as prediction distribution bias (Han et al.,
2023) and variations in the distributions of variables. This makes the CI strategy generally more
robust and outperforms the CD strategy. Our model, TwinS, falls into the CI strategy category and
possesses the capability to learn the relationships between time series.

3 METHODOLOGY OF THE TWINS
In this paper, we concentrate on long-term MTS forecasting tasks. Let xt ∈ RC denote the value
of C series at time step t. Given a historical MTS instance Xt = [xt, xt+1, · · · , xt+L−1] ∈ RC×L

with lookback window L, the objective is to predict the next T steps Yt = [xt+L, · · · , xt+L+T−1] ∈
RC×T . The aim is to learn a mapping f(·) : Xt → Yt using the proposed model.

As depicted in Figure 2, TwinS utilizes wavelet convolution for multi-period embedding. Before
each encoder layer, it applies reversible window patching to capture periodicity gaps across different
window scales. Within each encoder layer, it performs Periodic Aware Attention calculation, Feed-
forward network, and Channel-Temporal Mixer MLP with residual structures. The Periodic Aware
Attention calculation entails a multi-head sub-network to generate attention score matrices.

3.1 WAVELET CONVOLUTION EMBEDDING

Recent TSformers usually adopt the patch embedding method mentioned in PatchTST (Nie et al.,
2023) which addresses the lack of semantic significance in individual time points while simultane-
ously reducing time complexity. However, this approach raises three concerns. Firstly, this method
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does not effectively address the issue of nested periods in the time series. Secondly, important se-
mantic information may become fragmented across different patches. Lastly, the predetermined
patch length and stride used in the embedding process are irreversible in subsequent modeling.

In this paper, we contemplate emulating the wavelet transform methodology by embedding the time
series at distinct frequency and time scales to address the initial concern. As for the subsequent
concerns, we will elucidate them in Section 3.2. Specifically, for the wavelet transform (WT), we
can express it in the following form:

WT(a, τ, t) =
1√
a

∫ ∞

−∞
f(t) · ψ

(
t− τ

a

)
dt, (1)

where ψ denotes the wavelet basis function, a represents the scale parameter responsible for scaling
the wavelet basis functions, and τ represents the translation parameter governing the movement of
the wavelet basis functions. The parameter a can be interpreted as capturing different frequency-
domain information, while τ corresponds to variations in the time domain.

Standard convolutional neural networks can be essentially regarded as discrete Gabor transforms;
they perform windowed Fourier transforms in the time domain on input features:

GT(n, τ, t) =
∫ +∞

−∞
f(t) · g(t− τ) · eintdt, (2)

Conv(c, k, x) =
c∑

j=1

∑
pk∈R

x(pk) · Wj(pk), (3)

where Eqn 2 is the Gabor transform, Eqn 3 is the CNN. n is the number of frequency coefficients,
τ is the translation parameter, c is the number of CNN channels, k is the kernel size and pk ∈ R
represent all the sampled points in windowed kernel size. g(·) is the Gabor function to scale the basis
function in window size and Wj is the kernel weight of channel j. The difference between the two
lies in the fact that the g function is typically a Gaussian function, while in CNNs, Wj represents
trainable weights that are automatically updated through backpropagation.

Figure 3: Wavelet Conv

Comparing Eqn 1 and Eqn 2, the key difference between
Wavelet and Gabor transform lies in the scaling factor a.
This factor allows for a variable window in the Gabor
transform. Inspired by this, we propose Wavelet Convo-
lution as shown in Fig 3. Specifically, we apply scaling
transformations to the kernel size of the convolutional ker-
nel to correspond to the scaling transformations of wavelet
basis functions. Following the setup of discrete wavelet
decomposition, we exponentially modify the size of the
convolutional kernel by power of 2 and subtract 1 to en-
sure it remains an odd number. These different scales of
the convolutional kernel share the same set of parameters
W (The parameters of smaller frequency-scaled kernels
are centered around the parameters of the larger scaled
kernel), resembling the concept that wavelet functions in
the wavelet transform are derived from the same base
function. So we can define the Wavelet Conv by Eqn 3 and W:

WConv(c, k, x) =
c∑

j=1

∑
Wij∈W

∑
pk∈Ri

x(pk) · Wij(pk), (4)

where pk ∈ Ri is the sampled points for the kernel in ith frequency scale and jth channel (we imply
time-scale transformation through the sliding of convolutions). This approach effectively captures
small-scale periodic information nested within larger periods in a time series and utilizes additive
concatenation to store them. It is worth mentioning that recent models (Zhang et al., 2022) have
introduced trend decomposition methods, where the trend component of a time series is separately
modeled using linear layers. While Wavelet convolution incorporates both information across dif-
ferent frequency scales and the overall trend information.
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Then, given the input MTS data X ∈ R1×C×L, we employ Wavelet Convolution to get the feature
map of point embedding Xpoint ∈ Rd×C×L with dim d. Additionally, we incorporate a 1D trainable
position embedding Epos ∈ Rd×C×L:

Xpoint = WConv(X) + Epos. (5)

3.2 PERIODIC MODELING

Reversible Window Patching: Inspired by the window attention mechanism in Swinformer (Liu
et al., 2021b), we combine its benefits with PatchTST to achieve a refined approach. Initially, we
employ point embedding by Wavelet Convolution and then utilize patching operations on the feature
map using a specific window scale in each encoder layer, merging time steps within each window for
subsequent attention calculations. As shown in Fig 1, when the window size is not excessively large,
it does not disrupt the missing period information. Moreover, using a window scale makes it easier
to detect missing period patterns. Notably, this operation is reversible, allowing flexibility in altering
the window scale and restructuring the patch sequence at different model layers. Consequently, the
model can effectively handle non-stationary periodic distributions across various scales:

Xl
patch = Transpose (Unfold (Xpoint, scale

l, stridel)), (6)

Xl
point = Transpose (Fold (Xpatch, scale

l, stridel)), (7)

where Xl
patch ∈ RC×P l×Dl

represent the patched feature map in lth layer, Dl is merged by d ×
scalel, scalel is equal to stridel to make the patches non-overlapped. It is worth mentioning that,
to avoid additional complexity caused by point embeddings, we ensure the patch dimension D in
the initial layer remains consistent with the size in other TSformers.

Besides, we introduced intra-layer window rotation operations on P dimension with size r, which
preserve overall periodicity while improving the model’s ability to resist outliers:

Xl
patch = Roll (Xpatch, shift = r, dim = P ). (8)

Figure 4: Frequency component figure with
multiple channel Conv to aware missing peri-
odic information

Periods Detection Attention: We first revisit the
traditional attention mechanism in TS Transformers.
Considering the difference between CI and CD mod-
els, we omit the channel dimension C and represent
the input sequence length as N . Taking a feature
map x ∈ RN×D, a multi-head self-attention (MHSA)
block with M heads is formulated as:

q = xWq, k = xWk, v = xWv, (9)

x̂ = Wo ·Concat[
M∑

m=1

σ(
q(m) · k(m)T√

D/M
) · v(m)], (10)

where all W ∈ RD×D are projection matrices, σ
is the activation function. MHSA projects input fea-
ture maps onto diverse subspaces and leverages dot-
product similarity to enable weighted information al-
location. However, as mentioned in the Introduction,
time series exist multiple non-stationary periods. For
instance, Fig 4 illustrates different missing period pat-
terns at different frequency scales of the wd variable in the Weather dataset. In this case, the infor-
mation around time step 160 in low-frequency periodic information, should have a higher attention
score to the information around time step 140. Conversely, in mid-frequency information, time step
140 may exhibit a period of absence, resulting in a lower attention score. Traditional attention mech-
anisms, due to the shared projection layers for each time position and dot product similarity, struggle
to perceive such non-stationary periodic distributions.

Analogy to deformable convolution (Dai et al., 2017) and deformable attention (Zhu et al., 2020;
Xia et al., 2022) that utilizes a sub-network to adaptively adjust the receptive field shape by fine-
grained feature mapping, we employ a Convolution sub-network to aware periodicity absence with
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their translation invariance, thereby guiding the information allocation in attention computation.
Specifically, as shown in Fig 4, we follow the principle of multi-head attention mechanism to employ
multi-head Periodic Aware sub-network to generate multiple periodic score matrices, and we enable
each channel of the Conv to independently focus on a specific periodic pattern based on multiple
periodic feature map embedded by Eqn 3. Subsequently, we employ a multi-layer perceptron (MLP)
to aggregate the information from multiple channels within an aware head to obtain the periodic
relevance scores:

W(ls)
score = sigmoid (Wp · σ(DWConv(X(l)

patch)
(s)), (11)

where W(ls)
score ∈ RC×P×P is the scores matrices in lth layer and sth head, X(l)

patch ∈ RC×P×Dl/S is
the input feature map divided by S heads. The number of attention heads M , is an integer multiple
of the number of detection heads S. DWConv is a Depthwise Separable Convolution (Chollet,
2017) utilized to detect periodic missing states. σ is the activation function and Wp ∈ RDl/S×P

is used to aggregate the output information to obtain the scores of each patch with respect to other
patches. The sigmoid function restricts the scores within the range of (0, 1).

Then we align the number of detection heads and attention heads to get W(lm)
score and multiply the

result by Formula 10:

X̂
l

patch = Wo · Concat[
M∑

m=1

σ(
W(lm)

score · q(lm) · k(lm)T√
Dl/M

) · v(lm)]. (12)

We can further simplify the attention mechanism by discarding the keys and directly using the
lightweight sub-network to generate the attention matrix based on the query. The final expression of
Formula 10 can be rewritten as follows:

X̂
l

patch = Wo · Concat[
M∑

m=1

σ(W(lm)
score) · v(lm)]. (13)

In this condition, the complexity of the MHSA in PatchTST and our Periodic Aware Attention can
be summarized as follows:

Ω(MHSA) = 4T/P ·D2︸ ︷︷ ︸
qkv and output projection

+ T 2/P 2 ·D︸ ︷︷ ︸
attention computation

+ T 2/P 2 ·D︸ ︷︷ ︸
attention plus values

, (14)

Ω(PAA) = 2T/P ·D2︸ ︷︷ ︸
v and output projection

+(k + T/P ) · T/P ·D︸ ︷︷ ︸
attention computation

+ T 2/P 2 ·D︸ ︷︷ ︸
attention plus values

, (15)

where k is the kernel size of 1D DWConv in the sub-network, when k<2D (in practice K = 3 ≪
D), PAA outperforms MHSA in terms of both time complexity and space complexity. In our paper,
for clarity, we named the model TwinS+ when it utilizes Eqn 12 for attention computation, and
TwinS when attention matrices are directly generated by Eqn 13.

3.3 CHANNEL-TEMPORAL MIXER MLP

In MTSF tasks, incorporating the relationships between time variables has proven beneficial for
enhancing model performance (Zhang & Yan, 2022). Several models (Yu et al., 2023; Chen et al.,
2023) have proposed separate modeling of dependencies in channel and time dimensions. However,
For methods similar to channel attention, their physical interpretation lies in modeling the variable
relationships at each time step. In such cases, the distribution hysteresis can incorrectly model the
relationship information. Based on this insight, we adopt a joint learning approach instead of isolated
modeling channels and time dependencies and employ a straightforward MLP to accomplish this:

Ĥ
l

patch = W2 · σ(W1 · Hl
patch + b1) + b2, (16)

where Hl
patch ∈ RDl×(CP l) is the channel-temporal mixer representation after reshape operation by

Xpatch ∈ RC×P l×Dl

. W1 ∈ RDl×h and W2 ∈ Rh×Dl

are learnable weights. To avoid excessive
parameters, we set the hidden layer dimension h to a fixed constant. b is the bias and σ is theGELU
activate function. Ĥ

l

patch represents the output in the lth encoder layer. Finally, we follow PatchTST
to employ a flatten layer with linear head to get the prediction value Y.
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Table 1: Full results for long-term forecasting task. The lookback length is 96 and the prediction horizons are
{96, 192, 336, 720}. The best model is in boldface, and the second best is underlined.

Model TwinS+ TwinS PatchTST MICN TimesNet Crossformer Dlinear Stationary FEDformer ETSformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h1
96 0.379 0.400 0.376 0.395 0.426 0.426 0.398 0.427 0.384 0.402 0.391 0.417 0.386 0.400 0.513 0.419 0.376 0.419 0.340 0.391

192 0.421 0.433 0.422 0.430 0.469 0.452 0.430 0.453 0.436 0.429 0.449 0.452 0.437 0.432 0.534 0.504 0.420 0.448 0.430 0.439
336 0.451 0.438 0.453 0.438 0.506 0.473 0.440 0.460 0.491 0.469 0.510 0.489 0.481 0.459 0.588 0.535 0.496 0.459 0.465 0.497
720 0.480 0.475 0.477 0.473 0.504 0.495 0.491 0.509 0.521 0.500 0.594 0.567 0.519 0.516 0.643 0.616 0.463 0.474 0.506 0.507

E
T

T
h2

96 0.295 0.347 0.288 0.342 0.299 0.351 0.299 0.364 0.340 0.374 0.641 0.549 0.333 0.387 0.513 0.419 0.358 0.397 0.340 0.391
192 0.376 0.394 0.392 0.401 0.387 0.398 0.422 0.441 0.402 0.414 0.896 0.656 0.477 0.476 0.534 0.504 0.429 0.439 0.430 0.439
336 0.424 0.435 0.420 0.425 0.426 0.433 0.447 0.474 0.452 0.452 0.936 0.690 0.594 0.541 0.588 0.535 0.496 0.487 0.485 0.497
720 0.432 0.450 0.429 0.424 0.430 0.446 0.442 0.467 0.462 0.468 1.390 0.863 0.831 0.657 0.643 0.616 0.463 0.474 0.500 0.497

E
T

T
m

1 96 0.324 0.368 0.325 0.370 0.342 0.378 0.316 0.364 0.338 0.375 0.366 0.400 0.345 0.372 0.386 0.398 0.764 0.416 0.375 0.398
192 0.365 0.379 0.367 0.381 0.372 0.393 0.363 0.390 0.371 0.387 0.396 0.414 0.380 0.389 0.459 0.444 0.426 0.441 0.408 0.410
336 0.400 0.409 0.398 0.405 0.402 0.413 0.408 0.426 0.410 0.411 0.439 0.443 0.413 0.413 0.495 0.464 0.445 0.459 0.435 0.428
720 0.462 0.451 0.462 0.448 0.462 0.449 0.459 0.464 0.478 0.450 0.540 0.509 0.474 0.453 0.585 0.516 0.543 0.490 0.499 0.462

E
T

T
m

2 96 0.168 0.254 0.170 0.253 0.176 0.258 0.179 0.275 0.187 0.267 0.273 0.346 0.193 0.292 0.192 0.274 0.203 0.287 0.189 0.280
192 0.238 0.295 0.238 0.288 0.244 0.304 0.262 0.326 0.249 0.309 0.350 0.421 0.284 0.362 0.280 0.444 0.269 0.328 0.253 0.319
336 0.302 0.341 0.302 0.340 0.304 0.342 0.305 0.353 0.321 0.351 0.474 0.505 0.369 0.427 0.334 0.361 0.325 0.366 0.314 0.357
720 0.407 0.398 0.401 0.370 0.408 0.403 0.389 0.407 0.497 0.403 1.347 0.812 0.554 0.522 0.417 0.413 0.421 0.415 0.414 0.413

E
xc

ha
ng

e 96 0.085 0.203 0.088 0.210 0.087 0.206 0.099 0.240 0.107 0.234 0.256 0.367 0.088 0.218 0.111 0.237 0.139 0.276 0.085 0.204
192 0.174 0.295 0.176 0.304 0.184 0.309 0.198 0.354 0.226 0.344 0.469 0.508 0.176 0.315 0.219 0.335 0.256 0.369 0.182 0.303
336 0.331 0.415 0.334 0.417 0.322 0.421 0.302 0.447 0.367 0.448 0.901 0.741 0.313 0.427 0.421 0.841 0.426 0.464 0.348 0.428
720 0.864 0.702 0.859 0.692 0.825 0.680 0.738 0.662 0.964 0.746 1.398 0.965 0.839 0.695 1.092 0.769 1.090 0.800 1.025 0.774

W
ea

th
er 96 0.149 0.203 0.150 0.207 0.176 0.218 0.161 0.229 0.172 0.220 0.164 0.232 0.196 0.255 0.73 0.223 0.217 0.296 0.237 0.312

192 0.204 0.250 0.205 0.251 0.223 0.259 0.220 0.281 0.219 0.261 0.211 0.276 0.237 0.296 0.245 0.285 0.276 0.336 0.237 0.213
336 0.262 0.286 0.262 0.290 0.277 0.297 0.278 0.331 0.280 0.306 0.269 0.327 0.283 0.335 0.321 0.338 0.339 0.380 0.298 0.353
720 0.344 0.345 0.342 0.344 0.353 0.347 0.311 0.356 0.365 0.359 0.355 0.404 0.345 0.381 0.414 0.410 0.403 0.428 0.352 0.388

E
le

ct
ri

ci
ty 96 0.154 0.263 0.151 0.260 0.190 0.296 0.164 0.269 0.168 0.272 0.254 0.347 0.197 0.282 0.169 0.273 0.193 0.308 0.187 0.304

192 0.166 0.273 0.166 0.272 0.199 0.304 0.177 0.285 0.184 0.289 0.261 0.353 0.196 0.285 0.182 0.286 0.201 0.315 0.199 0.315
336 0.197 0.302 0.195 0.300 0.217 0.319 0.198 0.304 0.198 0.300 0.273 0.364 0.209 0.301 0.200 0.304 0.214 0.329 0.212 0.329
720 0.230 0.329 0.227 0.326 0.258 0.352 0.212 0.321 0.220 0.320 0.303 0.388 0.245 0.333 0.222 0.321 0.246 0.355 0.233 0.345

Tr
af

fic

96 0.468 0.315 0.477 0.324 0.462 0.315 0.519 0.309 0.593 0.321 0.558 0.320 0.650 0.396 0.612 0.338 0.587 0.366 0.607 0.392
192 0.479 0.328 0.481 0.332 0.473 0.321 0.537 0.315 0.617 0.336 0.569 0.321 0.652 0.397 0.613 0.340 0.604 0.373 0.621 0.399
336 0.477 0.325 0.482 0.330 0.494 0.331 0.534 0.313 0.629 0.336 0.591 0.328 0.605 0.373 0.618 0.328 0.621 0.383 0.622 0.396
720 0.510 0.338 0.502 0.339 0.522 0.342 0.577 0.325 0.640 0.350 0.652 0.359 0.650 0.396 0.653 0.355 0.626 0.382 0.622 0.396

1stCount 11 10 13 17 2 1 9 5 0 1 0 0 0 0 0 0 0 0 1 0

4 EXPERIMENTS

In this section, we delve into the performance of TwinS and its variants on popular time series
forecasting datasets and thoroughly analyze the contribution of each module in the model structure.
Additionally, we provide visualizations of attention-receptive fields to validate the effectiveness of
the periodicity detection attention and hyper-parameters analysis. For details of experimental set-
tings, dataset descriptions, and baseline model specifications, please refer to Appendix A.

4.1 MAIN RESULT

We specifically focus on long-term forecasting tasks. As shown in Table 1, TwinS and TwinS+
consistently generally achieve SOTA performance compared to eight mainstream TS models. For
datasets with more pronounced non-stationary periodic distributions, such as Electricity and Weather
(as illustrated in Appendix D), CNN-based models outperform Transformer-based models. This
can be attributed to the inherent nature of convolutional neural networks, which excel at handling
periodic information as filters. TwinS effectively combines the advantages of both models to capture
periodic patterns. Regarding the Exchange and ETTm1 datasets, TwinS and MICN demonstrate
comparable performance. This can be attributed to the relatively stationary nature of these datasets,
which allows TwinS to degrade into a multi-scale convolution model. As to the traffic dataset, the
large number of temporal variables may limit the expressive capacity of the CT-MLP hidden layer,
as it is restricted by the uniform constant setting we employed. In such cases, it is advisable to
consider using recent modules (Zhang et al., 2023b) designed to model the relationships between
variables as replacements for the CT-MLP.

4.2 ABLITION STUDY

Modules Ablation. To comprehensively investigate the contributions of each module within our
proposed framework, we conduct meticulous ablation experiments on the ETTh1 and Weather
datasets. The preliminary analysis of Tab 2 shows that TwinS consistently demonstrates the highest
performance in the experiments. Each individual module plays a pivotal and constructive role in
enhancing the overall performance of the framework. Moreover, we have observed a discernible
correlation between the efficacy of these modules and the unique characteristics exhibited by the
respective datasets, as elaborated upon in Appendix D. For instance, the weather dataset manifests
substantial temporal distribution lags between variables, thereby highlighting the critical signifi-
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Table 2: Model architecture ablations. ”w/o” denotes removing or replacing the block with the correspond-
ing method in PatchTST. WC: Wavelet Convolution; RWP: Reversible Window Patching; CT-MLP: Channel-
Temporal Mixer MLP; PAA: Periodic Aware Attention. The results are averaged from three experimental trials.

Model TwinS w/o WC,RWP w/o CT-MLP w/o PAA

Metric MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h1

96 0.376 0.395 0.388 (-3.2%) 0.401 (-1.5%) 0.379 (-0.8%) 0.398 (-0.8%) 0.384 (-2.1%) 0.402 (-1.8%)
192 0.422 0.430 0.438 (-3.8%) 0.440 (-2.4%) 0.424 (-0.5%) 0.431 (-0.2%) 0.429 (-1.7%) 0.436 (-1.4%)
336 0.453 0.438 0.476 (-5.1%) 0.453 (-3.4%) 0.458 (-1.1%) 0.439 (-0.2%) 0.463 (-2.2%) 0.447 (-2.1%)
720 0.477 0.473 0.481 (-0.8%) 0.477 (-0.9%) 0.473 (+0.8%) 0.470 (+0.6%) 0.490 (-3.8%) 0.481 (-3.8%)

AVG 0.432 0.434 0.446 (-3.5%) 0.443 (-2.1%) 0.434 (-0.5%) 0.435 (-0.5%) 0.442 (-2.3%) 0.442 (-1.9%)

W
ea

th
er

96 0.150 0.207 0.156 (-4.0%) 0.212 (-2.4%) 0.160 (-6.7%) 0.210 (-1.4%) 0.155 (-3.3%) 0.211 (-1.9%)
192 0.205 0.251 0.211 (-2.9%) 0.254 (-1.2%) 0.228 (-11.2%) 0.265 (-5.6%) 0.207 (-1.0%) 0.254(-1.2%)
336 0.262 0.290 0.267 (-1.9%) 0.295 (-1.7%) 0.285 (-8.8%) 0.299 (-3.1%) 0.265 (-1.2%) 0.293 (-1.0%)
720 0.342 0.344 0.349 (-2.0%) 0.352 (-2.3%) 0.360 (-5.3%) 0.354 (-3.0%) 0.344 (-0.9%) 0.347 (-0.9%)

AVG 0.240 0.273 0.246 (-2.5%) 0.278 (-1.8%) 0.258 (-7.5%) 0.282 (-3.3%) 0.243 (-1.3%) 0.276 (-1.1%)

Table 3: Comparative experiments regarding embedding types, we only modify the embedding module in
TwinS. For Linear-patch, we replace wavelet convolution and window patching, while for remaining methods,
we only replace wavelet convolution.

Model Ours Linear-patch 1x3 Conv FFT-image FFT-weight Wavelet-weight Inception

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

2

96 0.170 0.253 0.174 0.258 0.174 0.256 0.173 0.254 0.177 0.261 0.180 0.257 0.178 0.259
192 0.238 0.288 0.244 0.296 0.241 0.290 0.240 0.282 0.260 0.322 0.249 0.302 0.250 0.308
336 0.302 0.340 0.308 0.339 0.307 0.344 0.301 0.345 0.319 0.351 0.312 0.352 0.318 0.354
720 0.401 0.370 0.410 0.396 0.405 0.381 0.401 0.374 0.424 0.405 0.408 0.389 0.419 0.402

AVG 0.278 0.313 0.285 0.318 0.282 0.317 0.279 0.314 0.295 0.335 0.287 0.325 0.291 0.331

E
le

ct
ri

ci
ty 96 0.151 0.260 0.170 0.281 0.166 0.281 0.160 0.268 0.179 0.287 0.174 0.283 0.184 0.291

192 0.166 0.272 0.181 0.296 0.177 0.285 0.172 0.281 0.182 0.291 0.179 0.299 0.188 0.301
336 0.195 0.300 0.220 0.327 0.206 0.304 0.198 0.300 0.211 0.314 0.230 0.324 0.225 0.320
720 0.227 0.326 0.233 0.338 0.232 0.329 0.220 0.320 0.252 0.347 0.249 0.341 0.237 0.344

AVG 0.185 0.290 0.201 0.311 0.195 0.300 0.188 0.292 0.206 0.310 0.208 0.312 0.209 0.314

cance of incorporating the CT-MLP module (notably, removing this module leads to a maximum
11.2% performance drop). Furthermore, excluding both the wavelet convolution embedding and the
periodic-aware attention components yields a noticeable deterioration in performance, thus further
reinforcing our initial hypothesis regarding the indispensability of considering nested and missing
periods in the modeling of time series data.

Embedding Type: In this section, we extensively investigate various embedding methods used in
recent time series models, as well as different variations of Wavelet Convolution on two datasets.
The specific methods we examine are as follows:

Linear-patch. Appearing in PatchTST (Nie et al., 2023), which utilizes shared linear layers to
embed time series with patches. 1 x 3 Conv: Appearing in MTPNet (Zhang et al., 2023a), which
utilizes a 1x3 Conv to get fine-grained feature embedding. FFT-image: Appearing in TimesNet (Wu
et al., 2022). In our deployment, it first transforms 1D time series to 2D time image by dominant
periods and uses a 3x3 Conv to embed and finally reshape to 1D. We input multiperiod data parallel
to the transformer and perform an average operation before the linear head. FFT-weight: The
variant of Wavelet Convolution utilizes Fast Fourier Transform to dynamically identify dominant
periods and assign weights as the kernel scales. Wavelet-weight: Another variant employs Wavelet
Transform to adaptively detect dominant periods and assign corresponding weights as the kernel
scales. Inception: The Inception V1 model (Szegedy et al., 2017) is utilized, employing unshared
convolution kernels to embed time series.

According to Tab 3, our embedding method demonstrates superior performance on both datasets.
The closely-following method is the FFT-image embedding approach. Similar to our method, it
transforms into a 2D periodic feature map (as depicted in Appendix B). The vertical dimension
of the feature map signifies the same phase between different periods. By comparing the phase
information, it becomes possible to detect missing periods. However, the FFT-image method incurs
high computational costs due to the inability of the transformer structure to parallelize computations
caused by the differing feature map sizes. Compared to linear patch embedding, the 1x3 convolution
embedding followed by patching yields superior results. This suggests that applying fine-grained
convolution before patching effectively mitigates the issue of information fragmentation. Although
FFT-weight and Wavelet-weight are adaptive versions of wavelet convolution, their performance is
unsatisfactory. This may be attributed to the incomplete selection of dominant periods in the adaptive
methods, leading to the oversight of crucial periodic information. The subpar performance of the
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(a) Attn in PatchTST (b) Attn in TwinS (c) Patch length analysis (d) Hidden dim analysis

Figure 5: Further analysis. (a) Visualization for attention matrices in PatchTST. (b) Visualization for attention
matrices in TwinS. (c) MSE against the patch length on Weather dataset. (d) MSE against hidden dim of CT-
MLP on ETTm2 dataset. We normalize (cd) to highlight the differences using the optimal result.

Inception model suggests that only shared convolutional kernels in Wavelet Conv can effectively
extract nested periodic information.

Table 4: Experiments regarding attention types.
PAA+conv: version in TwinS+; PAA/conv: version in
TwinS; PAA/mlp: use MLP to generate attention matri-
ces; PAA/0.2: use the score matrix to drop 20% data.

Model PAA+conv PAA/conv PAA/mlp PAA/0.2

Metric MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h2

96 0.290 0.347 0.296 0.350 0.308 0.366 0.303 0.353
192 0.385 0.395 0.388 0.396 0.402 0.410 0.394 0.405
336 0.431 0.436 0.429 0.432 0.430 0.437 0.428 0.435
720 0.427 0.439 0.428 0.441 0.461 0.478 0.448 0.464

E
xc

ha
ng

e 24 0.085 0.203 0.084 0.201 0.090 0.211 0.090 0.208
36 0.182 0.308 0.182 0.309 0.188 0.314 0.189 0.313
48 0.320 0.424 0.319 0.420 0.330 0.426 0.328 0.430
60 0.823 0.677 0.828 0.681 0.831 0.692 0.826 0.680

Attention type: In this section, we delve into
the performance evaluation of various Period
Aware Attention (PAA) module designs. To
emphasize the impact of this module, we sub-
stitute the conventional attention module within
the Traditional TSformer (PatchTST) frame-
work. Based on Tab 4, it is evident that utilizing
a convolutional sub-network for period aware-
ness achieves optimal performance, whereas
replacing it with an MLP significantly degrades
performance. This validates that convolutional
neural networks, leveraging translational in-
variance, are better suited for this task. Fur-
thermore, applying a pruning strategy to the at-
tention matrix also leads to performance degra-
dation. This could be attributed to time series prediction tasks being information-dense, and pruning
this information may result in omitting crucial insights.

4.3 FURTHER ANALYSIS

Attention Visualization: We visualize the attention matrices of PatchTST and TwinS (more results
are provided in Appendix C). From Fig 5(a), when the prediction horizon is 96 and the patch length
is 8, it can be observed that the standard attention mechanism in PatchTST focuses on certain fixed
pattern information, and many time patches have similar weights. This uniformity limits the rep-
resentation of multiple non-stationary periodic features to some extent. In contrast, Fig 5(b) shows
that TwinS, through the attention matrices generated by the convolutional sub-network, can better
detect the distribution of non-stationary periods in the time series and adaptively generate weights.

Effect of Hyper-parameters: We investigate the impact of two hyper-parameters, patch length
and the dimension of the CT-MLP hidden layers, on the model performance using the Weather
and ETTm2 datasets. As shown in Fig 5(c), using non-overlapping patches with a length of 8
generally achieves the best performance. The patch length should be appropriately reduced for
shorter prediction windows and conversely, larger patches are more suitable for longer prediction
tasks. As shown in Fig 5(d), the model’s performance may exhibit fluctuations depending on the
hidden dim. Generally, a hidden dim of 128 can better capture the relationships between series.

5 CONCLUSION

This paper revisits the issue of non-stationarity in MTSF tasks, highlighting the significance of
addressing nested periodic information, modeling missing periodic states, and considering series
relationships with hysteresis. To tackle these challenges, we propose TwinS, which comprises three
modules: Wavelet Convolution, Periodicity Aware Attention, and CT-MLP. Our model demonstrates
excellent performance on eight real-world benchmark datasets and we provide detailed derivations
and ablation studies to validate the effectiveness of each component within the framework. TwinS
represents an initial exploration in addressing the problem of nonstationary periodic distribution.
Moving forward, we aim to further investigate more efficient and interpretable methods.
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A IMPLEMENT DETAILS

A.1 DATASETS

Our experiments are carried out on Five real-world datasets as described below:

Traffic1 dataset contains data from 862 sensors installed on highways in the San Francisco Bay Area,
measuring road occupancy. This dataset is recorded on an hourly basis over two years, resulting in

1https://pems.dot.ca.gov/
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a total of 17,544 time steps.
Electricity2 dataset records the power usage of 321 customers. The data is logged hourly over a
two-year period, amassing a total of 26,304 time steps.
ETT3 dataset are procured from two electricity substations over two years. They provide a summary
of load and oil temperature data across seven variables. For ETTm1 and ETTm2, the ”m” signifies
that data was recorded every 15 minutes, yielding 69,680 time steps. ETTh1 and ETTh2 represent
the hourly equivalents of ETTm1 and ETTm2, each containing 17,420 time steps.
Exchange4 dataset details the daily foreign exchange rates of eight countries, including Australia,
British, Canada, Switzerland, China, Japan, New Zealand, and Singapore from 1990 to 2016.
Weather5 dataset is a meteorological collection featuring 21 variates, gathered in the United States
over a four-year span.

A.2 BASELINES

Our baseline models include:

PatchTST (Zeng et al., 2023)follows the setting of the ViT (Vision Transformer) model by pro-
jecting the time series into linear patches and modeling the temporal dependencies based on these
patches.
MICN (Wang et al., 2022) employs multi-scale sampling and utilizes convolutional neural networks
to model multi-scale periodic information.
TimesNet (Wu et al., 2022) transform 1d time series data to 2d periodic image and use CNNs to
extract the feature map.
Crossformer (Zhang & Yan, 2022) use two directional attention computations: Temporal attention
and Channel attention, and use a router to reduce complexity
Dlinear (Zeng et al., 2023) proposes using a simple two-layer MLP to model periodic information.
Stationary (Liu et al., 2022b) propose Non-stationary Attention, normalization, and de-
normalization operation to tackle the issues of Non-stationary in time series data.
FEDformer (Zhou et al., 2022) learn the time dependency in frequency domain by FNO.
ETSformer (Woo et al., 2022) decomposes the time series into three parts: Level, Growth, and
Seasonal and exploits the principle of exponential smoothing in improving Transformer in MTSF
tasks.

A.3 EXPERIMENTS SETTING

All experiments are conducted on the NVIDIA RTX3090-24G and A6000-48G GPUs. The Adam
optimizer is chosen. The kernel size of the periodic aware sub-network is 3. A grid search is
performed to determine the optimal hyperparameters, including the learning rate from {0.00005,
0.0001}, patch length from {4, 8, 12} (consistent with stride length), hidden layer dimensions of
CT-MLP from {64, 128, 256, 512}, hidden patch dim from {32, 64, 128, 256}, the number of
attention and periodic aware heads are from {4, 8}.

B ABOUT FFT-IMAGE

When applying the TimesNet approach to transform a 1D time series into a 2D image, as shown in
Fig B, the vertical axis represents the same phase information between different periods. Assuming
the time series has a strictly stationary distribution, the information within the same phase is highly
similar. Using 2D convolution, we can detect the phase differences and perceive missing periods at
a finer granularity. Both TimesNet and the results in Tab 3 validate this assumption.

However, due to the structural limitations of Transformers, we can only input fixed-length feature
maps to the model. If we want to employ a convolutional subnet similar to TwinS to perceive missing
periods, whether by using recurrence or mapping different-sized period images to a sufficiently large
area as shown in Fig B, the time complexity becomes prohibitively high. Although experimental

2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://github.com/zhouhaoyi/ETDataset
4https://github.com/laiguokun/multivariate-time-series-data
5https://www.bgc-jena.mpg.de/wetter
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Figure 6: Examples of FFT-image

Figure 7: Attn in PatchTST

results demonstrate significant performance improvement using these methods, the computational
cost is impractical. Therefore, we report the version of the model based on TwinS.

C ATTENTION VISUALIZATION

Here, we present heat maps of attention matrices for the first head of the first data in the batch during
the testing process.

Through comparison, we can observe that traditional attention mechanisms tend to distribute infor-
mation evenly or pay extra attention to specific fixed positions. In contrast, TwinS obtains attention
scores directly through convolutions, allowing for more freedom and making detecting missing peri-
ods easier. Additionally, experimental results indicate that using a convolutional subnet for attention
computation in TwinS leads to faster convergence than traditional methods.
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Figure 8: Attn in TwinS

D WAVELET ANALYSIS FIGURE

To illustrate the non-stationary periodic distributions, we selected four variables from each dataset
and visualized them using wavelet analysis. Wavelet analysis helps us observe the periodic char-
acteristics of signals at different scales and frequencies. Through this visualization, we can better
understand the non-stationary periodic distributions present in the dataset.

We selected four variables with distinct features for each dataset and performed wavelet analysis on
them. By applying wavelet transform to the signals, we can decompose them into components at dif-
ferent frequencies and observe their variations at different time scales. The results of these wavelet
analyses can be presented through graphical visualizations, enabling a more intuitive observation of
the periodic characteristics of the signals.

Using this visualization approach, we can identify the presence of non-stationary periodic distribu-
tions in the dataset and gain insights into the patterns of variation at different time scales. This helps
us select appropriate models and methods to handle datasets with non-stationary periodic distribu-
tions.
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Figure 9: ETTh1 dataset

Figure 10: ETTh2 dataset
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Figure 11: ETTm1 dataset

Figure 12: ETTm2 dataset
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Figure 13: Weather dataset

Figure 14: Traffuc dataset
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Figure 15: Eclectricity dataset

Figure 16: Exchange dataset
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