Meta-Learning Triplet Network with Adaptive Margins for Few-Shot
Named Entity Recognition

Anonymous ACL submission

Abstract

Meta-learning methods have been widely used
in few-shot named entity recognition (NER),
especially prototype-based methods. However,
the Other (0) class is difficult to be repre-
sented by a prototype vector because there are
generally a large number of samples in the class
that have miscellaneous semantics. To solve
the problem, we propose MeTNet, which gen-
erates prototype vectors for entity types only
but not O-class. We design an improved triplet
network to map samples and prototype vectors
into a low-dimensional space that is easier to
be classified and propose an adaptive margin
for each entity type. The margin plays as a
radius and controls a region with adaptive size
in the low-dimensional space. Based on the
regions, we propose a new inference procedure
to predict the label of a query instance. We con-
duct extensive experiments in both in-domain
and cross-domain settings to show the supe-
riority of MeTNet over other state-of-the-art
methods. In particular, we release a Chinese
few-shot NER dataset FEW-COMM extracted
from a well-known e-commerce platform. To
the best of our knowledge, this is the first Chi-
nese few-shot NER dataset. For reproducibility,
all the datasets and codes are provided in the
supplementary materials.

1 Introduction

Named entity recognition (NER), as a fundamental
task in information extraction (Ritter et al., 2012),
aims to locate and classify words or expressions
into pre-defined entity types, such as persons,
organizations, locations, dates and
quantities. While a considerable number of
approaches based on deep neural networks have
shown remarkable success in NER, they generally
require massive labeled data as training set. Unfor-
tunately, in some specific domains, named entities
that need professional knowledge to understand are
difficult to be manually annotated in a large scale.

— Location — Person

Syt France
S2: Einstein Ulm Princeton
S3: Peres to Morocco

(@)

Pre-defined entity types
@ @ O Prototype vectors

Other(O)-class
@ Query instance

° . o .
? Person Person, Margin
Other ¥
Q CIN
Location Location
Previous Methods Our Method

(b)

Figure 1: (a): Samples in O-class are semantically differ-
ent. (b): The comparison between previous methods and
ours to handle O-class. Left: Since the query instance
whose true label is Location is closest to the proto-
type vector of O-class, previous methods misclassify it
to O-class. Right: We compute prototype vectors for
entity types only and learn an adaptive margin for each
entity type to determine a region. Samples in the region
of a class are labeled with the class, while samples out-
side of all the regions are predicted to be in O-class.

To address the problem, few-shot NER has been
studied, which aims to recognize unseen entity
types with few annotations. In particular, some
models (Fritzler et al., 2019; Hou et al., 2020; Wang
et al., 2021) are proposed based on the prototypi-
cal network (PROTO) (Snell et al., 2017), which
is a popular meta-learning method. The general
procedure of these prototype-based NER models is
summarized as follows. First, they generate a pro-
totype vector for each class, including both entity
types and Other (O) class, to represent the class.
Then they compute the distance between a query
sample (instance) ! and all these prototype vectors,
and predict the query instance to the class with the
smallest distance. However, for NER, the O-class

'We interchangeably use sample and instance in this paper.

covers all the miscellaneous words that are not clas-
sified as entity types. These words could span a
wide range of semantics. For example, in Figure 1a,
the words “was”, “president”, “budget” and “today”
are semantically different even if they all belong to
O-class. A single prototype vector would thus be
insufficient to model the miscellaneous semantics
of O-class, which could further lead to the incorrect
prediction of query instances (see Figure 1b).

In this paper, to solve the issue, we propose to
generate prototype vectors only for entity types
but not O-class. In particular, we design a Meta-
Learning Triplet Network with adaptive margins,
namely, MeTNet, to map samples and prototype
vectors into a low-dimensional space, where the
inter-class distance between samples is enlarged
and the intra-class distance between samples and
their corresponding prototype vectors is shortened.
We further design an improved triplet loss func-
tion with adaptive margins, which assigns different
weights to samples, minimizes the absolute dis-
tance between an anchor and a positive sample,
and maximizes the absolute distance between an
anchor and a negative sample. The adaptive margin
plays as a radius and controls a region for each
entity type in the low-dimensional space (see Fig-
ure 1b). Based on these regions, we further propose
a novel inference procedure. Specifically, given a
query instance, we predict it to be in O-class, if it is
located outside all the regions; otherwise, we label
it with the entity type of its located region. Further,
if it is contained in multiple regions, we label it
with the entity type that has the smallest distance
between the query instance and the region center.
Finally, we summarize our main contributions in
this paper as follows.

* We propose an improved triplet network with
adaptive margins (MeTNet) and a new infer-
ence procedure for few-shot NER.

¢ We release the first Chinese few-shot NER
dataset FEW-COMM, to our best knowledge.

* We perform extensive experiments to show the
superiority of MeTNet over other competitors.

2 Related Work
2.1 Meta-Learning

Meta-learning, also known as “learning to learn”,
aims to train models to adapt to new tasks rapidly
with few training samples. Some existing meth-
ods (Snell et al., 2017; Vinyals et al., 2016) are

based on metric learning. For example, Match-
ing Network (Vinyals et al., 2016) computes simi-
larities between support sets and query instances,
while the prototypical network (Snell et al., 2017)
learns a prototype vector for each class and clas-
sifies query instances based on the nearest pro-
totype vector. Other representative metric-based
methods include Siamese Network (Koch et al.,
2015) and Relation Network (Sung et al., 2018).
Further, some approaches, such as MAML (Finn
et al., 2017) and Reptile (Nichol et al., 2018), are
optimization-based, which aim to train a meta-
learner as an optimizer or adjust the optimization
process. There also exist model-based methods,
which learn a hidden feature space and predict the
label of a query instance in an end-to-end man-
ner. Compared with the optimization-based meth-
ods, model-based methods could be easier to opti-
mize but less generalizable to out-of-distribution
tasks (Hospedales et al., 2020). The representative
model-based methods include MANNs (Santoro
et al., 2016), Meta networks (Munkhdalai and Yu,
2017), SNAIL (Mishra et al., 2017) and CPN (Gar-
nelo et al., 2018).

2.2 Few-shot NER

Few-shot NER has recently received great atten-
tion (Huang et al., 2021; Das et al., 2021; Ma et al.,
2022) and meta-learning-based methods have been
applied to solve the problem. For example, Fritzler
et al. (2019) combine PROTO (Snell et al., 2017)
with conditional random field for few-shot NER. In-
spired by the nearest neighbor inference (Wiseman
and Stratos, 2019), StructShot (Yang and Katiyar,
2020) employs structured nearest neighbor learning
and Viterbi algorithm to further improve PROTO.
MUCO (Tong et al., 2021) trains a binary classifier
to learn multiple prototype vectors for representing
miscellaneous semantics of O-class. ESD (Wang
et al., 2021) uses various types of attention based on
PROTO to improve the model performance. How-
ever, most of these methods use one or multiple
prototype vectors to represent O-class, while we
compute prototype vectors for entity types only
and further design a new inference procedure.

Very recently, prompt-based techniques have
also been applied in few-shot NER (Cui et al., 2021;
Ma et al., 2021; Chen et al., 2021; Cui et al., 2022).
However, the performance of these methods is very
unstable, which heavily depend on the designed
prompts (Cui et al., 2021). Thus, without a large

validation set, their applicability is limited in few-
shot learning.

3 Background
3.1 Problem Definition

A training set Dy, consists of word sequences
and their label sequences. Given a word sequence
X ={x1,...,zn}, we denote L = {ly,...,1,} as
its corresponding label sequence. We use Vi qin
to denote the label set of the training data and I; €
Virain. In addition, given a test set Dyegy, let Viest
denote the label set of the test set, which satisfies
Virain N Viest = 0. Our goal is to develop a model
that learns from Dy,q:y, and then makes predictions
for unseen classes in Ves, for which we only have
few annotations.

3.2 Meta-training

Meta-learning methods include two stages: meta-
training and meta-testing. In meta-training, the
model is trained on meta-tasks sampled from
Dirain. BEach meta-task contains a support set and
a query set. To create a training meta-task, we
first sample NN classes from Vy,qn. After that, for
each of these IV classes, we sample K instances
as the support set S and L instances as the query
set Q. The support set is similar as the training
set in the traditional supervised learning but it only
contains a few samples; the query set acts as the
test set but it can be used to compute gradients for
updating model parameters in meta-training stage.
Given the support set, we refer to the task of mak-
ing predictions over the query set as N-way K -shot
classification.

3.3 Meta-testing

In the testing stage, we also use meta-tasks to test
whether our model can adapt quickly to new classes.
To create a testing meta-task, we first sample N
new classes from). Similar as in meta-training,
we then sample the support set and the query set
from the NV classes, respectively. The support set is
used for fine-tuning while the query set is for test-
ing. Finally, we evaluate the average performance
on the query sets across all testing meta-tasks.

4 Method

In this section, we describe our MeTNet algorithm.
We first give an overview of MeTNet, which is
illustrated in Figure 2. MeTNet first represents
samples with BERT text encoder, based on which

the embeddings of words and prototype vectors are
initialized. Then it generates triples based on the
support sets and prototype vectors, and employs
an improved triplet network with adaptive margins
to map words and prototype vectors into a space
that is much easier to classify. For each entity type,
an adaptive margin plays as a radius and controls
a region centered at the corresponding prototype
vector. These regions are further used in the infer-
ence stage. Next, we describe each component of
MeTNet in detail.

4.1 Text Encoder

We first represent each word in a low-dimensional
embedding vector. Following (Yang and Katiyar,
2020; Ding et al., 2021), we use BERT (Devlin
et al., 2018) as our text encoder. Specifically, given
a sequence of n words [z1, 2, ..., T,], we take the
output of the final hidden layer in BERT as the
initial representations h; for x;:

{hl,hz,...,hn] :BERT¢([$1,$2,...,$n]), (D)
where ¢ represents parameters of BERT. Then for
each pre-defined entity type cj, we construct its
initial prototype vector h,; by averaging the repre-
sentations of words labeled as c;.

4.2 Triplet Network

A triplet network (Hoffer and Ailon, 2015) is com-
posed of three sub-networks, which have the same
network architecture with shared parameters to be
learned. For the triplet network, triples are taken
as its inputs. Each triple consists of an anchor, a
positive sample and a negative sample, and we feed
each sample into a sub-network.

Construct Triples We first construct triples for
different entity types. Specifically, for each entity
type, we take its prototype vector as the anchor,
instances in the entity type as positive samples, and
other instances as negative ones. Since the number
of negative samples is generally larger than that of
positive samples, we select k negative samples with
the nearest distance to the prototype vector. After
that, for each positive sample and each negative
sample, we construct triples, respectively.

Improved Triplet Loss Given the distance d,, be-
tween the anchor and the positive sample, and the
distance d,, between the anchor and the negative
sample, the original triplet loss aims to optimize
the relative distance among the anchor, the positive

Or = Opy1

Triplet Network
Proto + — :+:>
Support - (I -) Plgtg ¢ Improved Triplet Loss
S = = : (Support Set)
et _ 0,
B g (I) =
E 1! Mean Ny
R Proto, . et Bt
Proto, [Hl] Triplet Network
T
Query = = o Improved Triplet Loss
Set =
! (Query Set)
4
Pre-defined entity types O-class For each
If dis(| |, @) > margin, and dis(| |, [l]) > margin,:
B B Prototypes pred(|) = O-class
Query instance else:
pred(["|) = argmin(dis(| |, @) , dis(|"|, [H))

Figure 2: The overall architecture of MeTNet for a 2-way 2-shot problem.

sample and the negative sample, which is formu-
lated as:

Lr = max(0,m+d, —d,), 2)
dp = d(fo(ha), fo(hp)), 3)
dn = d(f@(ha)a fe(hn))7 4

where m is a margin, d(-, -) denotes the Euclidean
distance function and fy(-) is the embedding vector
generated from the triplet network. However, there
exist three main problems in the original triplet loss
function. First, the relative distance could lead to
a very small d,, or a very large d,, only, while our
goal is to derive both of them. Second, the loss
function considers all the samples are equally im-
portant, but their importance is empirically relevant
to their distance to the anchor. Third, the margin is
fixed and unique. However, different entity types
generally correspond to regions with various sizes.
To address these problems, we design an improved
triplet loss as follows:

B o

N 1+ e—(dp—m)

l-«a

T e i)

Lrr . dp

-max(m; — dy,0), (5)
where « is a balancing weight and m,; denotes a
learnable margin of entity type ¢;. In Equation 5,
we separately optimize the absolute distances d,,
and d,,. On the one hand, we directly minimize
dp. On the other hand, considering that each entity
type uses a region to include positive samples, we
thus maximize d,, by pushing the negative sample
away from the region. Further, we assign differ-
ent weights to samples based on their distances to

Pre-defined entity types =~ Other(O)-class
@ @ Prototype vectors @ @2 @3 Query instances

Person. %
a;/; @ ¢ 7
W — & K
Dh a
) Location
y
7
Q3 L Q

Figure 3: An example to illustrate the inference pro-
cedure in MeTNet. The dashed circles represent the
regions of pre-defined entity types determined by adap-
tive margins. The labels of @1, Q2 and @3 are predicted
to be Location, Person and O-class, respectively.

anchors. Intuitively, the farther the positive sam-
ples or the closer the negative samples are to the
anchors, the larger the weights should be given
to amplify the loss. Finally, we set adaptive mar-
gins for different entity types, which play as region
radiuses and control region sizes.

4.3 Inference

In the inference stage, most existing methods cal-
culate the distances between a query instance and
all the prototype vectors for both entity types and
O-class, and predict the query instance to be in the
class with the smallest distance. Different from
these methods, our model avoids handling O-class
directly. Instead, we make predictions based on the
regions of entity types. As shown in Figure 3, the

entity types Person and Location have their
own regions controlled by different margins. When
a query instance (e.g., (1) is only located in one re-
gion, we label it with the entity type corresponding
to the located region; when a query instance (e.g.,
()2) is contained in multiple regions, we calculate
its distances to different region centers and predict
its entity type to be that with the smallest distance;
when a query instance (e.g., (3) is outside all the
regions, it is labeled with O-class.

4.4 Training Procedure

Inspired by MAML (Finn et al., 2017), we first
update the model parameters 6 with samples in the
support set:

(9/ = 9 — OéV@ﬁ[T(H;S), (6)

where « is the learning rate and S represents the
support set. With few-step updates, 6 becomes
¢'. Then based on ¢, the triplet network can map
query instances and prototype vectors into a low-
dimensional space that is much easier to classify.
After that, we update the model parameters 6 with
samples in the query set:

0« 06— BVQ;C[T(GI; Q), (7)

where (3 is the meta learning rate and Q repre-
sents the query set. This optimization simulates
the testing process in the training stage and boosts
the generalizability of the model to unseen classes
with only few-step updates. The overall procedure
of MeTNet is summarized in Algorithm 1.

S Experiments

In this section, we comprehensively evaluate the
performance of MeTNet in both in-domain and
cross-domain settings. The in-domain setting indi-
cates that both the training set and the test set come
from the same domain, while the cross-domain set-
ting indicates that they are from different domains.

5.1 Datesets

We use four public English datasets and one new
Chinese dataset. Statistics of these datasets are
given in Table 1. For the English datasets, they are
FEW-NERD (Ding et al., 2021), WNUT17 (Der-
czynski et al., 2017), Restaurant (Liu et al., 2013)
and Multiwoz (Budzianowski et al., 2018). Specifi-
cally, FEW-NERD designs an annotation schema
of 8 coarse-grained (e.g., “Person”) entity types and

Algorithm 1 MeTNet Training procedure

Input: Training data {Dyyain, Virain }; €p epochs
and the number 7' of iterations of the model
updated by the support set in a task; N classes
in the support set or the query set; /' samples
in each class in the support set and L samples
in each class in the query set; the pre-trained
BERT parameter ¢; the model parameter 8; the
set M of adaptive margins;

Output: ¢, 0 and M after training;

1: Randomly initialize 6 and M;

2: for eachi € [1,ep| do

3 Y+ Sample(ytrain7N>;

4 S,Q+«+0,0;

5 fory € Y do

6 S « SUSsample(Dygin{y}, K);

7 Q < QU sample(Dyain{y}\S, L);

8 end for

9: Hs,Ho < BERT4(S), BERT4(Q);

10: Hp + 0;

11: for y € Y do

12: Hp + Hp Umean(Hs{y});

13: end for

14: fort €T do

15: Construct triples by Hs, Hp;

16: Input triples to the triplet network;
17: Calculate L7 by Equation 5;

18: Update 6 to ¢’ by Equation 6;

19: end for

20: Construct triples by Ho, Hp;

21: Input triples to the triplet network;

22: Calculate L;7 by Equation 5;

23: Update ¢ and 6 based on 6’ by Equation 7;
24: end for

25: return ¢, # and M

Datasets # Sentences # Entities # Classes Domain
FEW-COMM 66.2k 140.9k 92 Commodity
FEW-NERD 188.2k 491.7k 66 General

WNUT 4.7k 3.1k 6 Social Media

Restaurant 9.2k 15.3k 8 Review
Multiwoz 23.0k 20.7k 14 Dialogue

Table 1: Statistics of datasets. # Classes corresponds to
the number of pre-defined entity types in a dataset.

66 fine-grained (e.g., “Person-Artist”) entity types,
and constructs two tasks. One is FEW-NERD-
INTRA, where all the entities in the training set
(source domain), validation set and test set (target
domain) belong to different coarse-grained types.

The other is FEW-NERD-INTER, where only the
fine-grained entity types are mutually disjoint in
different sets. We conduct in-domain experiments
on both tasks. To further validate the model’s gen-
eralizability on cross-domain tasks, we also use
three NER datasets from different domains, namely
WNUT17 (Social), Restaurant (Review) and Multi-
woz (Dialogue).

We also construct and conduct experiments on
a Chinese few-shot NER dataset, namely, FEW-
COMM. The dataset consists of 66,165 product
description texts that merchants display on a large e-
commerce platform, including 140,936 entities and
92 pre-defined entity types. These entity types are
various commodity attributes that are manually de-
fined by domain experts, such as “material”, “color”
and “origin”. Specifically, we first hire five well-
trained annotators to label the texts in one month
and then ask four domain experts to review and
rectify the results. To the best of our knowledge, it
is the first Chinese dataset specially constructed for
few-shot NER. Due to the space limitation, please
see Appendix A for more details on the dataset.

5.2 Baselines

We compare MeTNet with seven other few-
shot NER models, which can be grouped into
three categories: (1) optimization-based meth-
ods: MAML (Finn et al., 2017) which adapts to
new classes by using support instances and op-
timizes the loss of the adapted model based on
the query instances. (2) nearest-neighbor-based
methods: NNShot (Yang and Katiyar, 2020) and
StructShot (Yang and Katiyar, 2020). NNShot
determines the tag of a query instance based on
the word-level distance and StructShot further im-
proves NNShot by an additional Viterbi decoder.
(3) prototype-based methods: PROTO (Snell et al.,
2017), CONTaiNER (Das et al., 2021), ESD (Wang
et al., 2021) and DecomMETA (Ma et al., 2022).
Specifically, PROTO computes the prototype vec-
tor by averaging all the sample embeddings in the
support set for each class. CONTaiNER proposes a
contrastive learning method that optimizes the inter-
token distribution distance for few-shot NER. ESD
uses various types of attention based on PROTO
to improve the model performance. DecomMETA
addresses few-shot NER by sequentially tackling
few-shot span detection and few-shot entity typing
using meta-learning.

5.3 Experiment Setup

We implemented MeTNet by PyTorch. The model
is initialized by He initialization (He et al., 2015)
and trained by AdamW (Loshchilov and Hutter,
2017). We run the model for 6,000 epochs with the
learning rates 0.2 and the meta learning rate 0.0001
for the improved triplet loss on all the datasets.
For the text encoder, we use the pre-trained
bert-base-Chinese model for the FEW-
COMM dataset and bert-base-uncased
model for other datasets. In the triplet network, we
use three same fully connected layer with shared
parameters and we set the dimensionality of the
fully connected layer to 1024. We also fine-tune
the number 7' of iterations for updating parame-
ters on the support set in each meta-task by grid
search over {1, 3,5, 7,9} and set it to 3 on all the
datasets. For a fair comparison, we substitute the
text encoder as that of MeTNet for all the baselines,
use the original codes released by their authors
and fine-tune the parameters of the models. We
run all the experiments on a single NVIDIA v100
GPU. Following Ding et al. (2021), we evaluate
the model performance based on 500 meta-tasks in
meta-testing and report the average micro F1-score
over 5 runs. We utilize the TO schema in our exper-
iments, using I-type to denote all the words of a
named entity and O to denote other words.

5.4 Results

In-domain Experiments The results of in-
domain experiments in 1-shot and 5-shot settings
on FEW-NERD dataset are shown in Table 2. From
the table, MeTNet consistently outperforms all the
baselines on the average F1 score. For example,
compared with DecomMETA, MeTNet achieves
1.84% improvements on the average F1 score;
when compared against the PROTO model, MeT-
Net leads by 31.04% on the average F1 score,
which clearly demonstrates that our model is very
effective in improving PROTO. On the FEW-
COMM dataset (as shown in Table 3), our model
also achieves the best performance across all the
settings. All these results show that MeTNet, which
learns adaptive margins for inference by an im-
proved triplet network, can perform reasonably
well.

Cross-domain Experiments We train models
on FEW-NERD-INTER (General) as the source
domain and test our models on WNUT (Social
Media), Restaurant (Review) and Multiwoz (Dia-

FEW-NERD-INTER

FEW-NERD-INTRA

Method 51 55 10-1 105 51 55 10-1 o5 Average

MAML 38.52+067 49.86+033 30.20+078 33.394049 30.14+053 38.38+041 23.05+045 28.52+059 34.01

"~ NNShot 5524x040 54.49:001 40.21+163 49.23+115 2630121 38.91+053 24.69+023 32.63x250 4021
StructShot 53.65+054 56.50+1.17 46.86+053 53.25+097 30.88+096 42.80+051 27.25+084 33.56+106 43.10

© PROTO 35.78z0m 47.01131 30.12+077 47.13x0s7 15681092 36.58+087 12.68+0s9 2899106 31.75
CONTaiNER' 55.95 61.83 48.35 57.12 40.43 53.70 33.84 47.49 49.84
ESDf 66.46+049 74141080 59.95+060 6791141 41.44+116 50.68+094 32294110 42.92+075 54.47
DecomMETAT 68.77x02¢ 71.62+0.16 63.26+040 68.32+010 52.04+04s 63.23:1045 43.50:050 56.84+0.14 60.95
MeTNet 70.12+063 73.30+054 65.97+069 T1.47+061 54.59+083 62.531053 46.80+091 57.51+087 62.79

Table 2: F1 scores (%) of 5-way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-way 5-shot problems over FEW-NERD
dataset. T denotes the results reported in Ma et al. (2022). We highlight the best results in bold.

FEW-COMM
Method 51 55 101 105

MAML 28.16+057 54.38+037 26.23+061 44.66+044

"~ NNShot 4840+127 71.55+137 4175093 67.91+1s51
StructShot 48.61+076 70.62+083 47.77+083 65.09+097

" PROTO 22731086 53.95+098 22.17=090 45.81+090
CONTaiNER 57.13+047 63.38+068 51.87+058 60.98+071
ESD 65.37+079 73.29+095 58.32+089 70.93+1.01
DecomMETA 68.01+039 72.89+045 62.13+028 72.14+0.11
MeTNet 70.10+058 76.74+058 64.05+074 76.28+0.91

Table 3: F1 scores (%) of 5-way 1-shot, 5-way 5-shot,
10-way 1-shot and 10-way 5-shot problems over FEW-
COMM dataset. We highlight the best results in bold.

logue), respectively. All the three datasets are in dif-
ferent domains from that of FEW-NERD-INTER.
Since there is a large generalization gap between
the training and test distributions, cross-domain
experiments are generally more challenging than
in-domain ones. Table 4 shows the results. From
the table, we see that our model performs very well
in both the 1-shot and 5-shot settings. This clearly
shows the generalizability of our model.

5.5 Ablation Study

We conduct an ablation study to understand the
characteristics of the main components of MeTNet.
To show the importance of the proposed margin-
based inference method, one variant generates pro-
totype vectors for both entity types and O-class. In
the inference stage, it computes the distance be-
tween a query instance and all these prototype vec-
tors, and predict the query instance to be in the class
with the smallest distance, which is similar as pre-
vious methods. We call this variant MeTNet-piw
(use previous inference way). To study the impor-
tance of the triplet network in mapping prototype
vectors and samples into a low-dimensional space
that is easier to classify, we further remove the
triplet network and replace it with a fully-connected

layer. Due to the removal of the triplet network,
adaptive margins cannot be learned, so we adopt
the same inference procedure as in MeTNet-piw.
We call this variant MeTNet-piw-rtn (use previous
inference way and remove triplet network). To
show the importance of the improved triplet loss,
we replace it with the original triplet loss and call
this variant MeTNet-otl (original triplet loss). Fi-
nally, we remove the MAML training procedure
to explore the impact of MAML on the model and
call this variant MeTNet-w/o-MAML.

The results of ablation study are shown in Ta-
ble 5. From the table, we observe: (1) MeTNet
beats MeTNet-piw clearly. For example, in 5-way
1-shot problem on the FEW-COMM dataset, the F1
score of MeTNet is 66.10% while that of MeTNet-
piw is only 54.66%. This shows that the margin-
based inference can effectively enhance the model
performance. (2) The advantage of MeTNet-piw
over MeTNet-piw-rtn across all the datasets further
shows that the triplet network can learn better em-
beddings for samples with different classes in the
low-dimensional space. (3) MeTNet leads MeTNet-
otl in all the classification tasks. This demonstrates
that our improved triplet loss is highly effective.
(4) Compared against MeTNet-w/o-MAML, MeT-
Net leads by 3.4% on the average F1 score, which
shows the importance of MAML to the model.

5.6 Visualization

Figure 4 visualizes the word-level representations
of a query set generated by PROTO and MeTNet in
the 5-way 1-shot and 5-way 5-shot settings on the
FEW-NERD-INTER dataset. Note that PROTO
generates prototype vectors for both entity types
and O-class, while MeTNet only generates that for
entity types. From the figure, we see that words in
O-class are widely distributed, so using a prototype
vector to represent O-class is insufficient. For those

Method WNUT Restaurant Multiwoz Average
5-1 5-5 5-1 5-5 5-1 5-5 5-1 5-5

MAML 17.77+067 23.69+071 17.53+083 22.81+077 20.82+101 23.61+0s7 | 18.71 23.37

~ NNShot 15.93x061 23.78067 19.37+073 32.83x0s0 27.77+091 42.19+103 | 21.02 32.93
StructShot 17.29+101 25.18+096 20.75+107 34.18+118 30.79+121 44.01+131 | 22.46 34.08

~ PROTO 13.04x071 2320003 15.68+101 3271107 22.09+0s1 41.78=079 | 16.94 32.56
CONTaiNER 18.15+117 19.544100 27.74+089 33.41+097 34.88+203 41.92+193 | 26.92 31.62
ESD 19.24+1087 26.00+096 24.53+103 37.85+097 35.81+187 42.88x105 | 26.53 35.58
DecomMETA 20.98+0.11 31.17+016 29.75+027 41.13+019 33.79+022 47.01+036 | 28.17 39.77
MeTNet 21.84+088 33.27+075 31.80+067 45.53+t074 39.88+t093 52.13+091 | 31.17 43.64

Table 4: F1 scores (%) of 5-way 1-shot, 5-way 5-shot problems over three datasets for cross-domain experiments.

We highlight the best results in bold.

Method FEW-NERD-INTER FEW-NERD-INTRA FEW-COMM
5-1 5-5 10-1 10-5 5-1 5-95 10-1 10-5 5-1 5-5 10-1 10-5
MeTNet-piw 60.35 62.75 53.89 55.59 4292 50.84 3331 4040 58.66 6633 49.75 64.11
MeTNet-piw-rtn 50.77 62.14 41.29 54.87 34.19 46.56 28.65 3842 5134 6158 45.61 61.65
MeTNet-otl 65.37 70.61 55.60 63.81 44.78 57.32 36.27 4496 62.66 73.17 54.76 72.70
MeTNet-w/o-MAML 68.14 70.27 63.73 6932 5237 5813 4328 5131 6819 71.73 59.85 7281
MeTNet 70.12 73.30 6597 71.47 54.59 62.53 4680 57.51 70.10 76.74 64.05 76.28

Table 5: Ablation study: F1 scores (%) of 5-way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-way 5-shot classification
over FEW-NERD and FEW-COMM datasets. ‘rtn’ means removing triplet network, ‘piw’ means using previous
inference way and ‘otl’ means using original triplet loss. We highlight the best results in bold.

MeTNet

Piet @ "X

1-shot
*
.. L
SR
- AN
!
s
-
* ' l"'

%" ' -
o i A
g ¢ “t.-’i'
" % . % \OBI_ % jf
LS d

W T)

o

wrt

(0] government music * prototype vectors

sports event hospital athlete

Figure 4: t-SNE visualizations on the FEW-NERD-
INTER test sets. The representations are obtained from
PROTO and MeTNet. The dashed circles represent the
regions determined by adaptive margins.

samples closer to other prototype vectors, they are
easily misclassified. Instead of representing O-class
with a prototype vector, MeTNet addresses the
problem by learning adaptive margins for entity
types only and using a margin-controlled region to
make prediction. Samples outside these regions are

labeled with O-class. Further, our method MeTNet
can generate word embeddings that are clearly sep-
arated, which further explains the effectiveness of
MeTNet.

6 Conclusion

In this paper, we studied the few-shot NER prob-
lem and proposed MeTNet, which is a meta-
learning triplet network with adaptive margins. As
a prototype-based method, MeTNet uses a triplet
network to map samples and prototype vectors into
a low-dimensional space that is easier to be clas-
sified. Further, to solve the problem that O-class
is semantically complex and thus hard to be repre-
sented by a prototype vector, we designed an im-
proved triplet loss function with adaptive margins
and presented a margin-based inference procedure
to predict the label of a query instance. We per-
formed extensive experiments in both in-domain
and cross-domain settings. Experimental results
show that MeTNet can achieve significant perfor-
mance gains over other state-of-the-art methods. In
particular, we released the first Chinese few-shot
NER dataset from a large-scale e-commerce plat-
form, which aims to provide more insight for future
study on few-shot NER.

Ethics Statement

The proposed method has no obvious potential
risks. All the scientific artifacts used/created are
properly cited/licensed, and the usage is consistent
with their intended use. The paper collects a new
dataset FEW-COMM, which does not contain any
sensitive information. The dataset is keeping with
the rules and reviewed by experts to ensure that it
does not create additional risks. Also, we open up
our codes and hyperparameters to facilitate future
reproduction without repeated energy cost.

References

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica GaS$i¢. 2018. Multiwoz—a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Xiang Chen, Ningyu Zhang, Lei Li, Xin Xie, Shumin
Deng, Chuangi Tan, Fei Huang, Luo Si, and Hua-
jun Chen. 2021. Lightner: A lightweight genera-
tive framework with prompt-guided attention for low-
resource ner. arXiv preprint arXiv:2109.00720.

Ganqu Cui, Shengding Hu, Ning Ding, Longtao Huang,
and Zhiyuan Liu. 2022. Prototypical verbalizer
for prompt-based few-shot tuning. arXiv preprint
arXiv:2203.09770.

Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue Zhang.
2021. Template-based named entity recognition us-
ing bart. In Findings of ACL, pages 1835-1845.

Sarkar Snigdha Sarathi Das, Arzoo Katiyar, Rebecca J
Passonneau, and Rui Zhang. 2021. Container: Few-
shot named entity recognition via contrastive learn-
ing. arXiv preprint arXiv:2109.07589.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the wnut2017
shared task on novel and emerging entity recognition.
In W-NUT, pages 140-147.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan
Liu. 2021. Few-nerd: A few-shot named entity recog-
nition dataset. In ACL, pages 3198-3213.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, pages 1126-1135.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in named entity
recognition task. In SAC, pages 993-1000.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison,
Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo Rezende, and SM Ali Eslami.
2018. Conditional neural processes. In ICML, pages
1704-1713.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In ICCV, pages 1026-1034.

Elad Hoffer and Nir Ailon. 2015. Deep metric learning
using triplet network. In SIMBAD, pages 84-92.

Timothy M. Hospedales, Antreas Antoniou, Paul Mi-
caelli, and Amos J. Storkey. 2020. Meta-learning in
neural networks: A survey. CoRR, abs/2004.05439.

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-shot
slot tagging with collapsed dependency transfer and
label-enhanced task-adaptive projection network. In
ACL, pages 1381-1393.

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. 2021. Few-
shot named entity recognition: An empirical baseline
study. In EMNLP, pages 10408—10423.

Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. 2015. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop,
volume 2.

Jingjing Liu, Panupong Pasupat, Scott Cyphers, and
Jim Glass. 2013. Asgard: A portable architecture
for multilingual dialogue systems. In ICASSP, pages
8386-8390.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Ruotian Ma, Xin Zhou, Tao Gui, Yiding Tan,

Qi Zhang, and Xuanjing Huang. 2021. Template-
free prompt tuning for few-shot ner. arXiv preprint
arXiv:2109.13532.

Tingting Ma, Huiqiang Jiang, Qianhui Wu, Tiejun
Zhao, and Chin-Yew Lin. 2022. Decomposed meta-
learning for few-shot named entity recognition. arXiv
preprint arXiv:2204.05751.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and
Pieter Abbeel. 2017. A simple neural attentive meta-
learner. arXiv preprint arXiv:1707.03141.

Tsendsuren Munkhdalai and Hong Yu. 2017. Meta
networks. In ICML, pages 2554-2563.

Alex Nichol, Joshua Achiam, and John Schulman.
2018. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999.

Alan Ritter, Mausam, Oren Etzioni, and Sam Clark.
2012. Open domain event extraction from twitter. In
KDD, pages 1104-1112.

Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy Lillicrap. 2016. Meta-
learning with memory-augmented neural networks.
In ICML, pages 1842-1850.

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.
Prototypical networks for few-shot learning. In NIPS,
pages 4077-4087.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,
Philip HS Torr, and Timothy M Hospedales. 2018.
Learning to compare: Relation network for few-shot
learning. In CVPR, pages 1199-1208.

Meihan Tong, Shuai Wang, Bin Xu, Yixin Cao, Minghui
Liu, Lei Hou, and Juanzi Li. 2021. Learning from
miscellaneous other-class words for few-shot named
entity recognition. arXiv preprint arXiv:2106.15167.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Ko-
ray Kavukcuoglu, and Daan Wierstra. 2016. Match-
ing networks for one shot learning. arXiv preprint
arXiv:1606.04080.

Peiyi Wang, Runxin Xu, Tianyu Liu, Qingyu Zhou,
Yunbo Cao, Baobao Chang, and Zhifang Sui. 2021.
An enhanced span-based decomposition method for
few-shot sequence labeling. CoRR, abs/2109.13023.

Sam Wiseman and Karl Stratos. 2019. Label-agnostic
sequence labeling by copying nearest neighbors. In
ACL, pages 5363-5369.

Yi Yang and Arzoo Katiyar. 2020. Simple and effective
few-shot named entity recognition with structured
nearest neighbor learning. In EMNLP, pages 6365—
6375.

A FEW-COMM

A.1 Entity types

As introduced in Section 5.1 of the main text, FEW-
COMM is manually annotated with 92 pre-defined
entity types, and we list all the types and the num-
ber of samples belonging to each type in Table 6.
We find that since FEW-COMM is collected from
real application scenarios, there is a long-tailed dis-
tribution problem, which is a common problem in
real scenarios. How to overcome the influence of
long-tailed distribution on the model is a crucial
research direction.

10

A.2 Splits

We divided the training set, validation set and test
set in a ratio of 6:2:2. Among them, the training set
includes 55 entity types, the validation set includes
18 entity types, and the test set includes 19 entity
types. The entity types contained in the three sets
are disjoint.

A.3 Examples

We provide some examples on FEW-COMM
dataset for further understanding, which is shown
in Table 7.

Table 6: All the pre-defined entity types and the number of samples belonging to each type in FEW-COMM dataset.

Entity types # Samples | Entity types # Samples | Entity types # Samples | Entity types # Samples
Hit gt 44259 TIRETN AKX 13412 iz 11126 & H A 9483
i) 6955 FEHE 4959 &Y% 2520 5% 2356
EAZET 1791 ey 1671 O 1379 18 FH B (] 1292
LHIRSS 1245 5 1210 [l 1135 Es)adrign| 920
R 897 2SI 874 gt 860 HETE 808
15 AR 801 R TT 786 177 = 706 it 697
EHEE 674 pEas bt iz 636 EAL 5 614 T 585
THEH 5T 569 RS 564 KN 550 /8% 546
EY 530 1] 510 ER 503 B 486
EHEL 483 FoAREA 478 JE i 472 EHFM 469
EHZEER 466 LGRS 465 EHFER 462 e = 460
e 457 RS & & 456 P 451 A=t 447
K5 444 eit) 441 & FARY) 440 BAE 439
AN 436 HE R 430 EhER 430 v 428
TR EBE 426 K 426 EHAEH 426 [E=3it] 424
2 422 RABIE 419 & 25 (6] 419 15 B 416
& 2 R 415 MR 413 77 413 ERA 412
HEHR 412 EEE 410 & AEL 406 A 404
RE il RS 403 AR 403 FCECRAS 403 ThERK 402
EhEE 402 T = 402 I 401 Gl 401
K 401 FH 2 401 LR 400) 400
BR 399 FER 376 RIEEE 321 AL 214
PRI 86 NE 44 Br 40 RIT 75 11

Table 7: Examples in FEW-COMM dataset. We marked the entities with the corresponding entity types.

H 2R 7= 4] B WA o) BRRELLT T e B AR T A K B B e B8

FHpEMEY) B S Lo s) BTk B B) ST RN (NGl =)

THEINHE (grace) VA MyaZRaiif b A G AR R R (BhRE T

AR RSN AR PR W] 1) 5 R S 2 v) RIS LD L) 711442

GG ERR AR TG) PR IR ST A 20) e e B R PRI A

R TR pE A AL N RN R R AR AL JETzIm) R A 200K

TR 22 PRI 28 mh ey e A AR 22k = (5) TEERE AR T

R ENHLIL SR B K i) AT PR 22 v 2 H R R) 22 E

FRHEEE Lo KIEENERPE A 7 Eyle) PREEIE (RS A s MREELL (i)

I 1415 25 B BB 5 T il v) 1 B T EH

[DHFE] -334BELE DL E RS BE1E-1% TETEETE 1 T nsmiiss

VKB L ms) KR PPEFEPK T b ARIEETIE R) NSRBI R 1

airism BEAA G AT 477) e M))

FRE ZE i 7y) VA RIS NFERRZE2gx 163/

11

