
Meta-Learning Triplet Network with Adaptive Margins for Few-Shot
Named Entity Recognition

Anonymous ACL submission

Abstract

Meta-learning methods have been widely used001
in few-shot named entity recognition (NER),002
especially prototype-based methods. However,003
the Other(O) class is difficult to be repre-004
sented by a prototype vector because there are005
generally a large number of samples in the class006
that have miscellaneous semantics. To solve007
the problem, we propose MeTNet, which gen-008
erates prototype vectors for entity types only009
but not O-class. We design an improved triplet010
network to map samples and prototype vectors011
into a low-dimensional space that is easier to012
be classified and propose an adaptive margin013
for each entity type. The margin plays as a014
radius and controls a region with adaptive size015
in the low-dimensional space. Based on the016
regions, we propose a new inference procedure017
to predict the label of a query instance. We con-018
duct extensive experiments in both in-domain019
and cross-domain settings to show the supe-020
riority of MeTNet over other state-of-the-art021
methods. In particular, we release a Chinese022
few-shot NER dataset FEW-COMM extracted023
from a well-known e-commerce platform. To024
the best of our knowledge, this is the first Chi-025
nese few-shot NER dataset. For reproducibility,026
all the datasets and codes are provided in the027
supplementary materials.028

1 Introduction029

Named entity recognition (NER), as a fundamental030

task in information extraction (Ritter et al., 2012),031

aims to locate and classify words or expressions032

into pre-defined entity types, such as persons,033

organizations, locations, dates and034

quantities. While a considerable number of035

approaches based on deep neural networks have036

shown remarkable success in NER, they generally037

require massive labeled data as training set. Unfor-038

tunately, in some specific domains, named entities039

that need professional knowledge to understand are040

difficult to be manually annotated in a large scale.041

(a)

(b)

Figure 1: (a): Samples in O-class are semantically differ-
ent. (b): The comparison between previous methods and
ours to handle O-class. Left: Since the query instance
whose true label is Location is closest to the proto-
type vector of O-class, previous methods misclassify it
to O-class. Right: We compute prototype vectors for
entity types only and learn an adaptive margin for each
entity type to determine a region. Samples in the region
of a class are labeled with the class, while samples out-
side of all the regions are predicted to be in O-class.

To address the problem, few-shot NER has been 042

studied, which aims to recognize unseen entity 043

types with few annotations. In particular, some 044

models (Fritzler et al., 2019; Hou et al., 2020; Wang 045

et al., 2021) are proposed based on the prototypi- 046

cal network (PROTO) (Snell et al., 2017), which 047

is a popular meta-learning method. The general 048

procedure of these prototype-based NER models is 049

summarized as follows. First, they generate a pro- 050

totype vector for each class, including both entity 051

types and Other(O) class, to represent the class. 052

Then they compute the distance between a query 053

sample (instance) 1 and all these prototype vectors, 054

and predict the query instance to the class with the 055

smallest distance. However, for NER, the O-class 056

1We interchangeably use sample and instance in this paper.

1



covers all the miscellaneous words that are not clas-057

sified as entity types. These words could span a058

wide range of semantics. For example, in Figure 1a,059

the words “was”, “president”, “budget” and “today”060

are semantically different even if they all belong to061

O-class. A single prototype vector would thus be062

insufficient to model the miscellaneous semantics063

of O-class, which could further lead to the incorrect064

prediction of query instances (see Figure 1b).065

In this paper, to solve the issue, we propose to066

generate prototype vectors only for entity types067

but not O-class. In particular, we design a Meta-068

Learning Triplet Network with adaptive margins,069

namely, MeTNet, to map samples and prototype070

vectors into a low-dimensional space, where the071

inter-class distance between samples is enlarged072

and the intra-class distance between samples and073

their corresponding prototype vectors is shortened.074

We further design an improved triplet loss func-075

tion with adaptive margins, which assigns different076

weights to samples, minimizes the absolute dis-077

tance between an anchor and a positive sample,078

and maximizes the absolute distance between an079

anchor and a negative sample. The adaptive margin080

plays as a radius and controls a region for each081

entity type in the low-dimensional space (see Fig-082

ure 1b). Based on these regions, we further propose083

a novel inference procedure. Specifically, given a084

query instance, we predict it to be in O-class, if it is085

located outside all the regions; otherwise, we label086

it with the entity type of its located region. Further,087

if it is contained in multiple regions, we label it088

with the entity type that has the smallest distance089

between the query instance and the region center.090

Finally, we summarize our main contributions in091

this paper as follows.092

• We propose an improved triplet network with093

adaptive margins (MeTNet) and a new infer-094

ence procedure for few-shot NER.095

• We release the first Chinese few-shot NER096

dataset FEW-COMM, to our best knowledge.097

• We perform extensive experiments to show the098

superiority of MeTNet over other competitors.099

2 Related Work100

2.1 Meta-Learning101

Meta-learning, also known as “learning to learn”,102

aims to train models to adapt to new tasks rapidly103

with few training samples. Some existing meth-104

ods (Snell et al., 2017; Vinyals et al., 2016) are105

based on metric learning. For example, Match- 106

ing Network (Vinyals et al., 2016) computes simi- 107

larities between support sets and query instances, 108

while the prototypical network (Snell et al., 2017) 109

learns a prototype vector for each class and clas- 110

sifies query instances based on the nearest pro- 111

totype vector. Other representative metric-based 112

methods include Siamese Network (Koch et al., 113

2015) and Relation Network (Sung et al., 2018). 114

Further, some approaches, such as MAML (Finn 115

et al., 2017) and Reptile (Nichol et al., 2018), are 116

optimization-based, which aim to train a meta- 117

learner as an optimizer or adjust the optimization 118

process. There also exist model-based methods, 119

which learn a hidden feature space and predict the 120

label of a query instance in an end-to-end man- 121

ner. Compared with the optimization-based meth- 122

ods, model-based methods could be easier to opti- 123

mize but less generalizable to out-of-distribution 124

tasks (Hospedales et al., 2020). The representative 125

model-based methods include MANNs (Santoro 126

et al., 2016), Meta networks (Munkhdalai and Yu, 127

2017), SNAIL (Mishra et al., 2017) and CPN (Gar- 128

nelo et al., 2018). 129

2.2 Few-shot NER 130

Few-shot NER has recently received great atten- 131

tion (Huang et al., 2021; Das et al., 2021; Ma et al., 132

2022) and meta-learning-based methods have been 133

applied to solve the problem. For example, Fritzler 134

et al. (2019) combine PROTO (Snell et al., 2017) 135

with conditional random field for few-shot NER. In- 136

spired by the nearest neighbor inference (Wiseman 137

and Stratos, 2019), StructShot (Yang and Katiyar, 138

2020) employs structured nearest neighbor learning 139

and Viterbi algorithm to further improve PROTO. 140

MUCO (Tong et al., 2021) trains a binary classifier 141

to learn multiple prototype vectors for representing 142

miscellaneous semantics of O-class. ESD (Wang 143

et al., 2021) uses various types of attention based on 144

PROTO to improve the model performance. How- 145

ever, most of these methods use one or multiple 146

prototype vectors to represent O-class, while we 147

compute prototype vectors for entity types only 148

and further design a new inference procedure. 149

Very recently, prompt-based techniques have 150

also been applied in few-shot NER (Cui et al., 2021; 151

Ma et al., 2021; Chen et al., 2021; Cui et al., 2022). 152

However, the performance of these methods is very 153

unstable, which heavily depend on the designed 154

prompts (Cui et al., 2021). Thus, without a large 155

2



validation set, their applicability is limited in few-156

shot learning.157

3 Background158

3.1 Problem Definition159

A training set Dtrain consists of word sequences160

and their label sequences. Given a word sequence161

X = {x1, ..., xn}, we denote L = {l1, ..., ln} as162

its corresponding label sequence. We use Ytrain163

to denote the label set of the training data and li ∈164

Ytrain. In addition, given a test set Dtest, let Ytest165

denote the label set of the test set, which satisfies166

Ytrain ∩ Ytest = ∅. Our goal is to develop a model167

that learns from Dtrain and then makes predictions168

for unseen classes in Ytest, for which we only have169

few annotations.170

3.2 Meta-training171

Meta-learning methods include two stages: meta-172

training and meta-testing. In meta-training, the173

model is trained on meta-tasks sampled from174

Dtrain. Each meta-task contains a support set and175

a query set. To create a training meta-task, we176

first sample N classes from Ytrain. After that, for177

each of these N classes, we sample K instances178

as the support set S and L instances as the query179

set Q. The support set is similar as the training180

set in the traditional supervised learning but it only181

contains a few samples; the query set acts as the182

test set but it can be used to compute gradients for183

updating model parameters in meta-training stage.184

Given the support set, we refer to the task of mak-185

ing predictions over the query set as N -way K-shot186

classification.187

3.3 Meta-testing188

In the testing stage, we also use meta-tasks to test189

whether our model can adapt quickly to new classes.190

To create a testing meta-task, we first sample N191

new classes from Ytest. Similar as in meta-training,192

we then sample the support set and the query set193

from the N classes, respectively. The support set is194

used for fine-tuning while the query set is for test-195

ing. Finally, we evaluate the average performance196

on the query sets across all testing meta-tasks.197

4 Method198

In this section, we describe our MeTNet algorithm.199

We first give an overview of MeTNet, which is200

illustrated in Figure 2. MeTNet first represents201

samples with BERT text encoder, based on which202

the embeddings of words and prototype vectors are 203

initialized. Then it generates triples based on the 204

support sets and prototype vectors, and employs 205

an improved triplet network with adaptive margins 206

to map words and prototype vectors into a space 207

that is much easier to classify. For each entity type, 208

an adaptive margin plays as a radius and controls 209

a region centered at the corresponding prototype 210

vector. These regions are further used in the infer- 211

ence stage. Next, we describe each component of 212

MeTNet in detail. 213

4.1 Text Encoder 214

We first represent each word in a low-dimensional 215

embedding vector. Following (Yang and Katiyar, 216

2020; Ding et al., 2021), we use BERT (Devlin 217

et al., 2018) as our text encoder. Specifically, given 218

a sequence of n words [x1, x2, ..., xn], we take the 219

output of the final hidden layer in BERT as the 220

initial representations hi for xi: 221

[h1,h2, ...,hn] = BERTϕ([x1, x2, ..., xn]), (1) 222

where ϕ represents parameters of BERT. Then for 223

each pre-defined entity type cj , we construct its 224

initial prototype vector hcj by averaging the repre- 225

sentations of words labeled as cj . 226

4.2 Triplet Network 227

A triplet network (Hoffer and Ailon, 2015) is com- 228

posed of three sub-networks, which have the same 229

network architecture with shared parameters to be 230

learned. For the triplet network, triples are taken 231

as its inputs. Each triple consists of an anchor, a 232

positive sample and a negative sample, and we feed 233

each sample into a sub-network. 234

Construct Triples We first construct triples for 235

different entity types. Specifically, for each entity 236

type, we take its prototype vector as the anchor, 237

instances in the entity type as positive samples, and 238

other instances as negative ones. Since the number 239

of negative samples is generally larger than that of 240

positive samples, we select k negative samples with 241

the nearest distance to the prototype vector. After 242

that, for each positive sample and each negative 243

sample, we construct triples, respectively. 244

Improved Triplet Loss Given the distance dp be- 245

tween the anchor and the positive sample, and the 246

distance dn between the anchor and the negative 247

sample, the original triplet loss aims to optimize 248

the relative distance among the anchor, the positive 249

3



Figure 2: The overall architecture of MeTNet for a 2-way 2-shot problem.

sample and the negative sample, which is formu-250

lated as:251

LT = max(0,m+ dp − dn), (2)252

dp = d(fθ(ha), fθ(hp)), (3)253

dn = d(fθ(ha), fθ(hn)), (4)254

where m is a margin, d(·, ·) denotes the Euclidean255

distance function and fθ(·) is the embedding vector256

generated from the triplet network. However, there257

exist three main problems in the original triplet loss258

function. First, the relative distance could lead to259

a very small dp or a very large dn only, while our260

goal is to derive both of them. Second, the loss261

function considers all the samples are equally im-262

portant, but their importance is empirically relevant263

to their distance to the anchor. Third, the margin is264

fixed and unique. However, different entity types265

generally correspond to regions with various sizes.266

To address these problems, we design an improved267

triplet loss as follows:268

LIT =
α

1 + e−(dp−mi)
· dp269

+
1− α

1 + e−(mi−dn)
·max(mi − dn, 0), (5)270

where α is a balancing weight and mi denotes a271

learnable margin of entity type ci. In Equation 5,272

we separately optimize the absolute distances dp273

and dn. On the one hand, we directly minimize274

dp. On the other hand, considering that each entity275

type uses a region to include positive samples, we276

thus maximize dn by pushing the negative sample277

away from the region. Further, we assign differ-278

ent weights to samples based on their distances to279

Figure 3: An example to illustrate the inference pro-
cedure in MeTNet. The dashed circles represent the
regions of pre-defined entity types determined by adap-
tive margins. The labels of Q1, Q2 and Q3 are predicted
to be Location, Person and O-class, respectively.

anchors. Intuitively, the farther the positive sam- 280

ples or the closer the negative samples are to the 281

anchors, the larger the weights should be given 282

to amplify the loss. Finally, we set adaptive mar- 283

gins for different entity types, which play as region 284

radiuses and control region sizes. 285

4.3 Inference 286

In the inference stage, most existing methods cal- 287

culate the distances between a query instance and 288

all the prototype vectors for both entity types and 289

O-class, and predict the query instance to be in the 290

class with the smallest distance. Different from 291

these methods, our model avoids handling O-class 292

directly. Instead, we make predictions based on the 293

regions of entity types. As shown in Figure 3, the 294

4



entity types Person and Location have their295

own regions controlled by different margins. When296

a query instance (e.g., Q1) is only located in one re-297

gion, we label it with the entity type corresponding298

to the located region; when a query instance (e.g.,299

Q2) is contained in multiple regions, we calculate300

its distances to different region centers and predict301

its entity type to be that with the smallest distance;302

when a query instance (e.g., Q3) is outside all the303

regions, it is labeled with O-class.304

4.4 Training Procedure305

Inspired by MAML (Finn et al., 2017), we first306

update the model parameters θ with samples in the307

support set:308

θ′ = θ − α∇θLIT (θ;S), (6)309

where α is the learning rate and S represents the310

support set. With few-step updates, θ becomes311

θ′. Then based on θ′, the triplet network can map312

query instances and prototype vectors into a low-313

dimensional space that is much easier to classify.314

After that, we update the model parameters θ with315

samples in the query set:316

θ ← θ − β∇θLIT (θ′;Q), (7)317

where β is the meta learning rate and Q repre-318

sents the query set. This optimization simulates319

the testing process in the training stage and boosts320

the generalizability of the model to unseen classes321

with only few-step updates. The overall procedure322

of MeTNet is summarized in Algorithm 1.323

5 Experiments324

In this section, we comprehensively evaluate the325

performance of MeTNet in both in-domain and326

cross-domain settings. The in-domain setting indi-327

cates that both the training set and the test set come328

from the same domain, while the cross-domain set-329

ting indicates that they are from different domains.330

5.1 Datesets331

We use four public English datasets and one new332

Chinese dataset. Statistics of these datasets are333

given in Table 1. For the English datasets, they are334

FEW-NERD (Ding et al., 2021), WNUT17 (Der-335

czynski et al., 2017), Restaurant (Liu et al., 2013)336

and Multiwoz (Budzianowski et al., 2018). Specifi-337

cally, FEW-NERD designs an annotation schema338

of 8 coarse-grained (e.g., “Person”) entity types and339

Algorithm 1 MeTNet Training procedure

Input: Training data {Dtrain,Ytrain}; ep epochs
and the number T of iterations of the model
updated by the support set in a task; N classes
in the support set or the query set; K samples
in each class in the support set and L samples
in each class in the query set; the pre-trained
BERT parameter ϕ; the model parameter θ; the
setM of adaptive margins;

Output: ϕ, θ andM after training;
1: Randomly initialize θ andM;
2: for each i ∈ [1, ep] do
3: Y ← Sample(Ytrain, N);
4: S,Q ← ∅, ∅;
5: for y ∈ Y do
6: S ← S ∪ Sample(Dtrain{y},K);
7: Q ← Q∪ Sample(Dtrain{y}\S, L);
8: end for
9: HS ,HQ ← BERTϕ(S),BERTϕ(Q);

10: HP ← ∅;
11: for y ∈ Y do
12: HP ← HP ∪ mean(HS{y});
13: end for
14: for t ∈ T do
15: Construct triples byHS ,HP ;
16: Input triples to the triplet network;
17: Calculate LIT by Equation 5;
18: Update θ to θ′ by Equation 6;
19: end for
20: Construct triples byHQ,HP ;
21: Input triples to the triplet network;
22: Calculate LIT by Equation 5;
23: Update ϕ and θ based on θ′ by Equation 7;
24: end for
25: return ϕ, θ andM

Datasets # Sentences # Entities # Classes Domain
FEW-COMM 66.2k 140.9k 92 Commodity
FEW-NERD 188.2k 491.7k 66 General

WNUT 4.7k 3.1k 6 Social Media
Restaurant 9.2k 15.3k 8 Review
Multiwoz 23.0k 20.7k 14 Dialogue

Table 1: Statistics of datasets. # Classes corresponds to
the number of pre-defined entity types in a dataset.

66 fine-grained (e.g., “Person-Artist”) entity types, 340

and constructs two tasks. One is FEW-NERD- 341

INTRA, where all the entities in the training set 342

(source domain), validation set and test set (target 343

domain) belong to different coarse-grained types. 344

5



The other is FEW-NERD-INTER, where only the345

fine-grained entity types are mutually disjoint in346

different sets. We conduct in-domain experiments347

on both tasks. To further validate the model’s gen-348

eralizability on cross-domain tasks, we also use349

three NER datasets from different domains, namely350

WNUT17 (Social), Restaurant (Review) and Multi-351

woz (Dialogue).352

We also construct and conduct experiments on353

a Chinese few-shot NER dataset, namely, FEW-354

COMM. The dataset consists of 66,165 product355

description texts that merchants display on a large e-356

commerce platform, including 140,936 entities and357

92 pre-defined entity types. These entity types are358

various commodity attributes that are manually de-359

fined by domain experts, such as “material”, “color”360

and “origin”. Specifically, we first hire five well-361

trained annotators to label the texts in one month362

and then ask four domain experts to review and363

rectify the results. To the best of our knowledge, it364

is the first Chinese dataset specially constructed for365

few-shot NER. Due to the space limitation, please366

see Appendix A for more details on the dataset.367

5.2 Baselines368

We compare MeTNet with seven other few-369

shot NER models, which can be grouped into370

three categories: (1) optimization-based meth-371

ods: MAML (Finn et al., 2017) which adapts to372

new classes by using support instances and op-373

timizes the loss of the adapted model based on374

the query instances. (2) nearest-neighbor-based375

methods: NNShot (Yang and Katiyar, 2020) and376

StructShot (Yang and Katiyar, 2020). NNShot377

determines the tag of a query instance based on378

the word-level distance and StructShot further im-379

proves NNShot by an additional Viterbi decoder.380

(3) prototype-based methods: PROTO (Snell et al.,381

2017), CONTaiNER (Das et al., 2021), ESD (Wang382

et al., 2021) and DecomMETA (Ma et al., 2022).383

Specifically, PROTO computes the prototype vec-384

tor by averaging all the sample embeddings in the385

support set for each class. CONTaiNER proposes a386

contrastive learning method that optimizes the inter-387

token distribution distance for few-shot NER. ESD388

uses various types of attention based on PROTO389

to improve the model performance. DecomMETA390

addresses few-shot NER by sequentially tackling391

few-shot span detection and few-shot entity typing392

using meta-learning.393

5.3 Experiment Setup 394

We implemented MeTNet by PyTorch. The model 395

is initialized by He initialization (He et al., 2015) 396

and trained by AdamW (Loshchilov and Hutter, 397

2017). We run the model for 6,000 epochs with the 398

learning rates 0.2 and the meta learning rate 0.0001 399

for the improved triplet loss on all the datasets. 400

For the text encoder, we use the pre-trained 401

bert-base-Chinese model for the FEW- 402

COMM dataset and bert-base-uncased 403

model for other datasets. In the triplet network, we 404

use three same fully connected layer with shared 405

parameters and we set the dimensionality of the 406

fully connected layer to 1024. We also fine-tune 407

the number T of iterations for updating parame- 408

ters on the support set in each meta-task by grid 409

search over {1, 3, 5, 7, 9} and set it to 3 on all the 410

datasets. For a fair comparison, we substitute the 411

text encoder as that of MeTNet for all the baselines, 412

use the original codes released by their authors 413

and fine-tune the parameters of the models. We 414

run all the experiments on a single NVIDIA v100 415

GPU. Following Ding et al. (2021), we evaluate 416

the model performance based on 500 meta-tasks in 417

meta-testing and report the average micro F1-score 418

over 5 runs. We utilize the IO schema in our exper- 419

iments, using I-type to denote all the words of a 420

named entity and O to denote other words. 421

5.4 Results 422

In-domain Experiments The results of in- 423

domain experiments in 1-shot and 5-shot settings 424

on FEW-NERD dataset are shown in Table 2. From 425

the table, MeTNet consistently outperforms all the 426

baselines on the average F1 score. For example, 427

compared with DecomMETA, MeTNet achieves 428

1.84% improvements on the average F1 score; 429

when compared against the PROTO model, MeT- 430

Net leads by 31.04% on the average F1 score, 431

which clearly demonstrates that our model is very 432

effective in improving PROTO. On the FEW- 433

COMM dataset (as shown in Table 3), our model 434

also achieves the best performance across all the 435

settings. All these results show that MeTNet, which 436

learns adaptive margins for inference by an im- 437

proved triplet network, can perform reasonably 438

well. 439

Cross-domain Experiments We train models 440

on FEW-NERD-INTER (General) as the source 441

domain and test our models on WNUT (Social 442

Media), Restaurant (Review) and Multiwoz (Dia- 443

6



Method
FEW-NERD-INTER FEW-NERD-INTRA

Average
5-1 5-5 10-1 10-5 5-1 5-5 10-1 10-5

MAML 38.52±0.67 49.86±0.33 30.20±0.78 33.39±0.49 30.14±0.53 38.38±0.41 23.05±0.45 28.52±0.59 34.01
NNShot 55.24±0.40 54.49±0.91 40.21±1.63 49.23±1.15 26.30±1.21 38.91±0.53 24.69±0.23 32.63±2.59 40.21

StructShot 53.65±0.54 56.50±1.17 46.86±0.53 53.25±0.97 30.88±0.96 42.80±0.51 27.25±0.84 33.56±1.06 43.10
PROTO 35.78±0.71 47.01±1.31 30.12±0.77 47.13±0.57 15.68±0.92 36.58±0.87 12.68±0.59 28.99±1.06 31.75

CONTaiNER† 55.95 61.83 48.35 57.12 40.43 53.70 33.84 47.49 49.84
ESD† 66.46±0.49 74.14±0.80 59.95±0.69 67.91±1.41 41.44±1.16 50.68±0.94 32.29±1.10 42.92±0.75 54.47

DecomMETA† 68.77±0.24 71.62±0.16 63.26±0.40 68.32±0.10 52.04±0.44 63.23±0.45 43.50±0.59 56.84±0.14 60.95
MeTNet 70.12±0.63 73.30±0.54 65.97±0.69 71.47±0.61 54.59±0.83 62.53±0.53 46.80±0.91 57.51±0.87 62.79

Table 2: F1 scores (%) of 5-way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-way 5-shot problems over FEW-NERD
dataset. † denotes the results reported in Ma et al. (2022). We highlight the best results in bold.

Method
FEW-COMM

5-1 5-5 10-1 10-5
MAML 28.16±0.57 54.38±0.37 26.23±0.61 44.66±0.44

NNShot 48.40±1.27 71.55±1.37 41.75±0.93 67.91±1.51

StructShot 48.61±0.76 70.62±0.83 47.77±0.83 65.09±0.97

PROTO 22.73±0.86 53.95±0.98 22.17±0.90 45.81±0.99

CONTaiNER 57.13±0.47 63.38±0.68 51.87±0.58 60.98±0.71

ESD 65.37±0.79 73.29±0.95 58.32±0.89 70.93±1.01

DecomMETA 68.01±0.39 72.89±0.45 62.13±0.28 72.14±0.11

MeTNet 70.10±0.58 76.74±0.58 64.05±0.74 76.28±0.91

Table 3: F1 scores (%) of 5-way 1-shot, 5-way 5-shot,
10-way 1-shot and 10-way 5-shot problems over FEW-
COMM dataset. We highlight the best results in bold.

logue), respectively. All the three datasets are in dif-444

ferent domains from that of FEW-NERD-INTER.445

Since there is a large generalization gap between446

the training and test distributions, cross-domain447

experiments are generally more challenging than448

in-domain ones. Table 4 shows the results. From449

the table, we see that our model performs very well450

in both the 1-shot and 5-shot settings. This clearly451

shows the generalizability of our model.452

5.5 Ablation Study453

We conduct an ablation study to understand the454

characteristics of the main components of MeTNet.455

To show the importance of the proposed margin-456

based inference method, one variant generates pro-457

totype vectors for both entity types and O-class. In458

the inference stage, it computes the distance be-459

tween a query instance and all these prototype vec-460

tors, and predict the query instance to be in the class461

with the smallest distance, which is similar as pre-462

vious methods. We call this variant MeTNet-piw463

(use previous inference way). To study the impor-464

tance of the triplet network in mapping prototype465

vectors and samples into a low-dimensional space466

that is easier to classify, we further remove the467

triplet network and replace it with a fully-connected468

layer. Due to the removal of the triplet network, 469

adaptive margins cannot be learned, so we adopt 470

the same inference procedure as in MeTNet-piw. 471

We call this variant MeTNet-piw-rtn (use previous 472

inference way and remove triplet network ). To 473

show the importance of the improved triplet loss, 474

we replace it with the original triplet loss and call 475

this variant MeTNet-otl (original triplet loss). Fi- 476

nally, we remove the MAML training procedure 477

to explore the impact of MAML on the model and 478

call this variant MeTNet-w/o-MAML. 479

The results of ablation study are shown in Ta- 480

ble 5. From the table, we observe: (1) MeTNet 481

beats MeTNet-piw clearly. For example, in 5-way 482

1-shot problem on the FEW-COMM dataset, the F1 483

score of MeTNet is 66.10% while that of MeTNet- 484

piw is only 54.66%. This shows that the margin- 485

based inference can effectively enhance the model 486

performance. (2) The advantage of MeTNet-piw 487

over MeTNet-piw-rtn across all the datasets further 488

shows that the triplet network can learn better em- 489

beddings for samples with different classes in the 490

low-dimensional space. (3) MeTNet leads MeTNet- 491

otl in all the classification tasks. This demonstrates 492

that our improved triplet loss is highly effective. 493

(4) Compared against MeTNet-w/o-MAML, MeT- 494

Net leads by 3.4% on the average F1 score, which 495

shows the importance of MAML to the model. 496

5.6 Visualization 497

Figure 4 visualizes the word-level representations 498

of a query set generated by PROTO and MeTNet in 499

the 5-way 1-shot and 5-way 5-shot settings on the 500

FEW-NERD-INTER dataset. Note that PROTO 501

generates prototype vectors for both entity types 502

and O-class, while MeTNet only generates that for 503

entity types. From the figure, we see that words in 504

O-class are widely distributed, so using a prototype 505

vector to represent O-class is insufficient. For those 506

7



Method
WNUT Restaurant Multiwoz Average

5-1 5-5 5-1 5-5 5-1 5-5 5-1 5-5
MAML 17.77±0.67 23.69±0.71 17.53±0.83 22.81±0.77 20.82±1.01 23.61±0.87 18.71 23.37
NNShot 15.93±0.61 23.78±0.67 19.37±0.73 32.83±0.89 27.77±0.91 42.19±1.03 21.02 32.93

StructShot 17.29±1.01 25.18±0.96 20.75±1.07 34.18±1.18 30.79±1.21 44.01±1.31 22.46 34.08
PROTO 13.04±0.71 23.20±0.93 15.68±1.01 32.71±1.07 22.09±0.81 41.78±0.79 16.94 32.56

CONTaiNER 18.15±1.17 19.54±1.09 27.74±0.89 33.41±0.97 34.88±2.03 41.92±1.93 26.92 31.62
ESD 19.24±0.87 26.00±0.96 24.53±1.03 37.85±0.97 35.81±1.87 42.88±1.05 26.53 35.58

DecomMETA 20.98±0.11 31.17±0.16 29.75±0.27 41.13±0.19 33.79±0.22 47.01±0.36 28.17 39.77
MeTNet 21.84±0.88 33.27±0.75 31.80±0.67 45.53±0.74 39.88±0.93 52.13±0.91 31.17 43.64

Table 4: F1 scores (%) of 5-way 1-shot, 5-way 5-shot problems over three datasets for cross-domain experiments.
We highlight the best results in bold.

Method
FEW-NERD-INTER FEW-NERD-INTRA FEW-COMM

5-1 5-5 10-1 10-5 5-1 5-5 10-1 10-5 5-1 5-5 10-1 10-5
MeTNet-piw 60.35 62.75 53.89 55.59 42.92 50.84 33.31 40.40 58.66 66.33 49.75 64.11

MeTNet-piw-rtn 50.77 62.14 41.29 54.87 34.19 46.56 28.65 38.42 51.34 61.58 45.61 61.65
MeTNet-otl 65.37 70.61 55.60 63.81 44.78 57.32 36.27 44.96 62.66 73.17 54.76 72.70

MeTNet-w/o-MAML 68.14 70.27 63.73 69.32 52.37 58.13 43.28 51.31 68.19 71.73 59.85 72.81
MeTNet 70.12 73.30 65.97 71.47 54.59 62.53 46.80 57.51 70.10 76.74 64.05 76.28

Table 5: Ablation study: F1 scores (%) of 5-way 1-shot, 5-way 5-shot, 10-way 1-shot and 10-way 5-shot classification
over FEW-NERD and FEW-COMM datasets. ‘rtn’ means removing triplet network, ‘piw’ means using previous
inference way and ‘otl’ means using original triplet loss. We highlight the best results in bold.

Figure 4: t-SNE visualizations on the FEW-NERD-
INTER test sets. The representations are obtained from
PROTO and MeTNet. The dashed circles represent the
regions determined by adaptive margins.

samples closer to other prototype vectors, they are507

easily misclassified. Instead of representing O-class508

with a prototype vector, MeTNet addresses the509

problem by learning adaptive margins for entity510

types only and using a margin-controlled region to511

make prediction. Samples outside these regions are512

labeled with O-class. Further, our method MeTNet 513

can generate word embeddings that are clearly sep- 514

arated, which further explains the effectiveness of 515

MeTNet. 516

6 Conclusion 517

In this paper, we studied the few-shot NER prob- 518

lem and proposed MeTNet, which is a meta- 519

learning triplet network with adaptive margins. As 520

a prototype-based method, MeTNet uses a triplet 521

network to map samples and prototype vectors into 522

a low-dimensional space that is easier to be clas- 523

sified. Further, to solve the problem that O-class 524

is semantically complex and thus hard to be repre- 525

sented by a prototype vector, we designed an im- 526

proved triplet loss function with adaptive margins 527

and presented a margin-based inference procedure 528

to predict the label of a query instance. We per- 529

formed extensive experiments in both in-domain 530

and cross-domain settings. Experimental results 531

show that MeTNet can achieve significant perfor- 532

mance gains over other state-of-the-art methods. In 533

particular, we released the first Chinese few-shot 534

NER dataset from a large-scale e-commerce plat- 535

form, which aims to provide more insight for future 536

study on few-shot NER. 537

8



Ethics Statement538

The proposed method has no obvious potential539

risks. All the scientific artifacts used/created are540

properly cited/licensed, and the usage is consistent541

with their intended use. The paper collects a new542

dataset FEW-COMM, which does not contain any543

sensitive information. The dataset is keeping with544

the rules and reviewed by experts to ensure that it545

does not create additional risks. Also, we open up546

our codes and hyperparameters to facilitate future547

reproduction without repeated energy cost.548

References549

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang550
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-551
madan, and Milica Gašić. 2018. Multiwoz–a552
large-scale multi-domain wizard-of-oz dataset for553
task-oriented dialogue modelling. arXiv preprint554
arXiv:1810.00278.555

Xiang Chen, Ningyu Zhang, Lei Li, Xin Xie, Shumin556
Deng, Chuanqi Tan, Fei Huang, Luo Si, and Hua-557
jun Chen. 2021. Lightner: A lightweight genera-558
tive framework with prompt-guided attention for low-559
resource ner. arXiv preprint arXiv:2109.00720.560

Ganqu Cui, Shengding Hu, Ning Ding, Longtao Huang,561
and Zhiyuan Liu. 2022. Prototypical verbalizer562
for prompt-based few-shot tuning. arXiv preprint563
arXiv:2203.09770.564

Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue Zhang.565
2021. Template-based named entity recognition us-566
ing bart. In Findings of ACL, pages 1835–1845.567

Sarkar Snigdha Sarathi Das, Arzoo Katiyar, Rebecca J568
Passonneau, and Rui Zhang. 2021. Container: Few-569
shot named entity recognition via contrastive learn-570
ing. arXiv preprint arXiv:2109.07589.571

Leon Derczynski, Eric Nichols, Marieke van Erp, and572
Nut Limsopatham. 2017. Results of the wnut2017573
shared task on novel and emerging entity recognition.574
In W-NUT, pages 140–147.575

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and576
Kristina Toutanova. 2018. Bert: Pre-training of deep577
bidirectional transformers for language understand-578
ing. arXiv preprint arXiv:1810.04805.579

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,580
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan581
Liu. 2021. Few-nerd: A few-shot named entity recog-582
nition dataset. In ACL, pages 3198–3213.583

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.584
Model-agnostic meta-learning for fast adaptation of585
deep networks. In ICML, pages 1126–1135.586

Alexander Fritzler, Varvara Logacheva, and Maksim 587
Kretov. 2019. Few-shot classification in named entity 588
recognition task. In SAC, pages 993–1000. 589

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, 590
Tiago Ramalho, David Saxton, Murray Shanahan, 591
Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. 592
2018. Conditional neural processes. In ICML, pages 593
1704–1713. 594

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 595
Sun. 2015. Delving deep into rectifiers: Surpassing 596
human-level performance on imagenet classification. 597
In ICCV, pages 1026–1034. 598

Elad Hoffer and Nir Ailon. 2015. Deep metric learning 599
using triplet network. In SIMBAD, pages 84–92. 600

Timothy M. Hospedales, Antreas Antoniou, Paul Mi- 601
caelli, and Amos J. Storkey. 2020. Meta-learning in 602
neural networks: A survey. CoRR, abs/2004.05439. 603

Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou, 604
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-shot 605
slot tagging with collapsed dependency transfer and 606
label-enhanced task-adaptive projection network. In 607
ACL, pages 1381–1393. 608

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien 609
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin 610
Peng, Jianfeng Gao, and Jiawei Han. 2021. Few- 611
shot named entity recognition: An empirical baseline 612
study. In EMNLP, pages 10408–10423. 613

Gregory Koch, Richard Zemel, and Ruslan Salakhut- 614
dinov. 2015. Siamese neural networks for one-shot 615
image recognition. In ICML deep learning workshop, 616
volume 2. 617

Jingjing Liu, Panupong Pasupat, Scott Cyphers, and 618
Jim Glass. 2013. Asgard: A portable architecture 619
for multilingual dialogue systems. In ICASSP, pages 620
8386–8390. 621

Ilya Loshchilov and Frank Hutter. 2017. Fixing 622
weight decay regularization in adam. CoRR, 623
abs/1711.05101. 624

Ruotian Ma, Xin Zhou, Tao Gui, Yiding Tan, 625
Qi Zhang, and Xuanjing Huang. 2021. Template- 626
free prompt tuning for few-shot ner. arXiv preprint 627
arXiv:2109.13532. 628

Tingting Ma, Huiqiang Jiang, Qianhui Wu, Tiejun 629
Zhao, and Chin-Yew Lin. 2022. Decomposed meta- 630
learning for few-shot named entity recognition. arXiv 631
preprint arXiv:2204.05751. 632

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and 633
Pieter Abbeel. 2017. A simple neural attentive meta- 634
learner. arXiv preprint arXiv:1707.03141. 635

Tsendsuren Munkhdalai and Hong Yu. 2017. Meta 636
networks. In ICML, pages 2554–2563. 637

9



Alex Nichol, Joshua Achiam, and John Schulman.638
2018. On first-order meta-learning algorithms. arXiv639
preprint arXiv:1803.02999.640

Alan Ritter, Mausam, Oren Etzioni, and Sam Clark.641
2012. Open domain event extraction from twitter. In642
KDD, pages 1104–1112.643

Adam Santoro, Sergey Bartunov, Matthew Botvinick,644
Daan Wierstra, and Timothy Lillicrap. 2016. Meta-645
learning with memory-augmented neural networks.646
In ICML, pages 1842–1850.647

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.648
Prototypical networks for few-shot learning. In NIPS,649
pages 4077–4087.650

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,651
Philip HS Torr, and Timothy M Hospedales. 2018.652
Learning to compare: Relation network for few-shot653
learning. In CVPR, pages 1199–1208.654

Meihan Tong, Shuai Wang, Bin Xu, Yixin Cao, Minghui655
Liu, Lei Hou, and Juanzi Li. 2021. Learning from656
miscellaneous other-class words for few-shot named657
entity recognition. arXiv preprint arXiv:2106.15167.658

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Ko-659
ray Kavukcuoglu, and Daan Wierstra. 2016. Match-660
ing networks for one shot learning. arXiv preprint661
arXiv:1606.04080.662

Peiyi Wang, Runxin Xu, Tianyu Liu, Qingyu Zhou,663
Yunbo Cao, Baobao Chang, and Zhifang Sui. 2021.664
An enhanced span-based decomposition method for665
few-shot sequence labeling. CoRR, abs/2109.13023.666

Sam Wiseman and Karl Stratos. 2019. Label-agnostic667
sequence labeling by copying nearest neighbors. In668
ACL, pages 5363–5369.669

Yi Yang and Arzoo Katiyar. 2020. Simple and effective670
few-shot named entity recognition with structured671
nearest neighbor learning. In EMNLP, pages 6365–672
6375.673

A FEW-COMM674

A.1 Entity types675

As introduced in Section 5.1 of the main text, FEW-676

COMM is manually annotated with 92 pre-defined677

entity types, and we list all the types and the num-678

ber of samples belonging to each type in Table 6.679

We find that since FEW-COMM is collected from680

real application scenarios, there is a long-tailed dis-681

tribution problem, which is a common problem in682

real scenarios. How to overcome the influence of683

long-tailed distribution on the model is a crucial684

research direction.685

A.2 Splits 686

We divided the training set, validation set and test 687

set in a ratio of 6:2:2. Among them, the training set 688

includes 55 entity types, the validation set includes 689

18 entity types, and the test set includes 19 entity 690

types. The entity types contained in the three sets 691

are disjoint. 692

A.3 Examples 693

We provide some examples on FEW-COMM 694

dataset for further understanding, which is shown 695

in Table 7. 696

10



Table 6: All the pre-defined entity types and the number of samples belonging to each type in FEW-COMM dataset.

Entity types # Samples Entity types # Samples Entity types # Samples Entity types # Samples
其他属性 44259 功能功效 13412 材质 11126 适用人群 9483
颜色 6955 产地 4959 适用对象 2520 成分 2356
适用季节 1791 品质等级 1671 接口 1379 适用时间 1292
运输服务 1245 型号 1210 商品特色 1135 国产/进口 920
分类 897 形状形态 874 香型 860 组合形式 808
适用性别 801 连接方式 786 控制方式 706 领型 697
甜度 674 适用品牌 636 送礼对象 614 供电方式 585
面料材质 569 风味 564 大小 550 口感 546
系列 530 筒高 510 造型 503 厚度 486
是否有机 483 技术类型 478 厚薄 472 填充材质 469
适用运营商 466 袖长 465 适用车型 462 糖含量 460
光度 457 脂肪含量 456 是否带盖 451 加热方式 447
长短 444 版型 441 适用衣物 440 资质认证 439
外观 436 消毒方式 430 是否清真 430 部位 428
是否净洗 426 长度 426 适用生肖 426 配件类型 424
袖型 422 果肉颜色 419 适用空间 419 适用燃料 416
适用星座 415 酸碱度 413 剂型 413 锅底类型 412
销售方式 412 鞋垫材质 410 适用人数 406 裙型 404
定制服务 403 存储容量 403 成熟状态 403 是否去皮 402
是否去骨 402 冲泡方式 402 赠品 401 宽度 401
裤长 401 粗细 401 礼盒类型 400 结构 400
色系 399 净含量 376 发酵程度 321 抽数 214
保质期 86 内容 44 段位 40 装订方式 11

Table 7: Examples in FEW-COMM dataset. We marked the entities with the corresponding entity types.

日本[产地]黑色[颜色]数字帆布[材质]烧饼包灯芯绒[材质]钱包证件包对开简约大容量[功能功效]笔袋

春夏[适用季节]爆款纯色[颜色]男女通用[适用性别]防晒冰袖套跑男[其他属性]骑行紫外线护臂【蓝色[颜色]直筒[版型]无指盒装】

洁丽雅（grace）浴巾a类纯棉[材质]加大加厚[其他属性]成人[适用人群]家用柔软吸水[功能功效]

精品[品质等级]霏慕情趣内衣女式[适用性别]性感透明[颜色]诱惑镂空蕾丝[材质]刺绣薄纱[其他属性] 7114/2

金丝绒[材质]阔腿裤秋冬[适用季节]加绒[其他属性]高腰垂感宽松直筒[版型]显瘦[功能功效]百搭休闲拖地长裤子

绳子拉车绳货车[适用车型]刹车绳子捆绑带拖车绳紧绳器马扎耐磨[功能功效]尼龙[材质]扁带拉紧加粗20米

情趣丝袜修腿显瘦[功能功效]蕾丝[材质]花边白色长筒丝袜高筒[筒高]情趣连体袜子

电动电瓶车头盔灰[颜色]女士[适用性别]夏季[适用季节]半盔防晒全盔可爱夏天轻便[其他属性]安全帽/个

棉拖鞋女士[适用性别]家居室内厚底防滑月子鞋冬季[适用季节]毛绒[材质]保暖情侣[适用人群]棉鞋红色[颜色]

时尚布艺围裙厨房无袖[袖长]口袋围腰成人[适用人群]格子围裙

【心中最爱】-33朵玫瑰爱心礼盒[形状形态]鲜花-送爱人[送礼对象]花店送花上门[运输服务]

泳帽女士[适用性别]长发防水[功能功效]护耳游泳硅胶[材质]布帽舒适[其他属性]不勒头帽子游泳泡温泉1个

airism宽松圆领[领型] t恤(五分袖[袖长]黑色[颜色] )

中啡冷萃[冲泡方式]速溶即溶纯黑[颜色]小罐胶囊2gx16颗/盒

11


