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Abstract

The increasing use of cloud-based speech assistants has heightened the need for effec-
tive speech anonymization, which aims to obscure a speaker’s identity while retaining
critical information for subsequent tasks. One approach to achieving this is through
voice conversion. While existing methods often emphasize complex architectures
and training techniques, our research underscores the importance of loss functions
inspired by the human auditory system. Our proposed loss functions are model-
agnostic, incorporating handcrafted and deep learning-based features to effectively
capture representations about speech quality. Through objective and subjective eval-
uations, we demonstrate that a VQVAE-based model, enhanced with our perception-
driven losses, surpasses the vanilla model in terms of naturalness, intelligibility, and
prosody while maintaining speaker anonymity. These improvements are consistently
observed across various datasets, languages, target speakers, and genders.

1 Introduction

Over the last few years, cloud-based speech devices, such as voice assistants, have become
indispensable in life [1]. However, this also poses increasing privacy threats, as speech data contains
sensitive information encompassing health, affiliations, and other private information about the
speaker [2, 3]. Therefore, speech anonymization becomes pertinent, which hides the personal
identifiers in the speech while retaining the linguistic content. Voice conversion (VC) is one of the
ways to achieve speech anonymization, where the source utterance is modified to sound like another
‘target’ speaker. In cases where the response of a speech device is driven by the end-user’s emotional
state, preserving prosody becomes crucial, such as in health monitoring systems that adjust alert
urgency based on detected stress or anxiety to ensure timely intervention.

Research on statistical modelling approaches [4, 5, 6, 7] provided the groundwork for the development
of deep learning (DL)-based VC techniques, significantly advancing the state-of-the-art in VC
research [8, 9]. Most of the VC methods are based on generative adversarial networks (GANs) [10],
which produce natural-sounding conversions. This is due to the discriminator’s role in guiding the
generator to create conversions consistent with the target speaker’s characteristics. Current GAN-based
VC methods [11, 12] are trained with over seven losses in addition to adversarial losses, complicating
training due to instability in the optimization process and heightened sensitivity to hyperparameter
choices [13]. In contrast to GANs, variational autoencoders (VAEs) [14, 15] offer a clear advantage
by providing a well-defined likelihood function, ensuring a more stable training than GANs. These
methods typically disentangle the speaker and content embeddings using a reconstruction loss and
relevant constraints to remove speaker information.

One notable variant of VAE, the vector-quantized VAE (VQVAE) [16], uses a discrete distribution
over a codebook instead of a continuous distribution, which is potentially a more intuitive approach
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given that language is inherently discrete, such as speech being represented as a sequence of phonemes.
Recent VQVAE-based approaches organize the latent embeddings by the phonetic content [17] or
arrange them in a hierarchical manner [18], to capture the different semantic levels of speech across
various temporal scales. However, VQVAE-based approaches have garnered limited traction compared
to GANs, due to their tendency to produce averaged outputs, leading to a buzzy-sounding voice [8].
One reason for this issue is that VQVAEs typically use an element-wise loss function in the output
space [19]. These losses do not penalize the regions which are pertinent to the human auditory
system [20]. This leads to low-quality reconstructions with dampened prosody.

Thus, we propose novel ‘perception-informed’ losses to enhance the quality of speech produced by
a VC model. These losses aim to introduce an inductive bias that may aid in achieving higher fidelity
reconstructions. We propose two kinds of losses: handcrafted feature-based and representation-driven.
The handcrafted feature-based loss is computed on formants, which represent the resonance frequencies
of the vocal tract and are crucial for defining the characteristics of vowel sounds, playing a significant
role in speech perception and identifying phonetic elements. Drawing from perceptual losses in
audio enhancement tasks [21], our representation-driven losses emphasize the aspects of sound most
critical to human listeners, thereby improving the perceptual fidelity of the generated speech. Although
our proposed loss functions can be integrated into any model, we consider a VQVAE-based model
to demonstrate their effectiveness, as training a VQVAE model is generally simpler than training a
GAN-based model. We extensively evaluate our approach using various datasets, languages, target
speakers, and genders. We demonstrate through objective and subjective tests that our proposed loss
functions generalize well and significantly enhance speech quality across different scenarios.

2 Vanilla VQVAE

VQVAE achieves VC by transforming the source mel-spectrogram x using the speaker embedding of
the target speaker, typically learned during training [18]. There are three key components of VQVAE:

1. Encoder Enc takes a mel-spectrogram x and maps it to a discrete latent variable z=Enc(x),
which is received by the vector quantization layer.

2. Vector Quantization layer, also known as the codebook Cc, sits between the encoder Enc and
the decoder Dec. This layer consists of learnable vectors representing embeddings that capture
speaker-independent content information. The encoder’s output z is used to select the most
similar vector q from this codebook based on Euclidean distance. This selected vector q is then
passed to the decoder in place of z. Since the nearest vector selection is non-differentiable, the
straight-through re-parameterization trick is applied to compute the discrete latent vector qst,
as qst=z+sg(q−z), where sg is the stop-gradient operator [16].

3. Decoder Dec receives two inputs: the content embedding qst and a speaker embedding
es, selected from speaker codebook Cs = {es}Ss=1, s ∈ 1...S. The speaker codebook Cs is
jointly optimized with the other model parameters during training through back-propagation.
Using both of these inputs qst and es, the decoder generates the transformed mel-spectrogram
xdec=Dec(qst,es). Therefore, VC using VQVAE can be achieved by just replacing the source
speaker embedding with the target speaker embedding.

We use a hierarchical-based VQVAE [18] as our baseline, which employsL=3 levels of vector quantiza-
tion layers to capture speech representations at varying semantic depths (e.g., phoneme, syllable, word),
enhancing reconstruction quality. The model is trained with the loss functions shown in Equation 1: re-
construction loss for preserving linguistic content, codebook loss to ensure that the encoded representa-
tions remain close to the discrete codebook vectors, and commitment loss ensures latent representations
remain consistent with specific codebook vectors [16]. Each loss is weighed by hyperparameter λ.

Lvanilla=λrecon∥x−xdec∥22+λcode

L∑
l=1

∥sg[zl]−ql∥22+λcom

L∑
l=1

∥zl−sg[ql]∥22 (1)

3 Perception-Informed Losses

Recent VC research has mainly focused on enhancing architectures to improve synthesized speech
quality, often leading to complex models and overfitting [8]. In contrast, our approach introduces novel
loss functions, applicable to any model, that aim to capture speech quality in line with human perception.
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Handcrafted Feature-Based Loss: Formants serve as a concise descriptor of the spectral content
of vowels, efficiently capturing important speech features with minimal parameters [22]. Phonetically,
formants are resonant frequencies that are characteristic of the shape of the human vocal tract during
speech production [23] and are also affected by prosody [24]. F1 is the lowest frequency formant,
followed by F2, F3, and so on. Typically, F1 and F2 suffice for vowel identification [25]. However,
F3 adds an important layer of detail that enhances the precision of vowel identification [26], aids in
consonant distinction and provides critical information for speaker identification [27] and speech in-
telligibility [28]. We compute the formant loss Lformant as shown in Equation 2, where Φk(.) represents
the kth formant. Here, K and N denote the total number of formants and frames, respectively.

Lformant=
1

K×N

K∑
k=1

N∑
n=1

(Φk(xn)−Φk(xdecn))
2 (2)

Representation-Driven Losses: Intermediate representations from self-supervised deep learning
models capture a wide range of speech features, such as tonal quality, prosody, clarity, and background
noise [29], which are vital for assessing speech quality. Different network layers capture varying
levels of abstraction, from basic acoustic features to more abstract representations like phonemes [30].
Embeddings from supervised models trained for quality-related tasks offer richer information than
standard element-wise loss functions [31]. Consequently, we compute the quality discrepancy as
shown in Equation 3, which is a general representation-driven loss, calculated on the activations αj

from the jth layer of a quality-based perceptual network.

LDL=
1

|J |
∑
j∈J

1

N

N∑
n=1

(αj(xn)−αj(xdecn))
2 (3)

We consider two kinds of representation-driven losses:

1. Mean Opinion Score (MOS) Loss: The MOS is a widely used subjective metric for assessing
the quality or naturalness of speech [32]. However, incorporating human annotators to rate speech
conversion during the training process is impractical. To address this, we use a neural network,
Netmos, as a proxy for human evaluation, which is trained to predict the MOS score of a speech
audio signal. Specifically, we employ the model proposed in [33], which consists of a fine-tuned
Wav2Vec2.0 model [34] with a regression head added to the encoded features, resulting in a total
of |J |=4 layer activations. The corresponding loss function LDL=mos is defined in Equation 3,
where the activations α are produced by the Netmos model.

2. WavLM Loss: WavLM [35] is a state-of-the-art model for comprehensive speech processing
tasks, demonstrating leading performance on SUPERB benchmarks [36] in areas such as speaker
verification and diarization. Studies like [37, 38] highlight WavLM’s capability to extract meaning-
ful phoneme embeddings, with similar-sounding phonemes clustering in its latent space. The later
layers of WavLM show reduced predictive power for pitch and prosody [39], while the embeddings
from layer J=6 are highly correlated with phoneme identification [37]. Therefore, we compute the
WavLM loss LDL=wavlm using the activations from the 6th layer, resulting in|J |=1 in Equation 3.

Training Objectives: Put together, the full objective function of our proposed approach consists of
the following terms that are weighted by λi, where i∈{recon,code,comm,mos,wavlm,formant}:

L=λreconLrecon+λcodeLcode+λcomLcom+λmosLDL=mos+λwavlmLDL=wavlm+λformantLformant (4)

4 Experiment Details

We use three datasets: VCTK [40] and LibriSpeech [41] for English utterances, and mlsGerman [42]
for German. Utterances are re-sampled to 16 kHz. The vanilla hierarchical VQVAE without
perception-informed losses serves as our baseline model (Mbase), while our proposed model (MPL)
incorporates these losses. All models are trained on the same splits and evaluated on the same test
set. Log mel-spectrograms are used as input to the models. The models are optimized using the Adam
optimizer with a cyclic learning rate, ranging from 5×10−4 to 2×10−3. The models are trained from
scratch, employing early stopping with predicted mean opinion score (pMOS) [33] on the validation
set as the stopping criterion. A pre-trained HiFiGAN vocoder [12] is used to generate the waveform
from the model’s output. Additional details are provided in the appendix.
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4.1 Evaluation

We evaluate the baseline model (Mbase) and our approach (MPL) across three scenarios using both
objective and subjective measures:

1. English→English: Both source and target speakers are English-speaking, evaluated within the
same corpus (VCTK→VCTK) and across different corpora (LibriSpeech→VCTK). We also
assess inter-accent conversion (Canadian, American, British).

2. German→ English: German utterances are converted using English VCTK target speakers.
3. German→ German: Both source and target speakers are German, using the mlsGerman dataset.

In each scenario, we have 10 source speakers, each providing 10 utterances, and 10 target speakers.
The speakers are selected randomly, ensuring a disjoint set and balanced gender distribution, leading
to 1000 total conversions.

Objective Measures: Intelligibility is measured by character error rate (CER) using the transcriptions
from Whisper [43] medium-english model for the English conversions and medium model for German
conversions. For anonymization, we measure the equal error rate (EER) using the speaker verification
model ECAPA-TDNN [44], as in [12]. We avoid using predicted MOS (pMOS) for quality evaluation,
as in [12], as it is used as a loss function in our model and could lead to overfitting, as discussed in
[45]. Instead, we rely on subjective testing for quality assessment.

Subjective Evaluation Setup: We evaluated quality, prosody preservation, intelligibility and
anonymization by user studies via the Crowdee platform1. We evaluated a random selection
of 100 conversions for each of the three scenarios, as assessing all conversions would be both
time-consuming and costly. 72 online participants had taken part in the studies. For English→English
and German→German scenarios, only native speakers of English and German, respectively, were
allowed to participate. In the German→VCTK (English) scenario, native German speakers who were
proficient in English were considered. Participants rated quality (naturalness) on a scale from 1 (poor)
to 5 (excellent). They compared intonation and stress patterns between the original and converted
samples for prosody preservation. Intelligibility was assessed by selecting the most intelligible sample
between the two conversions, for the same source utterance. Anonymization was evaluated by rating
the similarity on a scale ranging from 1 (different) to 5 (similar), between a converted sample and
another utterance from the same speaker. Each task was rated by at least 3 subjects, who were unaware
of whether the samples were original or converted. Trap questions and anchoring examples were used
to ensure accuracy, and raters who failed trap questions twice were excluded.

5 Results and Discussion

Overall, our proposed method MPL, significantly enhances intelligibility compared to the baseline
Mbase, as demonstrated in Table 1. This improvement is also accompanied by improvement in
naturalness corroborated by the MOS ratings from user studies, as shown in Figure 1. Additionally,
83% of the conversions using the proposed model were rated as more intelligible than those from the
baseline. In terms of speaker anonymization, there is a modest increase in EER from 41.07% to 43.21%
across all scenarios, which is similarly reflected in the speaker similarity scores from user studies. For
prosody preservation, our approach significantly outperforms the baseline, with 83.2% of participants
favouring the proposed model having perception-informed losses, as seen in Figure 1. Similar trends
are observed for within-corpus scenario VCTK→VCTK, where the mean CER showed a significant
improvement from 73.32% to 45.49% with the incorporation of the proposed losses, as detailed in
Table 1. These improvements are also observed in cross-gender (refer to Appendix) and cross-accent
conversions within the corpus. For prosody preservation and intelligibility, our model received
significantly higher support with 83% and 85% of the votes, respectively. Furthermore, in inter-accent
conversions, we observe a change in accent after the VC, where the converted sample adopted the
accent of the target speaker, potentially leading to better anonymization. In the cross-corpus scenario
LibriSpeech→VCTK, similar trends are observed for all metrics.

In the German to English (VCTK) conversion, intelligibility did not improve much compared to
intra-lingual conversions, as shown in Table 1. Listening to samples2 reveals that using English target

1https://www.crowdee.com/
2Audio samples available at: https://shorturl.at/mqSrs
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Table 1: Objective evaluation results are presented with 95% confidence intervals.

Source All conversions (All)
/Accent-wise CER [%] ↓ EER [%] ↑

Mbase MPL Mbase MPL

All Conversions All 71.33±0.40 53.09± 0.67 41.07 43.21

VCTK → VCTK

All 73.32±0.79 45.49±1.13 37.88 38.17
American → British 73. 31±1.49 45.32±2.24 36.89 39.10
Canadian → British 72.02±1.39 48.89±1.97 37.10 42.23
British → British 74.30±1.26 43.07±1.68 36.07 38.02

LibriSpeech → VCTK All 70.16±0.64 53.50±1.12 38.26 38.00

German → VCTK All 77.44±0.56 75.21±0.75 42.35 44.84
German → German All 64.41±0.91 38.15±1.02 49.63 51.46

Figure 1: User study results for different scenarios and all conversions (All conv.). The Speaker
Similarity plot indicates the similarity between the source and converted utterances (lower is better).
The MOS plot shows the naturalness ratings from the user study (higher is better). The Prosody and
Intelligibility Votes plots show the percentage of votes each model received. The mean MOS of the
original files is 3.54.

speakers introduced an English accent in the conversions, failing to preserve the original intonation.
This occurred because German phonemes that do not exist in English were replaced by similar English
sounds. For example, the German uvular fricative [K] in “Rad” became the alveolar [ô] as in “run”.
The German fricatives [ç] (“ich”) and [x] (“ach”) were replaced by [S] (“sh”) and [k] (“cat”). This
likely occurs because the VQVAE model is trained on English data, substituting German sounds with
the closest English equivalents. However, this accent shift aids anonymization, potentially leading
to a higher EER compared to the VCTK→VCTK scenario. For German→German conversions, a
similar improvement is observed as in the English→English scenario. However, regarding naturalness,
MPL shows less improvement compared to the English→English scenario, as indicated in the user
study results (MOS score in Figure 1). This might be attributed to the formant prediction network
Netformant being trained solely on English data. Consequently, the network may not accurately capture
German vowel nuances, leading to a mismatch in vowel prediction that results in converted German
speech sounding less authentic, as reflected in subjective evaluations.

6 Conclusion

We present model-agnostic perception-informed losses as an innovative approach to enhance the quality
of voice conversion (VC) for speech anonymization without increasing model complexity. By integrat-
ing quality-related knowledge into the training process through handcrafted acoustic features and deep
learning representations, our framework significantly improves the performance of a vanilla hierarchical
VQVAE-based model. Augmented solely by our proposed loss functions, the model shows notable en-
hancements in naturalness, intelligibility, and prosody preservation across diverse conversion scenarios,
including cross-corpus conversions, varying genders, accents, and languages. Objective and subjective
evaluations validate these results, highlighting the importance of incorporating speech-specific features
within the loss function, rather than increasing model complexity. Looking ahead, we plan to develop
loss functions to specifically target and reduce the graininess observed in some conversions.
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8 Appendix

8.1 Detailed Objective Evaluation

Table 2 shows a more detailed version of the objective evaluation portrayed in Table 1, where
gender-wise information is also mentioned.

Table 2: Objective evaluation results are presented with 95% confidence intervals.

Source All conversions (All)
/Accent-wise CER [%] ↓ EER [%] ↑

Mbase MPL Mbase MPL

All Conversions All 71.33±0.40 53.09± 0.67 41.07 43.21

VCTK → VCTK

All 73.32±0.79 45.49±1.13 37.88 38.17
American → British 73. 31±1.49 45.32±2.24 36.89 39.10
Canadian → British 72.02±1.39 48.89±1.97 37.10 42.23
British → British 74.30±1.26 43.07±1.68 36.07 38.02
Different gender 73.05±1.12 46.24±1.58 - -
Same gender 73.60±1.12 44.72±1.61 - -

LibriSpeech → VCTK All 70.16±0.64 53.50±1.12 38.26 38.00

Different gender 69.71±0.92 53.73±1.61 - -
Same gender 70.63±0.88 53.27±1.58 - -

German → VCTK All 77.44±0.56 75.21±0.75 42.35 44.84
Different gender 76.93±0.79 75.71±1.03 - -
Same gender 77.96±0.80 74.70±1.08 - -

German → German All 64.41±0.91 38.15±1.02 49.63 51.46
Different gender 65.87±1.27 39.17±1.44 - -
Same gender 63.00±1.31 37.17±1.45 - -

8.2 Ablation Study

We perform ablation studies to assess the contribution of each loss component. Table 3 demonstrates
that formant Lformant individually contributes the most to naturalness and intelligibility. This suggests
that calculating loss on specific frequency components effectively enhances the overall quality of
VC. These components correspond to the resonant frequencies of the vocal tract, which are essential
for perceiving vowel sounds and overall intelligibility. Further, listening to the samples reveals that
the model not trained with Lformant has the worst prosody preservation. Removing Lformant loss (when
using LDL=wavlm + LDL=mos) significantly increases the CER from 50.02% to 66.85%, highlighting
the critical role of formants in speech intelligibility.

Table 3: Ablation study results with 95% confidence intervals shown on the VCTK → VCTK
conversion setup. pMOS is the MOS score predicted by Netmos.

Method pMOS ↑ CER [%] ↓ EER [%] ↑
Mbase 1.59 ±0.04 73.32±0.79 37.88
MPL 3.56 ±0.02 45.49 ±1.13 38.17
Lformant 3.13 ±0.01 50.67 ±1.02 37.07
LDL=wavlm 3.02 ±0.02 51.74 ±3.02 37.89
LDL=mos 2.33 ±0.04 68.17 ±2.02 37.97
Lformant + LDL=mos 2.71 ±0.02 50.02 ±1.02 38.16
Lformant + LDL=wavlm 3.47 ±0.01 49.28 ±1.08 38.12
LDL=wavlm + LDL=mos 2.34 ±0.03 66.85 ±1.02 37.91
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Interestingly, individually Lformant and LDL=wavlm have a greater positive impact on MOS scores
compared to LDL=mos, indicating that these losses better capture the aspects of speech that influence
perceived quality. One reason LDL=mos underperforms compared to LDL=wavlm is that WavLM was
trained on a much larger corpus to capture more generic speech representations, encompassing noise,
distortion, natural variations in pitch, loudness, and other factors. In contrast, the MOS network is
specifically trained to predict MOS scores, focusing solely on naturalness.

The combination of Lformant and LDL=wavlm significantly improves the pMOS and CER compared to the
baseline, nearly reaching the performance of the model incorporating all losses MPL. We also note that
the anonymization capability of the model is not significantly affected by the removal of the loss compo-
nents individually or in combination. This indicates that the mechanisms responsible for anonymization
are robust and independent of the specific losses used to enhance naturalness and intelligibility.

8.3 Training Details

We trained all models on log mel-spectrograms with 80 mel bands, generated from 2-second audio
clips. For STFT parameters, we used a hop length of 320 and a window length of 1024.

For scenarios involving English-speaking target speakers, our models were trained on approximately
5 hours of English utterances from 20 speakers in the VCTK dataset, with the data divided into a 90:10
split for training and validation. In cases requiring German-speaking targets, we utilized around 10
hours of German utterances from 20 speakers in the mlsGerman dataset, allocating 80% for training
and 20% for validation.

The number of trainable parameters in all the voice conversion models is the same, as we only augment
the vanilla model with our proposed losses. Training with all three perception-aware losses required
approximately 2 days on average to complete on a 80GB A100 GPU. We set λrecon = 1, λcode = 1,
λcomm =3, λmos =0.1, λwavlm =0.1, and λformant =106, ensuring that all loss terms were within the
same order of magnitude. We incorporated LDL=mos from epoch 0 and LDL=wavlm, Lformant from epoch
45 into the training based on empirical observations obtained during the development phase.

We used a pre-trained HiFiGAN [46] vocoder from [12] to generate the waveform from the
mel-spectrogram, which produced a one-minute long waveform from the converted mel-spectrogram
in 0.1 seconds on the A100.

We trained the Netformant model to derive the F1, F2, and F3 values needed to compute the Lformant loss.
The formant network consists of a transformer encoder architecture as proposed in [47], additionally
featuring a regression head with three output neurons that predict based on the encodings of the
input for each time frame. As training data, we used the VTR dataset [48], comprising 538 manually
formant-annotated utterances from domain experts who ensured balance across phonetic contexts,
speakers, genders, and dialects in the English language. We used the default VTR parameters for
pre-processing and achieved a final MSE of 3.16.
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