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ABSTRACT

The resource requirements of Neural Networks can be significantly reduced
through pruning—the removal of seemingly less important parameters. How-
ever, with the rise of Large Language Models (LLMs), full retraining to recover
pruning-induced performance degradation is often prohibitive and classical ap-
proaches such as global magnitude pruning are suboptimal on Transformer archi-
tectures. State-of-the-art methods hence solve a layer-wise mask selection prob-
lem, the problem of finding a pruning mask which minimizes the per-layer pruning
error on a small set of calibration data. Exactly solving this problem to optimal-
ity using Integer Programming (IP) solvers is computationally infeasible not only
due to 1) the size of the search space, but also because ii) caching all intermediate
values of the matrix multiplication needed to specify the optimization objective
is already prohibitive. Existing approaches therefore rely on approximations or
heuristics. In this work, we demonstrate that the mask selection problem can be
made drastically more tractable at LLM scale. To that end, we leverage three key
insights: a) enforcing equal sparsity levels per row decouples the rows without
harming performance, b) the dimensionality of the problem can be reduced by
leveraging the unitary invariance of the Frobenius norm objective and transform-
ing the calibration data accordingly, and c) computing optimal /-swaps (exchang-
ing one kept and one pruned weight) can be realized efficiently. These insights
enable us to implement a tractable and simple 1-swap algorithm that warm starts
from any pruning mask, runs efficiently on GPUs at LLM scale, and is essentially
hyperparameter-free. We demonstrate that our approach reduces per-layer prun-
ing error by up to 60% over Wanda (Sun et al., 2023) and consistently improves
perplexity and zero-shot accuracy across state-of-the-art GPT architectures.

1 INTRODUCTION

Pruning after training (Han et al., 2015; Gale et al., 2019; Lin et al., 2020; Hoefler et al., 2021;
Zimmer et al., 2025) is a state-of-the-art technique to reduce the resource requirements of neural
networks. A simple yet effective approach to obtain such sparse models starts from a pretrained
dense model, removes seemingly unimportant parameters based on their magnitude, and requires
retraining to compensate for pruning-induced performance degradation. However, while the inex-
pensive, data-free magnitude criterion has often achieved strong performance on traditional archi-
tectures (Gale et al., 2019; Zimmer et al., 2023b), pruning has undergone a paradigm shift with the
rise of large pretrained foundation models, particularly LLMs.

First, the size of the models has shifted the focus toward retraining-free pruning criteria, as re-
training is often computationally expensive if not infeasible, with parameter-efficient fine-tuning
(Lialin et al., 2023; Zimmer et al., 2023a) being an exception. Secondly, systematic activation out-
liers (Dettmers et al., 2022) and highly important super-weights (Yu et al., 2025) in sufficiently
large Transformers (Vaswani et al., 2017) have rendered magnitude pruning no better than random
pruning for LLMs (Sun et al., 2023; Yin et al., 2023). Lastly, state-of-the-art methods (Frantar &
Alistarh, 2023; Sun et al., 2023; Zhang et al., 2024) prune layer-wise: they split the pruning problem
into per-layer subproblems, pruning layers sequentially and independently using a small calibration
dataset to estimate parameter importance. Rather than optimizing the global loss, such approaches
minimize a per-layer local pruning loss. Specifically, for a single layer with calibration input matrix
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X € R%n*B and weights W € Rut*din_ the objective becomes
min [WX — (M © W)X, Q)

where M € {0, l}d"“"Xd"” is a binary pruning mask achieving a desired level of sparsity, e.g.,
[|M]||, < k for unstructured sparsity, and © denotes the element-wise multiplication or Hadamard
product. Here, B = N - L with IV being the number of samples in the calibration batch and L being
the sequence length.

Solving this combinatorial mask selection problem to optimality is NP-hard due to feature correla-
tions: selecting k of d,,+ - d;;, weights yields a cardinality-constrained binary quadratic program (a
best-subset selection variant). Even for a single row %, the problem reduces to

2
B din

H#zlln HwZTX - (mz ® wz)TXHE = min Z(l - mij)winj R
k

my
k=1 \j=1

where w; € R%» and m; € {0, 1}di" denote the i-th row of W and M, respectively. Solving the
mask selection problem requires caching all B - d;,, intermediate products w;; X j, the summands of
w;" X. In a standard forward pass, these terms are computed on the fly and immediately discarded,
but optimal pruning must retain them to assess weight importance. To illustrate the scale, consider
a single row of the largest matrix in a LLAMA-2-7B Transformer block: the up_proj matrix
with input dimension d;,, = 4096. With N = 128 samples and sequence length L = 4096 (so
B = N - L = 524,288), caching all products w;; X, for that row requires 524,288 x 4096 ~ 2.15
billion float32 values (about 8.6GB); across all 11,008 rows this totals about 94.6TB. Thus, while
IP solvers could theoretically provide optimal solutions, the bottleneck is not only the combinatorial
search over mask entries but also the prohibitive memory requirements for caching the intermediates.
In practice, existing methods therefore relax Equation 1 or approximate it.

However, with deployed LLMs now serving millions of users, it becomes increasingly worthwhile
to invest substantial resources to obtain pruned models that reach high performance, because the
pruning cost is paid once during training whereas inference costs scale with the number of requests.
In this work, we revisit the per-layer mask selection problem and demonstrate that it can be opera-
tionalized at LLM scale, enabling monotone improvements with each optimization step rather than
relying on proxy importance scores. To that end, we make multiple key observations: (1) enforc-
ing equal sparsity-level across rows must not be detrimental and ensures row-wise separability that
yields independent objectives, and (2) the unitary invariance of the Frobenius objective can be lever-
aged to drastically reduce the dimensionality of the problem, making intermediate caching feasible
without changing the objective. Taken together, these insights make the problem drastically more
tractable. Instead of trying to obtain exact solutions via IP solvers, we opt for and propose a GPU-
accelerated local optimization algorithm based on (3) an exact and efficient local refinement with
incremental cost updates through optimal /-swaps (exchanging one kept and one pruned weight)
that monotonically decreases the objective from any warm start.

The resulting method, which we term SparseSwaps, can start from any warm-start mask, evaluates
the exact per-row quadratic loss, and is scalable, parallelizable across rows, almost hyperparameter-
free, and deterministic for a fixed warm start. With only few 1-swap iterations, it can reduce the
per-layer pruning error by up to 60% compared to Wanda and improves final perplexity and zero-
shot accuracy across architectures. Our approach is thus a post-hoc refinement of existing pruning
methods that can significantly improve upon the state of the art for unstructured, per-row, or N:M
sparsity.

Contributions. Our contributions are as follows:

1. Novel insights that make the problem tractable. We identify three simple ideas that
make the pruning mask selection objective tractable at LLM scale: row-wise separability of
the loss, Singular Value Decomposition (SVD)-based compression of calibration features
to enable caching of necessary intermediates, and exact 1-swap evaluation with efficient
incremental cost updates.

2. SparseSwaps: a practical post-hoc pruning algorithm. Building on these insights, we
propose SparseSwaps, a plug-and-play 1-swap refinement that starts from any warm-start
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mask and monotonically decreases the exact per-row objective under per-row or N:M con-
straints. It delivers large reductions in local pruning error (up to 60% per-layer error reduc-
tion over Wanda) and strong perplexity and zero-shot gains on state-of-the-art Generative
Pretrained Transformer (GPT) architectures.

Further related work. Post-training pruning has a long history, and while magnitude pruning
(Janowsky, 1989; Han et al., 2015) is among the most popular criteria, it is not the only one (cf.
LeCun et al., 1989; Hassibi & Stork, 1993; Molchanov et al., 2016; Yeom et al., 2019); see Hoe-
fler et al. (2021) for a comprehensive review. Despite their simplicity, magnitude-based methods
have been shown to produce sparse models competitive with far more complex algorithms for con-
volutional architectures (Gale et al., 2019; Zimmer et al., 2023b). For LLMs, however, magnitude
pruning is argued to be unsuitable (Yin et al., 2023). Consequently, there is growing interest in
criteria beyond magnitude that achieve high performance on LLMs, and do so without requiring
an expensive retraining procedure (Kwon et al., 2022; Frantar & Alistarh, 2023; Sun et al., 2023).
In this work, we develop a post-hoc refinement of existing methods, rather than proposing a new
criterion. A related approach, DSnoT (Zhang et al., 2023), also performs iterative weight swaps but
differs significantly in its optimization strategy. Inspired by dynamic sparse training (cf. Evci et al.,
2020), DSnoT prunes and regrows weights based on expected reconstruction-error improvements,
using feature means and variances as surrogates. While effective, it does not guarantee a monotonic
decrease in the true pruning error, whereas our method does. We compare the two empirically and
find that SparseSwaps consistently outperforms DSnoT.

Subset selection and IP approaches. To solve Equation 1 to global optimality, which can be for-
mulated as a mixed-integer nonlinear program (MINLP), several efficient open-source solvers are
available, including SCIP (Bolusani et al., 2024), Bonmin (Bonami et al., 2008), and SHOT (Lun-
dell et al., 2022), among others. In particular, the recently introduced Boscia solver (Hendrych
et al., 2025) is particularly well-suited, as it exploits the problem’s combinatorial structure. While
we demonstrate how the problem can be made drastically more tractable, explicit solution remains
very time-consuming for large instances; we therefore opt for a GPU-friendly 1-swap approach that
avoids moving large tensors to the CPU for IP solvers. We leave such an extension for future work.

2 METHODOLOGY

In the following, we use uppercase letters for matrices (W, X, M) and lowercase letters for scalars
and vectors. Matrix entries are denoted W;; for the element in row 4, column j. Rows of matrices are
denoted with lowercase subscripts: w; represents the i-th row of matrix . Row and column slices
use colon notation: X ;. for the j-th row and X j for the k-th column. We use © for element-wise
multiplication, ||-||  for Frobenius norm, and ||-||,, for £ norm.

2.1 PRELIMINARIES AND INSIGHTS

Before describing our proposed method, we make several crucial assumptions and observations that
make the problem tractable.

2.1.1 INSIGHT 1: EQUAL SPARSITY-LEVEL ACROSS ROWS MUST NOT BE DETRIMENTAL
First, note that the objective in Equation 1 decomposes into a sum of d,,,; row-wise quadratics,

dout
WX —(MoW)X[Z =3 |jw] X - (m; o w) X 2

i=1

where w; € R%» and m; € {0, 1}d”‘ denote the i-th row of W and M, respectively. This alone
does not make the corresponding minimzation problem row-separable under unstructured sparsity,
since the matrix cardinality constraint couples rows. In contrast, semi-structured patterns like per-
row sparsity (keep k per row) or N:M (prune M —N per block of M weights) enforce equal per-row
sparsity and fully decouples rows which can now be solved independently. We therefore focus on
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the decoupled case, allowing to treat each row separately and reducing the problem to

2
B din

. 2 .
min [|w] X = (mi © wi) TX|, = min 3 { (1= mi)wi X 3)
m; m; = =1
foreachrow i € {1,...,doy:}. Note that, for LLMs, Sun et al. (2023) observe that row-wise sparsity

benefits performance for both Wanda and magnitude pruning. We therefore argue that enforcing
per-row sparsity rather than unstructured sparsity is justified and need not harm final performance,
at least for LLMs. For semi-structured sparsity, the rows are decoupled anyway.

As a side note, since positive scaling preserves minima and by applying Jensen’s inequality, one can
now easily derive the Wanda criterion:

B din 2 B din
miny | Y (1= mig)wi Xp | <min) | Y (1= mig)?wh X5, @
k=1 \j=1 S
din
. 2
= min' > (1= mig P | X5, ®
Jj=1

Equation 5 is solved by pruning entries with the smallest saliency |w;;| - || X.||5. i.e., precisely
the Wanda criterion. Thus, Wanda optimizes an upper bound to the original problem that ignores
within-row interactions, making the combinatorial problem tractable.

2.1.2 INSIGHT 2: UNITARY INVARIANCE OF THE MASK SELECTION PROBLEM

A significant issue is that if the context length L and consequently B = N - L is large, operating with
the full data matrix X € R%n*5 is computationally infeasible. Typically, B is much larger than
d;n for LLMs; X has many more columns than rows. To significantly reduce the computational
cost and render our approach feasible, we leverage the fact that the Frobenius norm used in our
pruning objective is unitarily invariant: for any matrix A and unitary matrix U (i.e, U~' = U"),
we have |AU|| = ||A||z. This property enables significant computational savings through SVD
compression.

Precisely, let X = UXV T be the SVD of calibration data X € R%»*B_ Since B > d,,,, we can
write &2 = [3']0] with X’ being the square matrix containing the d;,, singular values on its diagonal.
We construct a compressed representation of the data matrix as follows:

X' =US'UT € Rdinxdin, (6)

Letting W, = W — M © W for brevity, the key insight is that pruning decisions remain equivalent
under this compression:

2 2
WX |7 = [[WoUSVT | = IW,UE|5 = IW,UE | 0l
2 2 2
= [IWoUS' || = [WoUS'UT | = IWp X[,

where we used that U and V' are unitary and the Frobenius norm is invariant under unitary transfor-
mations. In practice, since we do not need the right singular vectors V', we efficiently compute U
and ¥’ via eigendecomposition of the symmetric matrix X X .

If now d;, < B, the computational and memory savings by working with X’ instead of X are
significant, effectively solving the issues of caching intermediate summands. Returning to our ex-
ample from the introduction, with SVD compression the memory requirement per row reduces from
caching B x d;;,, = 524,288 x 4096 ~ 2.15 billion products to caching d;,, X d;, = 4096 x 4096 ~
16.8 million products, a 128 x reduction from about 8.6GB to about 67MB per row.

2.1.3 INSIGHT 3: 1-SWAP LOCAL SEARCH IS COMPUTATIONALLY TRACTABLE

While the global mask selection problem is NP-hard, we can still make efficient progress via local
search. Consider a single row (omitting its index ¢) and let d := d;,,. Starting from any feasible
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mask m € {0, 1}9, the idea is to iteratively perform 1-swaps that exchange one kept and one pruned
weight to reduce the objective while preserving the sparsity level. The key insight is that we evaluate
swaps efficiently by precomputing and caching intermediate summands instead of recomputing the
full objective after each iteration.

Recall that our objective from Equation 1 is to minimize the reconstruction error from pruned
weights. For a single row, this becomes minimizing
2
T 2
(X =m)ow) X[, = > wX;, @)

7:m;=0 9

where (1 — m) identifies the pruned weights and the sum is over all pruned weight indices. We
precompute the intermediate value matrix:

wi X1 wXi2 -0 wXiB
w2X2,1 szz,z s w2X2,B dx B

S = . ) . . eR ®)
wegXg1 wgXaz - wiXaB

where row j contains the weighted contribution w; X ; . from input dimension j. After SVD com-
pression (Insight 2), B = d, so S is square; we retain the B notation for clarity.

Let P C {1,...,d} and U C {1,...,d} denote the set of pruned and unpruned weight indices,
respectively. Our objective then becomes minimizing ||s||§ where

s=Y_S;. 9)
JEP

is the sum over rows of .S corresponding to pruned weights, and ||3Hg is the squared reconstruction
error from pruned weights. To evaluate a 1-swap that removes index p from the pruned set P and
adds index u from the unpruned set I/, the new objective vector is:

SV =5—85,. + S, (10)

and the improvement in objective is Hs||§ — ||s"V| 3 computable in O(B) time using the cached
rows from S. By systematically testing all (d — |P|) x |P| possible 1-swap operations (adding one
of U| = d — |P| unpruned weights to P, removing one of |P| pruned weights from P) evaluating
the improvement using the above expression, we iteratively pick a best swap and update the mask
until we have reached a satisfactory solution or one optimal w.r.t. 1-swap operations.

Cost-effective swap evaluation and the p—u interaction. Crucially, after accepting a swap (p, u)
(and before the next swap evaluation) we update the cost vector incrementally via s <— s—S, .45, .
(cost O(B)) rather than recomputing s = >, » S;,. from scratch (cost O(|P| B)). This running-
sum update is one of the main efficiency gains of our approach.

Expanding the squared norm makes the computational benefit and the dependency between the
removed and added indices explicit. For any candidate pair (p,u) with p € P and u € U and
denoting s, == s — 5, .,

2

2 2 2
lls — Sp,: + Su,:| 2 = ||3p + Su,:”z = HSP”Q + ”Su,:”g + 23;—5%:- (11

For fixed p, the first term is constant and ||.S,, . ||§ can be precomputed. Evaluating all swaps that
share p reduces to dot products {s];r Su,: tueu, computed efficiently via matrix operations. Over all

p € P, this yields an exhaustive 1-swap search in O(|P| || B) without recomputing full objectives
from scratch.

Why picking p and u separately is suboptimal. The cross term 2 s; Sy,: in Equation 11 shows
that the best u depends on the chosen p (and vice versa). Consequently, selecting the best p based
on ||sp||§ and then the best u based on ||su||§ can result in a suboptimal solution as the following
example for the scalar case with B = 1 and d = 4 shows. Let the current pruned-set contributions
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be {+10, —1}, so s = 9, and the unpruned candidates be {+9, —9}. The best 1-swap is to remove

p = —1and add u = —9, giving s™" = 10 — 9 = 1 and objective 12 = 1. However, if, instead,
we greedily remove the best p in isolation, we drop p = +10 since |9 — 10||> = 1. We must then
add one index; the best addition in isolation is u = —9, leading to s"™* = —1 + (—9) = —10 and

objective 100. The error stems precisely from ignoring the interaction term in Equation 11.

2.2 THE SPARSESWAPS ALGORITHM

Building upon the three key insights, we present our complete algorithm. The method takes as input
a weight matrix W € ReutXdincalibration data X € R%»*5 and a warmstart pruning mask
Mt ¢ {0, 1}doutXdin that already satisfies the desired sparsity constraints, e.g., obtained from
Wanda or RIA (Zhang et al., 2024).

The algorithm enforces any sparsity pattern that operates per-row, including per-row sparsity (fixed
number of zeros per row, cf. Sun et al. (2023)) and structured /N: M sparsity patterns (e.g., 2:4 or 4:8,
Mishra et al. (2021)). All swap operations maintain the sparsity constraints throughout optimization;
for N:M sparsity, swaps are restricted to occur only within the same N:M blocks, while for per-
row sparsity, the total number of pruned weights per row remains constant. Even though each swap
only changes two mask entries, the cumulative effect of multiple swaps can dramatically reduce
reconstruction error compared to the initial solution.

Algorithm 1 SparseSwaps: 1-Swap Pruning Optimization

Require: Weight matrix W € R%ut*din_calibration data X € R%~*5 warmstart mask M/t
Ensure: Improved pruning mask M

I X« UXUT > SVD compression to reduce memory
20 M+ Mt > Initialize with warmstart solution
3: fori = 1tod,,: do > Process each row independently
4: w4 Wi, m <+ M. > Extract row weights and mask
5: S« diag(w)X > Cache weighted contributions
6: P{j:m;=0LU<+{j:m; =1} > Pruned and unpruned sets
7 84 D iepSiy > Current cost vector
8: fort = 1to T, do

9: (p*,u*) < argmin ||s —Sp. + Sy, H; > over feasible 1-swaps respecting sparsity
10 if swap (p*, u*) reduces Hs||§ then
11: Mpe <= 1, Myx <=0 > Perform swap
12: P+ P\{ptu{uvt U+ U\{uv}U{p*}
13: 54=8—Sp .+ Sy~ > Update cost vector
14: else
15: break > Local optimum reached
16: end if
17: end for
18: M;. <—m > Store optimized row
19: end for

We explain the main phases of the algorithm:

Preparation (Lines 1-2): We compress the calibration data X < UX'U T via SVD to achieve the
memory reduction from Insight 2, then initialize with the warmstart mask M™,

Row processing (Lines 4-7): For each row ¢, we extract weights w and current mask m, precompute
the weighted contributions S = diag(w)X, define pruned and unpruned index sets P and I/, and
compute the current reconstruction cost vector s.

1-Swap optimization (Lines 8-17): We iteratively choose the swap (p*,u*) minimizing
IIs — Sp.. + Sy, Hg among feasible pairs. If this improves the reconstruction error ||s||§, we perform
it and update the sets accordingly, otherwise we terminate. At all times, the swaps are appropri-
ately constrained: per-row sparsity allows any swap maintaining | P| constant, while N:M sparsity
restricts swaps to within the same [N: M blocks.



Under review as a conference paper at ICLR 2026

Computational complexity: Theoretically, the algorithm has complexity O(doyt - Tmax - |P| - U] -
din) per layer, where T}, being the maximum number of swap iterations per row, and the d;,, factor
comes from computing norms over the compressed calibration data. However, several complexity
factors can be reduced in practice. First, we find that even setting Ti,,x = 1 or Tiax = 2 can
drastically reduce the local pruning error; values around Ty,,x = 25 often suffice to significantly
lower model perplexity, with diminishing returns beyond 7' = 100. Second, row-wise processing
can be batched and vectorized across multiple dimensions, enabling parallel swap cost computations
and mask updates, and rows can be distributed across GPUs if needed. Third, after precomputing
weighted contributions S, cost vector updates s <— s — Sy . + 5~ . are simple vector additions with
O(d;y) complexity.

Optional Weight Reconstruction. After mask optimization, we can optionally apply local weight
reconstruction to further reduce reconstruction error. Following Frantar & Alistarh (2023), for each
row, let U denote the unpruned column indices and X;, the corresponding rows of X. The least-

squares problem miny, ||w’ X — ' Xy Hz has the solution:

wi = (XuXy) ' Xu(w' X)),
Note that w' X = 2?21 S, is available from our already-cached weighted contributions S =
diag(w)X without additional matrix multiplications.

3 EXPERIMENTAL RESULTS

We outline our general experimental approach, detailing datasets, architectures, and metrics. To
enable reproducibility, our code will be publicly released. Our study focuses on language modeling
within Natural Language Processing (NLP). We use pretrained models from HuggingFace (Wolf
et al., 2020), specifically LLAMA-3.1-8B (Grattafiori et al., 2024), GEMMA-2-9B (Riviere et al.,
2024), Y1-1.5-9B (Young et al., 2025), DEEPSEEK-7B-BASE (Bi et al., 2024), and QWEN2.5-7B
(Yang et al., 2025). For calibration, we randomly draw sequences of 2048 tokens from the C4 dataset
(Raffel et al., 2020). For validation, we similarly pick 100 sequences from the validation split. The
model performance is assessed via perplexity on the WikiZext dataset (Merity et al., 2016) and zero-
shot accuracy on the EleutherAl evaluation set (Gao et al., 2023). Following Sun et al. (2023), we
prune all linear layers, excluding the embedding and final linear head, with uniform sparsity allo-
cation across layers. We provide experiments for unstructured and semi-structured sparsity patterns
(Mishra et al., 2021). We use multiple random seeds throughout our experiments.

3.1 MASK REFINEMENT AT SCALE

We begin by verifying the effectiveness of SparseSwaps. We make the following observations:

SparseSwaps consistently improves state-of-the-art methods. Table | summarizes the main re-
sults and reports perplexity (upper half, lower is better) and zero-shot accuracy (lower half, higher
is better) for warmstart masks (Wanda, RIA) as well as their refinements using DSnoT and Spars-
eSwaps. For both 60% unstructured and 2:4 semi-structured sparsity, SparseSwaps (with 100 1-swap
iterations) consistently reduces perplexity and improves zero-shot accuracy over Wanda and RIA
warm start masks. While DSnoT similarly yields improvements, it falls short of SparseSwaps. Note
that we left the pruning criterion of DSnoT, which partially uses the Wanda saliency, unchanged,
even when using RIA warmstart. For unstructured RIA, we report results when enforcing a per-
row sparsity constraint; while RIA yields good (and slightly better) results when enforcing truely
unstructured sparsity, we decided to include the results for the per-row setting as this allows direct
refinement of the mask with SparseSwaps and DSnoT.

SparseSwaps successfully optimizes the per-layer pruning loss. Figure 1 shows the per-layer
reductions in local pruning error relative to a Wanda Warmstart, grouping layers by their corre-
sponding Transformer block of LLAMA-3.1-8B. We observe drastic improvements of close to
70% compared to Wanda, demonstrating that SparseSwaps is able to successfully optimize the local
loss. The attn.o_proj seems to consistently benefit the most across blocks, with reductions of
the objective in Equation 1 ranging between 40%-60%.

Large local error reductions do not always imply reduced perplexity. From Table 1 we observe
substantial perplexity gains, especially when sparsity more strongly degrades model quality (cf.
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Table 3 in the appendix, which shows more drastic improvements when using magnitude pruning,
which more strongly degrades model quality). In contrast, when quality is less affected (e.g., at
50% sparsity where Wanda performs well), SparseSwaps yields limited perplexity gains despite
significant local error reductions: Table 2 reports perplexity and average relative error reduction (%)
versus the number of 1-swap iterations. Zero iterations correspond to the Wanda warm start; one or
more iterations correspond to SparseSwaps from Wanda. At 50% sparsity, a single 1-swap iteration
lowers relative error by 6.34%, and 200 iterations by nearly 40%, yet perplexity does not improve,
but rather slightly increases. This suggests further reducing local error can overfit the calibration
data and may not translate to better perplexity, although we note that the perplexity increase is
relatively small. These results emphasize that while the reduction of local error is a useful proxy
for perplexity reduction when pruning has a higher negative impact on the model, the local error of
Equation 1 remains an approximation to the reconstruction error of the entire model.

Table 1: Perplexity (|, lower is better) and zero-shot accuracy (7, higher is better) comparison on
WikiText and EleutherAl evaluation set. We report DSnoT and SparseSwaps refinement with Wanda
and RIA warmstart for unstructured 60% sparsity and semi-structured 2:4 sparsity. Best values are
highlighted in bold. We omit standard deviations for legibility.

Perplexity | LLAMA-3.1 GEMMA-2 YI-1.5 DEEPSEEK QWEN2.5
Method Sparsity 8B 9B 9B 7B 7B
Wanda 60% 21.94 16.74 11.40 11.41 13.75
+ DSnoT 60% 21.94 16.69 11.38 11.40 13.75
+ SparseSwaps 60% 19.75 16.01 10.07 10.93 13.16
RIA 60% 19.73 16.19 10.73 11.80 12.63
+ DSnoT 60% 19.73 16.22 10.73 11.80 12.63
+ SparseSwaps 60% 18.47 15.44 9.98 10.79 12.47
Wanda 2:4 24.82 17.45 11.76 11.77 14.53
+ DSnoT 2:4 22.79 16.79 10.84 11.70 14.40
+ SparseSwaps 2:4 20.17 16.30 10.73 11.70 13.95
RIA 2:4 23.96 16.88 11.29 12.03 13.58
+ DSnoT 2:4 24.26 16.82 10.57 12.03 13.85
+ SparseSwaps 2:4 20.90 16.33 10.50 11.80 13.28
Accuracy 1 LLAMA-3.1 GEMMA-2 YI-1.5 DEEPSEEK QWEN2.5
Method Sparsity &B 9B 9B 7B 7B
Wanda 60% 48.18% 63.39% 53.59% 50.74% 59.26%
+ DSnoT 60% 48.18% 63.49% 53.79% 50.75% 59.26%
+ SparseSwaps 60% 50.78 % 63.84 % 54.84 % 51.02% 60.15%
RIA 60% 49.56% 64.37% 52.81% 50.92% 59.84%
+ DSnoT 60% 49.56% 64.43 % 52.96% 50.83% 59.81%
+ SparseSwaps 60% 51.02% 64.32% 54.45 % 51.47% 61.22%
Wanda 2:4 46.80% 63.73% 52.58% 51.02% 59.52%
+ DSnoT 2:4 47.01% 63.66% 52.16% 50.78% 59.09%
+ SparseSwaps 2:4 48.83% 64.70 % 52.43% 50.36% 59.92 %
RIA 2:4 47.87% 63.87% 52.68 % 51.22% 58.66%
+ DSnoT 2:4 47.13% 64.17% 51.36% 49.86% 59.72%
+ SparseSwaps 2:4 49.90 % 64.60 % 52.30% 51.46% 60.31%

3.2 EFFICIENCY AND HYPERPARAMETER ABLATIONS

Resource requirements. SparseSwaps is more resource-intensive than DSnoT and, as a drop-in
refinement, requires at least the resources of the chosen warm-start method. Beyond that, Spars-
eSwaps needs memory to store the matrix .S (cf. Equation 8) and compute to perform the 1-swaps;
see the preceding section for the theoretical complexity. While we have argued in the introduction
that the additional compute can be justified when amortized over many LLM inference requests,
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Per-layer reconstruction improvement over Wanda
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Figure 1: Per-layer relative reduction in local pruning error compared to Wanda. The plot shows
result for LLAMA-3.1-8B, 60% unstructured sparsity and 100 1-swap iterations.

we note that the overhead grows only linearly with the number of 1-swap iterations T}, ,x. Table 2
shows that few iterations already yield substantial gains in both perplexity and local error reduction,
especially at higher sparsity.

Effect of the number of reconstruction samples. Figure 2 in the appendix shows the perplexity
versus the number of reconstruction samples for 50% and 60% unstructured sparsity when using
Wanda as well as SparseSwaps with a Wanda warmstart. We observe that the perplexity decreases
drastically when using more samples, which leads to SparseSwaps slightly outperforming Wanda for
50% sparsity, despite its advantage typically being larger at higher sparsity. We emphasize that the
number of reconstruction samples does not affect SparseSwaps’s efficiency: after SVD compression,
the size of X (and thus compute/memory cost) is independent of the original sample count.

Table 2: LLAMA-3.1-8B: Perplexity (J) and mean relative reduction in pruning error (1) versus
number of 1-swap iterations for 50% and 60% unstructured sparsity using Wanda warmstart.

Number of 1-swap iterations

Sparsity Metric 0 1 2 5 10 25 50 100 200
50% Avg. rel. error reduction (%) 0.00 634 877 12.51 1638 23.52 30.04 36.48 38.95

¢ Perplexity 10.13 10.31 1040 1041 1039 1038 1027 1030 10.34

60% Avg. rel. error reduction (%) 0.00  8.04 11.04 1534 19.64 2692 3358 39.99 43.74
° Perplexity 2152 21.26 21.51 21.17 21.01 2038 19.74 1896 19.17

4 CONCLUSION

We revisited the mask selection problem for post-training pruning and showed that it can be made
substantially more tractable, even at LLM scale. We leveraged three central insights—row decou-
pling via equal per-row sparsity, SVD-based compression exploiting the unitary invariance of the
Frobenius objective, and exact 1-swap evaluation with incremental cost updates—to enable tractable
optimization of the true row-wise quadratic loss on GPUs. The resulting method, SparseSwaps, is
warm-start agnostic, nearly hyperparameter-free, and scalable. It consistently reduces per-layer
pruning error and improves perplexity and zero-shot accuracy across modern GPT architectures.

Our work is not without limitations. While per-row sparsity is not necessarily detrimental for LLMs,
our approach is restricted to that setting and only partially adapts to truly unstructured sparsity; in
its current form, the algorithm can handle unstructured sparsity but cannot reallocate sparsity levels
across rows. Furthermore, runtime and memory remain non-trivial for large architectures.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

Large language models were used to aid in writing (polishing text) as well as to help with the imple-
mentation of code components, including both the methods and the generation of plots. They also
served as a tool for brainstorming research ideas and refining development approaches to address
the challenges explored in this paper.

A.2 FURTHER RESULTS

Table 3: Perplexity ({, lower is better) comparison on WikiText. We report SparseSwaps refinement
with magnitude warmstart for 50% and 60% sparsity. Best values are highlighted in bold. We omit
standard deviations for legibility.

Perplexity | LLAMA-3.1 GEMMA-2 DEEPSEEK
Method Sparsity 8B 9B 7B
Magnitude 50% 68.89 31.87 25.05
+ SparseSwaps 50% 52.26 19.11 16.23
Magnitude 60% 3486.26 184.52 330.07
+ SparseSwaps 60% 264.92 60.04 80.24
LLaMA-3.1-8B (50% sparsity) ’3 LLaMA-3.1-8B (60% sparsity)
—4— Wanda —4— Wanda
10.6 1 SparseSwaps 29 - SparseSwaps
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Y — : 19 1
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Figure 2: Perplexity versus the number of reconstruction samples for unstructured sparsity using
Wanda warmstart.
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