
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARSESWAPS: TRACTABLE LLM PRUNING MASK
REFINEMENT AT SCALE

Anonymous authors
Paper under double-blind review

ABSTRACT

The resource requirements of Neural Networks can be significantly reduced
through pruning—the removal of seemingly less important parameters. How-
ever, with the rise of Large Language Models (LLMs), full retraining to recover
pruning-induced performance degradation is often prohibitive and classical ap-
proaches such as global magnitude pruning are suboptimal on Transformer archi-
tectures. State-of-the-art methods hence solve a layer-wise mask selection prob-
lem, the problem of finding a pruning mask which minimizes the per-layer pruning
error on a small set of calibration data. Exactly solving this problem to optimal-
ity using Integer Programming (IP) solvers is computationally infeasible not only
due to i) the size of the search space, but also because ii) caching all intermediate
values of the matrix multiplication needed to specify the optimization objective
is already prohibitive. Existing approaches therefore rely on approximations or
heuristics. In this work, we demonstrate that the mask selection problem can be
made drastically more tractable at LLM scale. To that end, we leverage three key
insights: a) enforcing equal sparsity levels per row decouples the rows without
harming performance, b) the dimensionality of the problem can be reduced by
leveraging the unitary invariance of the Frobenius norm objective and transform-
ing the calibration data accordingly, and c) computing optimal 1-swaps (exchang-
ing one kept and one pruned weight) can be realized efficiently. These insights
enable us to implement a tractable and simple 1-swap algorithm that warm starts
from any pruning mask, runs efficiently on GPUs at LLM scale, and is essentially
hyperparameter-free. We demonstrate that our approach reduces per-layer prun-
ing error by up to 60% over Wanda (Sun et al., 2023) and consistently improves
perplexity and zero-shot accuracy across state-of-the-art GPT architectures.

1 INTRODUCTION

Pruning after training (Han et al., 2015; Gale et al., 2019; Lin et al., 2020; Hoefler et al., 2021;
Zimmer et al., 2025) is a state-of-the-art technique to reduce the resource requirements of neural
networks. A simple yet effective approach to obtain such sparse models starts from a pretrained
dense model, removes seemingly unimportant parameters based on their magnitude, and requires
retraining to compensate for pruning-induced performance degradation. However, while the inex-
pensive, data-free magnitude criterion has often achieved strong performance on traditional archi-
tectures (Gale et al., 2019; Zimmer et al., 2023b), pruning has undergone a paradigm shift with the
rise of large pretrained foundation models, particularly LLMs.

First, the size of the models has shifted the focus toward retraining-free pruning criteria, as re-
training is often computationally expensive if not infeasible, with parameter-efficient fine-tuning
(Lialin et al., 2023; Zimmer et al., 2023a) being an exception. Secondly, systematic activation out-
liers (Dettmers et al., 2022) and highly important super-weights (Yu et al., 2025) in sufficiently
large Transformers (Vaswani et al., 2017) have rendered magnitude pruning no better than random
pruning for LLMs (Sun et al., 2023; Yin et al., 2023). Lastly, state-of-the-art methods (Frantar &
Alistarh, 2023; Sun et al., 2023; Zhang et al., 2024) prune layer-wise: they split the pruning problem
into per-layer subproblems, pruning layers sequentially and independently using a small calibration
dataset to estimate parameter importance. Rather than optimizing the global loss, such approaches
minimize a per-layer local pruning loss. Specifically, for a single layer with calibration input matrix

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

X ∈ Rdin×B and weights W ∈ Rdout×din , the objective becomes

min
M
∥WX − (M ⊙W)X∥2F , (1)

where M ∈ {0, 1}dout×din is a binary pruning mask achieving a desired level of sparsity, e.g.,
∥M∥0 ≤ k for unstructured sparsity, and ⊙ denotes the element-wise multiplication or Hadamard
product. Here, B = N ·L with N being the number of samples in the calibration batch and L being
the sequence length.

Solving this combinatorial mask selection problem to optimality is NP-hard due to feature correla-
tions: selecting k of dout · din weights yields a cardinality-constrained binary quadratic program (a
best-subset selection variant). Even for a single row i, the problem reduces to

min
mi

∥∥w⊤
i X − (mi ⊙ wi)

⊤X
∥∥2
2
= min

mi

B∑
k=1

 din∑
j=1

(1−mij)wijXjk

2

,

where wi ∈ Rdin and mi ∈ {0, 1}din denote the i-th row of W and M , respectively. Solving the
mask selection problem requires caching all B ·din intermediate products wijXjk, the summands of
w⊤

i X . In a standard forward pass, these terms are computed on the fly and immediately discarded,
but optimal pruning must retain them to assess weight importance. To illustrate the scale, consider
a single row of the largest matrix in a LLAMA-2-7B Transformer block: the up proj matrix
with input dimension din = 4096. With N = 128 samples and sequence length L = 4096 (so
B = N · L = 524,288), caching all products wijXjk for that row requires 524,288× 4096 ≈ 2.15
billion float32 values (about 8.6GB); across all 11,008 rows this totals about 94.6TB. Thus, while
IP solvers could theoretically provide optimal solutions, the bottleneck is not only the combinatorial
search over mask entries but also the prohibitive memory requirements for caching the intermediates.
In practice, existing methods therefore relax Equation 1 or approximate it.

However, with deployed LLMs now serving millions of users, it becomes increasingly worthwhile
to invest substantial resources to obtain pruned models that reach high performance, because the
pruning cost is paid once during training whereas inference costs scale with the number of requests.
In this work, we revisit the per-layer mask selection problem and demonstrate that it can be opera-
tionalized at LLM scale, enabling monotone improvements with each optimization step rather than
relying on proxy importance scores. To that end, we make multiple key observations: (1) enforc-
ing equal sparsity-level across rows must not be detrimental and ensures row-wise separability that
yields independent objectives, and (2) the unitary invariance of the Frobenius objective can be lever-
aged to drastically reduce the dimensionality of the problem, making intermediate caching feasible
without changing the objective. Taken together, these insights make the problem drastically more
tractable. Instead of trying to obtain exact solutions via IP solvers, we opt for and propose a GPU-
accelerated local optimization algorithm based on (3) an exact and efficient local refinement with
incremental cost updates through optimal 1-swaps (exchanging one kept and one pruned weight)
that monotonically decreases the objective from any warm start.

The resulting method, which we term SparseSwaps, can start from any warm-start mask, evaluates
the exact per-row quadratic loss, and is scalable, parallelizable across rows, almost hyperparameter-
free, and deterministic for a fixed warm start. With only few 1-swap iterations, it can reduce the
per-layer pruning error by up to 60% compared to Wanda and improves final perplexity and zero-
shot accuracy across architectures. Our approach is thus a post-hoc refinement of existing pruning
methods that can significantly improve upon the state of the art for unstructured, per-row, or N :M
sparsity.

Contributions. Our contributions are as follows:

1. Novel insights that make the problem tractable. We identify three simple ideas that
make the pruning mask selection objective tractable at LLM scale: row-wise separability of
the loss, Singular Value Decomposition (SVD)-based compression of calibration features
to enable caching of necessary intermediates, and exact 1-swap evaluation with efficient
incremental cost updates.

2. SparseSwaps: a practical post-hoc pruning algorithm. Building on these insights, we
propose SparseSwaps, a plug-and-play 1-swap refinement that starts from any warm-start

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

mask and monotonically decreases the exact per-row objective under per-row or N :M con-
straints. It delivers large reductions in local pruning error (up to 60% per-layer error reduc-
tion over Wanda) and strong perplexity and zero-shot gains on state-of-the-art Generative
Pretrained Transformer (GPT) architectures.

Further related work. Post-training pruning has a long history, and while magnitude pruning
(Janowsky, 1989; Han et al., 2015) is among the most popular criteria, it is not the only one (cf.
LeCun et al., 1989; Hassibi & Stork, 1993; Molchanov et al., 2016; Yeom et al., 2019); see Hoe-
fler et al. (2021) for a comprehensive review. Despite their simplicity, magnitude-based methods
have been shown to produce sparse models competitive with far more complex algorithms for con-
volutional architectures (Gale et al., 2019; Zimmer et al., 2023b). For LLMs, however, magnitude
pruning is argued to be unsuitable (Yin et al., 2023). Consequently, there is growing interest in
criteria beyond magnitude that achieve high performance on LLMs, and do so without requiring
an expensive retraining procedure (Kwon et al., 2022; Frantar & Alistarh, 2023; Sun et al., 2023).
In this work, we develop a post-hoc refinement of existing methods, rather than proposing a new
criterion. A related approach, DSnoT (Zhang et al., 2023), also performs iterative weight swaps but
differs significantly in its optimization strategy. Inspired by dynamic sparse training (cf. Evci et al.,
2020), DSnoT prunes and regrows weights based on expected reconstruction-error improvements,
using feature means and variances as surrogates. While effective, it does not guarantee a monotonic
decrease in the true pruning error, whereas our method does. We compare the two empirically and
find that SparseSwaps consistently outperforms DSnoT.

Subset selection and IP approaches. To solve Equation 1 to global optimality, which can be for-
mulated as a mixed-integer nonlinear program (MINLP), several efficient open-source solvers are
available, including SCIP (Bolusani et al., 2024), Bonmin (Bonami et al., 2008), and SHOT (Lun-
dell et al., 2022), among others. In particular, the recently introduced Boscia solver (Hendrych
et al., 2025) is particularly well-suited, as it exploits the problem’s combinatorial structure. While
we demonstrate how the problem can be made drastically more tractable, explicit solution remains
very time-consuming for large instances; we therefore opt for a GPU-friendly 1-swap approach that
avoids moving large tensors to the CPU for IP solvers. We leave such an extension for future work.

2 METHODOLOGY

In the following, we use uppercase letters for matrices (W , X , M) and lowercase letters for scalars
and vectors. Matrix entries are denoted Wij for the element in row i, column j. Rows of matrices are
denoted with lowercase subscripts: wi represents the i-th row of matrix W . Row and column slices
use colon notation: Xj,: for the j-th row and X:,k for the k-th column. We use ⊙ for element-wise
multiplication, ∥·∥F for Frobenius norm, and ∥·∥2 for ℓ2 norm.

2.1 PRELIMINARIES AND INSIGHTS

Before describing our proposed method, we make several crucial assumptions and observations that
make the problem tractable.

2.1.1 INSIGHT 1: EQUAL SPARSITY-LEVEL ACROSS ROWS MUST NOT BE DETRIMENTAL

First, note that the objective in Equation 1 decomposes into a sum of dout row-wise quadratics,

∥WX − (M ⊙W)X∥2F =

dout∑
i=1

∥∥w⊤
i X − (mi ⊙ wi)

⊤X
∥∥2
2

(2)

where wi ∈ Rdin and mi ∈ {0, 1}din denote the i-th row of W and M , respectively. This alone
does not make the corresponding minimzation problem row-separable under unstructured sparsity,
since the matrix cardinality constraint couples rows. In contrast, semi-structured patterns like per-
row sparsity (keep k per row) or N :M (prune M−N per block of M weights) enforce equal per-row
sparsity and fully decouples rows which can now be solved independently. We therefore focus on

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the decoupled case, allowing to treat each row separately and reducing the problem to

min
mi

∥∥w⊤
i X − (mi ⊙ wi)

⊤X
∥∥2
2
= min

mi

B∑
k=1

 din∑
j=1

(1−mij)wijXjk

2

(3)

for each row i ∈ {1, . . . , dout}. Note that, for LLMs, Sun et al. (2023) observe that row-wise sparsity
benefits performance for both Wanda and magnitude pruning. We therefore argue that enforcing
per-row sparsity rather than unstructured sparsity is justified and need not harm final performance,
at least for LLMs. For semi-structured sparsity, the rows are decoupled anyway.

As a side note, since positive scaling preserves minima and by applying Jensen’s inequality, one can
now easily derive the Wanda criterion:

min
mi

B∑
k=1

 din∑
j=1

(1−mij)wijXjk

2

≤ min
mi

B∑
k=1

 din∑
j=1

(1−mij)
2w2

ijX
2
jk

 (4)

= min
mi

din∑
j=1

(1−mij)
2w2

ij∥Xj,:∥22. (5)

Equation 5 is solved by pruning entries with the smallest saliency |wij | · ∥Xj,:∥2, i.e., precisely
the Wanda criterion. Thus, Wanda optimizes an upper bound to the original problem that ignores
within-row interactions, making the combinatorial problem tractable.

2.1.2 INSIGHT 2: UNITARY INVARIANCE OF THE MASK SELECTION PROBLEM

A significant issue is that if the context length L and consequently B = N ·L is large, operating with
the full data matrix X ∈ Rdin×B is computationally infeasible. Typically, B is much larger than
din for LLMs; X has many more columns than rows. To significantly reduce the computational
cost and render our approach feasible, we leverage the fact that the Frobenius norm used in our
pruning objective is unitarily invariant: for any matrix A and unitary matrix U (i.e., U−1 = U⊤),
we have ∥AU∥F = ∥A∥F . This property enables significant computational savings through SVD
compression.

Precisely, let X = UΣV ⊤ be the SVD of calibration data X ∈ Rdin×B . Since B > din, we can
write Σ = [Σ′|0] with Σ′ being the square matrix containing the din singular values on its diagonal.
We construct a compressed representation of the data matrix as follows:

X ′ = UΣ′U⊤ ∈ Rdin×din . (6)

Letting Wp = W −M ⊙W for brevity, the key insight is that pruning decisions remain equivalent
under this compression:

∥WpX∥2F =
∥∥WpUΣV ⊤∥∥2

F
= ∥WpUΣ∥2F = ∥WpU [Σ′ | 0]∥2F

= ∥WpUΣ′∥2F =
∥∥WpUΣ′U⊤∥∥2

F
= ∥WpX

′∥2F ,

where we used that U and V are unitary and the Frobenius norm is invariant under unitary transfor-
mations. In practice, since we do not need the right singular vectors V , we efficiently compute U
and Σ′ via eigendecomposition of the symmetric matrix XX⊤.

If now din ≪ B, the computational and memory savings by working with X ′ instead of X are
significant, effectively solving the issues of caching intermediate summands. Returning to our ex-
ample from the introduction, with SVD compression the memory requirement per row reduces from
caching B×din = 524,288× 4096 ≈ 2.15 billion products to caching din×din = 4096× 4096 ≈
16.8 million products, a 128× reduction from about 8.6GB to about 67MB per row.

2.1.3 INSIGHT 3: 1-SWAP LOCAL SEARCH IS COMPUTATIONALLY TRACTABLE

While the global mask selection problem is NP-hard, we can still make efficient progress via local
search. Consider a single row (omitting its index i) and let d := din. Starting from any feasible

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

mask m ∈ {0, 1}d, the idea is to iteratively perform 1-swaps that exchange one kept and one pruned
weight to reduce the objective while preserving the sparsity level. The key insight is that we evaluate
swaps efficiently by precomputing and caching intermediate summands instead of recomputing the
full objective after each iteration.

Recall that our objective from Equation 1 is to minimize the reconstruction error from pruned
weights. For a single row, this becomes minimizing

∥∥((1−m)⊙ w)⊤X
∥∥2
2
=

∥∥∥∥∥∥
∑

j:mj=0

wjXj,:

∥∥∥∥∥∥
2

2

(7)

where (1 − m) identifies the pruned weights and the sum is over all pruned weight indices. We
precompute the intermediate value matrix:

S =


w1X1,1 w1X1,2 · · · w1X1,B

w2X2,1 w2X2,2 · · · w2X2,B

...
...

. . .
...

wdXd,1 wdXd,2 · · · wdXd,B

 ∈ Rd×B (8)

where row j contains the weighted contribution wjXj,: from input dimension j. After SVD com-
pression (Insight 2), B = d, so S is square; we retain the B notation for clarity.

Let P ⊆ {1, . . . , d} and U ⊆ {1, . . . , d} denote the set of pruned and unpruned weight indices,
respectively. Our objective then becomes minimizing ∥s∥22 where

s =
∑
j∈P

Sj,: (9)

is the sum over rows of S corresponding to pruned weights, and ∥s∥22 is the squared reconstruction
error from pruned weights. To evaluate a 1-swap that removes index p from the pruned set P and
adds index u from the unpruned set U , the new objective vector is:

snew = s− Sp,: + Su,: (10)

and the improvement in objective is ∥s∥22 − ∥snew∥22, computable in O(B) time using the cached
rows from S. By systematically testing all (d− |P|)× |P| possible 1-swap operations (adding one
of |U| = d − |P| unpruned weights to P , removing one of |P| pruned weights from P) evaluating
the improvement using the above expression, we iteratively pick a best swap and update the mask
until we have reached a satisfactory solution or one optimal w.r.t. 1-swap operations.

Cost-effective swap evaluation and the p–u interaction. Crucially, after accepting a swap (p, u)
(and before the next swap evaluation) we update the cost vector incrementally via s← s−Sp,:+Su,:

(cost O(B)) rather than recomputing s =
∑

j∈P Sj,: from scratch (cost O(|P |B)). This running-
sum update is one of the main efficiency gains of our approach.

Expanding the squared norm makes the computational benefit and the dependency between the
removed and added indices explicit. For any candidate pair (p, u) with p ∈ P and u ∈ U and
denoting sp := s− Sp,:,

∥s− Sp,: + Su,:∥22 = ∥sp + Su,:∥22 = ∥sp∥22 + ∥Su,:∥22 + 2 s⊤p Su,:. (11)

For fixed p, the first term is constant and ∥Su,:∥22 can be precomputed. Evaluating all swaps that
share p reduces to dot products {s⊤p Su,:}u∈U , computed efficiently via matrix operations. Over all
p ∈ P , this yields an exhaustive 1-swap search in O(|P| |U|B) without recomputing full objectives
from scratch.

Why picking p and u separately is suboptimal. The cross term 2 s⊤p Su,: in Equation 11 shows
that the best u depends on the chosen p (and vice versa). Consequently, selecting the best p based
on ∥sp∥22 and then the best u based on ∥su∥22 can result in a suboptimal solution as the following
example for the scalar case with B = 1 and d = 4 shows. Let the current pruned-set contributions

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

be {+10, −1}, so s = 9, and the unpruned candidates be {+9, −9}. The best 1-swap is to remove
p = −1 and add u = −9, giving snew = 10 − 9 = 1 and objective 12 = 1. However, if, instead,
we greedily remove the best p in isolation, we drop p = +10 since ∥9− 10∥2 = 1. We must then
add one index; the best addition in isolation is u = −9, leading to snew = −1 + (−9) = −10 and
objective 100. The error stems precisely from ignoring the interaction term in Equation 11.

2.2 THE SPARSESWAPS ALGORITHM

Building upon the three key insights, we present our complete algorithm. The method takes as input
a weight matrix W ∈ Rdout×din , calibration data X ∈ Rdin×B , and a warmstart pruning mask
M init ∈ {0, 1}dout×din that already satisfies the desired sparsity constraints, e.g., obtained from
Wanda or RIA (Zhang et al., 2024).

The algorithm enforces any sparsity pattern that operates per-row, including per-row sparsity (fixed
number of zeros per row, cf. Sun et al. (2023)) and structured N :M sparsity patterns (e.g., 2:4 or 4:8,
Mishra et al. (2021)). All swap operations maintain the sparsity constraints throughout optimization;
for N :M sparsity, swaps are restricted to occur only within the same N :M blocks, while for per-
row sparsity, the total number of pruned weights per row remains constant. Even though each swap
only changes two mask entries, the cumulative effect of multiple swaps can dramatically reduce
reconstruction error compared to the initial solution.

Algorithm 1 SparseSwaps: 1-Swap Pruning Optimization

Require: Weight matrix W ∈ Rdout×din , calibration data X ∈ Rdin×B , warmstart mask M init

Ensure: Improved pruning mask M
1: X ← UΣ′U⊤ ▷ SVD compression to reduce memory
2: M ←M init ▷ Initialize with warmstart solution
3: for i = 1 to dout do ▷ Process each row independently
4: w ←Wi,:, m←Mi,: ▷ Extract row weights and mask
5: S ← diag(w)X ▷ Cache weighted contributions
6: P ← {j : mj = 0}, U ← {j : mj = 1} ▷ Pruned and unpruned sets
7: s←

∑
j∈P Sj,: ▷ Current cost vector

8: for t = 1 to Tmax do
9: (p∗, u∗)← argmin ∥s− Sp,: + Su,:∥22 ▷ over feasible 1-swaps respecting sparsity

10: if swap (p∗, u∗) reduces ∥s∥22 then
11: mp∗ ← 1, mu∗ ← 0 ▷ Perform swap
12: P ← P \ {p∗} ∪ {u∗}, U ← U \ {u∗} ∪ {p∗}
13: s← s− Sp∗,: + Su∗,: ▷ Update cost vector
14: else
15: break ▷ Local optimum reached
16: end if
17: end for
18: Mi,: ← m ▷ Store optimized row
19: end for

We explain the main phases of the algorithm:

Preparation (Lines 1-2): We compress the calibration data X ← UΣ′U⊤ via SVD to achieve the
memory reduction from Insight 2, then initialize with the warmstart mask M init.

Row processing (Lines 4-7): For each row i, we extract weights w and current mask m, precompute
the weighted contributions S = diag(w)X , define pruned and unpruned index sets P and U , and
compute the current reconstruction cost vector s.

1-Swap optimization (Lines 8-17): We iteratively choose the swap (p∗, u∗) minimizing
∥s− Sp,: + Su,:∥22 among feasible pairs. If this improves the reconstruction error ∥s∥22, we perform
it and update the sets accordingly, otherwise we terminate. At all times, the swaps are appropri-
ately constrained: per-row sparsity allows any swap maintaining |P | constant, while N :M sparsity
restricts swaps to within the same N :M blocks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Computational complexity: Theoretically, the algorithm has complexity O(dout · Tmax · |P| · |U| ·
din) per layer, where Tmax being the maximum number of swap iterations per row, and the din factor
comes from computing norms over the compressed calibration data. However, several complexity
factors can be reduced in practice. First, we find that even setting Tmax = 1 or Tmax = 2 can
drastically reduce the local pruning error; values around Tmax = 25 often suffice to significantly
lower model perplexity, with diminishing returns beyond T = 100. Second, row-wise processing
can be batched and vectorized across multiple dimensions, enabling parallel swap cost computations
and mask updates, and rows can be distributed across GPUs if needed. Third, after precomputing
weighted contributions S, cost vector updates s← s−Sp∗,:+Su∗,: are simple vector additions with
O(din) complexity.

Optional Weight Reconstruction. After mask optimization, we can optionally apply local weight
reconstruction to further reduce reconstruction error. Following Frantar & Alistarh (2023), for each
row, let U denote the unpruned column indices and XU the corresponding rows of X . The least-
squares problem minŵ

∥∥w⊤X − ŵ⊤XU
∥∥2
2

has the solution:

w∗
U = (XUX

⊤
U)−1XU (w

⊤X)⊤.

Note that w⊤X =
∑d

j=1 Sj,: is available from our already-cached weighted contributions S =

diag(w)X without additional matrix multiplications.

3 EXPERIMENTAL RESULTS

We outline our general experimental approach, detailing datasets, architectures, and metrics. To
enable reproducibility, our code will be publicly released. Our study focuses on language modeling
within Natural Language Processing (NLP). We use pretrained models from HuggingFace (Wolf
et al., 2020), specifically LLAMA-3.1-8B (Grattafiori et al., 2024), GEMMA-2-9B (Riviere et al.,
2024), YI-1.5-9B (Young et al., 2025), DEEPSEEK-7B-BASE (Bi et al., 2024), and QWEN2.5-7B
(Yang et al., 2025). For calibration, we randomly draw sequences of 2048 tokens from the C4 dataset
(Raffel et al., 2020). For validation, we similarly pick 100 sequences from the validation split. The
model performance is assessed via perplexity on the WikiText dataset (Merity et al., 2016) and zero-
shot accuracy on the EleutherAI evaluation set (Gao et al., 2023). Following Sun et al. (2023), we
prune all linear layers, excluding the embedding and final linear head, with uniform sparsity allo-
cation across layers. We provide experiments for unstructured and semi-structured sparsity patterns
(Mishra et al., 2021). We use multiple random seeds throughout our experiments.

3.1 MASK REFINEMENT AT SCALE

We begin by verifying the effectiveness of SparseSwaps. We make the following observations:

SparseSwaps consistently improves state-of-the-art methods. Table 1 summarizes the main re-
sults and reports perplexity (upper half, lower is better) and zero-shot accuracy (lower half, higher
is better) for warmstart masks (Wanda, RIA) as well as their refinements using DSnoT and Spars-
eSwaps. For both 60% unstructured and 2:4 semi-structured sparsity, SparseSwaps (with 100 1-swap
iterations) consistently reduces perplexity and improves zero-shot accuracy over Wanda and RIA
warm start masks. While DSnoT similarly yields improvements, it falls short of SparseSwaps. Note
that we left the pruning criterion of DSnoT, which partially uses the Wanda saliency, unchanged,
even when using RIA warmstart. For unstructured RIA, we report results when enforcing a per-
row sparsity constraint; while RIA yields good (and slightly better) results when enforcing truely
unstructured sparsity, we decided to include the results for the per-row setting as this allows direct
refinement of the mask with SparseSwaps and DSnoT.

SparseSwaps successfully optimizes the per-layer pruning loss. Figure 1 shows the per-layer
reductions in local pruning error relative to a Wanda Warmstart, grouping layers by their corre-
sponding Transformer block of LLAMA-3.1-8B. We observe drastic improvements of close to
70% compared to Wanda, demonstrating that SparseSwaps is able to successfully optimize the local
loss. The attn.o proj seems to consistently benefit the most across blocks, with reductions of
the objective in Equation 1 ranging between 40%-60%.

Large local error reductions do not always imply reduced perplexity. From Table 1 we observe
substantial perplexity gains, especially when sparsity more strongly degrades model quality (cf.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3 in the appendix, which shows more drastic improvements when using magnitude pruning,
which more strongly degrades model quality). In contrast, when quality is less affected (e.g., at
50% sparsity where Wanda performs well), SparseSwaps yields limited perplexity gains despite
significant local error reductions: Table 2 reports perplexity and average relative error reduction (%)
versus the number of 1-swap iterations. Zero iterations correspond to the Wanda warm start; one or
more iterations correspond to SparseSwaps from Wanda. At 50% sparsity, a single 1-swap iteration
lowers relative error by 6.34%, and 200 iterations by nearly 40%, yet perplexity does not improve,
but rather slightly increases. This suggests further reducing local error can overfit the calibration
data and may not translate to better perplexity, although we note that the perplexity increase is
relatively small. These results emphasize that while the reduction of local error is a useful proxy
for perplexity reduction when pruning has a higher negative impact on the model, the local error of
Equation 1 remains an approximation to the reconstruction error of the entire model.

Table 1: Perplexity (↓, lower is better) and zero-shot accuracy (↑, higher is better) comparison on
WikiText and EleutherAI evaluation set. We report DSnoT and SparseSwaps refinement with Wanda
and RIA warmstart for unstructured 60% sparsity and semi-structured 2:4 sparsity. Best values are
highlighted in bold. We omit standard deviations for legibility.

Perplexity ↓ LLAMA-3.1 GEMMA-2 YI-1.5 DEEPSEEK QWEN2.5
Method Sparsity 8B 9B 9B 7B 7B

Wanda 60% 21.94 16.74 11.40 11.41 13.75
+ DSnoT 60% 21.94 16.69 11.38 11.40 13.75
+ SparseSwaps 60% 19.75 16.01 10.07 10.93 13.16
RIA 60% 19.73 16.19 10.73 11.80 12.63
+ DSnoT 60% 19.73 16.22 10.73 11.80 12.63
+ SparseSwaps 60% 18.47 15.44 9.98 10.79 12.47
Wanda 2:4 24.82 17.45 11.76 11.77 14.53
+ DSnoT 2:4 22.79 16.79 10.84 11.70 14.40
+ SparseSwaps 2:4 20.17 16.30 10.73 11.70 13.95
RIA 2:4 23.96 16.88 11.29 12.03 13.58
+ DSnoT 2:4 24.26 16.82 10.57 12.03 13.85
+ SparseSwaps 2:4 20.90 16.33 10.50 11.80 13.28
Accuracy ↑ LLAMA-3.1 GEMMA-2 YI-1.5 DEEPSEEK QWEN2.5
Method Sparsity 8B 9B 9B 7B 7B

Wanda 60% 48.18% 63.39% 53.59% 50.74% 59.26%
+ DSnoT 60% 48.18% 63.49% 53.79% 50.75% 59.26%
+ SparseSwaps 60% 50.78% 63.84% 54.84% 51.02% 60.15%
RIA 60% 49.56% 64.37% 52.81% 50.92% 59.84%
+ DSnoT 60% 49.56% 64.43% 52.96% 50.83% 59.81%
+ SparseSwaps 60% 51.02% 64.32% 54.45% 51.47% 61.22%
Wanda 2:4 46.80% 63.73% 52.58% 51.02% 59.52%
+ DSnoT 2:4 47.01% 63.66% 52.16% 50.78% 59.09%
+ SparseSwaps 2:4 48.83% 64.70% 52.43% 50.36% 59.92%
RIA 2:4 47.87% 63.87% 52.68% 51.22% 58.66%
+ DSnoT 2:4 47.13% 64.17% 51.36% 49.86% 59.72%
+ SparseSwaps 2:4 49.90% 64.60% 52.30% 51.46% 60.31%

3.2 EFFICIENCY AND HYPERPARAMETER ABLATIONS

Resource requirements. SparseSwaps is more resource-intensive than DSnoT and, as a drop-in
refinement, requires at least the resources of the chosen warm-start method. Beyond that, Spars-
eSwaps needs memory to store the matrix S (cf. Equation 8) and compute to perform the 1-swaps;
see the preceding section for the theoretical complexity. While we have argued in the introduction
that the additional compute can be justified when amortized over many LLM inference requests,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer

0

10

20

30

40

50

60

70

80

R
el

at
iv

e
re

d
u

ct
io

n
in

p
ru

n
in

g
er

ro
r

(%
)

Per-layer reconstruction improvement over Wanda

attn.q proj attn.k proj attn.v proj attn.o proj mlp.gate proj mlp.up proj

Figure 1: Per-layer relative reduction in local pruning error compared to Wanda. The plot shows
result for LLAMA-3.1-8B, 60% unstructured sparsity and 100 1-swap iterations.

we note that the overhead grows only linearly with the number of 1-swap iterations Tmax. Table 2
shows that few iterations already yield substantial gains in both perplexity and local error reduction,
especially at higher sparsity.

Effect of the number of reconstruction samples. Figure 2 in the appendix shows the perplexity
versus the number of reconstruction samples for 50% and 60% unstructured sparsity when using
Wanda as well as SparseSwaps with a Wanda warmstart. We observe that the perplexity decreases
drastically when using more samples, which leads to SparseSwaps slightly outperforming Wanda for
50% sparsity, despite its advantage typically being larger at higher sparsity. We emphasize that the
number of reconstruction samples does not affect SparseSwaps’s efficiency: after SVD compression,
the size of X (and thus compute/memory cost) is independent of the original sample count.

Table 2: LLAMA-3.1-8B: Perplexity (↓) and mean relative reduction in pruning error (↑) versus
number of 1-swap iterations for 50% and 60% unstructured sparsity using Wanda warmstart.

Number of 1-swap iterations
Sparsity Metric 0 1 2 5 10 25 50 100 200

50% Avg. rel. error reduction (%) 0.00 6.34 8.77 12.51 16.38 23.52 30.04 36.48 38.95
Perplexity 10.13 10.31 10.40 10.41 10.39 10.38 10.27 10.30 10.34

60% Avg. rel. error reduction (%) 0.00 8.04 11.04 15.34 19.64 26.92 33.58 39.99 43.74
Perplexity 21.52 21.26 21.51 21.17 21.01 20.38 19.74 18.96 19.17

4 CONCLUSION

We revisited the mask selection problem for post-training pruning and showed that it can be made
substantially more tractable, even at LLM scale. We leveraged three central insights—row decou-
pling via equal per-row sparsity, SVD-based compression exploiting the unitary invariance of the
Frobenius objective, and exact 1-swap evaluation with incremental cost updates—to enable tractable
optimization of the true row-wise quadratic loss on GPUs. The resulting method, SparseSwaps, is
warm-start agnostic, nearly hyperparameter-free, and scalable. It consistently reduces per-layer
pruning error and improves perplexity and zero-shot accuracy across modern GPT architectures.

Our work is not without limitations. While per-row sparsity is not necessarily detrimental for LLMs,
our approach is restricted to that setting and only partially adapts to truly unstructured sparsity; in
its current form, the algorithm can handle unstructured sparsity but cannot reallocate sparsity levels
across rows. Furthermore, runtime and memory remain non-trivial for large architectures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, Kang Guan,
Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan Huang,
Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X. Liu,
Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong
Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong
Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng Sun,
Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong
Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu,
Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang,
Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. DeepSeek
LLM: Scaling Open-Source Language Models with Longtermism, January 2024. URL http:
//arxiv.org/abs/2401.02954.

Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionı́sio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf van der
Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni Mexi,
Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Mark Turner,
Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0. Techni-
cal report, Optimization Online, February 2024. URL https://optimization-online.
org/2024/02/the-scip-optimization-suite-9-0/.

Pierre Bonami, Lorenz T Biegler, Andrew R Conn, Gérard Cornuéjols, Ignacio E Grossmann, Carl D
Laird, Jon Lee, Andrea Lodi, François Margot, Nicolas Sawaya, et al. An algorithmic framework
for convex mixed integer nonlinear programs. Discrete optimization, 5(2):186–204, 2008.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. August 2022.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 2943–2952. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/evci20a.html.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco

10

http://arxiv.org/abs/2401.02954
http://arxiv.org/abs/2401.02954
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://proceedings.mlr.press/v119/evci20a.html
https://proceedings.mlr.press/v119/evci20a.html
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu,
Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen
Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 Herd of Models, November 2024. URL
http://arxiv.org/abs/2407.21783.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In S. Hanson, J. Cowan, and C. Giles (eds.), Advances in Neural Information Processing
Systems, volume 5. Morgan-Kaufmann, 1993. URL https://proceedings.neurips.
cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf.

Deborah Hendrych, Hannah Troppens, Mathieu Besançon, and Sebastian Pokutta. Convex inte-
ger optimization with frank-wolfe methods. Mathematical Programming Computation, 2025.
doi: 10.1007/s12532-025-00288-w. URL https://link.springer.com/article/
10.1007/s12532-025-00288-w.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in
deep learning: Pruning and growth for efficient inference and training in neural networks. arXiv
preprint arXiv:2102.00554, January 2021.

Steven A. Janowsky. Pruning versus clipping in neural networks. Phys. Rev. A, 39:6600–6603, Jun
1989. doi: 10.1103/PhysRevA.39.6600.

Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for transformers. March 2022.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,
USA, November 27-30, 1989], pp. 598–605. Morgan Kaufmann, 1989. URL http://papers.
nips.cc/paper/250-optimal-brain-damage.

Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. Scaling down to scale up: A guide to
parameter-efficient fine-tuning. March 2023.

Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. In International Conference on Learning Representations, 2020.

12

http://arxiv.org/abs/2407.21783
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://link.springer.com/article/10.1007/s12532-025-00288-w
https://link.springer.com/article/10.1007/s12532-025-00288-w
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andreas Lundell, Jan Kronqvist, and Tapio Westerlund. The supporting hyperplane optimization
toolkit for convex minlp. Journal of Global Optimization, 84(1):1–41, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. September 2016.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. April 2021.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. November 2016.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt
Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna
Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin Abdagic,
Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia Paterson, Ben
Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris Perry, Chris
Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger, Dimple Vi-
jaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Er-
ica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn
Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra, Harsh Dhand,
Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng
Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort,
Josh Gordon, Josh Lipschultz, Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kartikeya Badola,
Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene,
Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly Mc-
Nealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid,
Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moyni-
han, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,
Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culli-
ton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin,
Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ron-
strom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee
Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei
Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli
Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dra-
gan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Fara-
bet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving Open Language Models at a Practical
Size, October 2024. URL http://arxiv.org/abs/2408.00118.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach
for large language models. June 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick

13

http://arxiv.org/abs/2408.00118

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https:
//aclanthology.org/2020.emnlp-demos.6.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report, January 2025.
URL http://arxiv.org/abs/2412.15115.

Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin, Alexander Binder, Simon Wiedemann,
Klaus-Robert Müller, and Wojciech Samek. Pruning by explaining: A novel criterion for deep
neural network pruning. December 2019.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. October 2023.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng
Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue,
Senbin Yang, Shiming Yang, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu,
Pengcheng Nie, Yanpeng Li, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan
Liu, and Zonghong Dai. Yi: Open Foundation Models by 01.AI, January 2025. URL http:
//arxiv.org/abs/2403.04652.

Mengxia Yu, De Wang, Qi Shan, Colorado J. Reed, and Alvin Wan. The Super Weight in Large
Language Models, July 2025. URL http://arxiv.org/abs/2411.07191.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=Tr0lPx9woF.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms.
October 2023.

Max Zimmer, Megi Andoni, Christoph Spiegel, and Sebastian Pokutta. Perp: Rethinking the prune-
retrain paradigm in the era of llms. arXiv preprint arXiv:2312.15230, December 2023a. URL
https://arxiv.org/abs/2312.15230.

Max Zimmer, Christoph Spiegel, and Sebastian Pokutta. How I Learned To Stop Worrying And
Love Retraining. In International Conference on Learning Representations, 2023b. URL
https://openreview.net/forum?id=_nF5imFKQI.

Max Zimmer, Christoph Spiegel, and Sebastian Pokutta. Compression-aware training of neu-
ral networks using Frank–Wolfe, pp. 137–168. De Gruyter, Berlin, Boston, 2025. ISBN
9783111376776. doi: doi:10.1515/9783111376776-010. URL https://doi.org/10.
1515/9783111376776-010.

14

https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
http://arxiv.org/abs/2412.15115
http://arxiv.org/abs/2403.04652
http://arxiv.org/abs/2403.04652
http://arxiv.org/abs/2411.07191
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://arxiv.org/abs/2312.15230
https://openreview.net/forum?id=_nF5imFKQI
https://doi.org/10.1515/9783111376776-010
https://doi.org/10.1515/9783111376776-010

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

Large language models were used to aid in writing (polishing text) as well as to help with the imple-
mentation of code components, including both the methods and the generation of plots. They also
served as a tool for brainstorming research ideas and refining development approaches to address
the challenges explored in this paper.

A.2 FURTHER RESULTS

Table 3: Perplexity (↓, lower is better) comparison on WikiText. We report SparseSwaps refinement
with magnitude warmstart for 50% and 60% sparsity. Best values are highlighted in bold. We omit
standard deviations for legibility.

Perplexity ↓ LLAMA-3.1 GEMMA-2 DEEPSEEK

Method Sparsity 8B 9B 7B

Magnitude 50% 68.89 31.87 25.05
+ SparseSwaps 50% 52.26 19.11 16.23

Magnitude 60% 3486.26 184.52 330.07
+ SparseSwaps 60% 264.92 60.04 80.24

0 100 200 300 400 500
number of samples

10.2

10.4

10.6

p
er

p
le

x
it

y

LLaMA-3.1-8B (50% sparsity)

Wanda

SparseSwaps

(a) 50% unstructured sparsity

0 100 200 300 400 500
number of samples

19

20

21

22

23

p
er

p
le

x
it

y

LLaMA-3.1-8B (60% sparsity)

Wanda

SparseSwaps

(b) 60% unstructured sparsity

Figure 2: Perplexity versus the number of reconstruction samples for unstructured sparsity using
Wanda warmstart.

15

	Introduction
	Methodology
	Preliminaries and insights
	Insight 1: Equal sparsity-level across rows must not be detrimental
	Insight 2: Unitary invariance of the mask selection problem
	Insight 3: 1-swap local search is computationally tractable

	The SparseSwaps algorithm

	Experimental Results
	Mask refinement at scale
	Efficiency and hyperparameter ablations

	Conclusion
	Appendix
	Use of Large Language Models
	Further Results

