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ABSTRACT

Generative adversarial networks were introduced with a logistic MiniMax cost
formulation, which normally fails to train due to saturation, and a Non-Saturating
reformulation. While addressing the saturation problem, NS-GAN also inverts the
generator’s sample weighting, implicitly shifting emphasis from higher-scoring to
lower-scoring samples when updating parameters. We present both theory and
empirical results suggesting that this makes NS-GAN prone to mode dropping.
We design MM-nsat, which preserves MM-GAN sample weighting while avoid-
ing saturation by rescaling the MM-GAN minibatch gradient such that its mag-
nitude approximates NS-GAN’s gradient magnitude. MM-nsat has qualitatively
different training dynamics, and on MNIST and CIFAR-10 it is stronger in terms
of mode coverage, stability and FID. While the empirical results for MM-nsat are
promising and favorable also in comparison with the LS-GAN and Hinge-GAN
formulations, our main contribution is to show how and why NS-GAN’s sample
weighting causes mode dropping and training collapse.

Figure 1: Median Fréchet Inception Distance during training for ten runs on MNIST, CIFAR-10,
CAT 1282 and FFHQ 5122, using very simple convolutional GANs. The shaded areas show mini-
mum and maximum value during training for the cost formulations. MM-nsat is best overall, suffers
less from gradual mode dropping and trains reliably on the more challenging datasets.

1 INTRODUCTION

Generative adversarial networks have come a long way since their introduction (Goodfellow et al.,
2014) and are currently state of the art for some tasks, such as generating images. A combination
of deep learning developments, GAN specific advances and vast improvements in data sets and
computational resources have enabled GANs to generate high resolution images that require some
effort to distinguish from real photos (Zhang et al., 2018; Brock et al., 2018; Karras et al., 2018).
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GANs use two competing networks: a generator G that maps input noise to samples mimicking
real data, and a discriminator D that outputs estimated probabilities of samples being real rather
than generated by G. We summarize their cost functions, JD and JG, for the minimax and non-
saturating formulations introduced in Goodfellow et al. (2014). We denote samples from real data
and noise distributions by x and z and omit the proper expectation value formalism:

JDMM(x, z) = JDNS(x, z) = − log(Dp(x))− log(1−Dp(G(z)))

JGMM(z) = log(1−Dp(G(z)))

JGNS(z) = − log(Dp(G(z))

(1)

For clarity, we use subscripts to distinguish between the discriminator’s pre-activation logit output
Dl and the probability representation Dp:

Dp ≡ (1 + exp(−Dl))
−1 (2)

Both formulations have the same cost function for D, representing the cross entropy between prob-
ability estimates and ground truth. In the minimax formulation (MM-GAN), G is simply trained to
maximize D’s cost. Ideally, G matches its outputs to the real data distribution while also achieving
meaningful generalization, but many failure modes are observed in practice. NS-GAN uses a mod-
ified cost for G that is non-saturating when D distinguishes real and generated data with very high
confidence, such that G’s gradients do not vanish. (Supplementary: C)

Various publications establish what the different cost functions optimize in terms of the Jensen-
Shannon and reverse Kullback-Leibler divergences between real and generated data:

JGMM ⇔ 2 · DJS (Goodfellow et al., 2014)

JGMM + JGNS ⇔ DR
KL (Huszár, 2016)

JGNS ⇔ DR
KL − 2 · DJS (Arjovsky & Bottou, 2017)

(3)

Huszár (2015) and Arjovsky & Bottou (2017) have suggested NS-GAN’s divergence as an expla-
nation for the ubiquitous mode dropping and mode collapsing problems with GANs (Metz et al.,
2016; Salimans et al., 2016; Srivastava et al., 2017). While MM-GAN seems promising in terms of
its Jensen-Shannon divergence, the formulation has largely been ignored because the saturating cost
causes training to break down.

A variety of other GAN formulations have been introduced, such as WGAN-GP (Arjovsky et al.,
2017; Gulrajani et al., 2017), LS-GAN (Mao et al., 2016) and Hinge-GAN (Miyato et al., 2018).
Lucic et al. (2018) finds that different cost formulations tend to get similar results given sufficient
parameter tuning, including various forms of regularization. Despite the questionable form of NS-
GAN in terms of divergences, it is widely used and can produce very impressive results, such as in
the improved StyleGAN (Karras et al., 2019).

2 THEORY

2.1 MM-GAN SATURATION

Figure 2: Scaling factors as a func-
tion of the discriminator output, at
a scale emphasizing asymptotic be-
haviors. MM-GAN’s scaling factor
causes G’s gradient to vanish when
Dp(G(z)) → 0, which corresponds to
the maximum value of its cost.

The parameters of a network are typically trained with
some form of gradient descent on a cost function. We find
the expressions for D’s and G’s gradients with respect to
their parameters, φ and θ: (Supplementary: F)

∇φJDMM,NS = +
∂Dl(G(z), φ)

∂φ
·Dp(G(z), φ)

+
∂Dl(x, φ)

∂φ
· (1−Dp(x, φ))

∇θJGMM = −∂Dl(G(z, θ))

∂θ
·Dp(G(z, θ))

∇θJGNS = −∂Dl(G(z, θ))

∂θ
· (1−Dp(G(z, θ)))

(4)
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We emphasize the two kinds of scaling factors for these gradients in red and blue: they are plotted in
figure 2. The discriminator’s scaling factors decrease as it minimizes its cost, approaching 0 towards
the optima for both the real and the generated data term.

The minimax formulation JG = −JD is suitable for adversarial training in terms of the gener-
ator’s optimum, but the unchanged scaling factor means that G’s gradients increase towards and
decrease away from its optimum. The saturation effect described in Goodfellow et al. (2014) is that
limDp(G(z))→0∇θJGMM = 0, such that G stops training when D is highly confident that its samples
are fake. More generally, the scaling factor makes JG concave with respect to Dl, which interacts
poorly with common optimization methods (see section 2.4).

As∇θJGMM and∇θJGNS are the same aside from their scaling factors, the different behaviors of the
two formulations must follow from these. NS-GAN’s scaling factor avoids saturation, but gives rise
to a different, more subtle mode dropping tendency (see section 2.3).

2.2 NON-SATURATION AND SAMPLE WEIGHTING

As can be seen from eq 4, the NS-GAN and MM-GAN gradients are parallel for a single sample,
but with different magnitudes. Stochastic gradient descent estimates the gradient of the cost over the
entire input distribution by using a number of samples (a minibatch). We can express the NS-GAN
minibatch gradient in terms of the MM-GAN gradient:

∇θJbatch
GNS

=

N−1∑
i=0

∇θJ sample
GMM

(zi)

[
1−Dp(G(zi))

Dp(G(zi))

]
(5)

Due to the bracketed factor, NS-GAN rescales the contribution from each sample relative to MM-
GAN, implicitly emphasizing samples with smaller values of Dp. Seeing as saturation is caused by
the gradient’s vanishing magnitude, this additional effect on the gradient’s direction is questionable.

The exact ratio of the minibatch gradient magnitudes for NS-GAN and MM-GAN depends on
∂/∂θ(Dl(G(z))) for each sample and has no convenient expression. We can approximate it by
replacing Dp(G(zi)) in eq 5 with its mean over the minibatch, Dp = 1

N

∑N−1
i=0 Dp(G(zi)). This

allows us to formulate a form of non-saturation for MM-GAN that mimicks NS-GAN:

∇θJbatch
GMM-nsat

=
1−Dp

Dp

N−1∑
i=0

∇θJ sample
GMM

(zi) (6)

We refer to the formulation with this generator gradient as MM-nsat. The relative weights of sam-
ples in each batch are as for MM-GAN, while the gradient magnitude approximates that of NS-GAN.
Note, however, that the relative weights of samples may be disturbed across batches, such as when
the minibatch size is small and Dp fluctuates. Despite different theoretical motivation, MM-nsat is
very closely related to importance weighted NS-GAN (Hu et al., 2017). (Supplementary: D)

2.3 SAMPLE WEIGHTING AND MODE DROPPING

If we use r(x) and g(x) to denote the density of real and generated samples at a point x in data
space, the optimal discriminator (i.e. the function that minimizes JDMM,NS ) is given by:

Dopt
p (x) =

r(x)

r(x) + g(x)
(Goodfellow et al., 2014) (7)

This expression for the optimial discriminator assumes idealized conditions: that D is optimized for
a fixed G, with unlimited capacity and without having to estimate the underlying real and generated
data distributions by finite sampling. While Dopt is not realized in practice (Sinn & Rawat, 2018),
we use it to form some intuitions about D’s behaviors.

Suppose we have real data with two disjunct, equiprobable modes, and that one of these modes,
O, is overrepresented in generated data. For convergence, G would need to shift probability mass
from O to the underrepresented mode, U. However, the minibatches used to update G will have
more samples from O, simply because they are generated more often. For a strong discriminator,
these samples will also tend towards smaller values of Dp(G(z)), due to equation 7. This in turn
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causes them to be weighted differently by NS-GAN and MM-GAN, because Dp(G(z)) appears in
their scaling factors (eq 4). We refer to the first effect as over- and underrepresentation (of generated
samples relative to real samples) and the second effect as up- and downweighting (governed on the
scaling factor).

The fundamental problem with NS-GAN can be seen by looking at how these two effects interact.
The NS-GAN generator has a scaling factor 1−Dp(G(z)), which combines overepresentation with
upweighting and underrepresentation with downweighting, allowing an overrpresented mode O to
dominate U’s contributions to the parameter updates. If parameter updates overwhelmingly based
on gradients from O have an adverse effect on G’s ability to generate samples from U, this mode
may become increasingly underrepresented, making O yet more dominant.

MM-GAN’s scaling factor has the reverse behavior, pairing overrepresentation with downweighting
and underrepresentation with upweighting, such that the two effects combine in a stabilizing rather
than destabilizing way. For the extreme example of a nearly dropped or newly discovered mode,
r(x)� g(x) such that we expect Dp(x) ≈ 1 for a strong discriminator. NS-GAN’s sample weight-
ing disregards gradients from such samples, whereas MM-GAN’s sample weighting emphasizes
them.

This difference between MM-GAN and NS-GAN in terms of scaling factors reflects the different
divergences they have been shown to optimize (eq 3). Huszár (2015) and Arjovsky et al. (2017)
both connect the mode dropping tendencies of NS-GAN to its reverse Kullback-Leibler divergence,
which strongly penalizes G for generating samples outside of the real data modes, but not for drop-
ping modes. A variety of attempts to address mode dropping, mode collapse and mode hopping
in GANs seem unaware that this is reasonable behavior for NS-GAN given its divergence: mode
dropping minimizes DR

KL and maximizes DJS.

2.4 MM-GAN INTERACTION WITH ADAM

Figure 3: Update step size for an arti-
ficial gradient gt = exp(−0.001t) with
β1 = 0.99, β2 = 0.999 and α = 1. In
green and red, simulated and approxi-
mated update magnitudes, using equa-
tions 8 and 11. Updates vanish even
while gt � ε.

GANs are generally trained with the Adam optimizer
(Kingma & Ba, 2014), as was recommended by Radford
et al. (2015) while introducing the DCGAN architecture.
The parameter update step for Adam is given by:

∆θt = −α m̂t√
v̂t + ε

mt = β1mt−1 + (1− β1)gt, m̂t =
mt

1− βt1
vt = β2vt−1 + (1− β2)g2t , v̂t =

vt
1− βt2

(8)

Here, gt is the gradient at timestep t, and m̂t and v̂t are
the first and second order exponential moving averages
of the parameterwise gradients, bias-corrected to account
for zero-initialization. There are four hyperparamters: ε
is a small constant primarily for numerical stability, α is
the learning rate and β1 and β2 determine the effective memories of the moving averages.

The fraction m̂t√
v̂t

resembles unit normalization of a vector, and for a constant gradient gt = g (such
that the moving averages are trivial) update steps depend only on the sign of g, if |g| � ε.

∆θt = −α sgn(g)

1 + ε
|g|

(9)

However, this normalization does not necessarily address MM-GAN’s saturation problem, due to
the training dynamics. Dopt

l = ±∞ where the real and generated data do not overlap (eq 7), such
that if D can cleanly separate real from generated samples, we expect it to further decrease its loss
by inflating its outputs. Supposing that D approaches this optimum linearly, i.e. Dt

l (G(z)) = at,
we get:

Dt
p(G(z)) ≈ exp(at) (10)

Dp also appears as the MM-GAN scaling factor (eq 4), such that G will be optimized with gradients
of the form gt = g0 exp(at). For reasonable values of a, β1 and β2, the update step size for each of
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G’s parameters can be approximated: (Supplementary: G)

∆θt ≈ g0C exp((a− 1

2
log(β2))t) (11)

Given the commonly used β2 = 0.999, parameter updates will vanish exponentially if a < −0.0005,
given that |Dl| increases fast enough and conforms reasonably well to our simplified model. If D
learns to distinguish the real and generated data manifolds before they meaningfully intersect, this
interaction between D, G and Adam threatens to freeze parameter updates altogether. (Supplemen-
tary: L)

3 METHOD

3.1 COST FUNCTION MODIFICATIONS

In addition to our novel non-saturating version of MM-GAN (MM-nsat: eq 6), we normalize the
gradient magnitudes of the original cost functions (MM-unit, NS-unit). Motivated by our model for
MM-GAN saturation in section 2.4, we also test if modifying the Adam β2 parameter for G gives
the expected results (MM β2 = 0.99). (Supplementary: H)

MM-nsat is the only of these cost functions that is interesting in its own right: the others are used to
demonstrate various behaviors and highlight the roles of sample weighting as opposed to gradient
magnitude. Note that the prefixes MM and NS always correspond to the sample weighting used
by the cost function. Furthermore, gradient magnitudes are matched for MM-unit & NS-unit and
approximately matched for MM-nsat & NS-GAN.

3.2 EVALUATION

Evaluating a generator is generally difficult. In addition to visual inspection, we use Frechét Incep-
tion Distance (Heusel et al., 2017), which we find informative also on MNIST, in spite of the feature
extraction network being trained on natural images. Due to our focus on the mode dropping prob-
lem, we also use an unusual metric for datasets with class labels: we compute the Jensen-Shannon
divergence between class distributions in real and generated data. For G, we estimate its class
distribution by drawing samples and using a pre-trained classification network to label them. Note
that this metric only sees class distributions and is not sensitivite to the mode coverage or collapse
within any given class. (Supplementary: I)

DJSCD ≡ DJS(class frequenciesdataset||class frequenciesgenerator) (12)

3.3 EXPERIMENTS

For the majority of our experiments we use very simple networks without tuning their hyperpa-
rameters: either fully connected networks (FC) with a fixed number of hidden units, or strided
convolutional networks with kernel size 3 and doubling the number of filters when the width and
height is halved (Conv). We use ReLU activations, except for the final layer, where G uses tanh
activation with real data normalized to [−1, 1], while D uses sigmoid activation to map Dl to Dp.

We make use of how fully connected networks are harder to train than convolutional ones (Thanh-
Tung et al., 2018) and how training grows increasingly fragile for deeper networks and higher reso-
lution datasets to find illustrative test cases. We make use of batch normalization (Ioffe & Szegedy,
2015) (bn), zero centred real data gradient penalty (Mescheder, 2018) (sgp) and spectral normaliza-
tion (Miyato et al., 2018) (sn) only where explicitly mentioned. In addition to the simpler networks,
we test the full DCGAN (Radford et al., 2015) and StyleGAN (Karras et al., 2018) architectures.

We primarily use the MNIST (LeCun & Cortes, 2010) and CIFAR-10 (Krizhevsky et al., 2009)
datasets to investigate the differences between cost functions. We run additional experiments using
the CAT (Zhang et al., 2008; Jolicoeur-Martineau, 2018) and FFHQ (Karras et al., 2018) datasets to
study behaviors for higher resolution images.
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Figure 4: Real and generated samples on a
classic toy 2D mixture of Gaussians dataset: a
sample is here a coordinate pair. In blue, NS-
GAN samples exhibiting mode dropping be-
havior, here in the process of hopping between
modes. In red, samples using the unmodified
MM-GAN cost function. MM-GAN trains well
on this toy problem despite its saturating cost
function and shows reasonable coverage of all
modes.

Figure 5: Gradient magnitudes in the early
phase of training on MNIST with 4-layer fully
connected networks. Top two: NS-GAN work-
ing properly and unmodified MM-GAN in its
saturating failure mode, ultimately freezing pa-
rameters. Bottom two: MM-nsat, and MM-
GAN with G’s Adam parameter reduced β2 =
0.999→ 0.99, both avoiding saturation.

4 RESULTS AND DISCUSSION

4.1 QUALITATIVE PRELIMINARIES

Training GANs on a ring of Gaussians has been used to study both the mode dropping tendency
of GANs (Metz et al., 2016; Srivastava et al., 2017) and how to address it. MM-GAN tends to
do very well on such problems, as shown in figure 4. For this problem, it is easy to generate
samples indistinguishable from real ones, limiting problems with saturation. MM-GAN is more
mode-covering in practice as suggested by its divergence (Huszár, 2015; Arjovsky et al., 2017).
(Supplementary: S)

Using MNIST and weak, fully-connected networks, we replicate the well-known failure mode of
MM-GAN that motivates the NS-GAN reformulation. In figure 5, we show the gradient magnitudes
early in training, in particular a super-exponentially vanishing gradient for MM-GAN after roughly
3 epochs that halts training altogether. Additionally, we show that reducing β2 only for G’s opti-
mizer (effectively giving it a shorter memory for the second order momentum) stabilizes the training
process, as suggested by our theory on the interaction of MM-GAN and Adam. (Supplementary: L)

For the same setup, we show samples at the end of prolonged training for NS and MM-nsat cost
functions in figure 6. We see that our version of minimax non-saturation trains well. The difference
in terms of mode coverage is visually striking and corresponds well with our numerical evaluations
for the same generators in table 1.

For MNIST, NS-GAN’s mode collapse can mostly be addressed by early stopping or regulariza-
tion. In figure 7 we show samples from training on the more challenging CAT 1282 dataset. We
find that MM-nsat trains well and generates fairly realistic samples, whereas for NS-GAN, catas-
trophical mode collapse occurs before G learns to produce reasonable samples. More rigorous and
quantitiative results are presented in the supplementary material, particularly U and V.

4.2 QUANTITATIVE EVALUATION

Figure 8 shows more comprehensive results for MNIST and CIFAR-10. We plot metrics throughout
training to emphasize the dynamics for MM-GAN and NS-GAN, as well as variants of the same cost
functions. There are two key results: that simple stabilization techniques allow us to train GANs with
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NS-GAN: FID = 152, DJSCD = 0.56

MM-nsat: FID = 49.7, DJSCD = 0.15

Figure 6: Generated samples after 1000 epochs
for MNIST with 4-layer fully connected net-
works. MM-nsat is strikingly better in terms
of mode coverage.

Table 1: Class distributions for G (see fig 6).

Cost Class frequency in %
0 1 2 3 4 5 6 7 8 9

NS 0 75 0 0 0 0 0 15 0 10
MM-nsat 5 45 3 4 9 5 7 12 3 8

Early stopping NS samples (best run)

Early stopping MM-nsat samples (worst run)

Figure 7: Samples from training runs for CAT
1282 using the DCGAN architecture with spec-
tral normalization in the discriminator and self-
attention. All NS runs collapse in terms of di-
versity, compared to only one of the MM-nsat
runs. We show the least favorable comparison
for MM-nsat, i.e. the run with latest collapse
for NS and earliest collapse for MM-nsat. For
each of these runs, we hand pick the best look-
ing batch of samples generated during training.

MM-GAN sample weighting, without the saturation issues that plague unmodified MM-GAN; and
that their behavior is qualitatively different from those using NS-GAN sample weighting. Gradient
magnitudes mostly influence training stability. Additionally, the plots on the right hand side show
that the performance gain for minimax variants is reflected by more correct class distributions in
generated data. In some cases, such as for 3-layer fully connected networks on MNIST, there is a
notable gap between DJSCD values, even while FID is similar.

The importance of sample weighting is best demonstrated by comparing MM-unit and NS-unit.
By construction, these variants have the same gradient magnitude, such that the only difference
between the formulations is whether high- or low-scoring samples are emphasized when finding the
total gradient for a minibatch of samples. The results show that this difference is crucial for the
training dynamics.

Aside from stability, there are no clear differences between the variants with minimax sample
weighting. While MM-nsat and MM-unit avoid saturation in very different ways, their results are
highly similar, to each other and to the results for unmodified MM-GAN when it does not saturate.
This suggests that the approximation we make in equation 6 when introducing Dp is of limited
importance, and that MM-nsat is more faithful to the original, logistic minimax formulation than
NS-GAN.

The main issue with NS-GAN for these datasets is its strong tendency to deteriorate in terms of both
FID and DJSCD as training progresses. There is an early stopping point where NS is competitive
with MM-nsat in some cases, but not all. The results for CIFAR-10 are the most extreme: NS and
NS-unit consistently undergo catastrophical mode collapse.
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Figure 8: Left: FID, an estimated distance between generated and real data based on Inception
activations. Right: DJSCD, the Jensen-Shannon divergence between class distributions in generated
and real data. For various networks using the MNIST and CIFAR-10 datasets, we plot the median
values for ten runs during training. The shaded area indicates maximum and minimum values. NS
and MM are the traditional cost functions; variants use normalized gradients, reduced β2 for G’s
Adam optimizer and the non-saturating rescaling from eq 6.
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Overall, these results validate theory from the literature showing that MM-GAN and NS-GAN cor-
respond to different divergences and the importance of sample weighting as described in section
2.3. We present a variety of additional results in the supplementary material (M through W), both
testing the validity of our theory in different experimental settings and showing results for higher
dimensional datasets.

5 CONCLUSION AND FURTHER WORK

Based on a more thorough, theoretical analysis of the differences between the formulations intro-
duced in Goodfellow et al. (2014), we have designed a form of non-saturation for the minimax cost
function for GANs that rescales the minibatch gradient. This corrects the training difficulties for
the original minimax GAN, without the side-effects inherent to the NS-GAN reformulation. Run-
ning experiments, we have shown that our new stabilization has qualitatively different behavior, in
particular better mode coverage as indicated both by our theory and by previous works showing
which divergences are optimized by NS-GAN and MM-GAN. Perhaps most importantly, our work
is an important correction to the view that NS-GAN is just MM-GAN corrected for its saturation
problems, as the name might suggest.

We have shown promising results with MM-nsat (our gradient rescaled version of MM-GAN), but
it is primarily designed for demonstration purposes. Results with simpler networks on MNIST and
CIFAR-10 are much stronger for MM-nsat compared to NS-GAN, Hinge-GAN and LS-GAN, and
experiments on higher resolution images from the CAT and FFHQ datasets show that MM-nsat has
less issues with catastrophic mode collapse during the early stages of training, greatly reducing the
stability issues that GANs tend to suffer from.

Interactions with discriminator regularization are unclear and important for more advanced appli-
cations (see R). Performance when combining MM-nsat with various designs that directly address
mode dropping remains to be determined, for instance the class conditioning (Mirza & Osindero,
2014) used in BigGAN (Brock et al., 2018) and the minibatch standard deviation used in StyleGAN
(Karras et al., 2018). Unlike the normalizations and regularizations that mask the underlying issues
with NS-GAN and often introduce extra hyperpameters, MM-nsat changes only the cost function.

While we have focused on variants of MM-GAN and NS-GAN, with the convenience that these all
work with the same discriminator cost function, we expect analysis in terms of sample weighting to
apply much more generally, explaining training dynamics and tradeoffs between individual sample
quality and overall sample diversity also for other GAN formulations.
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Table 2: Overview of GAN cost formulations.

Cost Reference D cost G sample emphasis G gradient magnitude

MM-GAN Goodfellow et al. (2014) Cross-entropy High-scoring Saturating
MM-nsat ours Cross-entropy High-scoring ≈ Non-saturating
MM-unit ours Cross-entropy High-scoring Unit-normalized

MM β2 = 0.99 ours Cross-entropy High-scoring Saturating, adj. Adam
NS-GAN Goodfellow et al. (2014) Cross-entropy Low-scoring Non-saturating
NS-unit ours Cross-entropy Low-scoring Unit-normalized
LS-GAN Mao et al. (2016) Quadratic ? -

Hinge-GAN Miyato et al. (2018) Clipped linear Uniform -

SUPPLEMENTARY MATERIAL

A TABLE OF COST FUNCTIONS

Refer to table 2 for an overview of the cost functions used in this paper. Note that sample emphasis
is not directly comparable between formulations with different costs for the discriminator.

B INFORMAL AND EXTENDED SUMMARY

We include an extended summary of the most central points from our work. This presentation is
intended to be less technical and somewhat more accessible to a wider audience.

When training a classifier, the standard cross entropy loss has stronger gradients for samples with
greater error. This means that correcting misclassifications is emphasized over further increasing the
confidence level of correctly classified samples. Training usually runs for multiple epochs, giving
the classifier repeated opportunities to readjust if its cost increases for any particular sample.

Like for classifiers, every term in the NS-GAN cost functions for the discriminator and generator
emphasizes the samples which are furthest from their optima. While this seems reasonable, it does
not necessarily interact well with adversarial training.

To minimize its cost when training on equal amounts of real and generated data, the discriminator
Dp(x) approximates P (y is real|y = x). This means that Dp ≈ 1 for real data that G does not
generate and Dp ≈ 0 for generated data outside of the real data manifold. More generally, Dp(x)
approximates the density of real samples at x relative to the sum of densities of real and generated
samples.

The generator cost function includes a real data term which is often omitted: without any gradient
with respect to G’s parameters it does not influence the training. This makes it difficult for G to act
on dropped modes, because its updates only see D’s gradients at the points in data space where G
generates samples.

The degree to which NS-GAN’s generator cost emphasizes samples further from their optimum
is quantified by the scaling factor given in equation 4. NS-GAN weights contributions from each
generated sample by a factor 1 − Dp, such that low-scoring (“unrealistic”) samples contribute the
most to the gradient.

MM-GAN’s generator instead uses the scaling factor Dp, emphasizing high-scoring (“realistic”)
samples. MM-GAN saturation follows directly from this scaling factor: for highly unrealistic gen-
erated samples, Dp → 0, and this weighting causes G’s gradient vanish. Adam does not work
around this problem with the usual hyperparameter settings.

In either case, G’s parameters are updated by sampling the gradient of D with respect to G’s pa-
rameters at points x where samples happen to be generated. This means that the updates see most
contributions from regions where the density of generated samples is high.

The main problem with NS-GAN is how this sampling frequency interacts with its scaling factor.
Regions on the real data manifold where the density of generated samples is too low tend towards
small values of 1−Dp: these generated samples are considered realistic by D and thus have small
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error for G and are weighted down by the scaling factor. Since this region in data space is also
sampled rarely, due to the G’s low density, its contribution to G’s parameter updates will be small.
At the same time, regions with too high density of generated samples have large scaling factors and
are sampled frequently. In a situation where different modes disagree on the best configuration of
G’s parameters, undersampled modes will be massively outvoted.

This would not be a problem if D’s gradients were able to push the density of generated samples
away from oversampled modes and discover undersampled or entirely dropped modes. However,
we have no guarantee that this sort of action at a distance will work in practice: the literature instead
shows that mode collapse is a recurring problem, likely because D’s gradients fail to be informative
across longer distances in data space.

Sample weighting also explains why MM-GAN behaves much better in terms of mode coverage.
Since MM-GAN uses the opposite scaling factor, Dp, it boosts the contributions to parameter up-
dates from undersampled modes. The MM-GAN scaling factor partially cancels against the sam-
pling bias effect, making the parameter update less dependent on a single, dominant mode. While
a generated sample in an undersampled mode is not itself an error, the very high value of Dp for
this generated sample reflects a large discrepancy between generated and real densities at this point.
MM-GAN’s sample weighting makes it better able to address errors of this sort.

The main problem with MM-GAN is that its gradient decreases when the cost is increases. This
makes it very difficult to optimize, also with Adam. NS-GAN, the established solution to this prob-
lem, changes both sample weighting and gradient magnitudes. The problem can instead be addressed
with a very simple rescaling of the minibatch gradient, as shown in eq 10. We call the resulting for-
mulation MM-nsat as it combines minimax sample weighting with the same form of non-saturation
as used in Goodfellow’s NS-GAN. The key difference is that the NS-GAN non-saturation is implic-
itly applied to each sample, disturbing sample weights, while the MM-nsat rescaling is explicitly
applied to the minibatch gradient as a whole.

Our experimental results validate that this minibatch gradient rescaling corrects the saturation prob-
lem, and comparing NS-GAN and MM-nsat allows us to show that sample weighting is highly im-
portant for training dynamics. Mode coverage and general stability is greatly improved for MM-nsat
relative to NS-GAN, which sometimes suffers from gradual mode dropping throughout training, and
sometimes from catastrophical mode collapse early in training. Note, however, that strong models
already tend to include various designs to counteract the problems caused by NS-GAN’s unfortunate
sample weighting, limiting the benifits of simply replacing NS-GAN with MM-nsat.

C GOODFELLOW’S MOTIVATION OF NS-GAN

We include Goodfellow et al. (2014)’s motivation for NS-GAN for easy reference: “In practice,
equation 1 [minimax cost] may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 − D(G(z))) saturates. Rather than training G to minimize
log(1 − D(G(z))) we can train G to maximize logD(G(z)). This objective function results in
the same fixed point of the dynamics of G and D but provides much stronger gradients early in
learning.”

D IMPORTANCE WEIGHTING

Hu et al. (2017) studies the parallels between generative adversarial networks and variational autoen-
coders. They transfer the idea of importance weighting from VAE to GANs, arriving at an update
rule for the generator (Hu et al. (2017): equation 22) which reweights G’s NS-GAN gradients for
each sample in the minibatch with a normalized weighting factor. Closely related ideas are seen in
Hjelm et al. (2018) and Che et al. (2017). The expression for the unnormalized weighting factor is
given as:

wi =
qrφ0

(y|xi)
qφ0

(y|xi)
(13)

Here, qφ0
and qrφ0

represent the discriminator and its reverse respectively, i.e. qrφ0
(y|x) = qφ0

(1 −
y|x), where y represents the true label of a sample x. In our notation, this is corresponds to the
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following, as given explicitly in Hjelm et al. (2018):

wi =
Dp(G(zi))

1−Dp(G(zi))
(14)

Comparing this weighting factor to the bracketed factor in our eq 5, it is clear that it perfectly cancels
against the reweighting of NS-GAN relative to MM-GAN. In other words, importance weighted NS-
GAN actually recovers the same original MM-GAN sample weighting that is used by MM-nsat, such
that our approach of avoiding the NS-GAN sample reweighting leads us to rediscover this update
rule.

The remaining difference is that of the gradient magnitude. When reweighting the NS-GAN gradi-
ents, Hu et al. (2017) and Hjelm et al. (2018) choose to normalize the weights over the minibatch:
omitting to do this would make their importance weighting also recover the MM-GAN gradient
magnitude, and thus reintroduce the MM-GAN saturation problem. They normalize by calculating
the actual sum of the reweighting factors, which is slightly different from our approximation where
we replace Dp with its mean over the minibatch (eq 6). Note that neither method is exact unless the
samplewise gradients in the minibatch have the same magnitude. As seen by for instance comparing
MM-nsat and MM-unit, which have highly similar performance despite massively different gradient
magnitudes, these diferences should have little effect on training dynamics.

The primary difference between importance weighthing for NS-GAN and our design of MM-nsat is
the logical steps and the theoretical motivation. In our work, the direct relationship to the original
MM-GAN update rule is made explicit, whereas importance weighting goes the cirucuitous route
of first taking the heuristic NS-GAN formulation in place the original MM-GAN formulation, then
reweighting it to arrive at an importance weighted NS-GAN formulation, which our work shows to
actually be just a non-saturating version of MM-GAN.

E CONCURRENT WORK

A concurrent work recently made available as a pre-print, Sinha et al. (2020), makes use of a simple
design which is directly comparable to our method. When updatingG, they ignore the gradients aris-
ing from the lowest scoring generated samples, where the fraction of the samples ignored increases
throughout training. This effectively shifts weighting from low-scoring to high-scoring samples,
which is the same overall effect as is achieved by using our MM-nsat gradient. Their method is
much simpler and less principled as to exactly how low- and high-scoring samples are weighted, but
it is also more easily applied to other GAN cost formulations.

Similar to our findings, Sinha et al. (2020) observe an increase in mode coverage and overall quality.
By investigating the cosine similarity between low- and high-scoring samples, they observe that
optimization conflicts between these, as we suggest in section 2.3. Their analysis in terms of pushing
samples towards and away from modes is somewhat at odds with ours, where we note that low-
scoring samples can be high-quality, but lie in modes that are significantly oversampled by G. The
discriminator score is not a direct measure of the sample’s quality, but rather of relative densities of
real and generated data, such that we should not expect D’s gradients to necessarily point towards
the centres of the real data modes.

F GRADIENTS DERIVED FROM COST FUNCTIONS

Finding the MM-GAN gradient for a single sample is a matter of straightforward calculus. The
expression for NS-GAN’s gradient can be found using the same approach. First note that the rela-
tionship between Dp and Dl is given by eq 2, such that:

∂Dp

∂Dl
= D2

p exp(−Dl) (15)

exp(−Dl) =
1−Dp

Dp
(16)

We take JG = −JD (eq 1) as the starting point, as defines the minimax formulation. Note that the
first term does not depend on G or θ, such that it can be omitted in the G cost function:
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JGMM = log(Dp(x)) + log(1−Dp(G(z, θ))

∇θJGMM = −∂Dp(G(z, θ))

∂θ
· 1

1−Dp(G(z, θ))

= −∂Dl(G(z, θ))

∂θ
· ∂Dp

∂Dl
· 1

1−Dp(G(z, θ))

= −∂Dl(G(z, θ))

∂θ
·
D2
p exp(−Dl)

1−Dp

= −∂Dl(G(z, θ))

∂θ
· Dp(1−Dp)

(1−Dp)

= −∂Dl(G(z, θ))

∂θ
·Dp(G(z, θ))

(17)

It might seem counterintuitive to mix Dl and Dp when expressing the gradients, instead of using
for instance the expression on line 2 of equation 17. However, the non-linear behavior of ∂Dp/∂θ
makes interpretation difficult. As Dp approaches either 0 or 1, increasingly small changes in Dp

reflect the same change in odds ratios. It is less clear from the gradient in terms of only Dp that the
MM-GAN gradient saturates as Dp approaches 0, or that it does not diverge as Dp approaches 1.
However, for the scaling factor itself, we find the Dp formulation most intuitive. The interpretation
suggested by eq 7 is particularly convenient.

G MM-GAN INTERACTION WITH ADAM

We include additional details for the approximation of the Adam update step. We combine equation
8 and gt = g0 exp(at). For simplicity, we assume that sgn(gt) does not depend on t: if the sign of
the gradient changes, mt is reduced and vt unaffected. This can contribute to making ∆θt vanish,
but cannot prevent it.

This allows us to express the momentum as a sum of contributions from each previous time step i.

mt =

i=t∑
i=1

βt−i1 (1− β1)g0 exp(ai) (18)

For reasonably large values of t and assuming a 6= log(β1), we can approximate this sum by a
definite integral:

mt ≈
∫ i=t

i=0

(1− β1)βt−i1 g0 exp(ai)di

=
1− β1

a− log(β1)
g0(exp(at)− βt1)

(19)

Using this approximation (similarly also for vt), assuming ε to be negligible and packing assorted
time independent constants including −α into C, we get the update step:

∆θt ≈ g0C
√

1− βt2
1− βt1

exp(at)− exp(log(β1)t)√
| exp(2at)− exp(log(β2)t)|

(20)

Having already assumed t to be large, we omit the first fraction (bias corrections) for simplicity:

∆θt ≈ g0C
exp(at)− exp(log(β1)t)√
| exp(2at)− exp(log(β2)t)|

(21)

For sufficiently large values of t, behavior is determined by which of the terms in the numerator and
denominator have the largest constant in the exponent (i.e. slowest decay). We enumerate all the
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four possible cases:

a > log(β1) ∧ a > 1

2
log(β2)→ ∆θt ∝ 1

a < log(β1) ∧ a < 1

2
log(β2)→ ∆θt ∝ (

β1√
β2

)t

a > log(β1) ∧ a < 1

2
log(β2)→ ∆θt ∝ e(a−

1
2 log(β2))t

a < log(β1) ∧ a > 1

2
log(β2)→ ∆θt ∝ e(log(β1)−a))t

(22)

Using hyperparameters such that β1 >
√
β2 is highly unusual. It is required to satisfy the inequal-

ities for the last case and means that the base is greater than one in the second case. In both cases,
we get exploding update steps, which is generally undesirable.

Assuming β1 <
√
β2, the first three cases show intended behavior: update steps are normalized

for constant or even exploding gradients, while they diminish for vanishing gradients, enabling
convergence. The third case, a < 1

2 log(β2), is discussed in the main text. In the second case, where
a < log(β1), we get a different kind of vanishing behavior governed by the relationship between β1
and β2.

Additional results and discussion for this problem is given in L.

H IMPLEMENTATION DETAILS

For consistency with the theoretical framework and to allow testing of magnitude normalized gradi-
ents, we modify GANs by rescaling the generator gradient. This amounts to calculating the mini-
batch gradient explicitly and multiplying it by a factor R calculated as given in algorithms 1 and 2
before passing it on to the optimizer. (Code repository: J)

Algorithm 1 Non-saturating minimax rescaling factor (MM-nsat)

Require: G,Dl: generator and logit valued discriminator functions
Require: N : the minibatch size
Require: z0, . . . , zN−1: N generator inputs
Require: εR: a small constant, prevents zero-division overflow such that Rmax = ε−1R

1: Dp = 1
N

∑i=N−1
i=0 (1 + exp (−Dl(G(zi)))

−1

2: R← 1−Dp
εR+Dp

Algorithm 2 Unit rescaling factor (MM-unit, NS-unit)

Require: ∇θ: the gradient of the cost function with respect to G’s parameters
Require: Nθ: the number of parameters of G
Require: εR: a small constant, prevents zero-division overflow such that Rmax = Nθε

−1
R

1: |∇θ| = (
∑i=Nθ−1
i=0 ∇2

θi
)

1
2

2: R← Nθ
εR+|∇θ|

However, for proper behavior with penalty terms as well as convenience, we strongly recommend
implementing MM-nsat by multiplying the minimax cost by a factor R which depends on D(G(z))
for the entire batch and disabling back-propagation through this scaling factor. In TensorFlow, a
straightforward implementation is:

cost_mm-nsat = tf.stop_gradient(R) * cost_mm (23)

The rescaling factor is constant across the minibatch and can be applied either samplewise or to the
total cost.
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For MM-unit and NS-unit, the rescaling factors unfortunately cannot be calculated without first
computing the gradient for the unmodified cost functions.

Applying gradient rescaling directly does not interact well with penalty terms. When the MM-GAN
cost saturates, the gradient will typically be dominated by the penalties, causing both MM-nsat and
MM-unit rescaling to inflate their effect. Using the approach above, rescale the adversarial minimax
cost and leave penalty terms unchanged.

Parallelization may raise some issues when calculating the rescaling factor R, because proper min-
imax behavior requires R to be calculated across all parallels and a naive approach will introduce
some overhead. Ideally, D(G(z)) and gradients from parallels should be aggregated in the same
step, in order to rescale gradients before running them through the optimizer. Correctly imple-
mented, the overhead should be unnoticeable for multi-GPU training.

We note that for very small batch sizes, or where R for other reasons vary significantly between
subsequent batches, MM-nsat will have some NS-like behaviors, because weighting between sam-
ples in different batches is disturbed by the difference between their values of R. However, not even
unmodified MM-GAN weights properly across batches, due to updates to D and optimizer correc-
tions. It is possible to smooth R across batches using for instance an exponential running mean, at
the risk of reintroducing saturation issues.

In algorithm 2, we make the unintuitive choice of normalizing the gradient not to unity, but to Nθ,
the number of network parameters. Due to cancellation effects in Adam’s parameter update step,
this time-independent scaling factor is only relevant when gt is small and ε non-negligible. Because
Adam’s ∆θt is calculated for each parameter independently, this choice of normalization prevents
introducing an inadvertent relationship between the number of parameters of a network and whether
updates vanish due to ε as shown in eq 9.

I CLASS DISTRIBUTION DIVERGENCE

Implementing a class distribution divergence requires us to have labels for the real data and some
way to determine which class generated samples belong to. This limits its applicability to simpler
problems where we can train strong classifiers. An additional complication is that we are applying
this classifier to generated data, where it may not generalize well. The classifier is calibrated for real
data samples and its behavior is not well defined outside of this manifold. In particular, a standard
classifier is compelled by design to assign a class to all samples, even when they are so poor that
they cannot meaningfully be said to belong to any class at all. It is conceivable that a generator
producing only noise-like samples will be assigned functionally random classes and achieve a very
good DJSCD. Furthermore, DJSCD is not sensitive to the degree of coverage or collapse within any
given class.

In practice, we find that a poor generator invariably scores badly in terms of DJSCD, with nearly
all its samples being assigned to the same class, and that FID and DJSCD are strongly correlated.
Nonetheless, combining DJSCD with a standard generator evaluation method such as FID is recom-
mended, and for poor generators, DJSCD may be misleading. Similarly, the class divergence serves
as a control for our use of FID for MNIST, which is significantly removed from the natural images
FID’s Inception network in trained on.

For interpretation, note that we use a normalized Jensen-Shannon divergence, such that DJS ∈ [0, 1].
The lower bound corresponds to perfectly matched distributions and increasingly mode dropping
generators will approach the upper bound. When the real data distribution is non-zero for all classes,
(DJSCD)max < 1. For the case where there are ten evenly distributed classes in real data, which
includes MNIST and CIFAR-10, we get (DJSCD)max ≈ 0.758.

For classification, we train a simple, convolutional network for MNIST and a ResNet (He et al.,
2015) based convolution model with batch normalization (Ioffe & Szegedy, 2015) for CIFAR-10
with approximately 99% and 89% validation accuracy (see section J). For MNIST-1K, we apply
the MNIST classifier to each channel separately, treating each ordered triplet of classifications as
its own class. In line with the established standard for FID, we use 50000 samples for estimating
DJSCD for a generator.
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J CODE AND NETWORKS

We have made code for Python 2.7 and TensorFlow available in a GitHub-repository: to maintain
anonymity, see uploaded supplementary material instead. Qualitatively reproducing the MNIST
and toy experiments in the main paper is straightforward, but other datasets as well as running the
evaluation metrics involves additional setup (see repository for details).

The repository includes code for training classifiers for DJSCD for MNIST and CIFAR-10. Step by
step setup for the CAT and FFHQ datasets is not included, nor is the forked version of StyleGAN
for training it with MM-nsat.
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K GRADIENT NORM AND DIRECTION FOR MM-NSAT

Figure 9 shows how the gradients obtained by the NS-GAN and MM-nsat generator costs differ
during training, both in terms of norm and direction. These results illustrate the theory from section
2.2 and give an impression of the quality of the approximation used for MM-nsat (eq 6), in order to
renormalize its gradient magnitude of MM-GAN to match with that of NS-GAN.

For 4-layer convolutional networks, FID improves for both formulations with very similar quantita-
tive results for roughly 200 epochs. During this period, gradients are also the most similar in terms
of norm and direction. Afterwards, cosine similarity drops, indicating that gradients are becoming
increasingly different for the purpose of optimization, and NS-GAN and MM-nsat diverge in terms
of FID due to NS-GAN increasingly dropping modes.

For 4-layer fully connected networks, cosine similarity drops much earlier, and FID for NS-GAN
falls behind very early in training, reflefcting mode dropping (see DJSCD for FC-4 in figure 8).
During the later stages of training, gradient norms diverge, particularly for the case where we train
with the NS-GAN gradient. Note, however, that this is a stage of training where NS-GAN shows
very pathological behavior, with more than 3

4 of generated samples representing the digit 1.

For interpretation of the cosine similarity, note that gradients are high dimensional vectors, such that
near-orthogonality is unexceptional. Gradient magnitudes are not perfectly matched for NS-GAN
and MM-nsat, particularly not later in training where values of Dp become more extreme and NS-
GAN starts falling off in terms of FID. When training with the MM-nsat gradient, its norm relative
to the NS-GAN gradient are matched to within an order of magnitude and allows MM-nsat to train
without any apparent issues.

Figure 9: FID during training with additional diagnostics for 4-layer convolutional (top) and fully-
connected (bottom) networks on MNIST, using (left) NS-GAN and (right) MM-nsat for the param-
eter updates. For each run, we calculate both the NS-GAN and MM-nsat gradients at each iteration
and plot their relative norms (green) and cosine similarity (orange). We plot the running means, with
the actual, noisy values indicated by the shaded areas.
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Figure 10 shows the same kind of plots as figure 9, but comparing the original MM-GAN with MM-
nsat instead. As the gradients obtained by these formulations are parallel by construction, the cosine
similarity is almost exactly 1.0 at all times. We use differently scaled y-axes for the relative gradient
magnitudes, as these approach 1016 when MM-GAN falls into its saturating failure mode.

The primary difference in gradient magnitude between MM-GAN and MM-nsat is a relatively brief
spike very early in training, corresponding well with the the observation by Goodfellow et al. (2014)
cited in section C. This spike is both taller and wider in the FC-4 setting, likely reflecting G having
more difficulty learning to generate somewhat realistic samples. During the rest of the training, the
magnitude of MM-nsat relative to MM-GAN increases slowly and consistently.

Figure 10: FID during training with additional diagnostics for 4-layer convolutional (top and middle)
and fully-connected (bottom) networks on MNIST, using (left) MM-GAN and (right) MM-nsat for
the parameter updates. For each run, we calculate both the MM-GAN and MM-nsat gradients at each
iteration and plot their relative norms (green) and cosine similarity (orange). We plot the running
means, with the actual, noisy values indicated by the shaded areas. Since both Conv-4 MM-GAN
produces both good and bad results frequently, we show diagnostics for both cases.
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L ADDITIONAL SATURATION RESULTS AND DISCUSSION

Figure 11: Gradient magnitudes in the early phase of training on MNIST with 4-layer fully con-
nected networks: as in fig 5, but including additional tests for MM-GAN with modified β2 hy-
perparameters for D’s and G’s optimizers. As suggested by our model in section 2.4, MM-GAN
saturation when using Adam depends on β2 values causing gradients to vanish. In particular, a lower
value of β2 for G than D disrupts the feedback mechanism that otherwise brings training to a halt.

When D learns its task faster than G, Dp(G(z)) will begin to approach 0, such that both D’s and
G’s gradients diminish. The effect on updates after Adam’s normalization step depends on whether
the first or second order momentum diminishes faster. The usual case is that β2 > β1, such that
the second order momentum has a longer effective memory. This partially disables normalization of
updates.

For D, this works as intended: as the cost approaches its minimum, the optimizer sees the gradients
becoming smaller and reduces its step size, allowing proper convergence. The problem when opti-
mizing MM-GAN with Adam is that this same behavior triggers for the ill-behaved G cost function
when it is failing at its task. While the update steps go in the right direction, the diminishing step
size effectively causes parameters to get stuck in a poor configuration. Note that this problem does
not really lie with Adam: it is the MM-GAN cost function that has a shortcoming that Adam cannot
address since it only sees the decreasing gradients and has no way of knowing that this actually
means that the MM-GAN cost is increasing. The role of the gradient rescaling in equation 6 is
to make it so that G’s gradients and cost increase and decrease in parallel, such that the optimizer
behaves properly.
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L.1 THE ADAM β2 HYPERPARAMETER

Here, we provide additional empirical results (figure 11). In particular, we investigate the importance
of how quickly D and G’s updates vanish, relative to each other, by adjusting the β2 parameters of
D and G (our default is β2 = 0.999). After all, the theory in 2.4 assumes a gradient that is simply
exponential in time and does not model the interactions between D and G when the generated data
gradients begin to vanish.

A fairly straightforward pattern emerges: for the standard case, where D and G have the same
value of β2, there are multiple U-shaped dips, where gradients alternate between diminishing and
recovering, until the gradient finally vanishes for good. This still holds when when we reduce β2 for
both optimizers, effectively maintaining their balance. However, both setups where β2 is lower for
G than for D avoids vanishing updates entirely, whereas when we reduce the value of β2 only for
D, training breaks down earlier and more decisively. Finally, we show that we can avoid vanishing
gradients by simply reinitializing G’s optimizer at regular intervals: this resets both the first and
second order momenta. This stabilizes the training process, which is somewhat surprising seeing as
we are effectively crippling the optimizer’s memory. However, this effect is well explained by our
hypothesis of large, lingering contributions to the second order momentum disabling normalization.

L.2 LINEAR MODEL FOR Dl(G(z))

Figure 12 shows more detailed diagnostics for two runs where MM-GAN with standard Adam set-
tings falls into its saturating failure mode. In addition to the gradients, we also plot the following:
Dl, the mean of the discriminator’s logit outputs, both for real and generated data; and |∆θ| and
|∆φ|, the norm of the parameter update for G and D at each timestep.

In section 2.4, we assume thatDl(G(z)) behaves as a linear function of training steps. Note that this
simple model is cannot fully capture the training dynamics for MM-GAN, but is meant to explain
why Adam does not reliably address MM-GAN saturation despite its built-in gradient normalization.

The actual behavior of Dl(G(z)) in figure 12 is more complicated than we assume in our model.
Particularly, |Dl| grows much faster early on than it does towards the end, where it eventually tapers
off. However, for Dl(G(z)) = −20, Dp(G(z)) ≈ 2 ∗ 10−9, whereas G only produces a total of
6 ∗ 107 samples during the 1000 epochs we use to train the networks. The behavior of Dl past this
point is of limited interest.

We find an early, critical period most relevant for understanding the interaction between Adam
and the saturating MM-GAN cost, characterized by Dl becoming monotonic for each of real and
generated data. In figure 12, these critical periods start around 0.4 and 2.9 epochs for Conv-4 and
FC-4 respectively, without any clearly defined endpoint. Within a single epoch, the step size for G’s
updates drops by 3 to 4 orders of magnitude, and G(z) ceases to change during training, as shown
in figure 13.

The exception to the above is the sudden spike after 100 epochs for FC-4. Ideally, this spike would
be the first step towards the training process recovering, as the size of G’s gradients and updates
increases. However, while gradients are larger after this spike than before, the update step size
actually plummets by an additional 4 orders of magnitude. The unusually large contribution to
the second order momentum lingers much longer than the increase in the first order momentum,
effectively disabling Adam normalization for a long while. This is a very illustrative example of the
problematic interaction between the saturating MM-GAN cost and Adam.

L.3 ADDITIONAL COMMENTS

Stabilizing MM-GAN by use of the β2 parameter is not recommended: we intend these experiments
to demonstrate the effects discussed in section 2.4. The setting where only G’s β2 is reduced to 0.99
suffers the least from noisy updates and performs well in some settings, but all these variants are
less stable than the more principled MM-nsat version. However, it should be noted that instead of
changing the MM-GAN cost to work with Adam, as we do for MM-nsat, it is possible to modifiy
the optimization procedure to account for MM-GAN’s peculiarly shaped cost function.

NS-GAN owes some of its success to how D and G have different scaling factors. Only D’s gra-
dients vanish as Dp(G(z)) → 0, and only G’s gradients vanish as Dp(G(z)) → 1. This gives the
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training process a limited form of self-stabilization: update step sizes (roughly equivalent to learning
rates) increase for whichever of the networks is doing worse. Since MM-nsat has the same gradient
magnitudes as NS-GAN, this behavior carries over.

Figure 12: Gradient magnitudes (logarithmic) and mean logit outputs (linear) fromD during training
for MNIST, using convolutional (left) and fully connected (right) networks. Top to bottom, plots
show the same training run, increasingly closed up on the critical period where training breaks down
due to gradients vanishing. We plot running means, with actual values indicated by shaded areas.
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Conv-4: 0 epochs FC-4: 0 epochs

Conv-4: 50 epochs FC-4: 50 epochs

Conv-4: 200 epochs FC-4: 200 epochs

Conv-4: 500 epochs FC-4: 500 epochs

Conv-4: 1000 epochs FC-4: 1000 epochs

Figure 13: MNIST samples for 4-layer convolutional (left) and fully connected networks (right),
using the saturating MM-GAN cost. Top to bottom show samples during training for a single run:
we reuse the same set of latents z to generate samples each time. Cross-reference with figure 12,
showing diagnostics for the same runs. These samples show the behavior of the MM-GAN generator
when it falls into its saturating failure mode: G’s outputs effectively cease to change due to negligible
parameter updates.
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M CIFAR-10 SPECTRAL NORMALIZATION BASELINE

Figure 14: Left: FID, an estimated distance between generated and real data based on Inception
activations. Right: DJSCD, the Jensen-Shannon divergence between class distributions in generated
and real data. Copying the CNN settings from Miyato et al. (2018) for the CIFAR-10 dataset, we plot
the median values for ten runs during training. The shaded area indicates maximum and minimum
values.

For the CIFAR-10 Conv-4-sn results at the bottom of figure 8, we use exceedingly simple networks
as described in section 3.3. In order to compare MM-nsat against a benchmark from the literature,
we the copy the settings from Miyato et al. (2018), i.e. the network architectures from table 3 and
the hyperparameter settings C from table 1.

The main differences between this setup and our Conv-4-sn settings are:

• Batch normalization in G
• 4x4-kernels (not 3x3) for 2-stride convolutions in D and G
• 3 additional 3x3-kernel, 1-stride convolutions in D
• Spectral normalization also for the final layer of D
• Leaky ReLU in D
• Approximately 10 times as many network parameters
• Doubled learning rate

Additionally, for comparing FID directly against values tabulated in Miyato et al. (2018), note the
following:

• Likely different batch size and training epochs
• We use all real and 50k generated images to estimate FID, instead of 10k and 5k

Across five runs, we obtain median FID values of 26.7 for NS-GAN and 25.5 for MM-nsat, using the
same set of hyperparameters as Miyato et al. (2018) optimized for their NS-GAN results, reporting
a value of 29.3. As in other experiments, we again see that DJSCD favors MM-nsat, even at the
points during training where FID values are closely matched. Unlike for our networks, we see no
clear tendency for the NS-GAN FID to increase towards the end of training, possibly due to higher
quality of generated samples and spectral normalization also in the final layer of D combining to
pull Dp values closer to 0.5 throughout training. While there is significant overlap between the cost
functions, MM-nsat shows slightly better performance overall and converges faster.
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N LINEAR COMBINATIONS OF MM-GAN AND NS-GAN

Motivated by theory connecting GAN divergences and mode dropping (section 2.3) and Huszár
(2016) who suggests adding together the NS-GAN and MM-GAN cost functions in order to get rid
of the subtracted Jensen-Shannon divergence for NS-GAN (eq 3), we run experiments using linear
combinations of the cost function. Huszár’s suggestion changes the scaling factor (1 − Dp) → 1,
which is an improvement in terms of the effect discussed in section 2.3, since it reduces the emphasis
on overrepresented modes. However, if Dp(G(z)) is close to zero during training, as often happens
with GANs since D has an easier task than G, there will be little difference in practice.

We use the following linear interpolations of the MM-GAN and NS-GAN cost functions,
parametrized by a which determines the weight of each term:

∇θJGNS+MM(a) = (1− a) · ∇θJGNS + a · ∇θJGMM

∇θJGNS+MM-nsat(a) = (1− a) · ∇θJGNS + a · ∇θJGMM-nsat

(24)

Due to the MM-GAN and NS-GAN scaling factors (see fig 2), we expect linear combinations of
MM-GAN and NS-GAN to be dominated by the non-saturating term, since Dp(G(z)) tends to be
small when training GANs unless D is strongly regularized. On the other hand, using our modified
MM-nsat approximately balances the gradient norm for each term, such that the behavior of linear
combinations should correspond to the weighting of the NS-GAN and MM-nsat terms.

Figure 15 shows results using linear combinations of NS-GAN, MM-GAN and MM-nsat for G’s
cost. Results for NS-GAN and MM-nsat are as shown in the main text in figure 8. The behavior
for NS-GAN and MM-nsat interpolations is most straightforward, with numerical results falling
inbetween the pure NS-GAN and MM-nsat variants with roughly the degree of separation suggested
by their weighting constants. Since NS-GAN and MM-nsat have approximately equal gradient
magnitudes for all values of Dp(G(z)), the contributions from each term are predictable.

For NS-GAN and MM-GAN interpolations, behavior is less consistent and more similar to NS-
GAN. This is reasonable, seeing as NS-GAN and MM-GAN have scaling factors 1 − Dp and Dp

respectively, such that the two terms are effectively weighted both explicitly by the weighting con-
stant and implicitly by whatever the values of Dp(G(z)) happen to be during training. Note that if
D completely fails to discriminate between real and generated samples, it can minimize its cost by
making Dp(x) = Dp(G(z)) = 0.5, such that NS-GAN’s scaling factor will almost always be larger
than that of MM-GAN.

For the FC-4 results, note that even a 9
10 weighting for MM-GAN still gives behavior qualitatively

similar to NS-GAN: the early stopping metrics are much better than for pure NS-GAN and the mode
collapsing behavior is delayed, but the final metrics are worse both in terms of FID and DJSCD even
than for the 1

3 -weighted MM-nsat. Generally, Huszár’s suggestion of adding together the NS-GAN
and MM-GAN leads to somewhat improved results, but does not come close to stability and mode
coverage achieved by MM-nsat. Compare also to the divergences shown in eq 3.
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Figure 15: Left: FID, an estimated distance between generated and real data based on Inception
activations. Right: DJSCD, the Jensen-Shannon divergence between class distributions in generated
and real data. For various networks using the MNIST and CIFAR-10 datasets, we plot the median
values for ten runs during training. The shaded area indicates maximum and minimum values. Costs
are the traditional MM-GAN and NS-GAN (Goodfellow et al., 2014), as well as our MM-nsat from
eq 6 and linear combinations as given in eq 24.
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O SCALING FACTOR EXPERIMENTS

In section 2.1, we show that the gradients for the MM-GAN and NS-GAN generators have different
scaling factors:

∇θJGMM = −∂Dl(G(z, θ))

∂θ
·Dp(G(z, θ))

∇θJGNS = −∂Dl(G(z, θ))

∂θ
· (1−Dp(G(z, θ)))

(25)

In section 2.3, we suggest that the different emphasis this places on under- and oversampled modes is
the reason for the more zero-avoiding and mode-covering behaviors of NS-GAN and MM-GAN. To
test this hypothesis, we can modify the scaling factors and see whether we get the expected change
in behavior. The linear interpolations used in section N probe the same effect in a less direct manner.

While we expect the importance of the scaling factors to depend on the relative weights they assign
to different scoring samples, it is not clear which relationships are most crucial. The difference
between MM-GAN and NS-GAN is most pronounced for low- and high-scoring samples, but the
important difference might very well be the relative weights of two samples with different, low
scores.

A simple way to modify the NS-GAN gradient is to add a constant a to the scaling factor:

∇θJGNS-add-a = −∂Dl(G(z, θ))

∂θ
· (1−Dp(G(z, θ)) + a) (26)

Which is obtained by the following single-sample cost function:

JGNS-add-a = JGNS − a ∗Dl (27)

Renormalizing the total gradient magnitude in the same way as for MM-nsat, we get the following
cost function:

∇θJbatch
GNS-add-a

=
1−Dp

a+ 1−Dp

N−1∑
i=0

∇θ(JGNS(zi)− a ∗Dl(zi)) (28)

And similarly for MM-GAN:

∇θJbatch
GMM-nsat-add-a

=
1−Dp

a+Dp

N−1∑
i=0

∇θ(JGMM(zi)− a ∗Dl(zi)) (29)

These cost functions are only reasonable for a ≥ 0, such that we avoid negative scaling factors for
samples. For increasingly large values of a, sample weights effectively become uniform across the
whole range of possible scores.

Since these modifications only allow us to make MM and NS less extreme and more similar to each
other, we also try a different approach, introducing a exponentiation parameter c for the scaling
factor:

∇θJGNS-exp-c = −∂Dl(G(z, θ))

∂θ
· (1−Dp(G(z, θ)))c (30)

The general solution of this differential equation can be expressed in terms of the hypergeometric
function, which does not lend itself to efficient computation. However, specific values of c give rise
to useful cost functions. As before, we consistently renormalize the gradient magnitude to that of
NS-GAN:

Jbatch
GNS-exp-2

=
1

1−Dp

N−1∑
i=0

∇θ(JGNS(zi)−Dp(zi)) (31)

Jbatch
GMM-nsat-exp-2

=
1−Dp

Dp
2

N−1∑
i=0

∇θ(JGMM(zi) +Dp(zi)) (32)

Jbatch
GNS-exp-0.5

= (1−Dp)
1
2

N−1∑
i=0

∇θ(2 log(
√
e−Dl +

√
e−Dl + 1)) (33)
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Jbatch
GMM-nsat-exp-0.5

=
1−Dp

Dp

1
2

N−1∑
i=0

∇θ(−2 log(
√
eDl +

√
eDl + 1)) (34)

Renormalizing the overall gradient magnitude goes a long way towards stabilizing the adversarial
training dynamics for these cost functions. However, overemphasis on oversampled modes tends to
accelerate catastrophical mode collapse. Furthermode, expressions such as log(

√
eDl)) are numeri-

cally unstable for large values of |Dl|.
Results using these variant cost functions are shown in figure 16. The add-variants have very clean
behavior, all falling in between NS and MM-nsat in terms of FID and DJSCD, in the same order as
suggested by their more uniform scaling factors. The exp-variants are more erratic, with NS-exp-2
having major stability issues and MM-nsat-exp-2 falling off later in training for CIFAR-10 Conv-4.
Aside from these points, results correspond with our theoretical expectations.

Perhaps the most striking result is the strong performance of the MM-nsat-exp-2 cost function. This
strange variant is designed simply to have a more extreme version of the minimax scaling factor,
which we expect to further temper the the mode-dropping mechanism described in section 2.3.
Indeed, it generally improves performance relative MM-nsat.

Finally, we note that all the MM-nsat-add variants tend towards stronger mode collapse than the
MM-nsat-exp variants, regardless of the choice of parameter. We suggest the following explanation
for this behavior: Consider two generated samples, both such that Dp(G(z)) is close to 0. With NS
sample weighting or with MM-nsat-add variants, the relative weights of these samples will be close
to 1, simply because a small Dp is negligible relative to the additive constants. With MM sample
weighting and MM-nsat-exp variants, on the other hand, relative weights have a strong dependence
the exact values of Dp for each sample and may be orders of magnitude apart.
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Figure 16: Left: FID, an estimated distance between generated and real data based on Inception
activations. Right: DJSCD, the Jensen-Shannon divergence between class distributions in generated
and real data. For various networks using the MNIST and CIFAR-10 datasets, we plot the median
values for ten runs during training. The shaded area indicates maximum and minimum values. Mod-
ified cost functions behave as predicted by their scaling factors according to theory in section 2.3.
In particular, MM-nsat-exp-2, using a scaling factor with even more emphasis on underrepresented
modes, achieves better values of FID and DJSCD than the more standard cost functions.
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P HINGE-GAN AND LS-GAN

To supplement our results for NS-GAN and MM-GAN variants in section 4.2, we choose to run ex-
periments with the LS-GAN (Mao et al., 2016) and Hinge-GAN (Miyato et al., 2018) formulations.
As these only require the cost functions themselves to be modified, they can be compared directly to
NS-GAN and MM-nsat. Note that we do not adjust network architectures or hyperparameters from
the default settings we use across all experiments, such that results are more indicative of general
stability than best-case performance.

The widely used WGAN (Arjovsky et al., 2017) formulation requires additional regularization to
prevent D’s outputs from diverging, most commonly a 1-centred gradient penalty on interpolations
between real and generated data (Gulrajani et al., 2017). This makes it difficult to draw fair compar-
isons. Hinge-GAN is very similar to WGAN, but simply clips D’s cost outside of the (0, 1) interval
and is known to produce strong results in for instance BigGAN (Brock et al., 2018).

P.1 MNIST AND CIFAR-10 RESULTS

Figure 17 shows results, as in figure 8 in the main text, but with a different set of cost functions.
Figure 1 includes a subset of these plots. For the bottom figure, note the use of spectral normalization
and a much smaller interval of FID values than the other plots. As for NS-GAN and MM-nsat, we
have not adjusted networks

Generally speaking, Hinge-GAN performs better than NS-GAN but worse than MM-nsat and suffers
from some of the same gradual mode collapse issues as NS-GAN. Where Hinge-GAN and MM-nsat
are most similar in terms of FID, MM-nsat tends towards better class balance. LS-GAN performs re-
markably well for MNIST Conv-4, but is otherwise unimpressive and suffers the most from stability
issues.

P.2 GRADUAL MODE COLLAPSE FOR HINGE-GAN AND LS-GAN

Interestingly, the results in figure 17 suggest that the behavior of gradual mode collapse seen for
NS-GAN and explained in section 2.3 is not specific to NS-GAN. This is most clear for Hinge-
GAN, which in a qualitative sense follows the same trajectory as NS-GAN in terms of both FID and
DJSCD, but with better numerical results overall. For LS-GAN, we see similar tendencies, but its
behavior is much more erratic overall, including very poor early stopping results for MNIST FC-4
and very strong results for CIFAR-10 Conv-4, even beating MM-nsat.
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Figure 17: Left: FID, an estimated distance between generated and real data based on Inception
activations. Right: DJSCD, the Jensen-Shannon divergence between class distributions in generated
and real data. For various networks using the MNIST and CIFAR-10 datasets, we plot the median
values for ten runs during training. The shaded area indicates maximum and minimum values. NS is
Goodfellow’s non-saturating cost; MM-nsat is from eq 6; Hinge and LS are alternative formulations
for comparison, which use different costs for both D and G.
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Q SAMPLE WEIGHTING AND MODE DROPPING FOR OTHER GAN FORMULATIONS

In section 2.3, we suggest that the mode dropping tendencies of NS-GAN can be understood as a
consequence of how overrepresentation and upweighting interact, allowing generated samples from
a small region of the data space to dominate G’s parameter updates. In this section, we discuss the
wider implications of this effect.

Note in particular the following figures showing relevant empirical results, with additional discus-
sion in the subsections:

• MM-GAN and NS-GAN variants: fig 8
• MM-GAN and NS-GAN linear combinations: fig 15
• MM-GAN and NS-GAN scaling factor modifications: fig 16
• Hinge-GAN and LS-GAN comparisons: fig 17 and fig 21

The key result from these experiments is that the relationship between upweighting of overrepre-
sented samples and gradual mode dropping is robust across a variety of changes in sample weight-
ing, both implicitly (linear combinations) and explicitly (scaling factor modifications). Increasingly
upweighting scaling factors give increasingly mode dropping behavior. Furthermore, Hinge-GAN
and LS-GAN suffer from mode dropping behavior which is similar to that of NS-GAN in a qual-
itative sense: this is consistent for Hinge-GAN, while LS-GAN is more erratic and suffers from
stability issues.

In section 2.3 we only discuss the scaling factors of NS-GAN and MM-GAN, which respectively
upweight and downweight overrepresented samples. To understand the effect of scaling factors in
general, it is instructive to consider the linear combination 1

2NS + 1
2MM in figure 15. Its scaling

factor is simply 1
2 (1 − Dp(G(z))) + 1

2Dp(G(z)) = 1
2 : in other words, it neither upweights or

downweights samples.

Despite its uniform sample weighting, the linear combination 1
2NS + 1

2MM still has mode dropping
tendencies, though it is less blatant than for NS-GAN. This is expected from our theory in section
2.3: MM-GAN downweights overrepresented samples to compensate for their overrepresentation.
Uniform weighting, while better than NS-GAN upweighting, does not avoid the mode dropping
effect, because overrepresentation on its own is enough to cause gradual mode dropping.

While it is difficult to make general claims about how sample weighting relates to mode dropping
for other GAN formulations in general, we can consider Hinge-GAN which has simple cost func-
tions: its generator has the same uniform sample weighting as the linear combination 1

2NS + 1
2MM

discussed above, and its discriminator also has clipped, uniform sample weighting, unlike the error-
emphasizing cross entropy loss for MM-GAN and NS-GAN. While the Hinge-GAN discriminator
will behave differently during training, it does not give Hinge-GAN any mechanism for downweight-
ing overrepresented samples, explaining the mode dropping behavior seen in our results.

MM-GAN’s form of downweighting is highly unusual. Note that we mean overrepresentation of
generated samples relative to real samples: MM-GAN downweights realistic samples that are gen-
erated too often. However, it also downweights highly unrealistic samples, since these will be
overrepresented by virtue of falling in regions where the density of real samples is negligible. This
downweighting is a liability early in training, because it tends to cause saturation problems when D
learns to assign very low values of Dp to G’s unrealistic samples. Note results in section O, which
indicate that strong downweighting is necessary to stabilize the overrepresentation effect.

This means that cost functions which properly downweight overrepresented samples will generally
fail to train unless care is taken to decouple overall gradient magnitude (determining saturation)
from sample weighting (determining mode dropping).
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R DISCRIMINATOR REGULARIZATION

Figure 18: Scatter plot DJSCD vs FID for 4-layer convolutional networks on CIFAR-10, using MM-
nsat and NS cost functions. We regularize D with zero-centred real data gradient penalty, sweeping
across different values of the weighting constant λ used in D’s cost function, and train for 1000
epochs. Each dot represents a single run, while the larger circles show the mean value for the
twenty different runs for each value of λ. The dotted lines indicate each cost function’s trajectory
for increasing values of λ. With very weak regularization, MM-nsat is far stronger than NS, but
for increasingly strong regularizations, the two costs converge in terms of performance. Their best
results (λ = 100) are similar and match weakly regularized MM-nsat in terms of FID, but with
improved class balance. Performance progressively degrades with stronger regularization.

Figure 18 shows results for MM-nsat and NS cost functions when combined with zero-centred real
data gradient penalty (Mescheder, 2018). See also results for spectral normalized networks at the
bottom in figures 8 and 17, where results are much more similar than in the unregularized case: this
still holds true with different cost functions and a different form of regularization. This is essentially
a special case of an effect shown in Qin et al. (2018), that all strongly regularized cost functions
degenerate into the same behavior.

The key result is how strong regularization makes the performance of MM-nsat and NS (and other
cost functions) much more similar. Some form of regularization is often used to obtain strong results,
since the introduction of various forms of gradient penalties such as the one used in WGAN-GP
(Gulrajani et al., 2017) and spectral normalization (Miyato et al., 2018).

Discriminator regularization has many effects, such as reducing the ability ofD to learn quickly and
smoothing the landscape of D’s outputs. It is difficult to fully understand how it affects the training
process for GANs. Generally speaking, limiting the Lipschitz value of D (as is done explicitly by
spectral normalization and partially by zero-centred real data gradient penalty) flattens the shape of
D and ultimately limits the difference between the outputs for real and generated data. It follows
that assuming thatD ≈ Dopt as given by eq 7 is less reasonable for a regularized discriminator, such
that the effect discussed in section 2.3 will be less pronounced.
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As discussed in section 2.1, the difference between MM-GAN and NS-GAN is only in the scaling
factors, Dp and 1−Dp respectively. Strong regularization effectively squeezesDp towards 0.5: this
makes Dp and 1−Dp more similar, and thus also MM-nsat and NS, as seen in fig 18. For the runs
we have plotted, regularization vastly improves the results for NS, but the benefits for MM-nsat are
much more limited. The common default value of the weighting for the gradient penalty, λ = 101,
is actually somewhat harmful for MM-nsat compared to the unregularized case, and looking only at
values for this regularization gives the misleading impression that NS is stronger than MM-nsat.

We consider a more thorough discussion of this problem out of scope for this work, but suggest that
it might explain the fairly similar results for MM-nsat and NS when applied to the StyleGAN model
(see W). Absent a better understanding of the interactions between discriminator regularization and
cost functions, hyperparameters for regularization terms should be tested extensively when applying
MM-nsat.
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S RING OF GAUSSIANS

The ring of Gaussians toy problem has a number of degrees of freedom, both for the dataset (number
of modes, number of standard deviations of separation) and the model (architecture, batch size,
training iterations). There are settings where both MM-GAN and NS-GAN cover or drop modes
and significant variation between individual runs. We do not present a thorough analysis of this
problem: in the main text, we use settings chosen to obtain the same qualitative NS-GAN behavior
as shown in Metz et al. (2016); Srivastava et al. (2017).

To give some impression of the diversity of possible behaviors and the usual differences between
NS-GAN and MM-GAN, we include results for a more challenging toy problem in figure 19 and
table 3. In this case, where NS-GAN drops only some modes, we again find that MM-GAN has
qualitatively better mode coverage. Furthermore, frequencies of samples from each mode is much
better aligned with real data for MM-GAN than for NS-GAN. Interestingly, while NS-GAN places
particular emphasis on avoiding generated samples outside of the real data manifold, more samples
fall outside of the real data modes for NS-GAN than for MM-GAN.

Figure 19: Real and generated samples on modified 2D mixture of Gaussians: modes ordered along
an expanding spiral from the origin, making in excess of two revolutions. Density of modes increases
along this spiral. In blue, NS-GAN. In red, samples using the unmodified MM-GAN cost function.
MM-GAN trains well on this toy problem despite its saturating cost function and shows decent
coverage of all modes. Cross-reference with table 3.

Table 3: Densities for each mode for generator with 3-layer fully connected networks. Samples are
classified as belonging to the closest real data mode if it is within 3 standard deviations of any mode,
otherwise as belonging to no mode.

Mode frequency in %
Mode None 1 2 3 4 5 6 7 8 9 10 11 12

Cost
NS 4.3 1.4 8.6 12 1.0 0.6 0.6 0.0 0.0 25 19 27 1.2
MM 2.5 2.7 2.5 3.3 6.8 5.5 8.0 7.8 8.6 11 13 14 15

Data - 2.0 3.1 4.3 5.4 6.6 7.7 8.9 10 11 12 13 15
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Figure 20: Scatterplots DJS vs FID with trendlines for 20 training runs, using linear combinations
of the NS and MM-nsat costs (eq 24), on the MNIST-1K dataset created by combining triplets of
samples from MNIST into 3-channel RGB images. Left: zero centred gradient penalty and spectral
normalization. Right: no spectral normalization and relaxed zero centred gradient penalty.

T MNIST-1K

We run tests on the Stacked MNIST dataset (Metz et al., 2016) (also known as MNIST-1K), in order
to get a more demanding and multi-modal training task where we can still classify generated sam-
ples. The samples in this dataset are obtained by combining three samples from MNIST to represent
each of the three color channels for an RGB image. We find a variety of network architectures dif-
ficult to train for any of our cost functions and resort to regularizing D. We show results in figure
20: in both cases, differences between linear combinations are minor. For the most heavily regular-
ized model, there is no clear trend. Removing spectral normalization and relaxing the zero centred
gradient penalty improves the models and makes them slightly more different, recovering the usual
ordering in terms of DJS.
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Figure 21: FID during training for ten runs on CAT 1282 with two different network architectures.
Left: 6-layer convolutional networks. Right: DCGAN with batch normalization as well as spectral
normalization for D. For both architectures, only MM-nsat trains reasonably well, while NS-GAN,
Hinge-GAN and LS-GAN all have major stability issues due to early, catastrophical mode collapse.

U CAT 1282

We run tests with CAT 1282 (Zhang et al., 2008), chosen as a reasonably difficult dataset which is
still amenable to simple network architectures. FID during training for two architectures is shown
in figure 21, emphasizing training stability. Figures 22a and 22b show samples for DCGAN with
spectral normalization for D and self attention: these are shown cropped in the main text in figure
7. Figures 22c, 22d and 22e show samples for other network architectures. Note that samples are
JPEG compressed.

We find that MM-unit and MM-nsat perform much better than NS in this setting. In particular, we
find that the failure mode of NS cannot be addressed by early stopping in these experiments, unlike
for MNIST, where NS tends to produce better results early on and mode dropping is mostly due to
extended training (see figure 8). For CAT 1282, catastrophical mode collapse tends to happen before
G has learned to produce reasonable samples. MM-nsat is much less susceptible to this failure mode
than NS. As usual, results are most similar with regularized discriminator.
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Figure 22a: Early stopping samples from best NS run for CAT 1282 using DCGAN with spectral
normalization in the discriminator and self-attention (as in main text).
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Figure 22b: Early stopping samples from worst MM-nsat run for CAT 1282 using DCGAN with
spectral normalization in the discriminator and self-attention (as in main text).

40



Under review as a conference paper at ICLR 2021

Figure 22c: Final CAT 1282 samples for Conv-6 networks for 4 random runs. Left: NS. Right:
MM-nsat.
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Figure 22d: Final CAT 1282 samples for Conv-6-sn networks for 4 random runs. Left: NS. Right:
MM-nsat.
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Figure 22e: Final CAT 1282 samples for DCGAN-bn-sn networks for 4 random runs. Left: NS.
Right: MM-nsat.
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V FFHQ AT VARIOUS RESOLUTIONS

Figure 23 shows results for training simple convolutional GANs on the FFHQ dataset downsampled
to various resolutions, comparing NS-GAN and MM-nsat. The differences between the two cost
functions are generally as seen in other experiments. Aside from the decent early stopping results for
NS-GAN even at high resolutions the and relatively strong performance of MM-nsat even at 5122

resolution with very unsophisticated network architectures, these results only replicate previously
discussed effects. Figure 24 shows samples from training at 5122, showcasing the mode collapsing
behavior that causes FID to increase. Note that samples are JPEG compressed.

Figure 23: FID, an estimated distance between generated and real data based on Inception activa-
tions. For various resolutions using the FFHQ dataset, we plot the median values for three runs
during training. The shaded area indicates maximum and minimum values. Results for FFHQ
10242 has been left out: neither MM-nsat or NS-GAN achieve FID values meaningfully better than
randomly initialized networks. For resolutions from 322 to 5122, training collapse is universal for
NS-GAN while MM-nsat is stable and achieves similar FID for low resolutions and much better FID
for high resolutions.
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(a) NS-GAN: 200 epochs (pre-collapse) (b) NS-GAN: 250 epochs (post-collapse)

(c) NS-GAN: 1000 epochs (final samples) (d) MM-nsat: 1000 epochs (final samples)

Figure 24: FFHQ 5122 samples for 9-layer convolutional networks. Subfigures (a-c) show NS-
GAN’s early stopping performance, its abrupt, catastrophical mode collapse and its final, nonsensi-
cal samples. Subfigure (d) shows final samples for MM-nsat, which fall well short of photo-realism,
but are of higher quality than the NS-GAN early stopping samples and fairly good given the exceed-
ingly simple network architecture.
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Table 4: FFHQ FID values using StyleGAN, comparing results from retraining the original imple-
mentation on 4 GPUs at full and lowered resolution, with results obtained by replacing NS loss with
MM-nsat without any additional tuning. Cross-reference with figure 25 showing samples.

Settings Final FID Best FID

10242 NS 4.2887 3.9354
10242 MM-nsat 6.1292 5.9294

2562 NS 5.6232 5.4288
2562 MM-nsat 6.2375 5.3844

W STYLEGAN

We run experiments training StyleGAN (Karras et al., 2018), replacing the traditional NS loss used
in the original implementation with our MM-nsat. Due to available resources, we train each model
using only 4 GPUs. We make no other adjustments. We show results in table 4 and figures 25a and
25b.

The primary result from these tests is that MM-nsat performs reasonably well, albeit worse than
NS-GAN, as a drop-in replacement in a sophisticated, state of the art implementation. In the full
resolution case, which is carefully optimized by the original authors (for instance learning rate ad-
justments throughout training and a specific value of truncation for the latent input for G), NS
achieves much better FID and MM-nsat samples seem to have more artifacts. For the lower resolu-
tion case, which is a somewhat more fair comparison, FID values are closely matched: NS gets the
best final value, whereas MM-nsat has the best early stopping value.

Notably, StyleGAN uses zero centred gradient penalty and minibatch standard deviation features
in D (see R). Both of these can serve to limit the failure modes we have shown for NS-GAN. For
StyleGAN, coverage is limited, particularly for the latent truncation settings that achieve the best
FID (Kynkäänniemi et al., 2019), and visual quality of samples is the first priority.

Implementing MM-nsat for StyleGAN requires some minor modifications, which essentially consist
of accumulating values of Dp from parallels in the same way the original implementation does for
gradients and rescaling the total gradient before passing it back to the parallels to update parameters
for each network clone.
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(a) 10242 NS: FID = 4.2887

(b) 10242 MM-nsat: FID = 6.1292

Figure 25a: FFHQ samples using StyleGAN. Samples selected at random. Overall, MM-nsat sam-
ples are somewhat less convincing, especially when viewed in full size.
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(a) 2562 NS: FID = 5.6232

(b) 2562 MM-nsat: FID = 6.2375

Figure 25b: Lower resolution FFHQ samples using StyleGAN. Samples selected at random. We
find no obvious differences in visual quality.
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