
PRompt Optimization in Multi-Step Tasks (PROMST):
Integrating Human Feedback and Preference Alignment

Anonymous ACL submission

Abstract

Prompt optimization aims to find the best001
prompt to a large language model (LLM) for a002
given task. LLMs have been successfully used003
to help find and improve prompt candidates for004
single-step tasks. However, realistic tasks for005
agents are multi-step and introduce new chal-006
lenges: (1) Prompt content is likely to be more007
extensive and complex, making it more difficult008
for LLMs to analyze errors, (2) the impact of an009
individual step is difficult to evaluate, and (3)010
different people may have varied preferences011
about task execution. While humans struggle012
to optimize prompts, they are good at providing013
feedback about LLM outputs; we therefore in-014
troduce a new LLM-driven discrete prompt op-015
timization framework that incorporates human-016
designed feedback rules to automatically offer017
direct suggestions for improvement. We also018
use an extra learned heuristic model that pre-019
dicts prompt performance to efficiently sample020
from prompt candidates. This approach sig-021
nificantly outperforms both human-engineered022
prompts and several other prompt optimization023
methods across 11 representative multi-step024
tasks (an average 10.6%-29.3% improvement025
to current best methods on five LLMs respec-026
tively). We further show that the score function027
for tasks can be modified to better align with028
individual preferences. We believe our work029
can serve as a benchmark for automatic prompt030
optimization for LLM-driven multi-step tasks.031

1 Introduction032

The performance of large language models (LLMs)033

on a given task is sensitive to the prompt, so prompt034

engineering aims to create prompts that fully lever-035

age the capabilities of LLMs. Due to the lack of036

access to model parameters for black-box LLMs,037

techniques for automatic prompt optimization have038

primarily focused on searching over the vast dis-039

crete space of tokenized language inputs (Cheng040

et al., 2023). Recent studies have shown that LLMs,041

combined with evolutionary algorithms, can help042

with this search by reasoning over errors made us- 043

ing existing prompts to suggest edits or generate 044

new candidate prompts (Pryzant et al., 2023; Wang 045

et al., 2023; Yang et al., 2023). These approaches 046

have been evaluated on relatively simple one-step 047

tasks, such as mathematical calculations (Roy and 048

Roth, 2016; Cobbe et al., 2021), instruction in- 049

duction (Honovich et al., 2022), and factual analy- 050

sis (Wu et al., 2023b). The associated prompts are 051

also relatively short, usually one to three sentences. 052

In this work, we aim to optimize prompts for 053

LLM-driven agents solving multi-step tasks and 054

propose a method called PRompt Optimization in 055

Multi-Step Tasks (PROMST). In these tasks, an 056

LLM is used to decide a system’s actions (e.g., vir- 057

tual software Wu et al. 2023a; Zhou et al. 2023a or 058

real robots Chen et al. 2023a; Firoozi et al. 2023) 059

as it interacts with an environment over multiple 060

steps (Abdulhai et al., 2023). Engineering good 061

prompts is hard due to the typical prompt length 062

(300+ tokens) and individual task constraints and 063

rules. Further, human preferences can introduce 064

slight changes to how the task is scored, resulting 065

in notably different optimal prompts. The prompts 066

needed for multi-step tasks are more complex and 067

it is hard to judge the long-horizon correctness of a 068

single action. This difficulty hinders LLMs from 069

automatically reasoning over errors and producing 070

better prompts, which in turn reduces the effec- 071

tiveness of current methods for automated prompt 072

optimization. As a result, prompt optimization in 073

multi-step tasks is still an open challenge. 074

Considering that humans excel in analyzing er- 075

rors and incorporating relevant domain knowledge 076

into feedback, we formalize PROMST as a frame- 077

work involving human input, as shown in Figure 1. 078

Here, during the multi-step agent-environment in- 079

teractions, the agent (indicated by ’TaskLLM’ in 080

Figure 1) sometimes makes errors and fails the task. 081

While some work has used LLMs to evaluate errors, 082

we instead use human-designed feedback rules con- 083

1

structed a priori that address different types of er-084

rors. Depending on the error, feedback is automati-085

cally generated and passed as additional context to086

an LLM that is responsible for producing a new set087

of candidate prompts (indicated by ’PromptLLM’088

in Figure 1). We also use human-designed rules089

as part of the evaluation for each task; a score is090

assigned to each prompt indicating the agent’s task091

performance given that prompt. Since the evalua-092

tion of many candidate prompts for multi-step tasks093

in environments can be expensive, we fine-tune a094

score prediction model online using prompt-score095

pairs which can be used as a heuristic to select a096

subset of the candidate prompts to evaluate.097

Our experiments in 11 tasks show that the in-098

tegration of human feedback and the score model099

greatly improves the prompt optimization process100

(10.6%-29.3% relative improvements over all base-101

line methods across different LLMs). Prompts op-102

timized by PROMST achieve the best performance103

on most tasks. We further show that the human-104

designed evaluation rules can be used to help align105

task performance with human preferences.106

In summary, our contributions are threefold: (1)107

To our best knowledge, PROMST is the first to108

explore automatic prompt optimization in multi-109

step agent tasks. We release all codes and prompts110

for 11 multi-step environments, which may serve111

as a benchmark for future research. (2) We show112

that the integration of human feedback and a fine-113

tuned score model outperforms existing methods114

across various tasks and LLMs. (3) We show that115

human-designed rules for task evaluation can help116

align optimized prompts with human preferences.117

2 Related Work118

Prompt Optimization To improve performance119

of black-box API models, it is useful to engineer120

the discrete prompts for downstream tasks. Various121

’best practices’ have emerged for human-designed122

task prompts, such as including examples (Brown123

et al., 2020) or promoting reasoning chains (Ko-124

jima et al., 2022; Wei et al., 2022). However,125

manually designing prompts requires extensive hu-126

man trial-and-error and is sub-optimal; thus, many127

recent works focus on automating this process.128

Some methods approximate the gradients (Diao129

et al., 2022) or emulate them via natural language130

(Pryzant et al., 2023). Others use edit operators to131

modify an initial prompt, driven either by reinforce-132

ment learning (Zhang et al., 2023) or score-guided133

search (Prasad et al., 2023). To help balance ex- 134

ploration and exploitation of prompts, several ap- 135

proaches have used LLM-driven evolution (Guo 136

et al., 2023a; Fernando et al., 2023; Ma et al., 2023; 137

Ye et al., 2023). In several works, LLMs are di- 138

rectly used to generate prompt candidates (Zhou 139

et al., 2023b) often with feedback about parent 140

prompts (Wang et al., 2023; Ma et al., 2023). 141

LLM Based Agents for Multi-Step Tasks 142

There are many recent works that use LLMs for 143

multi-step planning. LLMs are used to interact 144

with softwares and websites (Ma et al., 2024; Wu 145

et al., 2023a; Zhou et al., 2023a), plan robot actions 146

(Chen et al., 2023b; Ahn et al., 2022; Huang et al., 147

2022a; Ma et al., 2023; Aghzal et al., 2023), and 148

connect to external tools (Liu et al., 2023; Chen 149

et al., 2023a; Qin et al., 2023). All these multi-step 150

tasks require careful design of lengthy prompts to 151

capture all the constraints and requirements. 152

LLM Self-reflection from Feedback In plan- 153

ning domains, it is useful to provide feedback 154

about syntactic errors (Silver et al., 2023; Skreta 155

et al., 2023), potential infinite loops (Silver et al., 156

2023), inadmissible actions (Huang et al., 2022a; 157

Lin et al., 2023), failed action execution (Huang 158

et al., 2022b), and generated trajectories (Chen 159

et al., 2023a). Other recent work has shown that 160

LLM-generated feedback via self-evaluation can 161

improve performance on a variety of tasks (Yang 162

et al., 2022; Welleck et al., 2022; Madaan et al., 163

2023), including prompt engineering (Wang et al., 164

2023) and reinforcement learning (Shinn et al., 165

2023; Ma et al., 2023). Our work also uses au- 166

tomated feedback with human-designed categories 167

and responses. 168

3 Methodology 169

3.1 Problem Formulation 170

Given a base LLM B and a target task T , the goal 171

of prompt optimization is to craft an optimized 172

natural language prompt P that maximizes the per- 173

formance of B on T . Here the prompt P consists 174

of multiple components, such as a task description, 175

scoring rules, and safety constraints. In multi-step 176

tasks, the state information of the environment at 177

each step will be transformed into a text string S 178

and provided to the LLM B to make decisions. The 179

history of state (S), action (a), and environment 180

feedback (e) will also be reported to LLM. For the 181

ith trial on a particular task, the probability of an 182

2

Figure 1: The PROMST framework. Given an initial human-designed prompt and the state of the
environment for the current task, the TaskLLM iteratively generates an action and executes it until either
an error occurs or the task is complete. Human-designed feedback rules automatically generate feedback
about errors that is then provided as context to the PromptLLM when generating new prompt candidates.
The task performance is scored according to a human-designed score function; this score can be used with
the prompt to train a score prediction model online. Given new prompt candidates, this score prediction
model is used to select a subset of candidates to evaluate for the next generation.

action sequence [ai,1, ai,2, ..., ai,j] is:183

pB([ai,1, ai,2, . . . , ai,j]) =

j∏
k=1

pB(ai,k|Si,k, P,

Si,k−1, ai,k−1, ei,k−1, . . . ,

Si,1, ai,1, ei,1)
(1)184

The sequence [ai,1, ai,2, ..., ai,j] is executed in185

the task environment and assigned a score based186

on human-designed rules or functions R. The goal187

of prompt optimization is to find the optimal nat-188

ural language prompt P ∗ that maximizes a score189

function R:190

P ∗ = arg max
P∈A

∑
i

R(pB([ai,1, ai,2, ..., ai,j])),

(2)191

where A denotes the vast and complex space of all192

possible natural language prompts.193

3.2 PROMST Framework194

Figure 1 illustrates the general framework of195

PROMST. The goal is to more efficiently and196

strategically search over the vast space of possible197

prompts while integrating human-designed feed-198

back of candidate prompt performance. LLMs199

are used in two key steps of PROMST: (1) the200

execution of the task via the current candidate201

prompt (’TaskLLM’) and (2) the generation of new202

candidate prompts given any available feedback203

about the current prompt’s performance on the task204

(’PromptLLM’). We refer to a single execution of a 205

task as a trial. In each trial, the TaskLLM executes 206

the task over multiple rounds of interaction with 207

the environment; for each round, the TaskLLM is 208

provided both the current candidate prompt and the 209

current trial’s execution history and generates the 210

next action for the agent to take. Task execution 211

terminates when an error is detected or the task is 212

complete. The candidate prompt P is assigned a 213

score for that trial via the human-designed score 214

function. Each candidate prompt is evaluated over 215

multiple trials in which the initial task state (e.g. 216

number of objects, number of agents) is varied, re- 217

sulting in a final average score. Once the candidate 218

prompts have all been evaluated and assigned auto- 219

matic feedback, the top performers are selected as 220

parents for a new generation of candidate prompts. 221

The PromptLLM uses each parent prompt and its 222

feedback to generate new candidate prompts. This 223

process is also described in Algorithm 1 in Ap- 224

pendix B. Note that the evolutionary algorithm, 225

which has been explored by recent works (Guo 226

et al., 2023b; Pan et al., 2023), is not the focus of 227

this study. 228

Score Prediction Model In general, produc- 229

ing more candidate prompts per generation allows 230

for more exploration over the space of possible 231

prompts; however, there is a trade-off between the 232

number of candidates per generation and the cost of 233

evaluation, and multi-step tasks can be much more 234

3

expensive to evaluate (we query the TaskLLM for235

each next action). To help mitigate the evalua-236

tion cost for a generation, we learn a score predic-237

tion model online that functions as a heuristic with238

which to choose a subset of the generated candidate239

prompts for actual evaluation.240

Algorithm 2 in Appendix B shows the process
of implementing the score prediction model as a
heuristic for filtering candidate prompts. We fine-
tune a task-specific bidirectional Longformer-base
(148M) (Beltagy et al., 2020) model. The prompt-
score pairs on which we fine-tune are collected
online during early iterations of PROMST; there-
fore, the score prediction model is not applied until
sdth generation, where sd is a hyperparameter. We
continue to update the learned model at each gen-
eration with the new prompt-score pairs. To miti-
gate variance, we fine-tune multiple models on five
rounds with the collected data following a random
4:1 train/test split. The generated prompt candidate
p′ will be selected for task evaluation if:

(3)E[Mk(p
′)] + Var[Mk(p

′)] + E[errork]
≥ hyper_M×max(D.score())

where E[Mk(p
′)] and Var[Mk(p

′) are the mean and241

variance of predicted scores for p′ from five models.242

The E[errork] is the average testing error of five243

score models. The max(D.score()) is the highest244

score of existing prompts. The hyper_M is the245

hyperparameter that controls the threshold.246

Human-Designed Feedback Rules During247

task execution, the TaskLLM may encounter an248

error, resulting in the task being terminated. It is249

useful for the PromptLLM to have context about250

this error when generating new prompt candidates.251

Since automatic error analysis via LLMs is diffi-252

cult for multi-step tasks (e.g. an agent stuck in an253

action loop), we instead use human-designed rules254

to automatically synthesize feedback, as shown in255

Figure 2. Some types of errors can be common256

across all tasks (e.g. syntactic errors), while others257

are task-specific. For types of human feedback in258

each task, see Appendix A.259

Candidate Prompt Generator We produce260

new candidate prompts from a parent prompt in261

two steps: (1) summarizing feedback via an LLM262

(’SumLLM’) and (2) generating new prompt candi-263

dates via an LLM provided with the summarized264

feedback as context (’GenLLM’). In order to en-265

courage exploration over more diverse candidate266

prompts, we randomly choose 10 instances of feed-267

Figure 2: Eight examples of human-designed feed-
back templates. The blue-colored text represents
the content specific to each instance of an error.

back. This random selection also likely promotes 268

more frequent errors. Given the selected feedback, 269

SumLLM produces a summary that is included as 270

context to GenLLM for generating new candidates. 271

See Algorithm 3 in Appendix B for another de- 272

scription of this process and Appendix C for the 273

meta-prompts used for SumLLM and GenLLM. 274

3.3 Baselines 275

We compare PROMST with six recent representa- 276

tive methods: Automatic Prompt Engineer (APE) 277

(Zhou et al., 2023b), Automatic Prompt Optimiza- 278

tion (APO) (Pryzant et al., 2023), PromptAgent 279

(Wang et al., 2023), LLM-As-Optimizer (Yang 280

et al., 2023), PromptBreeder (Fernando et al., 281

2023), and Evolutionary Prompt Optimizer (Guo 282

et al., 2023b). 283

APE and LLM-as-optimizer propose to itera- 284

tively ask the PromptLLM to generate new, se- 285

mantically similar prompts. Notably, errors appear- 286

ing in previous prompts are not fed back into the 287

search framework, hindering the correction of er- 288

rors in new prompts. To handle this issue, APO 289

queries an LLM to analyze errors for feedback into 290

the prompt generator LLM. PromptAgent further 291

augments the search efficiency by introducing a 292

selection mechanism that considers exploration- 293

exploitation trade-offs. PromptBreeder synthesizes 294

meta-prompts to the prompt generator LLM by ran- 295

domly concatenating thinking style prompts and 296

mutation prompts, thus enhancing the prompt di- 297

4

versity. Evolutionary Prompt Optimizer applies a298

similar idea and augments prompt diversity by reg-299

ularizing evolutionary algorithms such as genetic300

evolution and differential evolution. PROMST dif-301

fers from the previous works in that the feedback302

is generated by human-design rules and a score303

prediction model is used to more efficiently sample304

prompt candidates.305

4 Experiments306

Figure 3: An illustration of the 11 environments
used for multi-step task evaluation. See appendix D
for more details.

We evaluate the performance of each method307

on 11 different environments for multi-step tasks.308

The tasks have been used in other work: Webarena309

from Zhou et al. (2023a); Alfworld from Shrid-310

har et al. (2020); Scienceworld from Wang et al.311

(2022); BoxNet1, BoxNet2, BoxLift, and Ware-312

house from Chen et al. (2023b); Gridworld1 and313

Gridworld2 from Aghzal et al. (2023); Blocksworld314

and Logisitcs from Valmeekam et al. (2023). We315

implemented our own Gridworld1 and Gridworld2316

since the original code is not yet available. We317

initialize each optimization process with human-318

designed seed candidate prompts; where possible,319

we used the provided publicly available prompts320

for each method. In all cases, we set the LLM sam-321

pling temperature to 0. For each method, we report322

the score of the best performing prompt on each323

task; in this case, the score is computed as:324

S = num(goalsuccess)/num(goalall), (4)325

where the score S is the ratio of the number326

of successfully completed goals/sub-steps to the327

total number of goals/sub-steps. In Section 4.3, we 328

also preliminarily test the impact of changing the 329

scoring function S. 330

One interesting feature of these methods is that 331

the LLM used to execute the task (’TaskLLM’) 332

and the LLM used to generate new candidate 333

prompts (’PromptLLM’) do not need to be the same 334

model. We mainly test two combinations of mod- 335

els. The first uses GPT-3.51 as the TaskLLM and 336

GPT-42 as the PromptLLM, and the second used 337

GPT-4 for both the TaskLLM and PromptLLM. 338

To verify the effectiveness of PROMST in var- 339

ied models, we also evaluate it using Claude 3 340

Opus3, Mixtral-8x7B4, and Mixtral-Large5 as both 341

TaskLLM and PromptLLM. Mixtral-8x7B is an 342

open model, while all the others are closed. We 343

also explore whether the optimized prompts spe- 344

cialized for one type of LLM can generalize better 345

performance to other types of LLMs. 346

We also include an evaluation of the learned 347

score prediction model used in PROMST that tests 348

how well it predicts the scores for different prompts 349

and the relationship between the amount of training 350

data and the error in prediction. 351

4.1 Hyperparameters 352

For a fair comparison, all methods start the op- 353

timization from initial human-designed prompts. 354

The expansion number n is set to 20 in the first 355

level and 8 for all additional levels. In each level, 356

new prompt candidates are generated from the top 357

k = 5 current prompts. Search terminates once 358

the recent three levels do not have any score im- 359

provements. These settings ensure all the methods 360

explore the same number of prompt candidates at 361

the same level. In PROMST, the score model starts 362

being trained and applied from level 3, i.e., sd = 3. 363

We set hyper_M = 0.8 in Equation 3 to filter out 364

prompts with low scores. 365

4.2 Environments 366

We test on 11 multi-step tasks requiring strong 367

logical, geometrical, scientific, and commonsense 368

reasoning capabilities. In each environment, the 369

LLM agent should determine the next action in 370

1https://platform.openai.com/docs/
models

2https://openai.com/research/gpt-4
3https://www.anthropic.com/news/

claude-3-family
4https://mistral.ai/news/

mixtral-of-experts/
5https://console.mistral.ai

5

https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://openai.com/research/gpt-4
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://console.mistral.ai

Table 1: Scores for initial (human) and optimized prompts on various multi-step tasks for different methods.
P.Agent, LLMOP, P.Breeder, and P.Evolution refer to PromptAgent, LLM-As-Optimizer, PromptBreeder,
Evolutionary Prompt Optimizer, respectively. GPT-3.5-0613 for TaskLLM and GPT-4 for PromptLLM.

GPT-3.5-0613-AS-TASKLLM, GPT-4-AS-PROMPTLLM
TASK HUMAN APE APO P.AGENT LLMOP P.BREEDER P.EVOLUTION PROMST

WEBARENA 0.22 0.35 0.31 0.37 0.29 0.25 0.27 0.39
ALFWORLD 0.075 0.24 0.23 0.24 0.14 0.12 0.16 0.30

SCIENCEWORLD 0.18 0.19 0.19 0.23 0.19 0.20 0.22 0.21
BOXNET1 0.076 0.093 0.16 0.13 0.098 0.11 0.12 0.25
BOXNET2 0.044 0.075 0.16 0.17 0.086 0.090 0.075 0.22
BOXLIFT 0.31 0.69 0.70 0.74 0.55 0.58 0.62 0.90

WAREHOUSE 0.0 0.012 0.012 0.036 0.008 0.008 0.004 0.028
GRIDWORLD1 0.23 0.30 0.35 0.32 0.28 0.26 0.24 0.38
GRIDWORLD2 0.036 0.093 0.17 0.15 0.065 0.078 0.13 0.12

BLOCKSWORLD 0.19 0.25 0.42 0.48 0.29 0.22 0.27 0.60
LOGISTICS 0.083 0.083 0.12 0.12 0.083 0.083 0.12 0.18
AVERAGE 0.13 0.22 0.26 0.27 0.19 0.18 0.20 0.32

Table 2: Scores for initial (human) and optimized prompts on various multi-step tasks for different
methods. GPT-4 for both TaskLLM and PromptLLM.

GPT-4-AS-TASKLLM, GPT-4-AS-PROMPTLLM
TASK HUMAN APE APO P.AGENT LLMOP P.BREEDER P.EVOLUTION PROMST

WEBARENA 0.57 0.59 0.64 0.60 0.58 0.58 0.59 0.62
ALFWORLD 0.45 0.49 0.50 0.53 0.50 0.47 0.49 0.57

SCIENCEWORLD 0.70 0.72 0.74 0.76 0.71 0.73 0.76 0.81
BOXNET1 0.65 0.72 0.72 0.77 0.74 0.67 0.70 0.79
BOXNET2 0.34 0.38 0.36 0.35 0.40 0.37 0.40 0.42

WAREHOUSE 0.16 0.18 0.27 0.34 0.30 0.25 0.22 0.51
GRIDWORLD1 0.73 0.78 0.82 0.89 0.83 0.76 0.80 0.86
GRIDWORLD2 0.26 0.50 0.44 0.41 0.41 0.31 0.29 0.60

BLOCKSWORLD 0.71 0.74 0.83 0.87 0.76 0.75 0.77 0.95
LOGISTICS 0.50 0.53 0.58 0.61 0.54 0.53 0.56 0.74
AVERAGE 0.51 0.56 0.59 0.61 0.58 0.54 0.56 0.69

the large discrete action space. Here we concisely371

introduce five representative environments. Please372

refer to Appendix D for a complete description of373

all environments.374

Webarena (Figure 3a) is a real web environment375

containing four applications: online shopping, dis-376

cussion forums, collaborative development, and377

business content management. Alfworld (Fig-378

ure 3b) is the Household task that requires models379

to explore rooms and use commonsense reason-380

ing. Warehouse (Figure 3g) requires the robots to381

move all boxes to the target region in fewest time382

steps, while making sure no collision happens in383

the limited space. Gridworld1 (Figure 3h) con-384

sists of obstacles (black) and goals (red). The robot385

needs to visit all goals, and any attempt to move386

into obstacles or move out of the grid will result in387

failure. Logistics (Figure 3j) consists of packages,388

trucks, and airplanes. The goal is to transport pack-389

ages within cities via trucks and between cities via390

airplanes to its goal location. 391

4.3 Results and Analysis 392

Overall better performance Table 1 and Table 2 393

show the main experimental results. Note that 394

BoxLift task is not included in Table 2 since we 395

find GPT-4 can already achieve a full score with 396

the initial human prompt. Table 3 shows the ex- 397

perimental results on other three types of LLMs. 398

Due to limited computational resources, we only 399

select four representative tasks and two strongest 400

baseline methods (APO, PromptAgent) when eval- 401

uating other LLMs. Table 5 and Table 6 in Ap- 402

pendix E test the performance of the optimized 403

prompts trained from one LLM with other types of 404

TaskLLMs. 405

The main takeaways are: 1) PROMST performs 406

the best in most tasks. On average, PROMST 407

outperforms strongest baseline PromptAgent with 408

GPT-3.5-0613 (0.27 vs 0.32), GPT-4 (0.61 vs 0.69), 409

6

Table 3: Evaluation of different LLMs on a subset of the mutli-step tasks. The same LLM was used for
the TaskLLM and PromptLLM in each case.

CLAUDE-3-OPUS-20240229 OPEN-MIXTRAL-8X7B
TASK HUMAN APO P.AGENT PROMST HUMAN APO P.AGENT PROMST

ALFWORLD 0.32 0.40 0.42 0.49 0.055 0.074 0.071 0.10
BOXNET2 0.42 0.47 0.44 0.53 0.078 0.21 0.20 0.24

WAREHOUSE 0.21 0.26 0.27 0.36 0.020 0.093 0.13 0.16
GRIDWORLD2 0.13 0.29 0.34 0.44 0.013 0.038 0.075 0.10

AVERAGE 0.27 0.36 0.37 0.46 0.041 0.10 0.12 0.15

MIXTRAL-LARGE-2402
HUMAN APO P.AGENT PROMST

0.28 0.33 0.33 0.45
0.26 0.31 0.36 0.30
0.16 0.23 0.28 0.31
0.12 0.32 0.25 0.28
0.21 0.30 0.30 0.34

Claude-3-opus (0.36 vs 0.46), Open-Mixtral-8x7B410

(0.12 vs 0.15), and Mixtral-large (0.30 vs 0.34). 2)411

When testing the best prompts trained from GPT-412

3.5-0613 and GPT-4 with a different TaskLLM, we413

find that they still outperform human prompts. 3)414

However, each LLM does best with the prompts415

optimized on it. For example, the best prompts ac-416

quired when using GPT-3.5-0613 as the TaskLLM417

do not further improve performance when applied418

to GPT-4, and vice versa. 4) PROMST performs419

well when the TaskLLM and PromptLLM are the420

same LLM, showing that it does not rely on a421

stronger PromptLLM to pass extra knowledge into422

prompts, which can be regarded as cheating.423

Effects of Score Model To analyze the effects424

of the score model, we use BoxLift as a represen-425

tative example, as shown in Figure 4. Figure 4a426

shows the distribution of prompt scores collected427

until level 4. We find most of the prompt scores428

are near 0.6, while many prompts achieve scores429

near 0. Figure 4b shows the training and testing430

errors of the score model versus different amounts431

of collected training data. The overfitting effect432

decreases with increasing data number. Figure 4c433

tests the fine-tuned score models on levels 5-8. We434

also evaluate the prompts that were filtered out by435

the score model and plot the predicted and actual436

scores. We find that nearly all chosen prompt can-437

didates achieve scores much higher than 0, and438

the filtered prompts have reliably low scores. We439

also ablate PROMST without the score model, as440

shown in Figure 4d. The results show that both441

Figure 4: Several results inspecting the learned
score prediction model. (a) the distribution of
prompt scores when the score prediction model
is not applied. (b) the prediction error of the model
on the training data and heldout test data as the
amount of training data increases. (c) a plot of
the predicted score vs the actual score for various
prompts; blue are the prompts that were chosen
as parents for new candidates. (d) the trend of the
best performing prompt during optimization for in-
creasing iterations both with and without using the
learned score prediction model.

the training and testing paths converge faster and 442

achieve better scores using the score model. The 443

ablation experiments in other environments also 444

have the same trend (shown in Appendix F). Over- 445

all, we find the score prediction models improves 446

the efficiency and effectiveness of prompt search. 447

Methods of Score Model Here we do another 448

ablation study on the method for acquiring score 449

prediction models. Instead of fine-tuning a pre- 450

trained Longformer-base model, another way is 451

few-shot learning via GPT-4. Figure 5a compares 452

these two methods under varied training/example 453

data number. GPT-4 is given randomly selected 454

prompt-score pairs as examples during the study. 455

7

Figure 5: (a) comparison of score prediction errors
for few-shot GPT-4 vs finetuning Longformer for
increasing amount of few-shot examples or training
data, respectively. (b) An ablation study of the
impact of the human-designed feedback rules on
task performance for four multi-step tasks.

We find that the performance of GPT-4 few-shot456

learning cannot improve with the increasing num-457

ber of examples. The fine-tuning method surpasses458

GPT-4 few-shot learning once the data number in-459

creases over 40.460

Ablation on Human Feedback We compare461

the method with/without human feedback, both462

without the learned score model. As seen in Fig-463

ure 5b, human feedback contributes to much higher464

scores across four tasks.465

Preference Alignment via Score Function466

The choice of score function impacts prompt opti-467

mization. The initial score functions in Equation 4468

are simple and intuitive, only caring about the num-469

ber of goals/sub-steps accomplished. However, hu-470

mans may have different preferences for the same471

task. For instance, a user may also care about472

efficiency (the number of action steps taken) or473

safety (collision avoidance). We observe a general474

trend that the step number increases as the prompt475

score increases in all the three shown tasks (see476

Appendix H). However, in BoxNet2 (Figure 11)477

the collision error number gradually increases with478

the increasing prompt scores. These two general479

trends are not aligned with the user preference.480

Then how to design the score function to balance481

user preferences remains an issue. In Appendix I,482

we tried the two forms of modified scores:483

SM = SO − ratio ∗ factor_value (5)484

485

SM = SO/(1 + ratio ∗ factor_value), (6)486

where SM and SO are the modified score and the487

original score (defined in Equation 4), respectively.488

The factor_value is a factor that the user cares489

about, e.g., step number or collision error num-490

ber. We find that the general SM vs. SO trend can491

be tuned quite disparately by adjusting the hyper- 492

parameter ratio (see Figure 12 and Figure 13). 493

We choose two modified score functions that 494

trend similarly to the original score function. Then 495

we optimize the prompts with PROMST but us- 496

ing modified score function. To save computing 497

resources, we initialize the prompt optimization 498

with the best prompts found with the original score 499

function. Figure 6 shows the optimization results. 500

Compared to the original prompts acquired with the 501

original score function (red), the newly discovered 502

prompts (green) generally have higher modified 503

scores, though the values of original scores slightly 504

decrease. This suggests that we can align with hu- 505

man preferences by changing the form of the score 506

functions, which can be captured and revealed by 507

the selection framework in PROMST. 508

Figure 6: Human preference alignment via tun-
ing score functions. The green dots are the new
prompts further optimized over new score rules.

5 Conclusion 509

In this work we introduce an automatic prompt 510

optimization framework for complex, multi-step 511

agent tasks: PROMST. To handle the issues of task 512

complexity, judging long-horizon correctness of 513

individual actions, high prompt exploration cost, 514

and human preference alignment, we propose the 515

integration of human feedback, a learned score pre- 516

diction model, and the modification of task score 517

functions. Our approach generally outperforms 518

six representative baselines on 11 different task 519

environments over all the five LLMs. We show 520

that learning a score prediction model improves the 521

overall performance. Finally, we argue that modi- 522

fying score functions can help align the optimized 523

prompts to user preferences. All the codes and 524

discovered prompts are released, which may serve 525

as a benchmark for future researches in automatic 526

prompt optimization in multi-step agent tasks. 527

8

6 Limitations528

The limitations and potential societal risks of this529

work are as follows:530

531

Huge resource consumption of API calls532

Automatic prompt optimization requires significant533

computing resources and LLM API queries due to534

its search-based nature, which is a common issue535

in this research track. Though the introduction of536

score model makes the searching more efficient,537

the around 100 prompt candidate exploration is538

still a large burden.539

540

Score model increases computing demands541

of local devices The fine-tuned score prediction542

model trades-off the number of API queries for543

on-device computation by selecting good candidate544

prompts. Still, the training of extra score models545

increases the computing demands on local devices.546

547

Fine-tuning score model requires enough548

data points The fine-tuning process of score549

models typically requires around 100 prompt-score550

pairs, which is suitable for black box prompt551

searching since over 100 data points are truly552

needed for satisfying performance. However, the553

score model may not be suitable if in the future a554

more efficient searching method appears so that555

data points are not such much.556

557

Human-designed feedback may increase user558

burden Though the human-designed feedback559

rules are easy to acquire and very flexible, this may560

increase the burden of users since they need to561

detect and classify errors for each task. Meanwhile,562

the human-designed feedback may lose the563

usefulness if the feedback is not reasonable and564

proper. The user study is supposed to carry out in565

the future research.566

567

Lack of explanability for better prompts568

Though the discovered prompts achieve much569

better performance, the reason why they are better570

are unclear. In Appendix G, we plot prompt score571

vs. token length and perplexity, which implies572

some clues that longer prompts may be better.573

Meanwhile, when viewing through the discoverd574

best prompts in Appendix J, we find some clues575

about better component emergence, i.e., the best576

prompts tend to list all the careful points one by577

one clearly. All these kinds of characteristics of578

better prompts need further extensive research. 579

580

Potential risks The potential risks of this work 581

may be the general risks of black prompt tuning 582

methods, where more powerful prompt learning 583

algorithms enable more powerful prompt attack 584

approaches. For instance, the jailbreaking task 585

can also utilize this framework. Meanwhile, LLM 586

based multi-step agents can be employed for harm- 587

ful tasks, such as financial fraud. Then the prompt 588

optimization methods may be used to make the 589

harmful agent even more powerful. For these rea- 590

sons, deployment of this technology will have to be 591

carefully considered and combined with research 592

in other areas on LLM safety to mitigate potential 593

societal risks. 594

References 595

Marwa Abdulhai, Isadora White, Charlie Snell, Charles 596
Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu, and 597
Sergey Levine. 2023. Lmrl gym: Benchmarks 598
for multi-turn reinforcement learning with language 599
models. arXiv preprint arXiv:2311.18232. 600

Mohamed Aghzal, Erion Plaku, and Ziyu Yao. 2023. 601
Can large language models be good path planners? 602
a benchmark and investigation on spatial-temporal 603
reasoning. arXiv preprint arXiv:2310.03249. 604

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen 605
Chebotar, Omar Cortes, Byron David, Chelsea Finn, 606
Keerthana Gopalakrishnan, Karol Hausman, Alex 607
Herzog, et al. 2022. Do as i can, not as i say: Ground- 608
ing language in robotic affordances. arXiv preprint 609
arXiv:2204.01691. 610

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 611
2020. Longformer: The long-document transformer. 612
Preprint, arXiv:2004.05150. 613

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 614
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 615
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 616
Askell, et al. 2020. Language models are few-shot 617
learners. Advances in neural information processing 618
systems, 33:1877–1901. 619

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas 620
Roy, and Chuchu Fan. 2023a. Autotamp: Autoregres- 621
sive task and motion planning with llms as translators 622
and checkers. arXiv preprint arXiv:2306.06531. 623

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas 624
Roy, and Chuchu Fan. 2023b. Scalable multi-robot 625
collaboration with large language models: Central- 626
ized or decentralized systems? arXiv preprint 627
arXiv:2309.15943. 628

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning 629
Wang, Yuxiao Dong, Jie Tang, and Minlie Huang. 630

9

https://arxiv.org/abs/2004.05150

2023. Black-box prompt optimization: Aligning631
large language models without model training. arXiv632
preprint arXiv:2311.04155.633

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,634
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias635
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro636
Nakano, et al. 2021. Training verifiers to solve637
math word problems, 2021. URL https://arxiv.638
org/abs/2110.14168.639

Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li,640
LIN Yong, Xiao Zhou, and Tong Zhang. 2022. Black-641
box prompt learning for pre-trained language models.642
Transactions on Machine Learning Research.643

Chrisantha Fernando, Dylan Banarse, Henryk644
Michalewski, Simon Osindero, and Tim Rock-645
täschel. 2023. Promptbreeder: Self-referential646
self-improvement via prompt evolution. arXiv647
preprint arXiv:2309.16797.648

Roya Firoozi, Johnathan Tucker, Stephen Tian,649
Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke650
Zhu, Shuran Song, Ashish Kapoor, Karol Hausman,651
et al. 2023. Foundation models in robotics: Appli-652
cations, challenges, and the future. arXiv preprint653
arXiv:2312.07843.654

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao655
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu656
Yang. 2023a. Connecting large language models657
with evolutionary algorithms yields powerful prompt658
optimizers. arXiv preprint arXiv:2309.08532.659

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao660
Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu661
Yang. 2023b. Connecting large language models662
with evolutionary algorithms yields powerful prompt663
optimizers. Preprint, arXiv:2309.08532.664

Or Honovich, Uri Shaham, Samuel R Bowman, and665
Omer Levy. 2022. Instruction induction: From few666
examples to natural language task descriptions. arXiv667
preprint arXiv:2205.10782.668

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and669
Igor Mordatch. 2022a. Language models as zero-670
shot planners: Extracting actionable knowledge for671
embodied agents. In International Conference on672
Machine Learning, pages 9118–9147. PMLR.673

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan,674
Jacky Liang, Pete Florence, Andy Zeng, Jonathan675
Tompson, Igor Mordatch, Yevgen Chebotar, et al.676
2022b. Inner monologue: Embodied reasoning677
through planning with language models. arXiv678
preprint arXiv:2207.05608.679

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-680
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-681
guage models are zero-shot reasoners. Advances in682
neural information processing systems, 35:22199–683
22213.684

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco 685
Pavone, and Jeannette Bohg. 2023. Text2motion: 686
From natural language instructions to feasible plans. 687
arXiv preprint arXiv:2303.12153. 688

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, 689
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 690
2023. Llm+ p: Empowering large language mod- 691
els with optimal planning proficiency. arXiv preprint 692
arXiv:2304.11477. 693

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, 694
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng 695
Kong, and Junxian He. 2024. Agentboard: An analyt- 696
ical evaluation board of multi-turn llm agents. arXiv 697
preprint arXiv:2401.13178. 698

Yecheng Jason Ma, William Liang, Guanzhi Wang, De- 699
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke 700
Zhu, Linxi Fan, and Anima Anandkumar. 2023. Eu- 701
reka: Human-level reward design via coding large 702
language models. arXiv preprint arXiv:2310.12931. 703

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 704
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 705
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 706
et al. 2023. Self-refine: Iterative refinement with 707
self-feedback. arXiv preprint arXiv:2303.17651. 708

Rui Pan, Shuo Xing, Shizhe Diao, Xiang Liu, Kashun 709
Shum, Jipeng Zhang, and Tong Zhang. 2023. Plum: 710
Prompt learning using metaheuristic. Preprint, 711
arXiv:2311.08364. 712

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit 713
Bansal. 2023. Grips: Gradient-free, edit-based in- 714
struction search for prompting large language models. 715
In Proceedings of the 17th Conference of the Euro- 716
pean Chapter of the Association for Computational 717
Linguistics, pages 3827–3846. 718

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen- 719
guang Zhu, and Michael Zeng. 2023. Automatic 720
prompt optimization with ”gradient descent” and 721
beam search. In The 2023 Conference on Empiri- 722
cal Methods in Natural Language Processing. 723

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 724
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 725
Bill Qian, et al. 2023. Toolllm: Facilitating large 726
language models to master 16000+ real-world apis. 727
arXiv preprint arXiv:2307.16789. 728

Subhro Roy and Dan Roth. 2016. Solving gen- 729
eral arithmetic word problems. arXiv preprint 730
arXiv:1608.01413. 731

Noah Shinn, Federico Cassano, Ashwin Gopinath, 732
Karthik R Narasimhan, and Shunyu Yao. 2023. Re- 733
flexion: Language agents with verbal reinforcement 734
learning. In Thirty-seventh Conference on Neural 735
Information Processing Systems. 736

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, 737
Yonatan Bisk, Adam Trischler, and Matthew 738

10

https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2309.08532
https://arxiv.org/abs/2311.08364
https://arxiv.org/abs/2311.08364
https://arxiv.org/abs/2311.08364
https://openreview.net/forum?id=WRYhaSrThy
https://openreview.net/forum?id=WRYhaSrThy
https://openreview.net/forum?id=WRYhaSrThy
https://openreview.net/forum?id=WRYhaSrThy
https://openreview.net/forum?id=WRYhaSrThy

Hausknecht. 2020. Alfworld: Aligning text and em-739
bodied environments for interactive learning. arXiv740
preprint arXiv:2010.03768.741

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B742
Tenenbaum, Leslie Pack Kaelbling, and Michael743
Katz. 2023. Generalized planning in pddl do-744
mains with pretrained large language models. arXiv745
preprint arXiv:2305.11014.746

Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-747
Rubach, Zhi Ji, Lasse Bjørn Kristensen, Kourosh748
Darvish, Alán Aspuru-Guzik, Florian Shkurti,749
and Animesh Garg. 2023. Errors are useful750
prompts: Instruction guided task programming with751
verifier-assisted iterative prompting. arXiv preprint752
arXiv:2303.14100.753

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,754
Sarath Sreedharan, and Subbarao Kambhampati.755
2023. Planbench: An extensible benchmark for eval-756
uating large language models on planning and rea-757
soning about change. In Thirty-seventh Conference758
on Neural Information Processing Systems Datasets759
and Benchmarks Track.760

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and761
Prithviraj Ammanabrolu. 2022. Scienceworld: Is762
your agent smarter than a 5th grader? arXiv preprint763
arXiv:2203.07540.764

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai,765
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P766
Xing, and Zhiting Hu. 2023. Promptagent:767
Strategic planning with language models enables768
expert-level prompt optimization. arXiv preprint769
arXiv:2310.16427.770

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten771
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,772
et al. 2022. Chain-of-thought prompting elicits rea-773
soning in large language models. Advances in Neural774
Information Processing Systems, 35:24824–24837.775

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-776
man, Tianxiao Shen, Daniel Khashabi, and Yejin777
Choi. 2022. Generating sequences by learning to778
self-correct. In The Eleventh International Confer-779
ence on Learning Representations.780

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,781
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,782
Xiaoyun Zhang, and Chi Wang. 2023a. Auto-783
gen: Enabling next-gen llm applications via multi-784
agent conversation framework. arXiv preprint785
arXiv:2308.08155.786

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,787
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-788
dreas, and Yoon Kim. 2023b. Reasoning or reciting?789
exploring the capabilities and limitations of language790
models through counterfactual tasks. arXiv preprint791
arXiv:2307.02477.792

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,793
Quoc V Le, Denny Zhou, and Xinyun Chen. 2023.794

Large language models as optimizers. arXiv preprint 795
arXiv:2309.03409. 796

Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan 797
Klein. 2022. Re3: Generating longer stories with 798
recursive reprompting and revision. In Proceedings 799
of the 2022 Conference on Empirical Methods in 800
Natural Language Processing, pages 4393–4479. 801

Qinyuan Ye, Maxamed Axmed, Reid Pryzant, and 802
Fereshte Khani. 2023. Prompt engineering a prompt 803
engineer. arXiv preprint arXiv:2311.05661. 804

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schu- 805
urmans, and Joseph E. Gonzalez. 2023. TEMPERA: 806
Test-time prompt editing via reinforcement learning. 807
In The Eleventh International Conference on Learn- 808
ing Representations. 809

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, 810
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan 811
Bisk, Daniel Fried, Uri Alon, et al. 2023a. Webarena: 812
A realistic web environment for building autonomous 813
agents. arXiv preprint arXiv:2307.13854. 814

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, 815
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy 816
Ba. 2023b. Large language models are human-level 817
prompt engineers. In The Eleventh International 818
Conference on Learning Representations. 819

11

https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

A Types of human feedback for each task820

This table displays the types of errors and corresponding human feedback for each testing task. The821

specific contents of each feedback is shown in Figure 2.822

Webarena Syntactic error; Stuck in the loop; Failure over query time limit; Invalid action
Alfworld Syntactic error; Stuck in the loop; Failure over query time limit; Invalid action
Scienceworld Syntactic error; Stuck in the loop; Failure over query time limit; Invalid action
BoxNet1 Syntactic error; Stuck in the loop; Failure over query time limit
BoxNet2 Syntactic error; Stuck in the loop; Failure over query time limit; Collision
BoxLift Syntactic error; Stuck in the loop; Failure over query time limit
Warehouse Syntactic error; Stuck in the loop; Failure over query time limit; Collision
Gridworld1 Syntactic error; Stuck in the loop; Failure over query time limit; Collision; Move out

of the grid;
Gridworld2 Syntactic error; Stuck in the loop; Failure over query time limit; Collision; Move out

of the grid; Wrong picking up order;
Blocksworld Syntactic error; Stuck in the loop; Failure over query time limit; Invalid action
Logistics Syntactic error; Stuck in the loop; Failure over query time limit; Invalid action;

Wrong object action

Table 4: Types of human feedback for each task

B Algorithms823

Algorithm 1 PRompt Optimization in Multi-Step Tasks (PROMST)

Require: p0: initial prompt, k: beam width, d: search level depth, n: expansion number, sd: depth when
score model training starts

1: B0 ← {p0}; D ← {}
2: D[p0]← TaskLLM(p0) ▷ [score, feed, AnP]
3: for i← 1 to d− 1 do
4: for all p ∈ Bi do
5: Pnew ← NewPrompt(p,D, i, sd, n)
6: for all pnew ∈ Pnew do
7: D[pnew]← TaskLLM(pnew) ▷ Dictionary to record all prompt trials and information
8: end for
9: end for

10: Bi+1 ← Topk(D) ▷ Select top k prompts by scores
11: Output Bi+1

12: end for
13: p̂← argmaxp∈Bd

score(p) ▷ The best prompt
14: Output p̂
15: return p̂

12

Algorithm 2 NewPrompt() - line 5 of Algorithm 1

Require: p: input prompt, D: all prompts, i: current depth level, sd: depth level number when score
model training starts, n: expansion number

1: [feed,AnP]← D[p] ▷ feedback and ancestor prompts (prompt trajectory leading to the current one)
2: if i ≥ sd then
3: Mk ← finetune(D), k = 1, ..., 5 ▷ Score model, input: prompt, output: score
4: Pnew ← {}
5: iter ← 0
6: while len(Pnew) < n and iter < 3n do
7: iter += 1
8: p′ = PromptLLM(p, feed,AnP, 1)
9: if E[Mk(p

′)] + V ar[Mk(p
′)] + E[errork] ≥ hyper_M ∗max(D.score()) then

10: Pnew.add(p′)
11: end if
12: end while
13: return Pnew

14: else
15: {p′1, ..., p′n} = PromptLLM(p, feed,AnP, n)
16: return {p′1, ..., p′m}
17: end if

Algorithm 3 PromptLLM() - line 6 and 13 of Algorithm 2

Require: p: input prompt, feed: list of feedback from humans, AnP : list of prompt trajectory leading
to the current one, n: expansion number

1: Pnew ← {}
2: for i← 1 to n do
3: feed2← random_select(feed,min(10, len(feed))
4: {type1, type2, ...} ← classify_concat(feed2)
5: feed2LLM =′

6: for all feed_type ∈ {type1, type2, ...} do
7: feed2LLM += SumLLM(p, feed_type) ▷ Summarize each type of feedback
8: end for
9: Pnew.add(GenLLM(p, feed2LLM,AnP))

10: end for
11: return Pnew

13

C Meta-prompts of SumLLM and GenLLM824

Meta-prompt of SumLLM
Imagine you are a prompt optimizer based on the human feedback and task execution feedback.
I’m writing prompts for a language model designed for a task.

My current prompt of task specification is: {current_prompt}, but this prompt gets the following
examples wrong: {feedback_type}

Based on all these errors and feedback, summarize the reasons and list all the aspects that can
improve the prompt. Keep your summary concise and clear.

825

Meta-prompt of GenLLM
Imagine you are a prompt optimizer based on the feedback from the human and task execution
feedback. Here is the prompt of task description: {prompt_task_explain}

However, the response generated from the initial task description prompt owns some errors. Here
are the error feedback from humans: {error_feedback}

There is a list of former prompts including the current prompt, and each prompt is modified from
its former prompts:{trajectory_prompts}

Based on the feedback, think about why the task planning LLM agent makes the error and try to
optimize the prompt of task description to avoid this error.

The new prompts should follow these guidelines: 1. The new prompts should solve the current
prompt’s problems. 2. The new prompts should consider the list of prompts and evolve based on
the current prompt.

Output the optimized prompt of task description without other texts:
826

14

D Description of environments for multi-step tasks 827

Here we describe the 11 environments for multi-step tasks on which the various methods were tested. 828

They requires strong logical, geometrical, scientific, and commonsense reasoning capabilities. 829

830

Webarena Webarena (Figure 3a) is a real web environment containing four applications: online 831

shopping, discussion forums, collaborative development, and business content management. It supports 832

11 different web browsing actions. The observation space consists of structured web content. WebArena 833

offers multi-round and continuous web browsing interaction simulation. 834

835

Alfworld Alfworld (Figure 3b) are Household tasks that require models to explore rooms and use 836

commonsense reasoning to perform tasks, such as “put a pencil on the desk”. The execution scores are 837

calculated by pre-defined subgoals based on necessary observations to finish a task and the success flag 838

provided by environments. 839

840

Scienceworld Scienceworld (Figure 3c) is a complex interactive text environment that poses a 841

significant challenge to agents’ scientific commonsense. This environment requires agents to navigate 842

through eight distinct functional rooms (e.g., workshop, kitchen) and utilize the tools to complete tasks 843

such as “measure the melting point of the orange juice”. 844

845

BoxNet1 BoxNet1 (Figure 3d) consists of robot arms, colored boxes (squares), and colored goal 846

locations (circles). Each robot arm is assigned to a cell indicated by the dotted lines and can only move 847

within this cell. The goal is to move all boxes into the goal locations of corresponding colors in the fewest 848

time steps. Each arm has two possible actions: (1) move a box within its cell to a neighboring cell, and (2) 849

move a box within its cell to a goal location within its cell. 850

851

BoxNet2 BoxNet2 (Figure 3e) is similar to BoxNet1 but has an additional constraint. In BoxNet2, 852

boxes can only be moved between cells by being placed at the corners of cells (indicated by the small red 853

circles), and each cell corner can only hold one box at a time. Each arm has two possible actions: (1) 854

move a box from a corner to a different corner of its cell, and (2) move a box from a corner to a goal 855

location within its cell. 856

857

BoxLift BoxLift (Figure 3f) consists of robots of different types and boxes of different sizes and 858

weights. The robots are able to lift different amounts of weight and can cooperate with each other to lift 859

one box. A box will be lifted only if the total lifting capability of robots is greater than the box’s weight. 860

The goal is to lift all boxes in fewest time steps. Further, the LLM agent can only observe the size of each 861

box, not its actual weight. The weight of a box is roughly proportional to its size (with some randomness), 862

so the LLM agent should benefit from incorporating prior state/action feedback when planning. 863

864

Warehouse Warehouse (Figure 3g) consists of robots that need to move all boxes to a target delivery 865

region in the fewest time steps. The free space for the robots to move is discretized into cells, and a robot 866

can only move to an adjacent cell in a single time step. Each cell can only contain one robot at each 867

timestep. A robot is able to pick up a box if it is in the cell adjacent to that box. Each robot has five possible 868

actions: (1) & (2) move left or right if the adjacent cell exists, (3) pick up an adjacent box, (4) place 869

the box to the target delivery region, (5) move from target delivery region to any adjacent cell of free space. 870

871

Gridworld1 Gridworld1 (Figure 3h) consists of obstacles (black) and goals (red). The robot needs to 872

visit all goals, and any attempt to move into obstacles or move out of the grid will result in failure. The 873

robot has five possible actions: (1) move up, (2) move down, (3) move left, (4) move right, (5) visit goal. 874

875

Gridworld2 Gridworld2 is similar to Gridworld1, but the goals must be visited in a particular 876

order. The robot action are the same as in Gridworld1, but ’visit goal’ can be performed only when the 877

15

corresponding goal is in the correct order.878

879

Blocksworld In Blocksworld (Figure 3i), the goal is to stack a set of blocks (brown) according to a880

specific order. A robot can pick up, unstack, or stack a block only when the block is clear. A block is clear881

if the block has no other blocks on top of it and if the block is not picked up. The robot has four possible882

actions: (1) pick up a block, (2) unstack a block from the top of another block, (3) put down a block, (4)883

stack a block on top of another block.884

885

Logistics Logistics (Figure 3j) consists of objects, locations, and cities. The objects can be packages,886

trucks, or airplanes. The locations can be generic locations or airports, and each location is associated887

with a single city. Trucks can travel to different locations within a city but not to a different city; airplanes888

can travel to any airports, including those in other cities. The goal is to transport packages to their goal889

locations via the trucks (such as for intra-city travel) and the airplanes (such as for inter-city travel). The890

available actions are: (1) load a package into a truck, (2) load a package into an airplane, (3) unload891

a package from a truck, (4) unload a package from an airplane, (5) drive a truck from one location to892

another location within a city, (6) fly an airplane from one airport to another airport.893

16

Table 5: Scores for initial and optimized prompts using different types of LLMs as TaskLLM. The opti-
mized prompts are the best discovered prompts by PROMST for GPT-3.5-0613. The optimized prompts
are further tested with GPT-3.5-0301 and GPT-4 to study whether they can keep better performances than
the initial prompts.

GPT-3.5-0613-AS-TASKLLM, GPT-4-AS-PROMPTLLM

GPT-3.5-0613 GPT-3.5-0301 GPT-4
TASK HUMAN PROMST HUMAN PROMST HUMAN PROMST

WEBARENA 0.22 0.35 0.29 0.34 0.57 0.54
ALFWORLD 0.075 0.30 0.17 0.21 0.45 0.49

SCIENCEWORLD 0.18 0.21 0.16 0.13 0.70 0.68
BOXNET1 0.076 0.25 0.28 0.38 0.65 0.67
BOXNET2 0.044 0.22 0.088 0.28 0.34 0.31
BOXLIFT 0.31 0.90 0.69 0.91 1.0 1.0

WAREHOUSE 0.0 0.028 0.0 0.040 0.16 0.19
GRIDWORLD1 0.23 0.38 0.25 0.32 0.73 0.85
GRIDWORLD2 0.036 0.12 0.021 0.13 0.26 0.29

BLOCKSWORLD 0.19 0.60 0.33 0.24 0.71 0.62
LOGISTICS 0.083 0.18 0.12 0.083 0.50 0.63
AVERAGE 0.13 0.32 0.22 0.28 0.55 0.57

Table 6: Scores for initial and optimized prompts using different types of LLMs as TaskLLM. The
optimized prompts are the best discovered prompts by PROMST for GPT-4. The optimized prompts are
further tested with GPT-3.5-0301 and GPT-3.5-0613 to study whether they can keep better performances
than the initial prompts.

GPT-4-AS-TASKLLM, GPT-4-AS-PROMPTLLM

GPT-3.5-0613 GPT-3.5-0301 GPT-4
TASK HUMAN PROMST HUMAN PROMST HUMAN PROMST

WEBARENA 0.22 0.18 0.29 0.32 0.57 0.62
ALFWORLD 0.075 0.092 0.17 0.19 0.45 0.57

SCIENCEWORLD 0.18 0.15 0.16 0.20 0.70 0.81
BOXNET1 0.076 0.12 0.28 0.32 0.65 0.79
BOXNET2 0.044 0.14 0.088 0.17 0.34 0.42

WAREHOUSE 0.0 0.019 0.0 0.025 0.16 0.51
GRIDWORLD1 0.23 0.26 0.25 0.29 0.73 0.86
GRIDWORLD2 0.036 0.057 0.021 0.042 0.26 0.60

BLOCKSWORLD 0.19 0.21 0.33 0.24 0.71 0.95
LOGISTICS 0.083 0.083 0.12 0.18 0.50 0.74
AVERAGE 0.11 0.13 0.17 0.20 0.56 0.69

E Generalization to different models for optimized prompts 894

17

F Extra ablation experiments of score models895

Figure 7: Ablation study of applying score models for prompt selection. The optimization trace with score
model finds better prompts with less iteration steps, across all the three tasks BoxLift, WareHouse, and
GridWorld2.

18

G Prompt score vs. token length and perplexity 896

We are interested in whether there are features of the prompts that correlate with high scores. We found 897

that there is a rough trend across different tasks that longer prompts corresponded with higher scores. We 898

also investigated prompt perplexity (using GPT-2 to get prompt token log probabilities) but found no clear 899

correlation. All the initial and discovered best prompts are listed in Appendix J. 900

Figure 8: Score vs. prompt token length and score vs. prompt perplexity for all the explored prompts in
each task.

19

H Component changes in each environment901

Figure 9: Component change of BoxLift.

Figure 10: Component change of BoxNet1.

20

Figure 11: Component change of BoxNet2.

I The influence of score functions 902

Figure 12: Modified score of BoxLift.

21

Figure 13: Modified score of BoxNet2.

J Human prompts and discovered best prompts for GPT-3.5-0613 and GPT-4 in all the 11903

multi-step tasks904

Our work can serve as a benchmark for prompt optimization, particularly on multi-step agent tasks. Hence,905

we list all the initial human prompts and discovered best prompts for GPT-3.5-0613 and GPT-4 models906

across the 11 tasks. Note that we do not list the best prompt of GPT-4 in BoxLift since the optimized907

prompt can easily achieve the full score 1.0. We also do not list the best prompt of GPT-3.5-0613 in908

WareHouse since all the discovered prompts achieve scores near 0.0.909

Webarena Human prompt
Score = 0.22 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.57 (GPT-4 as the testing LLM)

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the windowed
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The useful websites and corresponding URL you can navigate:

• ’reddit’: http://reddit.com

• ’online shop’: http://onestopmarket.com

• ’e-commerce platform’: http://luma.com/admin

• ’gitlab’: http://gitlab.com

• ’wikipedia’: http://wikipedia.org

• ’map’: http://openstreetmap.org

Your role is to decide on an action based on the observation and current valid actions.
Ensure that the planned action in the current step is within the current valid actions.
The actions you can perform fall into several categories:
Page Operation Actions:

910

22

http://reddit.com
http://onestopmarket.com
http://luma.com/admin
http://gitlab.com
http://wikipedia.org
http://openstreetmap.org

• ’click [id]’: This action clicks on an element with a specific id on the webpage.

• ’type [id] [content] [press_enter_after=0|1]’: Use this to type the con-
tent into the field with id. By default, the ’Enter’ key is pressed after typing unless
press_enter_after is set to 0.

• ’hover [id]’: Hover over an element with id.

• ’press [key_comb]’: Simulates the pressing of a key combination on the keyboard
(e.g., Ctrl+v).

• ’scroll [direction=down|up]’: Scroll the page up or down.

Tab Management Actions:

• ’new_tab’: Open a new, empty browser tab.

• ’tab_focus [tab_index]’: Switch the browser’s focus to a specific tab using its
index.

• ’close_tab’: Close the currently active tab.

URL Navigation Actions:

• ’goto [url]’: Navigate to a specific URL.

• ’go_back’: Navigate to the previously viewed page.

• ’go_forward’: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action: ’stop [answer]’: Apply this action when you believe the task is
complete. If it is an operation-type task, use ’stop [Done]’ when finished. If the objective is
to give a text-based answer, provide the answer in the bracket.
To be successful, it is very important to follow the following rules:

1. You should only issue an action that is valid given the current observation.

2. You should only issue one action at a time.

3. Generate the action in the correct format and always put the action inside a pair of @. Such as,
@click [1234]@.

4. Complete the task by interacting with the starting page, and avoid using ’goto’ actions casually.

5. Reasonable inputs will return accurate observations, so do not repeat the same action when
unnecessary.

911

Webarena Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.39 (GPT-3.5-turbo-16k-0613 as the testing LLM)

Here’s the information you’ll have:

• The user’s objective: This is the task you’re trying to complete.

• The current web page’s accessibility tree: This is a simplified representation of the windowed
webpage, providing key information.

912

23

• The current web page’s URL: This is the page you’re currently navigating.

• The open tabs: These are the tabs you have open.

The useful websites and corresponding URLs you can navigate:

• ’reddit’: ’http://reddit.com’

• ’online shop’: ’http://onestopmarket.com’

• ’e-commerce platform’: ’http://luma.com/admin’

• ’gitlab’: ’http://gitlab.com’

• ’wikipedia’: ’http://wikipedia.org’

• ’map’: ’http://openstreetmap.org’

Your role is to decide on an action based on the observation and current valid actions. Ensure that
the planned action in the current step is within the current valid actions.
The actions you can perform fall into several categories:
Page Operation Actions:

• click [id]: This action clicks on an element with a specific id on the webpage.

• type [id] [content] [press_enter_after=0|1]: Use this to type the con-
tent into the field with id. By default, the ’Enter’ key is pressed after typing unless
press_enter_after is set to 0.

• hover [id]: Hover over an element with id.

• press [key_comb]: Simulates the pressing of a key combination on the keyboard (e.g.,
Ctrl+v).

• scroll [direction=down|up]: Scroll the page up or down.

Tab Management Actions:

• new_tab: Open a new, empty browser tab.

• tab_focus [tab_index]: Switch the browser’s focus to a specific tab using its index.

• close_tab: Close the currently active tab.

URL Navigation Actions:

• goto [url]: Navigate to a specific URL.

• go_back: Navigate to the previously viewed page.

• go_forward: Navigate to the next page (if a previous ‘go_back’ action was performed).

Completion Action:

• stop [answer]: Apply this action when you believe the task is complete. If it is an
operation-type task, use stop [Done] when finished. If the objective is to give a text-based
answer, provide the answer in the bracket.

To be successful, it is very important to follow the following rules:
913

24

http://reddit.com
http://onestopmarket.com
http://luma.com/admin
http://gitlab.com
http://wikipedia.org
http://openstreetmap.org

1. You should only issue an action that is valid given the current observation.

2. You should only issue one action at a time.

3. Generate the action in the correct format and always put the action inside a pair of @. Such as,
@click [1234]@.

4. Complete the task by interacting with the starting page, and avoid using ‘goto’ actions
casually.

5. Reasonable inputs will return accurate observations, so do not repeat the same action when
unnecessary.

6. If the task involves searching or filtering content, use the website’s specific features designed
for that purpose, such as search bars, filters, or category selectors.

7. Before issuing a stop [Done] action, ensure that the task’s completion criteria have been
met by reviewing the observations and confirming that the desired outcome is achieved.

8. If the initial action does not yield the expected result, reassess the situation and consider
alternative valid actions that could lead to task completion.

9. In case of an unsuccessful outcome, explore different valid actions and utilize the website’s UI
elements to navigate and achieve the task objective.

10. Implement a feedback loop by reassessing and adjusting actions based on the results of
previous actions and environment feedback.

914

Webarena Best prompt for GPT-4
Score = 0.62 (GPT-4 as the testing LLM)

Here’s the information you’ll have:

• The user’s objective: This is the task you’re trying to complete.
• The current web page’s accessibility tree: This is a simplified representation of the windowed

webpage, providing key information.
• The current web page’s URL: This is the page you’re currently navigating.
• The open tabs: These are the tabs you have open.

The useful websites and corresponding URL you can navigate:

• ’reddit’: http://reddit.com
• ’online shop’: http://onestopmarket.com
• ’e-commerce platform’: http://luma.com/admin
• ’gitlab’: http://gitlab.com
• ’wikipedia’: http://wikipedia.org
• ’map’: http://openstreetmap.org

Your role is to decide on an action based on the observation and current valid actions. Ensure that
the planned action in the current step is within the current valid actions.
The actions you can perform fall into several categories:
Page Operation Actions:

• click [id]: This action clicks on an element with a specific id on the webpage.
915

25

http://reddit.com
http://onestopmarket.com
http://luma.com/admin
http://gitlab.com
http://wikipedia.org
http://openstreetmap.org

• type [id] [content] [press_enter_after=0|1]: Use this to type the content
into the field with id. By default, the ’Enter’ key is pressed after typing unless press_enter_after
is set to 0. Ensure the content syntax is correct for the context (e.g., search queries should use
the proper format for the website).

• hover [id]: Hover over an element with id.
• press [key_comb]: Simulates the pressing of a key combination on the keyboard (e.g.,

Ctrl+v).
• scroll [direction=down|up]: Scroll the page up or down.

Tab Management Actions:

• new_tab: Open a new, empty browser tab.
• tab_focus [tab_index]: Switch the browser’s focus to a specific tab using its index.
• close_tab: Close the currently active tab.

URL Navigation Actions:

• goto [url]: Navigate to a specific URL.
• go_back: Navigate to the previously viewed page.
• go_forward: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action:

• stop [answer]: Apply this action when you believe the task is complete. If it is an
operation-type task, use stop [Done] when finished. If the objective is to give a text-based
answer, provide the answer in the bracket.

To be successful, it is very important to follow the following rules:

1. You should only issue an action that is valid given the current observation.
2. You should only issue one action at a time.
3. Generate the action in the correct format and always put the action inside a pair of @. Such as,
@click [1234]@.

4. Complete the task by interacting with the starting page, and avoid using ’goto’ actions casually.
5. Reasonable inputs will return accurate observations, so do not repeat the same action when

unnecessary.
6. If an action does not produce the expected result, do not repeat the action. Instead, analyze the

feedback and adjust the strategy accordingly.
7. Use conditional logic to adapt to feedback from the environment. If an action fails, consider

alternative approaches or refine the action to achieve the desired outcome.
8. Manage time efficiently by optimizing the sequence of actions to achieve the goal quickly.
9. Include error handling to address unexpected outcomes or failures in task execution.

10. Provide clear instructions on how to refine search queries or alternative methods to locate the
desired information.

916

Alfworld Human prompt
Score = 0.075 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.45 (GPT-4 as the testing LLM)

Your task is to interact with a virtual household simulator to accomplish a specific task. With
each interaction, you will receive an observation and current valid actions. Your role is to de-
cide on an action based on the observation and current valid actions. Please ensure that any

917

26

objects ({obj}) and receptacles ({recep}) you mention in your response are present in the
observation provided. Ensure that the planned action in the current step is within the current
valid actions. Example objects are like a cellphone 3, a newspaper 2, a statue 1, and a televi-
sion 1. Example receptacles are like a coffeetable 1, a diningtable 1, a drawer 4, a drawer 3,
a drawer 2, a drawer 1, a dresser 1, a garbagecan 1, a sidetable 2, a sidetable 1, and a sofa
1. Example actions are like [go to dresser 1, take statue 1 from dresser 1,
heat apple 1 with microwave 1, open cabinet 2] Do not repeat the actions all
the time! Learn from the previous action/observation history.
Here are the available actions you can take:

• take {obj} from {recep}

• put {obj} in/on {recep}

• open {recep}

• close {recep}

• toggle {obj}/{recep}

• clean {obj} using {recep}

• cool {obj} using {recep}

• heat {obj} using {recep}

• inventory

• examine {recep}/{obj}

• go to {recep}

918

Alfworld Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.30 (GPT-3.5-turbo-16k-0613 as the testing LLM)

Your task is to interact with a virtual household simulator to achieve a clearly defined goal. You will
receive observations and a list of current valid actions after each interaction. Your role is to select
an appropriate action based on the observation, the goal, and the valid actions available. Ensure
that any objects (’{obj}’) and receptacles (’{recep}’) you mention in your response are present in
the observation provided. Your planned action must be one of the current valid actions.
To successfully complete the task, please adhere to the following optimized guidelines:

1. Understand the Goal: Always keep the goal at the forefront of your decision-making process.
Each action you select should be a strategic step towards accomplishing this goal.

2. Use Observations: Analyze the observations to gain a comprehensive understanding of the
environment’s current state, including the location and status of objects and receptacles.

3. Valid Action Selection: Strictly choose your actions from the provided list of current valid
actions. Do not attempt any actions that are not listed as valid for the current situation.

4. State Tracking and Changes: Keep a mental model of the environment’s state and update
it with each action’s outcome. Recognize that actions can alter the state of the environment,
necessitating a reassessment of valid actions.

919

27

5. Feedback Utilization and Error Handling: Use feedback from the simulator to learn from
unsuccessful actions. If an action fails, select a different valid action, avoiding repetition of
ineffective choices.

6. Logical Action Sequencing: Plan your actions in a logical order, ensuring that each step is
dependent on the previous one and brings you closer to the goal.

7. Inventory and Object Management: Regularly use the ’inventory’ action to monitor the
objects you have acquired. Utilize this inventory to inform and plan your future actions.

8. Specificity in Actions: Be specific when interacting with objects and receptacles to avoid
ambiguity and ensure clarity in your actions.

9. Adaptability: Be prepared to adapt your strategy based on the outcomes of your actions and
the evolving state of the environment.

10. Avoiding Redundancy: Refrain from redundant actions such as multiple examinations of an
object or location without a change in state that justifies a re-examination.

The available actions you can take are:

– ’take {obj} from {recep}’

– ’put {obj} in/on {recep}’

– ’open {recep}’

– ’close {recep}’

– ’toggle {obj}/{recep}’

– ’clean {obj} using {recep}’

– ’cool {obj} using {recep}’

– ’heat {obj} using {recep}’

– ’inventory’

– ’examine {recep}/{obj}’

– ’go to {recep}’

Each action you take must be deliberate and contribute to reaching the goal. Good luck!
920

Alfworld Best prompt for GPT-4
Score = 0.57 (GPT-4 as the testing LLM)

Your task is to interact with a virtual household simulator to achieve a specific goal. Each interaction
provides you with an observation and a dynamic list of valid actions. Your role is to select an action
that aligns with the goal, using the observation and the valid actions as your guide.
Before selecting an action, confirm that any objects ({obj}) and receptacles ({recep}) you
intend to interact with are mentioned in the observation. Only choose an action that is currently
valid.
Here are the refined guidelines to ensure effective decision-making:

921

28

• Goal Alignment: Prioritize actions that directly contribute to achieving the goal. Disregard
actions that are unrelated to the goal.

• Action Confirmation: Before suggesting an action, verify that it is included in the list of valid
actions provided after the most recent observation.

• Observation Analysis: Accurately interpret the observation to determine the presence of
objects and receptacles, which informs your action choice.

• State Awareness: Maintain awareness of the environment’s state and your action history to
avoid redundancy and ensure continuous progress.

• Adaptive Strategy: If an action fails or is deemed invalid, promptly revise your strategy and
select a different valid action that aids in goal attainment.

• Historical Learning: Use the history of actions and observations to refine your strategy and
prevent ineffective repetition.

• Progress Evaluation: Consistently evaluate whether your actions are moving you closer to
completing the task. If progress stalls, reassess and adjust your approach.

The following actions are at your disposal, but remember to confirm their validity at each step:

• take {obj} from {recep}

• put {obj} in/on {recep}

• open {recep}

• close {recep}

• toggle {obj}/{recep}

• clean {obj} using {recep}

• cool {obj} using {recep}

• heat {obj} using {recep}

• inventory

• examine {recep}/{obj}

• go to {recep}

Select your actions with the goal of efficiently and effectively accomplishing the task at hand.
922

Scienceworld Human prompt
Score = 0.18 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.70 (GPT-4 as the testing LLM)

You are an agent in a virtual science school environment, tasked to interact with various elements.
Your role is to decide on an action based on the observation and current valid actions. Please ensure
that any objects (‘{OBJ}‘) and locations (‘{LOC}‘) you mention in your response are present in
the observation provided. Ensure that the planned action in the current step is within the current

923

29

valid actions. Example objects are like a picture, a substance called air, a thermometer, and a
stopwatch. Example locations are like a coffeetable 1, a diningtable 1, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a dresser 1, a garbagecan 1, a sidetable 2, a sidetable 1, and a sofa 1. Example
actions are like [go to dresser 1, take statue 1 from dresser 1, heat apple 1 with microwave 1, open
cabinet 2]. Do not repeat the actions all the time! Learn from the previous action/observation history.

Here are the commands you can use:

Manipulation:

• open {OBJ} / close {OBJ}: Interact with a container.

• pick up {OBJ}: Add an object to your inventory.

• put down {OBJ}: Remove an object from your inventory.

• move {OBJ} to {OBJ}: Transfer an object.

• pour {OBJ} into {OBJ}: Pour a substance.

• dunk {OBJ} into {OBJ}: Immerse a container in a liquid.

• mix {OBJ}: Chemically combine contents.

Inspection:

• look around: Survey your surroundings.

• look at {OBJ}: Examine an object closely.

• look in {OBJ}: Peek inside a container.

• read {OBJ}: Review written content.

Device Operations:

• activate {OBJ} / deactivate {OBJ}: Toggle a device.

• use {OBJ} [on {OBJ}]: Utilize a device or item.

Movement:

• go to {LOC}: Relocate.

Miscellaneous:

• eat {OBJ}: Consume an edible item.

• flush {OBJ}: Activate a flushing mechanism.

• focus on {OBJ}: Direct attention to a particular object.

• wait [DURATION]: Pause for a specified period.

Information:

• task: Recap your current objective.

• inventory: Display items you’re carrying.

Where:

• {OBJ}: Object

• {LOC}: Location

• [DURATION]: Specified time

924

30

Scienceworld Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.21 (GPT-3.5-turbo-16k-0613 as the testing LLM)

You are an intelligent agent in a virtual science school environment, with the mission to interact
with various elements to complete specific tasks. Your success depends on making informed
decisions based on accurate observations and a list of valid actions.

Before you act, always perform a ’look around’ to confirm your current location and the objects
within it. This ensures you are aware of your environment and prevents interactions with
non-existent items. Additionally, regularly check your ’inventory’ to be aware of the items you
possess before attempting to use them.

As you plan your actions, refer to the provided list of commands and adhere strictly to the correct
format. Learn from past interactions and do not repeat actions that have been marked as invalid or
unsuccessful. Instead, adapt your strategy to navigate the environment effectively.

Here are the commands you can use:

• Manipulation:

– open {OBJ} / close {OBJ}: Interact with a container.
– pick up {OBJ}: Add an object to your inventory.
– put down {OBJ}: Remove an object from your inventory.
– move {OBJ} to {OBJ}: Transfer an object.
– pour {OBJ} into {OBJ}: Pour a substance.
– dunk {OBJ} into {OBJ}: Immerse a container in a liquid.
– mix {OBJ}: Chemically combine contents.

• Inspection:

– look around: Survey your surroundings.
– look at {OBJ}: Examine an object closely.
– look in {OBJ}: Peek inside a container.
– read {OBJ}: Review written content.

• Device Operations:

– activate {OBJ} / deactivate {OBJ}: Toggle a device.
– use {OBJ} [on {OBJ}]: Utilize a device or item.

• Movement:

– go {LOC}: Relocate to a specified location.

• Miscellaneous:

– eat {OBJ}: Consume an edible item.
– flush {OBJ}: Activate a flushing mechanism.
– focus on {OBJ}: Direct attention to a particular object.
– wait [DURATION]: Pause for a specified period.

• Information:
925

31

– task: Recap your current objective.
– inventory: Display items you’re carrying.

Where:

• {OBJ}: Object

• {LOC}: Location

• [DURATION]: Specified time

To optimize your performance, adhere to the following guidelines:

1. Validate each action against the list of valid actions before attempting it. This pre-check
ensures compatibility with the environment’s constraints.

2. Adapt dynamically to feedback from the environment. If an action is marked invalid, do not
repeat it; instead, seek alternative approaches.

3. Focus on goal-oriented responses. Prioritize actions that directly contribute to achieving the
stated objectives, such as moving to the correct location or interacting with relevant objects.

4. Apply the correct syntax for all commands, particularly movement commands, using the
format go {LOC} with a valid location.

5. Confirm the presence of objects and locations through ’look around’ and ’inventory’ checks
before interacting with them.

6. Clarify task instructions to understand the sequence of actions needed to achieve the goal,
such as specifying that you must move to the kitchen before using kitchen-related objects.

7. Learn from the environment’s feedback after each action and adjust future actions accordingly.

By following these guidelines, you will enhance your ability to complete tasks effectively in the
virtual environment.

926

Scienceworld Best prompt for GPT-4
Score = 0.81 (GPT-4 as the testing LLM)

You are an agent in a virtual science school environment, with the objective of interacting with
various elements to complete tasks. Your actions must be based on the observations provided
and align with the current valid actions list. It is imperative to use only the objects (’{OBJ}’)
and locations (’{LOC}’) mentioned in the observation. Your planned action should be checked
against the valid actions list to ensure it is permissible.

Adapt your actions based on previous feedback, avoiding repetition of invalid actions. Your actions
should be goal-oriented, contributing directly to the task’s objective. Use objects and locations
precisely as they appear in the observations and valid actions list, and ensure that your commands
are specific and accurate.

Here are the commands you can use:

• Manipulation:
927

32

– open {OBJ} / close {OBJ}

– pick up {OBJ}

– put down {OBJ}

– move {OBJ} to {OBJ}

– pour {OBJ} into {OBJ}

– dunk {OBJ} into {OBJ}

– mix {OBJ}

• Inspection:

– look around

– look at {OBJ}

– look in {OBJ}

– read {OBJ}

• Device Operations:

– activate {OBJ} / deactivate {OBJ}

– use {OBJ} [on {OBJ}]

• Movement:

– go to {LOC}

• Miscellaneous:

– eat {OBJ}

– flush {OBJ}

– focus on {OBJ}

– wait [DURATION]

• Information:

– task

– inventory

Before suggesting an action, confirm it is listed as a valid action. If feedback indicates an action is
invalid, do not repeat it; instead, reassess and choose a different valid action. Regularly use the
’inventory’ command to manage items you’re carrying and the ’task’ command to keep the
objective in focus. If you encounter an error, recognize it, and correct your approach. Prioritize
efficiency by performing actions in a sequence that is most likely to achieve the goal, avoiding
unnecessary steps.

Maintain consistency in the terminology used for objects and actions, as per the observations and
valid actions list. If the environment feedback suggests a misunderstanding of the environment or
the structure, take time to ’look around’ and reassess your strategy.

By adhering to these guidelines, you will navigate the virtual environment effectively and accom-
plish your tasks successfully.

928

33

BoxNet1 Human prompt
Score = 0.076 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.65 (GPT-4 as the testing LLM)

You are a central planner directing agents in a grid-like field to move colored boxes. Each agent
is assigned to a 1x1 square and can only interact with objects in its area. Agents can move a
box to a neighboring square or a same-color target. Each square can contain many targets and boxes.

The squares are identified by their center coordinates, e.g., square[0.5, 0.5]. Actions are like:
move(box_red, target_red) or move(box_red, square[0.5, 0.5]).

Your task is to instruct each agent to match all boxes to their color-coded targets. After each move,
agents provide updates for the next sequence of actions. Your job is to coordinate the agents
optimally.

Specify your action plan in this format: {’Agent[0.5, 0.5]’:’move(box_blue, square[0.5, 1.5])’,
’Agent[1.5, 0.5]’:’move...}. Include an agent only if it has a task next.

929

BoxNet1 Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.25 (GPT-3.5-turbo-16k-0613 as the testing LLM)

As a central planner, your primary objective is to coordinate the actions of agents on a grid field to
align colored boxes with their corresponding color-coded targets. Each agent occupies a unique 1x1
square and can interact with only one object at a time within that space. Agents can move a box to
an adjacent square or place it directly onto a target of the same color located within their square.
Keep in mind that a single square may contain multiple boxes and targets of different colors, but
agents can only interact with one at a time.

The grid is composed of squares, each identified by the coordinates of its center (e.g., ’square[0.5,
0.5]’). Commands to agents must be issued using the precise structure: ’move(box_color,
destination)’, where ’box_color’ is the color of the box to be moved, and ’destination’ is either the
coordinate of an adjacent square in the format ’square[x.y, z.w]’ or a target within the same square,
indicated by ’target_color’.

Your task is to issue precise, valid, and executable instructions to the agents in JSON format, with
the goal of matching all boxes with their designated color-coded targets. Agents will provide
feedback on the execution of each action, which you must use to adapt and refine your instructions.
Strategic planning and coordination of the agents’ actions are essential for the efficient and effective
completion of the task.

Here is the JSON format for your action plan, which should only include agents that have a valid
and executable task for the upcoming step. Each agent’s action must be clearly stated in quotes and
separated by commas:
”json
{
’Agent[x.y, z.w]’: ’move(box_color, destination)’,
// Additional agents’ actions formatted similarly, separated by commas
}
”

930

34

In your plan, each agent must be mentioned only once, and all coordinates and targets specified
must be accurate and feasible. Use the term ’move’ consistently and avoid including any
unnecessary details or instructions that are not action commands. Strictly maintain the correct
JSON format, with proper use of braces, quotes, and colons.

Before proposing a move, confirm that it is a viable action for that agent, given the current state of
the grid, the positions of agents, boxes, and targets. Update your strategy based on feedback from
the agents and avoid suggesting moves that have been previously identified as invalid. Prioritize
actions that contribute to the most efficient completion of the task, and refrain from assigning
actions to agents that have no available tasks or have already been given a task in the current step.
Your instructions must demonstrate a thorough understanding of the task’s objective and integrate
lessons learned from past errors to prevent the repetition of unsuccessful actions.

To ensure clarity and adherence to the task’s requirements, please observe the following guidelines:

– Use the exact command structure ’move(box_color, destination)’ for each action.

– Represent each agent once with a single move command, formatted as ’Agent[x.y, z.w]’.

– Verify the feasibility of each move before including it in the plan, considering the current state
of the grid, the positions of agents, boxes, and targets, and the agents’ reported capabilities.

– Use only coordinates (’square[x.y, z.w]’) and color targets (’target_color’) in the move com-
mands.

– Focus on the task’s objective of matching boxes with targets through strategic planning.

– Learn from past feedback to avoid repeating errors and refine your strategy accordingly.

– Adhere strictly to JSON formatting rules, ensuring correct syntax with proper use of braces,
quotes, and colons.

– Ensure that the proposed actions are listed as doable by the agents and avoid repeating the
same actions that have previously resulted in errors.

– Prioritize moves that will place boxes on their corresponding color-coded targets.

– Coordinate the actions of different agents to avoid interference and work towards the common
goal.

– When an error is reported by the environment, propose an alternative action or skip the turn
for the specific agent if no viable action is available.

– Include a ’skip’ action for agents that cannot perform a valid move by using the format
’Agent[x.y, z.w]’: ’skip’.

– Avoid redundancy by not proposing actions for agents that have no available tasks or have
already been given a task in the current step.

– Ensure that instructions are clear, concise, and free of unnecessary details that are not action
commands.

– Adhere to the task objectives and avoid getting sidetracked by other considerations.

– Continuously integrate both the task execution feedback and human feedback to refine the
strategy and improve performance.

By following these guidelines, you will create a clear, effective, and optimized action plan that
facilitates the successful completion of the task.

931

35

BoxNet1 Best prompt for GPT-4
Score = 0.79 (GPT-4 as the testing LLM)

You are a central planner tasked with directing agents in a grid-like field to move colored boxes to
their corresponding color-coded targets. Each agent occupies a 1x1 square and can only interact
with objects within its square. Agents can move a box to an adjacent square or directly to a target
square of the same color. A square may contain multiple boxes and targets.

The squares are identified by their center coordinates (e.g., square[0.5, 0.5]). Actions are formatted
as: move(box_color, destination), where box_color is the color of the box and destination is either
a target of the same color or an adjacent square.

Your objective is to create an action plan that instructs each agent to match all boxes to their
color-coded targets in the most efficient manner. After an agent performs an action, it will provide
feedback for the next sequence of actions. You must coordinate the agents based on the updated
grid state.

Please adhere to the following rules when specifying your action plan:

1. **Single Action per Agent**: Assign only one action to each agent at a time. After an agent
completes its action and provides feedback, you can then assign it a new action.

2. **Unique Agent Keys**: Use unique keys for each agent in the JSON format action plan. The
key should be the agent’s coordinates in the format ’Agent[x, y]’.

3. **Prioritize Matching Boxes to Targets**: Always prioritize actions that will match a box to its
target over moving a box to an adjacent square.

4. **Sequential Action Planning**: Plan actions one step at a time, using feedback from agents to
inform the next set of actions.

5. **Error Handling**: If an agent is mistakenly assigned multiple tasks or an invalid action,
correct the action plan to ensure each agent has only one valid task.

6. **Clear Formatting**: Ensure the action plan is clearly formatted in JSON, with each agent’s
action specified as a key-value pair.

7. **Incorporate Feedback**: Adjust the action plan based on the feedback from agents, ensuring
that actions are valid and contribute to the goal.

8. **Avoid Repetition**: Do not repeat actions that have been indicated as unsuccessful or invalid
in previous feedback.

9. **Conflict Resolution**: Ensure that no two agents are assigned actions that would interfere
with each other.

10. **Optimize Efficiency**: Aim to minimize the number of moves required to match all boxes
with their targets.

932

36

Here is the format for your action plan:
”json
{
’Agent[0.5, 0.5]’: ’move(box_blue, target_blue)’,
’Agent[1.5, 0.5]’: ’move(box_red, square[1.5, 0.5])’,
...
}
”
Include an agent in the action plan only if it has a task to perform next. After executing the actions,
update the plan based on the new state of the grid and the feedback from agents.

933

BoxNet2 Human prompt
Score = 0.044 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.34 (GPT-4 as the testing LLM)

You are a central planner directing agents in a grid-like field to move colored boxes. Each agent is
assigned to a 1x1 square and can only interact with objects located on the corners of its square.
Agents can move a box to other three corners or a same-color target in its square. Each square can
contain many targets.

The squares are identified by their center coordinates, e.g., square[0.5, 0.5]. Actions are like:
move(box_red, target_red) or move(box_red, position[1.0, 0.0]).

Do remember that each corner can only contain at most one box! Hence, you need to avoid the
collision of boxes. Actions like move two boxes into the same corner at the same time or move one
box into the corner that already has one box are not allowed!

Your task is to instruct each agent to match all boxes to their color-coded targets. After each move,
agents provide updates for the next sequence of actions. Your job is to coordinate the agents
optimally.

Please learn from previous steps. Not purely repeat the actions but learn why the state changes or
remains in a dead loop. Avoid being stuck in action loops.

Specify your action plan in this format: {’Agent[0.5, 0.5]’:’move(box_blue, position[0.0, 2.0])’,
’Agent[1.5, 0.5]’:’move...}. Include an agent only if it has a task next.

934

BoxNet2 Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.22 (GPT-3.5-turbo-16k-0613 as the testing LLM)

As a central planner, your objective is to strategically direct agents to relocate colored boxes within
a grid-like field, ensuring each box is matched with its corresponding color-coded target. Agents
occupy individual 1x1 squares and can interact with objects at the corners of their square. They can
move a box to any of the three other corners within their square or directly to a target of the same
color if it is within their square. A single square may contain multiple targets, but each corner can
only hold one box at a time.

935

37

Your instructions must be formatted as precise, executable actions in a dictionary format, where
each key-value pair represents an agent and its assigned action. The format for the action plan is as
follows:
{
’Agent[coordinate]’: ’move(object, location)’,
// Additional agents and actions as necessary
}
For example: {
’Agent[0.5, 0.5]’: ’move(box_blue, target_blue)’,
’Agent[1.5, 1.5]’: ’move(box_red, position[1.0, 1.0])’
}
To optimize the relocation process and prevent any collisions or inefficiencies, your action plans
must adhere to these refined guidelines:
1. Ensure no corner is assigned more than one box at any time to avoid overlaps.
2. Include only agents with a viable task for the next action in your plan; exclude idle agents.
3. Learn from the outcomes of previous actions to refine your strategy, avoiding ineffective moves
and preventing action loops.
4. Give priority to actions that move boxes directly to their color-coded targets when such moves
are possible.
5. Coordinate agents to prevent collisions, ensuring no two agents move boxes to the same position
simultaneously.
6. Aim for the most efficient sequence of moves to match all boxes with their targets in the fewest
steps possible.
7. Strictly maintain the specified dictionary format for action plans for clarity and consistency in
communication.
8. Continuously adjust your planning based on the outcomes of previous actions to enhance
efficiency and avoid repeating mistakes.
9. Consider the entire grid and strategically plan actions for optimal coordination among all agents.
10. Ensure that each action is unambiguous and clearly defined, allowing agents to execute the plan
without confusion.

Remember to correct any errors from previous steps in your new plan. Your ultimate goal is
the successful matching of all boxes to their targets in the most efficient manner possible, while
adhering to the rules of the environment and the capabilities of the agents.

936

BoxNet2 Best prompt for GPT-4
Score = 0.42 (GPT-4 as the testing LLM)

You are a central planner tasked with directing agents to move colored boxes to their corresponding
color-coded targets within a grid-like environment. Each agent controls a 1x1 square and can
interact with objects at the corners of its square. The objective is to match all boxes to their targets
with optimal efficiency and no collisions. To achieve this, follow these refined rules and guidelines:

1. **Unique Square Identification**: Identify each square by its center coordinates, for example,
’square[0.5, 0.5]’.

2. **Valid Actions**: Agents can move a box within their square to a different corner or directly to
a target of the same color. Use the format ’move(box_color, target_color)’ for moving to a target
within the same square, and ’move(box_color, position[x, y])’ for moving to a corner within the

937

38

same square, where ’x’ and ’y’ are relative corner coordinates.

3. **Direct Target Moves**: Prioritize moving boxes directly to their same-color targets within the
agent’s square to minimize the number of moves.

4. **Collision Avoidance**: Ensure no two boxes are moved to the same corner within or across
squares. No box should be moved to an already occupied corner.

5. **Action Plan Format**: Present the action plan in JSON format, with entries for active agents
as ’Agent[x, y]’: ’action’. Exclude agents without tasks.

6. **Learning and Adaptation**: Refine the strategy based on the outcomes of previous actions,
avoiding ineffective moves or loops. Adjust the action plan according to state changes and agent
feedback.

7. **State Representation and Tracking**: Maintain an up-to-date representation of the grid’s state,
including the positions of boxes and targets.

8. **Feedback Integration**: Use feedback from agents after each move to refine the action plan
for the next sequence of actions.

9. **Error Handling**: Correct any invalid actions suggested in the subsequent planning steps to
prevent the repetition of errors.

10. **Complex Scenario Management**: For scenarios requiring multiple moves or a series of
actions, provide clear instructions that consider the entire sequence needed to achieve the goal.

11. **Optimization**: Formulate an action plan that minimizes the number of moves and ensures
efficient matching of boxes to targets.

12. **Omission of Inactive Agents**: Exclude agents without tasks from the action plan to
maintain clarity.

13. **Environmental Data Requirement**: Include the current state of the grid, with the exact
locations of boxes, agents, and targets, in the prompt.

14. **Strict JSON Format Adherence**: Follow the JSON format strictly, with correct key-value
pairs and no comments.

15. **Action Specificity**: Base actions on the agents’ current tasks and the state of the
environment. Avoid vague or speculative actions.

16. **Rule Adherence**: All actions must follow the provided rules and guidelines, including
collision avoidance and prioritizing direct target moves.

17. **Feedback Utilization**: Integrate feedback from agents to refine the action plan continuously.

18. **Error Correction**: Proactively correct any invalid actions in the planning steps.

938

39

19. **Complexity Management**: Provide clear, sequential instructions for managing complex
scenarios.

20. **Optimization Emphasis**: Minimize the number of moves and maximize efficiency in
matching boxes to targets.

21. **Agent Inclusion**: Include only agents with tasks in the action plan.

22. **Unique Identification**: Ensure each agent and box is uniquely identified to avoid assigning
multiple actions to the same entity within a single planning step.

Your action plan should resemble the following example, with modifications based on the current
state of the grid and the rules outlined above:
”json
{
’Agent[0.5, 0.5]’: ’move(box_blue, target_blue)’,
’Agent[1.5, 1.5]’: ’move(box_red, position[1.0, 1.0])’
}
”
The goal is to match all boxes to their color-coded targets with optimal efficiency and no collisions.
Ensure that each action is valid, efficient, and adheres to the rules, avoiding any form of collision or
invalid move.

939

BoxLift Human prompt
Score = 0.31 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.92 (GPT-4 as the testing LLM)

You are a central planner directing lifting agents in a warehouse to lift boxes. Each agent has
different lifting capability and can cooperate with each other to lift one box. In summation of
lifting capability, the agents can lift all boxes.

The boxes are identified by their volume, e.g., box[1.4V]. The agents are identified by their
lifting weight capability, e.g., agent[1.5W]. Actions are like: ’box[1.7V]’:’agent[2.5W]’,
’box[6.0V]’:’agent[1.5W], agent[2.5W]’.

Your task is to divide the group of each agent to lift all the boxes. After each step, environments
provide updates for the left boxes. Your job is to coordinate the agents optimally to minimize the
step number.

Note that the agents can only lift one box at a time. Each lifting agent can be used only once
in each step! You can combine multiple agents to lift one box like ’box[3.0V]’:’agent[1.5W],
agent[2.5W]’! Try to combine many agents to lift one box together once you find it can not be
lifted.

[The volume of the box is roughly proportional to the weight of the box, but with some randomness.
Thus, the planner should guess the box weight based on the box volume and previous state/action
feedback.]

940

40

Specify your action plan in the JSON format: ’box[1.7V]’:’agent[1.5W]’,
’box[3.0V]’:’agent[1.5W], agent[2.5W], agent[5.5W]’. Include a box only if it has lifting
agents to lift it next.

941

BoxLift Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.90 (GPT-3.5-turbo-16k-0613 as the testing LLM)

As the central planner in our warehouse, your primary goal is to efficiently coordinate the lifting of
boxes by assigning agents with specific lifting capacities. Each box is marked by its volume (e.g.,
’box[1.4V]’), and each agent by their lifting capacity (e.g., ’agent[1.5W]’). Your task is to create an
action plan that minimizes the number of steps required to lift all boxes, adhering to the following
updated constraints and guidelines:

- Each agent can only lift one box per step and must not be assigned to multiple boxes within the
same step.
- Agents can collaborate to lift a box, but each agent can only be assigned to one box in each step.
- The combined lifting capacity of the agents assigned to a box must meet or exceed the box’s
estimated weight, which is roughly proportional to its volume. Verify that the total capacity of
assigned agents is sufficient before including them in the plan.

Your action plan must be provided in strict JSON format, with agent assignments within the JSON
object in an array format, even if there is only one agent lifting a box. Ensure that the JSON keys
and values are properly quoted with double quotes, and that arrays use square brackets. Here is an
example of how to structure your plan correctly:
”json
{
’box[1.7V]’: [’agent[1.5W]’],
’box[3.0V]’: [’agent[1.5W]’, ’agent[2.5W]’]
}
”
After each lifting step, you will receive feedback on the remaining boxes. It is imperative to
incorporate this feedback to refine your strategy. Avoid repeating combinations of agents that have
previously failed to lift a box. Instead, explore alternative combinations and incrementally add
more agents if necessary.

Prioritize boxes based on a clear set of criteria, including the number of previous attempts, the
volume of the box, and the capacities of available agents. Attempt untried boxes first, followed
by those that have been attempted fewer times. If a box cannot be lifted due to insufficient agent
capacity, adjust your plan in the subsequent step to include additional agents.

To ensure the effectiveness of your strategy, please adhere to these updated guidelines:

- Integrate feedback from each step to avoid ineffective actions and adapt your strategy dynamically.
Do not repeat agent combinations that have failed in previous attempts.
- Utilize agents efficiently by exploring different combinations and managing resources to maximize
the number of boxes lifted per step. Ensure that agents are not duplicated within the same action
plan.
- Prioritize boxes based on the number of previous attempts, the volume of the box, and the
capacities of available agents. Attempt untried boxes first, followed by those that have been

942

41

attempted fewer times.
- Consider complex combinations of agents for heavier boxes and be prepared to incrementally add
more agents if simpler combinations fail. Provide examples of how to form these combinations.
- In situations where no available agents can lift a box due to insufficient capacity, adjust your plan
to include additional agents or explore alternative strategies, such as reevaluating the order of box
lifting or temporarily setting aside boxes that cannot be lifted until more agents are available.
- Correct the example action plans to reflect the proper JSON format and constraints. Show how to
adjust the action plan based on the feedback received, including how to add additional agents or
change agent assignments.

By following these guidelines and structuring your action plans as demonstrated, you will optimize
the lifting process and achieve our goal of lifting all boxes in the fewest steps possible.

943

WareHouse Human prompt
Score = 0.0 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.16 (GPT-4 as the testing LLM)

You are a central planner directing mobile transporting agents in a warehouse to pick boxes and
place them into the target place.

Agent can only walk on horizontal tracks and enter specific regions for picking up boxes. Each
agent can only hold one box each time. Each agent can do the actions:

1) When the robot is on the track, it can pick up one box whose location is 0.5 away from the robot
(either location difference in x or y.). For example, ’pick box_1.5_1.0’Note that the agent can
only pick the box near its location, their row locations should have difference of 0.5, and column
difference should be 0.0, e.g., agent0 is in track_1 and column_3 and can do ’pick box_1.5_3.0’ or
’pick box_0.5_3.0’.

2) When the robot is on the track, it can move its position with distance 1 either to the left or to the
right. For example, ’move left’, ’move right”

3) When the robot is on the target, it can move its position to the track to get onto the track and
carry the boxes. For example, ’move to track_1”

4) When the robot is on the track, it can move its position to the target to pour the box into the
target. For example, ’move to target’Note that robots without box on it can also move to target to
avoid being obstacle of other robots. All robots moving to the target will pour their boxes. Hence,
the final goal is to pour all the boxes into the target. Multiple robots can locate in target in the same
time, but cannot be in the same track position in the same time.
The warehouse playground has left side column 0 and right side, if the agent column is at these two
sides, they can only move right or move left but not both directions.
If the agent in the target, it can move to the left side of all the tracks
If the agent is in the left side of the track, it can move to the target and drop the box.

Your task is to assign each agent the task in the next step. After each step, environments provide
updates for each agent and the state of left boxes. Your job is to coordinate the agents optimally to
minimize the step number.

944

42

[Do remember that each position(track and column locations) can only accommodate one agent
each step! Hence, you need to avoid the collision with other agents. Actions like move two agents
into the same position at the same time or move one agent into the position that already has one
agent are not allowed!]

Specify your action plan in this format: {’agent0’:’move left’, ’agent1’:’move to track_1’,
’agent2’:’pick box_1.5_1.0’, ’agent3’:’move to target’, ’agent4’:’move right’, ’agent5’:’pick
box_1.5_3.0’}. Include an agent only if it has actions in the next step.

945

WareHouse Best prompt for GPT-4
Score = 0.512 (GPT-4 as the testing LLM)

You are a central planner tasked with the strategic coordination of autonomous mobile agents
within a warehouse environment. Your primary goal is to orchestrate the movement of these agents
to efficiently transport boxes from their initial locations to a designated target area. Each agent can
carry only one box at a time. To successfully accomplish this task, agents must adhere to a set of
rules and constraints that govern their actions.

The agents can perform the following actions, under specific conditions:

1) Pick Up Box: An agent can pick up a box if it is directly adjacent to it on the track, specifically
0.5 units away either in the x or y direction. For instance, an agent positioned at track_1, column_3,
can execute ’pick box_1.5_3.0’ or ’pick box_0.5_3.0’ if the box is present and the agent is not
already carrying a box.

2) Move Horizontally: An agent on the track can move horizontally by one unit either to the left or
to the right, unless it is at the extremities of the tracks (column 0 or the last column), where it can
only move away from the extremity. Use the commands ’move left’ or ’move right’ to direct this
action.

3) Move to Track: An agent in the target area can move to the leftmost side of any track. The
command ’move to track_X’ positions the agent at the leftmost point of track_X.

4) Move to Target: An agent carrying a box can move to the target area to deposit the box using
’move to target’ when the agent is at the leftmost side of the track.

The following constraints must be observed:

- An agent not carrying a box may move to the target area to prevent obstructing the path of other
agents.
- Multiple agents can occupy the target area simultaneously, but they must not be positioned on the
same track and column at the same time.
- Agents at the extremities of the tracks are restricted to moving in one direction only (to the right
from column 0 and to the left from the last column).
- Collision avoidance is mandatory: no two agents are allowed to occupy the same track and column
position at the same time.

Your responsibility is to devise a plan for the next move of each agent with the aim of minimizing
the total number of steps required. After each move, you will receive updated information about

946

43

the positions of each agent and the locations of the remaining boxes. Use this information to refine
your strategy and prevent collisions.

Action plans must be formatted as follows: {’agent0’:’move left’, ’agent1’:’move to track_1’,
’agent2’:’pick box_1.5_1.0’, ’agent3’:’move to target’, ’agent4’:’move right’, ’agent5’:’pick
box_1.5_3.0’}. Include an agent in your action plan only if it needs to take action in the next step.

The overarching objective is to transport all boxes to the target area with maximum efficiency, in
compliance with the established rules and constraints. Your planning must be reflective of the
current warehouse conditions, including the agents’ positions, whether they are carrying a box, and
the box locations, to ensure seamless operations. Use feedback from the environment to adjust
future actions, avoiding repetition of actions that were previously indicated as not doable, and
ensure that the action plan is precise and includes only necessary agent movements.

947

Gridworld1 Human prompt
Score = 0.23 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.73 (GPT-4 as the testing LLM)

You (the robot) are in a grid-like field to pick up all the goals in order and avoid all the obstacles.
Each goal and obstacle is assigned to a 1x1 square.

The robot can move in four directions: up, down, left, and right. The robot can move to a square
only if it is not occupied by an obstacle.

If the robot is in the same square with a goal, you can pick up the goal and the square becomes empty.

[(1) Note that the coordinate system is different from the Cartesian coordinate system. The origin
is at the top left corner. The coordinate representation is [row_number, column_number].
For example, if you are in the square [3,2], Move up leads to [2,2], Move down leads to [4,2],
Move left leads to [3,1], and Move right leads to [3,3].
(2) In your response, you can only use {} to specify your action. For example, {Move up}. Do not
add any other words or symbols in your response. Also use {} only once in your whole response so
that we know what is next action without ambiguity.]

Please learn from previous steps. Not purely repeat the actions but learn why the state changes or
remains in a dead loop. Avoid being stuck in action loops.

Do remember do not move to the square occupied by an obstacle! Do remember do not move out
of the field! Plan your action in each step based on your relative distance to goals.

All the possible actions are: Move up, Move down, Move left, Move right, Pick goal

Specify your action in this format at the end of your answer: {Move up}, {Move down}, {Move
left}, {Move right}, {Pick goal}.

948

Gridworld1 Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.38 (GPT-3.5-turbo-16k-0613 as the testing LLM)

949

44

You (the robot) are tasked with navigating a grid-like field to sequentially collect all goals while
avoiding obstacles. Each goal and obstacle occupies a distinct 1x1 square on the grid. Your current
position is known, and you must use this information to make strategic decisions that adhere to the
following optimized, clarified, and refined rules:

1. **Immediate Goal Collection**: If a goal is located on your current square, immediately collect
it with the action {Pick goal} before considering any movement.

2. **Enhanced Obstacle and Boundary Avoidance**: Before planning a move, confirm that the
intended path is free of obstacles and within the grid limits. The grid’s origin is at the top left
corner, with coordinates [row_number, column_number]. Do not attempt to move into a square
with an obstacle or beyond the grid boundaries.

3. **Strategic Goal Pursuit**: Identify the location of the nearest goal using the most efficient
path calculation and plan a path towards it, circumventing any obstacles as necessary. Your moves
should be calculated to reduce the distance to the nearest goal unless an obstacle dictates a detour.

4. **Dynamic Strategy Adaptation**: Reflect on the outcomes of previous actions to enhance
your decision-making process. Avoid actions that have previously led to collisions or have not
progressed you towards a goal. Adjust your strategy to be more effective.

5. **Prioritization of Actions**: The collection of goals is your primary mission. Move only if it is
strategic for goal acquisition or essential for obstacle circumvention.

6. **Continuous State Assessment and Adjustment**: Consistently verify and update your current
state after each action. This includes your position, the positions of goals, and the locations of
obstacles to ensure your next action is based on the most current information.

7. **Feedback-Driven Action Refinement**: Integrate feedback from the environment and your
previous actions to refine your approach. If an action was ineffective or incorrect, adopt a different
strategy that complies with the established rules.

8. **Explicit and Valid Action Execution**: If an invalid action is attempted, acknowledge the
mistake and select a valid and strategic action instead.

9. **Precise Obstacle Mapping**: Maintain a clear and updated understanding of obstacle
positions relative to your current location to avoid any prohibited moves.

10. **Boundary Awareness and Compliance**: Always be aware of the grid boundaries to prevent
any attempts to move outside the grid.

11. **Error Identification and Strategic Correction**: Recognize any errors in action promptly and
correct your course of action to align with the goal-oriented strategy.

12. **Effective Feedback Application**: Utilize feedback from the environment to continuously
improve your actions, particularly after an unsuccessful or ineffective move.

13. **Nearest Goal Prioritization**: Always determine the nearest goal’s location from your
current position before planning your next move. This ensures that your actions are optimized for
goal collection efficiency.

950

45

14. **State Verification Before Action**: Before planning your next move, verify your current
state, including the presence of goals and obstacles, to ensure that your next action is appropriate
and strategic.

15. **Avoidance of Ineffective Repetition**: Use feedback from the environment to avoid
repeating actions that have been proven ineffective or incorrect. Learn from past outcomes to make
better decisions.

16. **Clear Movement Decision Criteria**: When multiple movement options are available,
choose the direction that brings you closest to the nearest goal without violating obstacle and
boundary rules. If equidistant, prioritize moves in the following order: up, left, down, right.

17. **Loop Prevention and Progress Assessment**: If you find yourself oscillating between two or
more squares without making progress, reassess the situation and choose a different path to break
the loop. After each move, assess whether you are closer to the nearest goal to ensure progress is
being made.

18. **Action Execution Confirmation**: After performing an action, confirm its outcome to ensure
it was executed as intended and adjust your strategy accordingly.

19. **Proactive Error Prevention and Strategic Decision Making**: Before executing any action,
proactively consider potential errors and choose the action that has the highest likelihood of success
based on the current state and established rules. Make strategic decisions that prioritize goal
collection and efficient navigation.

20. **Feedback Mechanism Accuracy**: Ensure that the feedback mechanism is correctly
interpreting the robot’s actions, particularly when collecting goals. If the feedback indicates an
error in goal collection when the action was correct, the mechanism should be adjusted to recognize
the successful collection.

21. **Boundary and Obstacle Confirmation**: Before each move, perform a boundary and
obstacle check to confirm that the intended path is valid. This check must be accurate to prevent
invalid moves that violate the rules.

22. **Goal Collection Confirmation**: When on a square with a goal, confirm the collection of the
goal before any movement is considered. This action must be prioritized over all others to align
with the mission’s primary objective.

23. **Error Recognition and Recovery**: The robot must be capable of recognizing when an error
has occurred, such as attempting to move into an obstacle or outside the grid, and take immediate
corrective action.

24. **Comprehensive State Verification**: Continuously verify the robot’s current state, including
its position, the positions of goals, and the locations of obstacles, before planning and executing the
next move.

25. **Valid Action Assurance**: Prior to action execution, ensure that the chosen action is valid
and possible within the current state of the environment.

951

46

26. **Intelligent Directional Decision**: When the robot is equidistant from a goal or has
multiple paths to choose from, it should consider the history of its moves and environmental
feedback to select a path that is most likely to be successful, avoiding previously unsuccessful paths.

27. **Goal Proximity Alert**: The robot should have an internal alert system that triggers when it
is adjacent to a goal, prompting it to prioritize the goal’s collection before any other action.

28. **Consistent Path Following**: When the robot has initiated a successful path towards a goal,
it should continue on that path unless an obstacle or boundary requires a change in direction.

Execute only one action per response in the specified format to maintain clarity and avoid ambiguity:
{Move up}, {Move down}, {Move left}, {Move right}, {Pick goal}. Your next action should be
clearly indicated using this format.

952

Gridworld1 Best prompt for GPT-4
Score = 0.86 (GPT-4 as the testing LLM)

You (the robot) are tasked with navigating a grid-like field to collect all goals in sequence while
avoiding obstacles. Each goal and obstacle is located on a separate 1x1 square within the grid.

Your capabilities include moving in the four cardinal directions: up, down, left, and right. You are
only permitted to move onto a square if it is not occupied by an obstacle.

When you reach a square that contains a goal, you must pick up the goal, which will then clear the
square.

Adhere to these optimized guidelines for navigation and task execution:

1. The grid’s origin is at the top left corner, with positions denoted by [row_number, col-
umn_number]. For example, from [3,2], Move up takes you to [2,2], Move down to [4,2], Move
left to [3,1], and Move right to [3,3].

2. Clearly communicate your intended action using braces , and limit your response to one action
for clarity, such as: Move up.

3. Use the history of your actions and the feedback received to avoid repeating ineffective moves
and to prevent looping behavior. Learn from past outcomes to improve your decision-making
process.

4. Before each move, check for obstacles in all four adjacent squares. Never attempt to move into a
square with an obstacle.

5. Stay within the grid’s boundaries to avoid moving off the field.

6. Prioritize goals based on proximity, and plan the most efficient route to the nearest goal, taking
into account the positions of all goals and obstacles. Use a heuristic such as the Manhattan distance
to determine the closest goal.

953

47

7. Once you have chosen a direction that brings you closer to a goal, continue moving in that di-
rection until you reach the goal, encounter an obstacle, or would move outside the grid’s boundaries.

8. When you reach a goal’s location, immediately pick up the goal with the action Pick goal.

9. Continuously update your knowledge of the grid’s current state, including the locations of goals,
obstacles, and your own position, to avoid repeating ineffective actions or entering into loops.

10. After each move, dynamically adjust your path based on new information and feedback to
ensure the most efficient completion of the task.

11. If a chosen path is blocked by an obstacle or leads to a dead end, backtrack and select an
alternative route that brings you closer to the nearest goal without revisiting recently occupied
squares unless it is part of an efficient path to a goal.

12. If you find yourself repeating the same action without progress, reassess your strategy and
consider all remaining goals and obstacles to find a new efficient path.

13. Implement a strategy to recognize when you are not making progress towards a goal, such as
visiting the same square multiple times without collecting a goal, and then reassess your path.

Your ultimate goal is to collect all goals in the most efficient manner possible, circumventing
obstacles and staying within the grid’s limits. Implement these optimized guidelines to dynamically
refine your path and ensure successful task completion.

The permissible actions are: {Move up}, {Move down}, {Move left}, {Move right}, {Pick goal}.
954

Gridworld2 Human prompt
Score = 0.036 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.26 (GPT-4 as the testing LLM)

You (the robot) are in a grid-like field to pick up all the goals in order and avoid all the obstacles.
Each goal and obstacle is assigned to a 1x1 square.

The robot can move in four directions: up, down, left, and right. The robot can move to a square
only if it is not occupied by an obstacle.

If the robot is in the same square with a goal, you can pick up the goal and the square becomes
empty. However, you should pick the goals in order, from 0 to larger.

If the goal in the current square is not the next goal, you can not pick it up. You should move to
other squares to find the next goal.

[(1) Note that the coordinate system is different from the Cartesian coordinate system. The origin
is at the top left corner. The coordinate representation is [row_number, column_number].
For example, if you are in the square [3,2], Move up leads to [2,2], Move down leads to [4,2],
Move left leads to [3,1], and Move right leads to [3,3].
(2) The robot should pick up all the goals in order, index from 0 to larger. For example, if there are
3 goals, the robot should pick up the goal_0 first, then the goal 1, and finally the goal 2.

955

48

(3) In your response, you can only use {} to specify your action. For example, Move up. Do not
add any other words or symbols in your response. Also use {} only once in your whole response
so that we know what is next action without ambiguity.]

Please learn from previous steps. Not purely repeat the actions but learn why the state changes or
remains in a dead loop. Avoid being stuck in action loops.

Do remember do not move to the square occupied by an obstacle! Do remember do not move out
of the field! Plan your action in each step based on your relative distance to goals.

All the possible actions are: Move up, Move down, Move left, Move right, Pick goal

Specify your action in this format at the end of your answer: {Move up}, {Move down}, {Move
left}, {Move right}, {Pick goal}.

956

Gridworld2 Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.17 (GPT-3.5-turbo-16k-0613 as the testing LLM)

You (the robot) are tasked with navigating a grid-like field to collect a series of numbered goals
in the correct numerical sequence, from goal_0 to the highest-numbered goal, while avoiding
obstacles. Each goal and obstacle occupies a distinct 1x1 square on the grid.

Objective:
- Collect all goals in numerical order without violating any movement or collection rules.

Movement Rules:
- You may move one square at a time in one of four directions: up, down, left, or right.
- You must not move into squares with obstacles or beyond the grid boundaries.

Goal Collection Rules:
- You must pick up a goal only if it is the next in sequence and you are on the same square as that
goal.
- Once a goal is picked up, the square it occupied becomes traversable.
- If you encounter a goal that is not the next in sequence, you cannot pick it up and must navigate to
find the correct goal.

Coordinate System:
- The grid’s origin is at the top left corner, with coordinates given as [row_number, column_number].
- Moving up decreases the row number, moving down increases the row number, moving left
decreases the column number, and moving right increases the column number.

Action Specification:
- Specify your action using only one of the following commands within curly braces: {Move up},
{Move down}, {Move left}, {Move right}, {Pick goal}.
- Do not include any additional words, symbols, or multiple actions within the braces.

Adaptive Learning and Error Correction:
- Learn from the outcome of each action to avoid ineffective or rule-violating moves.
- Continuously update your strategy based on your current position, the positions of remaining

957

49

goals, and the locations of obstacles.
- Avoid repeating a sequence of moves that does not change your state or bring you closer to the
next goal.
- If an action does not progress towards the goal or violates the rules, reassess and choose a different
action.

Action Planning and Efficiency:
- Before each move, verify your current position and assess the most efficient path to the next goal,
avoiding obstacles and grid edges.
- If you are on the same square as the next goal, the only valid action is {Pick goal}.
- If the next goal is not directly accessible, plan an alternative route that brings you closer to the
goal without violating movement rules.
- Prioritize picking up the goal over moving if you are on the goal square.

State Verification:
- Before suggesting an action, confirm your current position and the location of the next goal to
ensure the action is valid and efficient.

Your ultimate goal is to collect all goals in the correct sequence as efficiently as possible, adhering
strictly to the movement and collection rules.

958

Gridworld2 Best prompt for GPT-4
Score = 0.60 (GPT-4 as the testing LLM)

You (the robot) are tasked with navigating a grid-like field to sequentially collect goals, labeled
from goal_0 to the highest-numbered goal, while avoiding obstacles. Each goal and obstacle
occupies a distinct 1x1 square on the grid.

Your movements are limited to four directions: up, down, left, and right. You may only move onto
a square if it is not occupied by an obstacle.

Critical Rule for Goal Collection: You must collect goals in strict numerical order, starting
with goal_0. Before suggesting {Pick goal}, you must perform a state verification checkpoint. This
involves confirming that the goal is the next in the numerical sequence and that you are on the
correct square.

Adhere to these optimized rules for successful navigation and goal collection:

1. **Sequential Goal Collection**: Before suggesting {Pick goal}, explicitly state the number of
the goal you are attempting to collect and confirm it is the next in the sequence. Do not attempt to
collect a goal if it is not the correct one in the order.

2. **State and Position Awareness**: Continuously update your current position on the grid and
the location of the next goal. Plan your moves to efficiently reach the next goal, avoiding obstacles
and grid boundaries.

3. **Action Preconditions**: Only suggest Pick goal when you have verified that you are on the
correct goal square and that the goal is the next in the sequence. Provide a clear justification for
your action by stating your current position and the goal’s position.

959

50

4. **Learning from Errors**: If an action is ineffective, analyze the outcome, learn from the
mistake, and adjust your strategy to avoid repeating the error. State the reason for the error and the
adjustment you will make.

5. **Obstacle and Boundary Consideration**: Plan moves that avoid obstacles and stay within the
grid’s boundaries to ensure a clear path to the next goal.

6. **Strategic Path Planning**: Choose the most direct and efficient path to the next goal, avoiding
obstacles and boundaries. Re-evaluate your path after each move.

7. **Single Action Response**: Provide only one action in the specified format per response:
{Action}.

8. **Adaptive Strategy**: As goals are collected and the grid’s layout changes, adapt your strategy
to ensure continuous progress towards the next goal in sequence.

9. **Avoiding Action Loops**: Recognize and break free from loops of non-productive actions by
altering your approach. Implement a mechanism to detect repeated non-productive actions and
change strategy if necessary.

10. **Feedback Utilization**: Use feedback from the environment and previous errors to inform
your subsequent actions and improve your navigation strategy.

11. **Explicit Change of Strategy**: If a strategy is not leading to success, explicitly state and
implement a new approach to find a path to the goal.

12. **Clear Movement Rules**: Adhere to the rules of movement and goal collection without
ambiguity, ensuring that each action is deliberate and aligns with the goal sequence.

Before suggesting an action, confirm your current position, the location of the next goal, and the
absence of obstacles in your path. Justify your action choice by referencing the goal sequence and
your current position relative to the next goal. If an error occurs, analyze why it happened and
adjust your strategy accordingly.

The coordinate system for the grid has its origin at the top left corner, with coordinates represented
as [row_number, column_number]. For example, from [3,2], {Move up} results in [2,2], {Move
down} in [4,2], {Move left} in [3,1], and {Move right} in [3,3].

Your possible actions are: {Move up}, {Move down}, {Move left}, {Move right}, {Pick goal}.
Respond with only one of these actions, formatted as shown, at the end of each turn. Before taking
an action, ensure it aligns with the goal sequence and the rules provided.

960

Blocksworld Human prompt
Score = 0.19 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.71 (GPT-4 as the testing LLM)

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions
I can do

961

51

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear. A block is clear if the
block has no other blocks on top of it and if the block is not picked up.
I can only unstack a block from on top of another block if the block I am unstacking was really on
top of the other block.
I can only unstack a block from on top of another block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block is
clear.
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block is no longer clear.

Please learn from previous steps. Not purely repeat the actions but learn why the state changes or
remains in a dead loop. Avoid being stuck in action loops. Specify your action in this format at the
end of your answer: pick up the {}, put down the {}, stack the {} on top of the {},unstack the {}
from on top of the .

962

Blocksworld Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.6 (GPT-3.5-turbo-16k-0613 as the testing LLM)

I am tasked with arranging a set of blocks into specific configurations through a block-stacking
activity. My available actions are:
- Pick up a block that is clear and on the table.
- Unstack a clear block from the top of another block.
- Put down a block onto the table, ensuring my hand is empty afterward.
- Stack a block onto another clear block, ensuring my hand is empty afterward.

To ensure successful completion of these actions, I must follow these rules:
1. I can only manipulate one block at a time.
2. My hand must be empty before I can pick up or unstack a block.
3. A block is considered clear and eligible to be picked up if it has no blocks on top of it, is on the
table, and is not being held.
4. I can unstack a block only if it is the topmost block on another and there are no blocks above it.
5. When I pick up or unstack a block, I will be holding it.
6. I can only put down or stack a block that I am currently holding.
7. A block can be stacked onto another only if the bottom block is clear.
8. My hand must be empty before and after I place or stack a block.
9. Stacking a block on top of another makes the bottom block non-clear.

To optimize task execution and avoid errors, I will adhere to the following strategies:
963

52

- Conduct a comprehensive state verification before each action to ensure all preconditions are met:
my hand is empty before picking up or unstacking; the block is clear, on the table, and not being
held for picking up; and I am holding a block before putting down or stacking.
- Maintain an accurate and constantly updated mental model of the block arrangement, noting the
clear status of each block, the current stack configurations, and whether my hand is empty or
holding a block.
- Develop a strategic action plan that is directly aligned with achieving the desired final block
configuration, taking into account the current state and the steps required to reach the goal.
- Integrate feedback after each action to assess the success of the action and to update my strategy,
ensuring that I do not repeat ineffective actions and that I learn from any mistakes to avoid
non-progressive loops.
- Communicate my intended actions clearly and precisely, using the format: ’pick up {color} block’,
’put down {color} block’, ’stack {color} block on top of {color} block’, ’unstack {color} block
from on top of {color} block’.
- Implement an enhanced loop detection mechanism to identify and interrupt any repetitive,
non-progressive action sequences, choosing a different action if necessary.
- Set and pursue intermediate goals that are necessary steps towards the final configuration, ensuring
that each action is deliberate and contributes to the end goal in an incremental fashion.
- Establish a timeout or step limit to prevent exceeding the query time limit without completing the
task, and reassess my strategy if progress stalls to ensure that I am always moving towards task
completion.
- Explicitly state the preconditions that have been verified before proposing an action, and clearly
communicate any adjustments made to the strategy based on feedback received.
- Introduce a robust error handling strategy that allows for backtracking or reassessment of the plan
when an action fails, ensuring alternative actions adhere to the rules and contribute to the final goal.

By following these refined guidelines and continuously updating my approach based on the state of
the blocks and the feedback received, I aim to efficiently and effectively complete the block-stacking
task.

964

Blocksworld Best prompt for GPT-4
Score = 0.95 (GPT-4 as the testing LLM)

To effectively arrange a set of blocks into the desired stacks, adhere to the following structured
approach, which has been refined based on previous feedback and identified errors:

1. **Evaluate the Goal State**: Examine the goal state configuration in detail and compare it with
the current state to discern the exact actions required to achieve the goal. Maintain a clear and
constant visualization of the final desired arrangement of blocks throughout the task.

2. **Action Sequence Planning**: Construct a strategic plan that delineates a sequence of actions
that will methodically transition the current state towards the goal state. Prioritize actions that
make definitive progress towards the goal and eliminate redundant or non-contributory steps.

3. **Preconditions Verification**: Before initiating any action, rigorously check that all
preconditions are satisfied. Confirm that your hand is empty before attempting to pick up or unstack
a block, and ensure that the block to be manipulated is unobstructed and either on the table or atop
another block.

965

53

4. **Execute Actions**: Implement the necessary actions, strictly following the prescribed format
and constraints:
- To pick up a block: ’pick up the {color} block.’
- To unstack a block: ’unstack the {color} block from on top of the {color} block.’
- To put down a block: ’put down the {color} block.’
- To stack a block: ’stack the {color} block on top of the {color} block.’

5. **Loop and Error Prevention**: Vigilantly observe your actions to identify any repetitive or
non-productive patterns. Upon detecting a loop, promptly reassess and revise the action plan.
Document past errors to prevent their recurrence.

6. **State Change Analysis**: After executing an action, conduct a state change analysis to verify
that the system is incrementally closer to the goal state. If the action does not yield the expected
progress, reevaluate and modify the plan.

7. **Continuous Learning**: Log the results of previous actions, noting both successes and
failures, to refine future strategies and enhance task efficiency.

8. **Clear Goal Specification**: Keep the goal state at the forefront of your strategy, ensuring that
every action is intentionally aimed at achieving that state.

9. **Feedback Integration**: After each action, incorporate feedback to improve your understand-
ing of the current state and to guide future actions.

10. **Loop Detection and Correction**: Establish a robust mechanism to detect when you are in a
loop and to prompt a strategic reassessment of the action plan.

11. **Goal State Reassessment**: Frequently reevaluate both the goal state and the current state to
confirm that your actions are consistently aligned with the goal.

12. **Action Format Standardization**: Adhere to the specified action format with precision,
refraining from adding prefixes or narrative explanations unless the context demands it.

13. **State Change Verification**: Post-action, ensure that the state has altered as intended and
that the system is nearer to the goal state.

14. **Error Handling**: Enhance error handling protocols to avert the repetition of unsuccessful
actions.

15. **Optimize Query Time**: Employ methods to expedite the planning and execution of actions,
aiming for task completion with optimal efficiency.

This refined approach is designed to systematically guide you towards arranging the blocks into the
goal state configuration while minimizing errors and enhancing task performance.

966

Logistics Human prompt
Score = 0.083 (GPT-3.5-turbo-16k-0613 as the testing LLM)
Score = 0.50 (GPT-4 as the testing LLM)

967

54

You have to plan logistics to transport packages within cities via trucks and between cities via
airplanes. Locations within a city are directly connected (trucks can move between any two such
locations), and so are the cities. In each city there is exactly one truck and each city has one
location that serves as an airport.

Here are the actions that can be performed:
Load a package into a truck at a location.
Load a package into an airplane at a location.
Unload a package from a truck at a location.
Unload a package from an airplane at a location.
Drive a truck from one location to another location within a city.
Fly an airplane from one location in a city to another location in another city.

The following are the restrictions on the actions:
A package can be loaded into a truck only if the package and the truck are in the same location.
Once a package is loaded into a truck, the package is not at the location and is in the truck.
A package can be loaded into an airplane only if the package and the airplane are in the same
location.
Once a package is loaded into an airplane, the package is not at the location and is in the airplane.
A package can be unloaded from a truck only if the package is in the truck.
Once a package is unloaded from a truck, the package is not in the truck and is at the location of
the truck.
A package can be unloaded from an airplane only if the package in the airplane. Once a package is
unloaded from an airplane, the package is not in the airplane and is at the location of the airplane.
A truck can be driven from one location to another if the truck is at the from-location and both
from-location and to-location are locations in the same city. Once a truck is driven from one
location to another, it is not at the from-location and is at the to-location.
An airplane can be flown from one city to another if the from-location and the to-location are
airports and the airplane is at the from-location.
Once an airplane is flown from one city to another the airplane is not at the from-location and is at
the to-location.

Please learn from previous steps. Not purely repeat the actions but learn why the state changes or
remains in a dead loop. Avoid being stuck in action loops. Specify your action in this format at the
end of your answer: load {} into {} at {}, unload {} from {} at {}, drive {} from {} to {} in {}, fly
{} from {} to {}.

968

Logistics Best prompt for GPT-3.5-turbo-16k-0613
Score = 0.18 (GPT-3.5-turbo-16k-0613 as the testing LLM)

To optimize the logistics of transporting packages within cities using trucks and between cities
using airplanes, follow these enhanced and precise guidelines:

1. **Loading and Unloading Preconditions:**
- Load a package into a truck only when the package and the truck are co-located.
- Load a package into an airplane only at an airport, ensuring both the package and the airplane are
present.
- Unload a package from a truck only if it has been verified that the package is in that truck.
- Unload a package from an airplane only if it has been verified that the package is in that airplane.

969

55

2. **Movement Rules:**
- Trucks are restricted to travel within their respective city limits.
- Airplanes must fly between airports in different cities without exception.

3. **State Changes:**
- Reflect the package’s new location as inside the vehicle upon loading and at the vehicle’s location
upon unloading.

4. **Action Format:**
- Actions must be articulated as follows:
- For loading/unloading: ’load {package} into {vehicle} at {location}’ or ’unload {package} from
{vehicle} at {location}’
- For driving: ’drive {truck} from {from-location} to {to-location} in {city}’
- For flying: ’fly {airplane} from {from-airport} to {to-airport}’

5. **Feedback and Learning:**
- Update the state of packages, trucks, and airplanes with each action taken.
- Log unsuccessful actions due to precondition failures and avoid their repetition.
- Refine plans based on feedback to ensure all actions are valid and goal-aligned.

6. **Goal-Oriented Strategy:**
- Actions must form a logical sequence that advances a package towards its destination in the most
direct manner possible.

7. **Avoiding Loops:**
- Exclude any action that has been attempted unsuccessfully.
- Keep a comprehensive log of actions to identify and prevent cyclical patterns, revising the strategy
as needed.

8. **Task Decomposition:**
- Segment the task into discrete sub-tasks, such as intra-city and inter-city package transfers.
- Tackle each sub-task systematically, one at a time.

9. **Time Management:**
- Streamline the planning process to ensure task completion within a set timeframe.
- Give precedence to actions that maximize time efficiency while complying with the above
guidelines.

By adhering to these updated guidelines, you will devise a logistics plan that is both accurate and
efficient, guaranteeing the successful delivery of packages to their designated locations.

970

Logistics Best prompt for GPT-4
Score = 0.74 (GPT-4 as the testing LLM)

Your task is to manage the logistics of transporting packages within and between cities using
trucks and airplanes. Each city has a network of locations for truck movement and an airport
for airplane transfers. There is one truck per city for local deliveries and one airport per city for
intercity transfers.

971

56

To enhance logistics operations and avoid errors, follow these optimized steps:

1. **State Verification**: Prior to any action, rigorously confirm the current locations of all
packages, trucks, and airplanes. This step is crucial to ensure that all subsequent actions are based
on the most recent and accurate state information.

2. **Action Execution**: Execute actions strictly adhering to these preconditions:
- Load a package into a truck at a location only if the package and the truck are confirmed to be at
that location.
- Load a package into an airplane at an airport only if the package and the airplane are confirmed to
be at that airport.
- Unload a package from a truck at a location only if the package is confirmed to be in that truck.
- Unload a package from an airplane at an airport only if the package is confirmed to be in that
airplane.
- Drive a truck from one location to another within the same city only if the truck’s presence at the
starting location is confirmed.
- Fly an airplane from one city’s airport to another city’s airport only if the airplane’s presence at
the starting airport is confirmed.

3. **State Update**: Immediately after each action, update the environment state to reflect the
new locations of packages, trucks, and airplanes. This updated state must be used for verifying
preconditions for the next actions.

4. **Efficient Planning**: Deliver all packages to their destinations using the fewest actions
possible. Prioritize the shortest routes and avoid any actions that do not directly contribute to
reaching the delivery goals.

5. **Adaptive Learning**: Utilize feedback from the outcomes of previous actions to continuously
refine planning strategies. Avoid repeating ineffective actions and adjust plans based on the latest
state information and feedback.

6. **Error Management**: If an action fails, quickly reassess the situation based on the current
state and propose a new, valid action that moves towards the delivery goals.

7. **Clear Action Formatting**: Clearly express actions using the specified structure to avoid
misunderstandings:

- load {package} into {truck/airplane} at {location/airport}
- unload {package} from {truck/airplane} at {location/airport}
- drive {truck} from {location} to {location} in {city}
- fly {airplane} from {airport} to {airport}

8. **Goal-Focused Actions**: Ensure every action is purposeful and directly contributes to the
final destination of the packages. Eliminate any actions that are not goal-oriented.

9. **Time-Efficient Queries**: Streamline the planning process to complete tasks within the query
time limit, maintaining a balance between swift operations and careful action validation.

10. **Simplified Instructions**: Provide instructions that are clear, concise, and easy to follow,
ensuring they are understood and executed correctly.

972

57

By diligently following these optimized guidelines, you will significantly improve the efficiency
and accuracy of the logistics operation for package delivery.

973

58

	Introduction
	Related Work
	Methodology
	Problem Formulation
	PROMST Framework
	Baselines

	Experiments
	Hyperparameters
	Environments
	Results and Analysis

	Conclusion
	Limitations
	Types of human feedback for each task
	Algorithms
	Meta-prompts of SumLLM and GenLLM
	Description of environments for multi-step tasks
	Generalization to different models for optimized prompts
	Extra ablation experiments of score models
	Prompt score vs. token length and perplexity
	Component changes in each environment
	The influence of score functions
	Human prompts and discovered best prompts for GPT-3.5-0613 and GPT-4 in all the 11 multi-step tasks

