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Abstract
Diffusion models have demonstrated significant
potential in speech synthesis tasks, including text-
to-speech (TTS) and voice cloning. However,
their iterative denoising processes are computa-
tionally intensive, and previous distillation at-
tempts have shown consistent quality degradation.
Moreover, existing TTS approaches are limited by
non-differentiable components or iterative sam-
pling that prevent true end-to-end optimization
with perceptual metrics. We introduce DMO-
Speech, a distilled diffusion-based TTS model
that uniquely achieves both faster inference and
superior performance compared to its teacher
model. By enabling direct gradient pathways
to all model components, we demonstrate the
first successful end-to-end optimization of dif-
ferentiable metrics in TTS, incorporating Connec-
tionist Temporal Classification (CTC) loss and
Speaker Verification (SV) loss. Our comprehen-
sive experiments, validated through extensive hu-
man evaluation, show significant improvements
in naturalness, intelligibility, and speaker simi-
larity while reducing inference time by orders of
magnitude. This work establishes a new frame-
work for aligning speech synthesis with human
auditory preferences through direct metric op-
timization. The audio samples are available at
https://dmospeech.github.io.

1. Introduction
Text-to-speech (TTS) technology has witnessed remarkable
progress over the past few years, achieving near-human
or even superhuman performance on various benchmark
datasets (Tan et al., 2024; Li et al., 2024a; Ju et al., 2024).
With the rise of large language models (LLMs) and scal-
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ing law (Kaplan et al., 2020), the focus of TTS research
has shifted from small-scale datasets to large-scale models
trained on tens to hundreds of thousands of hours of data en-
compassing a wide variety of speakers (Wang et al., 2023a;c;
Shen et al., 2024; Peng et al., 2024; Łajszczak et al., 2024;
Li et al., 2024b). Two primary methodologies have emerged
for training these large-scale models: diffusion-based ap-
proaches and autoregressive language modeling (LM)-based
methods. Both frameworks enable end-to-end speech gener-
ation without the need for hand-engineered features such as
prosody and duration modeling as seen in works before the
LLM era (Ren et al., 2020; Kim et al., 2021), simplifying
the TTS pipeline and improving scalability.

As these models scale to handle increasingly diverse speak-
ers and scenarios, ensuring consistent quality and speaker
similarity becomes paramount. While directly optimizing
relevant perceptual metrics would be a natural approach, it
remains a main challenge across all TTS approaches. Tradi-
tional models that rely on monotonic alignment and duration
predictors (Shen et al., 2024) cannot propagate gradients
through these non-differentiable components, preventing
true end-to-end optimization of critical elements such as text
encoders and duration predictors. While some approaches
like YourTTS (Casanova et al., 2022) have attempted to
incorporate speaker similarity loss, these architectural limi-
tations resulted in minimal improvements and prevented op-
timization of other key metrics like word error rate (WER).
Modern end-to-end models face different challenges with
direct optimization due to their reliance on iterative sam-
pling. Autoregressive models require sampling steps that
scale linearly with the length of the generated speech; dif-
fusion models, while more efficient, still require iterative
sampling: even the most advanced approaches need at least
16 steps (Chen et al., 2024c). This iterative nature not only
makes backpropagation computationally prohibitive but also
leads to gradient instability. Furthermore, direct optimiza-
tion through the diffusion process is impossible because
intelligible speech can only be generated at low noise levels,
making the gradients from perceptual metrics uninstructive
at higher noise levels. This suggests that achieving direct
metric optimization requires first addressing the fundamen-
tal limitations of iterative sampling. While previous work
has explored distillation (Salimans & Ho, 2022; Song et al.,
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2023; Sauer et al., 2023) as a way to reduce sampling steps,
these approaches have focused solely on inference speed,
consistently showing performance degradation through the
distillation process from teacher to student models (Bai
et al., 2023; Ye et al., 2023). These challenges highlight
the need for a fundamentally new approach that not only
reduces sampling steps but also enables true end-to-end op-
timization while maintaining or improving speech quality.

In this work, we introduce Direct Metric Optimization
Speech, a distilled diffusion-based speech synthesis model
that achieves both superior performance and faster inference
compared to existing approaches. Our key innovation is to
enable, for the first time, true end-to-end (E2E) optimiza-
tion of differentiable metrics in TTS, with two technical
advances: (1) reducing sampling steps from 128 to 4 via dis-
tribution matching distillation (Yin et al., 2024b;a), and (2)
providing a direct gradient pathway from the noise input to
speech output without non-differentiable components. This
allows us to directly optimize speaker similarity and word
error rate through speaker verification (SV) and CTC losses
respectively, a capability not achievable in previous TTS
approaches due to either non-differentiable components like
duration predictors (Casanova et al., 2022) or prohibitively
expensive backpropagation through hundreds of sampling
steps. Our comprehensive experiments demonstrate that
this E2E optimization leads to significant improvements
across all metrics, outperforming both the teacher model
and other recent baselines in both subjective and objective
evaluations. Importantly, we discover that our optimized
metrics strongly correlate with human perception, and the
distillation process induces beneficial mode shrinkage that
improves quality in strongly conditional generation by fo-
cusing on high-probability regions without compromising
output diversity across different prompts and text inputs.

2. Related Works
Zero-Shot Text-to-Speech Synthesis Zero-shot TTS has
evolved significantly in its approach to quality optimiza-
tion. Early methods relied on speaker embeddings from
pre-trained encoders (Casanova et al., 2022; 2021; Wu et al.,
2022; Lee et al., 2022) or end-to-end speaker encoders (Li
et al., 2024a; Min et al., 2021; Li et al., 2022; Choi et al.,
2022), but struggled with generalization and quality opti-
mization due to their reliance on extensive feature engi-
neering and non-differentiable components. More recent
prompt-based methods have demonstrated improved scala-
bility using both autoregressive (Shen et al., 2024; Le et al.,
2024; Ju et al., 2024; Lee et al., 2024; Yang et al., 2024;
Eskimez et al., 2024; Liu et al., 2024) and diffusion frame-
works (Jiang et al., 2023b; Wang et al., 2023a;c; Jiang et al.,
2023a; Peng et al., 2024; Kim et al., 2024; Chen et al.,
2024b; Meng et al., 2024; Yang et al., 2024; Lovelace et al.,

2023; Liu et al., 2024). However, these models face fun-
damental limitations in optimizing perceptual metrics due
to their reliance on iterative sampling. DMOSpeech ad-
dresses these limitations by enabling true end-to-end metric
optimization while maintaining efficient inference.

Diffusion Distillation Previous approaches to acceler-
ating diffusion models have explored various distillation
techniques, each with distinct trade-offs. Progressive dis-
tillation (Huang et al., 2022) and consistency distillation
(Ye et al., 2023; 2024) attempt to match intermediate states
of the teacher’s sampling trajectory, while rectified flow
methods (Guo et al., 2024; Guan et al., 2024) focus on
straightening these trajectories. However, these approaches
often compromise quality by constraining the student to fol-
low the exact path of the teacher, which may be suboptimal
for models with reduced capacity. Distribution matching
approaches, whether adversarial (Sauer et al., 2023; 2024)
or via score function matching (Yin et al., 2024b), offer
an alternative by aligning the student with the teacher in
distribution rather than trajectory. While these methods
typically require computationally expensive noise-data pair
generation (Sauer et al., 2024; Yin et al., 2024b; Liu et al.,
2023), DMD2 (Yin et al., 2024a) overcomes this limitation
by prioritizing efficiency over diversity. Prior studies have
typically viewed this tendency to reduce output diversity
as a limitation. However, we demonstrate in this work that
in strongly conditional generation tasks like TTS, where
strict adherence to input text and speaker prompts is re-
quired, this diversity reduction can enhance output quality
while maintaining sufficient variation across different inputs.
This insight makes DMD2 particularly suitable for zero-shot
TTS, offering a natural way to balance quality and diversity.

Direct Metric Optimization While optimizing percep-
tual metrics has shown promise in speech enhancement
through approaches like MetricGAN (Fu et al., 2019) for
PESQ and STOI, and recent attempts have explored RLHF
for improving naturalness (Zhang et al., 2024; Chen et al.,
2024a), implementing these approaches in modern TTS sys-
tems has remained challenging. This difficulty stems from
architectural limitations such as non-differentiable duration
upsamplers (Li et al., 2024b; Ye et al., 2024) or computation-
ally intensive iterative sampling (Lee et al., 2024; Peng et al.,
2024). Previous attempts like YourTTS (Casanova et al.,
2022) reported minimal improvements from speaker similar-
ity optimization due to their inability to propagate gradients
through all model components. DMOSpeech overcomes
these limitations by enabling comprehensive optimization of
all model elements through direct gradient pathways, mark-
ing the first successful demonstration of true end-to-end
metric optimization in speech synthesis while maintaining
fast inference and high quality.
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3. Methods
3.1. Preliminary: End-to-End Latent Speech Diffusion

Our model starts with a pre-trained teacher model based on
an end-to-end latent speech diffusion framework such as
SimpleTTS (Lovelace et al., 2023) and DiTTo-TTS (Lee
et al., 2024). This section outlines the formulation of the
diffusion process and objective function.

We begin by encoding raw audio waveforms y ∈ R1×T ,
where T is the audio length, into latent representations
x0 = E(y) using a latent autoencoder E . The latent au-
toencoder follows DAC (Kumar et al., 2024) with residual
vector quantization replaced by the variational autoencoder
loss (see Appendix C.1 for more information). We denote
the ground truth latent distribution as pdata. The diffusion
process involves adding noise to x0 ∼ pdata over continuous
time t ∈ [0, 1] through a noise schedule. Our noise schedule
follows Lovelace et al. (2023), which is a shifted cosine
noise schedule formulated with αt and σt that control the
amount of signal and noise (see Appendix C.2.1).

During training, the model learns to remove noise added
to the latent representations. Given a latent variable x0

and noise ϵ ∼ N (0, I), the noisy latent xt at time step
t is generated as xt = αtx0 + σtϵ. We use a binaray
prompt mask m to selectively preserve the original values
in regions corresponding to the prompt. The noisy latent
xt is adjusted as xt ← xt ⊙ (1 −m) + x0 ⊙m, where
⊙ denotes element-wise multiplication. The binary mask
m is randomly sampled to mask between 0% to 50% of
the length of x0. We define a reparameterized velocity
v = αtϵ− σtx0, which serves as the training objective as
in Huang et al. (2022). We train our diffusion transformer
(Peebles & Xie, 2023) model fϕ, parameterized by ϕ, to
predict v given the noisy latent xt, conditioned on text
embeddings c, prompt mask m, and the time step t:

Ldiff(fϕ; pdata) = E x0∼pdata
t∼U(0,1)
ϵ∼N (0,I)

[
∥v − fϕ(xt ; c,m, t)∥2

]
.

(1)
During inference, the model takes noise z ∈ N (0, I) with
fixed size [d, L] where L is the total duration of the tar-
get speech. L is estimated by multiplying the number of
phonemes in the target text with the speaking rate of the
prompt speech (see Appendix C.2.3 for more details).

3.2. Improved Distribution Matching Distillation

We employ improved Distribution Matching Distillation
(Yin et al., 2024a), or DMD 2, to distill our teacher model
for fast sampling and direct metric optimization. DMD 2
improves upon DMD (Yin et al., 2024b) by incorporating
adversarial training on the real data, eliminating the need
for noise-data pair generation and significantly reducing
the training cost. This section details how we adapt DMD

for efficient speech synthesis, including the formulations
corresponding to our implementation.

Background on Distribution Matching Distillation
DMD aims to train a student generator Gθ to produce sam-
ples whose distribution matches the data distribution pdata
after a forward diffusion process. The objective is to min-
imize the Kullback-Liebler (KL) divergence between the
distributions of the diffused real data pdata,t and the diffused
student generator outputs pθ,t across all time t ∈ [0, 1]:

DKL(pθ,t||pdata,t) = Ex∼pθ,t

[
log

(
pθ,t(x)

pdata,t(x)

)]
= −Ex∼pθ,t

[log (pdata,t(x))− log (pθ,t(x))] . (2)

The DMD loss is LDMD = Et∼U(0,1) [DKL(pθ,t||pdata,t)],
accordingly. Since DMD trains Gθ through gradient descent,
the formulation DMD only requires the gradient of the DMD
loss with respect to the generator parameters θ, which is
derived in Yin et al. (2024b) as:

∇θLDMD = − E
t,xt,z

[
ωtαt (sreal(xt, t)− sθ(xt, t))

dG

dθ

]
,

(3)
where xt is the diffused version of x0 = Gθ(z), the distilled
generator output for z ∼ N (0, I), sreal(xt, t) and sθ(xt, t)
are neural network approximation of score functions of the
diffused data distribution and student output distribution,
and ωt is a weighting factor defined in eq. 25.

In our speech synthesis task, the generator Gθ produces
latent speech representations x0 conditioned on input text
c and a speaker prompt. The teacher diffusion model fϕ
serves as the score function sreal for the real data distribu-
tion. We train another diffusion model gψ to approximate
the score of the distilled generator’s output distribution pθ
following eq. 1. The scores are estimated as:

s(xt, t, x̂0) = −
xt − αtx̂0

σ2
t

. (4)

where x̂0 are estimation of x0 from the diffusion models h:

x̂0 =
xt − σth(xt ; c,m, t)

αt
, (5)

where h = fϕ for x̂real
0 and h = gψ for x̂fake

0 . Accordingly,
sreal(xt, t) = s(xt, t, x̂

real
0 ) and sθ(xt, t) = s(xt, t, x̂

fake
0 ).

The parameters of Gθ and gψ are both initialized from the
teacher diffusion model’s parameters ϕ.

DMD 2 for Speech Synthesis We notice that the one-step
student model results in noticeable artifacts, as the student
model lacks the computational capacity to capture all the
acoustic details that the teacher model generates through
multiple iterative steps. To address this issue, we adopt
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Figure 1. Overview of the DMOSpeech framework, consisting of inference and three training components: (1) Inference: A one-step
distilled generator synthesizes speech directly from noise (red arrow). The three training components are: (2) Distribution Matching
Distillation: The student score model matches the teacher to align their distributions in terms of score functions (purple arrow), (3)
Multi-Modal Adversarial Training: A discriminator distinguishes between real and synthesized noisy latents (yellow arrows), and (4)
Direct Metric Optimization: End-to-end optimization of word error rate (pink) and speaker similarity (blue arrows).

the DMD 2 framework from Yin et al. (2024a) by condi-
tioning the student generator Gθ on the noise level t. This
conditioning allows the model to estimate the clean latent
speech representation x0 from its noisy counterpart xt for
a sequence of predefined time steps t ∈ {t1, . . . , tN}. This
multi-step sampling (Algorithm 1) is similar to the con-
sistency model proposed by Song et al. (2023). It goes
as follows: for each time step tn, the student model pro-
duces an estimate x̂n

0 = Gθ(xtn ; c,m, tn), which is then
re-noised to obtain xtn+1

as input for the next time step:

xtn+1
= αtn+1

x̂n
0 + σtn+1

ϵ, ϵ ∼ N (0, I). (6)

This process generates progressively less noisy versions of
x0 at decreasing noise levels σtn+1

< σtn .

We use the schedule {1.0, 0.75, 0.50, 0.25} mapped from
teacher’s full range t ∈ [0, 1] for our four-step model.
We simulate one-step inference during training to mini-
mize the training/inference mismatch. Instead of using
the noisy version of ground truth xtn = αtnx0 + σtnϵ
as input, we use the noisy version of student prediction
αtnGθ

(
xtn−1

; c,m, tn−1

)
+ σtnϵ from the noisy ground

truth xtn−1
at the noise level σn−1 > σn. Different from

Yin et al. (2024a), which simulates all four steps, we found
that simulating just one step is sufficient for producing high-
quality speech while saving GPU memory during training.

To further improve the performance of the student model,
we incorporate adversarial training following the approach
of Yin et al. (2024a) that allows the students to learn from
the real data. However, unlike in text-to-image synthesis,
where text acts as a weak condition for the generated image,
text-to-speech synthesis requires strong conditioning on
both text and speaker prompt. The generated speech must
strictly adhere to the semantic content of the text and the
prompt speaker’s voice and style. To this end, we modify

the adversarial discriminator used in Yin et al. (2024a) to a
conditional multimodal discriminator, inspired by Janiczek
et al. (2024). Following Li et al. (2024b), our discriminator
D is a conformer that takes as input the stacked features
from all transformer layers of the student score network gψ
with noisy input, along with the text embeddings c, prompt
mask m, and noise level t (denoted as C). The discriminator
is trained with the LSGAN loss (Mao et al., 2017):

Ladv(Gθ;D) = Et,x̂t∼pθ,t,m

[
(D (x̂t ; C)− 1)

2
]
, (7)

Ladv(D;Gθ) = Et

[
Ex̂t∼pθ,t,m

[
(D (x̂t ; C))2

]]
+

Et

[
Ext∼pdata,t,m

[
(D (xt ; C)− 1)

2
]]

, (8)

where C = {c,m, t} is the conditional input and x̂t =
αtGθ(z; C) + σtϵ is the noisy version of the student-
generated speech Gθ(z; C) at time step t with z ∼ N (0, I).

3.3. Direct Metric Optimization

We directly optimize two metrics, speaker embedding co-
sine similarity (SIM) and word error rate (WER), which
are commonly used for evaluating zero-shot speech syn-
thesis models and are both shown to correlate with human
perception for speaker similarity (Thoidis et al., 2023) and
naturalness (Alharthi et al., 2023). To improve WER, we
incorporate a Connectionist Temporal Classification (CTC)
loss (Graves et al., 2006). The CTC loss aligns the syn-
thesized speech with the input text at the character level,
reducing word error rates and enhancing robustness:

LCTC = Exfake∼pθ,c [− log p(c|C(xfake))] , (9)

where xfake is the student-generated speech, c is the text
transcript, and C(·) is a pre-trained CTC-based ASR model
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on speech latent (see Appendix C.3 for details). We also
employ a Speaker Verification (SV) loss to ensure the syn-
thesized speech matches the target speaker’s identity. We
use a pre-trained speaker verification model S on latent (see
Appendix C.4 for details) for the SV loss:

LSV = E xreal∼pdata,
xfake∼pθ,m

[
1− ereal · efake

∥ereal∥ ∥efake∥

]
, (10)

where ereal = S(xreal) and efake = S(xfake) are the speaker
embeddings of the prompt and student-generated speech.

3.4. Training Objectives and Stability

The overall training objective for Gθ combines DMD and
adversarial losses with SV and CTC losses:

min
θ
LDMD + λadvLadv(Gθ;D) + λSVLSV + λCTCLCTC,

and the training objectives for gψ and D are:

min
ψ
Ldiff (gψ; pθ) , min

D
Ladv (D;Gθ) .

We employ an alternating training strategy where the
student generator Gθ, the student score estimator gψ,
and the discriminator D are updated at different rates to
maintain stability: for every update of Gθ, we perform five
updates of gψ. This ensures that the score estimator gψ
can adapt quickly to the dynamic changes in the generator
distribution pθ. Unlike Yin et al. (2024a), where D are
updated five times for every single update of Gθ, we update
D and Gθ at the same rate. This prevents the discriminator
from becoming too powerful and destabilizing training.

The learning rates for Gθ and gψ play a critical role in
maintaining training stability since both models are initial-
ized from the teacher’s parameters, ϕ. Treating this as a
fine-tuning process, we set their learning rates close to the
teacher model’s final learning rate to prevent catastrophic
forgetting and training collapse. The teacher model was
trained using a cosine annealing warmup scheduler, which
gradually reduced the learning rate over time. Thus, starting
with a high learning rate for Gθ and gψ can cause them to
deviate significantly from the pre-trained knowledge, lead-
ing to training failure. Conversely, the learning rate for D is
less sensitive and does not require such precise tuning.

Balancing different terms in the overall objective function
is crucial for successful training. The primary loss, LDMD,
is responsible for transferring knowledge from the teacher
model, aligning the synthesized speech with the text. Other
losses, such as Ladv, LSV, and LCTC, need to be scaled
properly to match the gradient of LDMD. We set λadv =
10−3 to ensure the gradient norm of Ladv is comparable to
that of LDMD. During early training stage, we observed
that the gradient norms of LSV and LCTC were significantly
higher than LDMD, likely because Gθ was still learning to

generate intelligible speech from single step. To address this,
we set λCTC = 0 and λSV = 0 for the first 5,000 and 10,000
iterations, respectively. This allows Gθ to stabilize under
the influence of LDMD before integrating these additional
losses. After that, both λCTC and λSV are set to 1.

4. Experiments
4.1. Model Training

We conducted our experiments on the LibriLight dataset
(Kahn et al., 2020), which consists of 57,706.4 hours of
audio from 7,439 speakers. The data and transcripts were
obtained using Python scripts provided by the LibriLight
authors 1. All audio files were resampled to 48 kHz to match
the configuration of our DAC autoencoder, and the text was
converted into phonemes using Phonemizer (Bernard & Ti-
teux, 2021). To manage memory constraints, we segmented
the audio into 30-second chunks using WhisperX (Bain
et al., 2023). The teacher model fϕ was trained for 400,000
steps with a batch size of 384, using the AdamW optimizer
(Loshchilov & Hutter, 2018) with β1 = 0.9, β2 = 0.999,
weight decay of 10−2, and an initial learning rate of 10−4.
The learning rate followed a cosine decay schedule with a
4,000-step warmup, gradually decreasing to 10−5. Model
weights were updated using an exponential moving average
(EMA) with a decay factor of 0.99 every 100 steps. The
teacher model consists of 450M parameters in total. For
student training, we initialized both the student generator
Gθ and the student score model gψ with the EMA-weighted
teacher parameters. The initial learning rate was set to match
the final learning rate of the teacher model (λ = 10−5),
while the batch size was reduced to 96 due to memory con-
straints. Lowering the batch size further negatively impacted
performance, as a sufficiently large batch size is required
for accurate score estimation (see Section 4.4 for further
discussion). The student generator Gθ and the discrimina-
tor D were trained for an additional 40,000 steps, and the
student score model gψ for 200,000 steps accordingly using
the same optimization settings as the teacher. All models
were trained on 24 NVIDIA A100 40GB GPUs.

4.2. Evaluation Metrics

We performed both subjective and objective evaluations to
assess the performance of our model and several state-of-
the-art baselines. For subjective evaluation, we employed
four metrics rated on a scale from 1 to 5. The Mean Opin-
ion Score for Naturalness (MOS-N) assessed the human-
likeness of the synthesized speech, where 1 indicates fully
synthesized audio and 5 indicates completely human speech.
The Mean Opinion Score for Sound Quality (MOS-Q) evalu-

1The code is available at https://github.com/
facebookresearch/libri-light/
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Table 1. Comparison between our models and non-E2E baselines on four subjective metrics: naturalness (MOS-N), sound quality
(MOS-Q), voice similarity (SMOS-V), and speaking style similarity (SMOS-S). Scoes are presented as means (± standard error).
One asterisk (*) indicates a statistically significant difference (p < 0.05) and double asterisk (**) indicates p < 0.01 compared to
DMOSpeech. The best models and those within one standard error of the best are highlighted.

Model MOS-N MOS-Q SMOS-V SMOS-S

Ground Truth 4.47 (± 0.03) 4.61 (± 0.03) 3.86 (± 0.05)∗∗ 3.81 (± 0.05)∗∗

Ours (DMOSpeech, N=4) 4.42 (± 0.03) 4.59 (± 0.03) 4.49 (± 0.03) 4.30 (± 0.03)
Ours (Teacher, N=128) 4.32 (± 0.04)∗ 4.55 (± 0.03) 4.17 (± 0.04)∗∗ 4.00 (± 0.04)∗∗

NaturalSpeech 3 (Ju et al., 2024) 4.24 (± 0.04)∗∗ 4.55 (± 0.03) 4.44 (± 0.03) 4.25 (± 0.04)
StyleTTS-ZS (Li et al., 2024b) 4.40 (± 0.03) 4.54 (± 0.03) 4.34 (± 0.04)∗∗ 4.20 (± 0.03)∗

Table 2. Comparison between our models and end-to-end baseline models.

Model MOS-N MOS-Q SMOS-V SMOS-S

Ground Truth 4.37 (± 0.03)∗ 4.49 (± 0.03) 3.51 (± 0.05)∗∗ 3.39 (± 0.05)∗∗

Ours (DMOSpeech, N=4) 4.27 (± 0.03) 4.45 (± 0.03) 4.35 (± 0.03) 4.16 (± 0.03)
Ours (Teacher, N=128) 4.22 (± 0.04) 4.40 (± 0.03) 4.03 (± 0.04)∗∗ 3.87 (± 0.04)∗∗

DiTTo-TTS (Lee et al., 2024) 4.28 (± 0.04) 4.41 (± 0.03) 4.16 (± 0.04)∗∗ 4.07 (± 0.03)∗

VoiceCraft (Peng et al., 2024) 3.76 (± 0.05)∗∗ 3.88 (± 0.04)∗∗ 3.41 (± 0.05)∗∗ 3.37 (± 0.05)∗∗

CLaM-TTS (Kim et al., 2024) 3.77 (± 0.05)∗∗ 3.87 (± 0.04)∗∗ 3.67 (± 0.05)∗∗ 3.43 (± 0.05)∗∗

XTTS (Casanova et al., 2024) 3.63 (± 0.05)∗∗ 3.89 (± 0.04)∗∗ 3.25 (± 0.05)∗∗ 3.22 (± 0.05)∗∗

Table 3. Objective evaluation results between our models and
other baseline models. The real-time factor (RTF) was computed
on a NVIDIA V100 GPU except DiTTo-TTS and CLaM-TTS,
whose RTF is obtained from their papers using the inference time
needed to synthesize 10s of speech divided by 10 on unknown
devices. Additional evaluation results on emotion are in Table 7.

Model # Params. WER ↓ SIM ↑ RTF ↓
Ground Truth — 2.19 0.67 —

DMOSpeech (N=4) 450M 1.94 0.69 0.07
Teacher (N=128) 450M 9.51 0.55 0.96

NaturalSpeech 3 500M 1.81 0.67 0.30
VoiceCraft 830M 6.32 0.61 1.12
DiTTo-TTS 740M 2.56 0.62 0.16
CLaM-TTS 584M 5.11 0.49 0.42
XTTS 482M 4.93 0.49 0.37

ated audio quality degradation relative to the prompt, with 1
representing severe degradation and 5 indicating no degrada-
tion. The Similarity Mean Opinion Score for Voice (SMOS-
V) measured the similarity of the synthesized voice to the
prompt speaker’s voice, where 1 means completely different
and 5 means identical. Lastly, the Similarity Mean Opin-
ion Score for Style (SMOS-S) assessed the speaking style
similarity to the prompt speaker with the same scale. These
subjective evaluations were conducted through a listening
test survey on the crowdsourcing platform Prolific, with
1,000 tests (30 samples each) taken by native English speak-
ers with no hearing impairments who had experience in
content creation or audio/video editing, ensuring they could
better differentiate synthesized audio from real human. The

prompt speech served as an anchor that is supposed to score
5 on all metrics; we also included intentionally mismatched
speakers serving as low anchor for similarity, which should
have a rating lower than 3. The participants who fails to
correctly rate the anchors hidden in the test are disquali-
fied and their answers removed (details in Appendix E.2).
For objective evaluation, we followed the approach from
previous works (Wang et al., 2023a; Lee et al., 2024) and
measured speaker similarity using the cosine similarity be-
tween speaker embeddings of the generated speech and
the promot (SIM), using the WavLM-TDCNN speaker em-
bedding model2. We also calculated the Word Error Rate
(WER) with a CTC-based HuBERT ASR model 3 following
(Ju et al., 2024; Shen et al., 2024).

4.3. Comparison to Other Models

We conducted two evaluation experiments to compare our
models against two categories of baselines: recent non-end-
to-end models that include explicit duration and prosody
modeling, and end-to-end (E2E) models without such ex-
plicit modeling. For both experiments, the samples were
downsampled to 16 kHz for fairness and prompts were tran-
scribed using WhisperX for synthesis.

In the first experiment, we compared our model to Natu-
ralSpeech 3 and StyleTTS-ZS, both with explicit duration

2https://github.com/microsoft/UniSpeech/
tree/main/downstreams/speaker_verification

3https://huggingface.co/facebook/
hubert-large-ls960-ft

6

https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
https://huggingface.co/facebook/hubert-large-ls960-ft
https://huggingface.co/facebook/hubert-large-ls960-ft


DMOSpeech: Direct Metric Optimization Speech Synthesis

100 200 300 400
F0 Value

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
De

ns
ity

Teacher Model
Student Model
Prompt F0 mean

50 100 150 200 250 300
F0 Value

0.000

0.005

0.010

0.015

0.020

0.025

0.030

De
ns

ity

Teacher Model
Student Model
Prompt F0 mean

Figure 2. Illustration of mode shrinkage in terms of pitch. Speech with the same text and prompt were synthesized 50 times, and their
frame-level F0 values are shown as histograms and kernel density estimates. The red dashed line represents the mean F0 value of the
prompt. In both examples, the student’s distribution shifts toward the most likely region, centering around the prompt’s mean value.

Table 4. Objective and subjective evaluation results on Seed-TTS-
en and Seed-TTS-zh evaluation sets trained with Emilia dataset.

Model Seed-TTS-en Seed-TTS-zh RTF↓
SIM↑ WER↓ SIM↑ CER↓

MaskGCT 0.717 2.62 0.752 2.27 1.21
F5-TTS (N=32) 0.647 1.83 0.741 1.56 0.32
DMOSpeech (N=4) 0.687 1.78 0.757 1.43 0.06

and prosody modeling and trained on the large-scale Lib-
riLight dataset. Since neither model has public or official
checkpoints available, we used 47 official samples from the
authors and other sources (details in Appendix E.1) from the
LibriSpeech test-clean subset, covering all 40 speakers. As
shown in Table 1, our distilled model significantly outper-
formed NaturalSpeech 3 in naturalness and StyleTTS-ZS in
similarity metrics. It also outperformed the teacher model
in terms of naturalness, voice similarity, and style similarity.

In the second experiment, we evaluated E2E speech synthe-
sis models, including three popular autoregressive models,
XTTS, CLaM-TTS, VoiceCraft, and one diffusion-based
model, DiTTo-TTS. Since official code and checkpoints
for CLaM-TTS and DiTTo-TTS were unavailable, we ob-
tained 3,711 samples from the authors from the LibriSpeech
test-clean subset 4 and synthesized the corresponding sam-
ples using XTTS, VoiceCraft, and our models. For subjec-
tive evaluation, we selected 80 samples, ensuring that each
speaker from the test-clean subset was represented by two
samples. As shown in Table 2, our model significantly out-
performed all recent E2E speech synthesis baselines except
DiTTo-TTS in MOS, with which it achieved comparable
performance in naturalness and sound quality. This indi-
cates that our model is consistently preferred across both
naturalness and similarity by human listeners.

4Prompts and samples were generated according to instruc-
tions provided in https://github.com/keonlee9420/
evaluate-zero-shot-tts

All baselines, except for NaturalSpeech 3, were evaluated
using the 3,711 samples as per Lee et al. (2024). Since we
lacked sufficient samples for a direct evaluation of Natu-
ralSpeech 3, its results are taken from their original paper.
Table 6 shows that our model achieved the highest speaker
similarity score (SIM) to the prompt, even surpassing the
ground truth. The Real-Time Factor (RTF) of the distilled
model is 13.7 times lower than the teacher model, which is
lower than all baseline methods by a large margin. Although
our model had a slightly higher WER (1.94) compared to
NaturalSpeech 3 (1.81), it is important to note that our model
is entirely end-to-end without explicit duration modeling,
unlike NaturalSpeech 3. Both DMOSpeech and Natural-
Speech 3 also exhibited lower WER than the ground truth.
One point to consider is the high WER of our teacher model,
which is mainly due to cutoff at the end of sentences in the
training set caused by faulty segmentation with WhisperX.
It affects about 10% of the utterances. After distillation, this
issue was resolved due to mode shrinkage (discussed in Sec-
tion 4.4). Moreover, our model demonstrates significantly
faster inference speed compared to all baseline models, as it
only requires four sampling steps.

To further demonstrate the general applicability of our
framework, we also conducted experiments training a DMO-
Speech model using F5-TTS (Chen et al., 2024c) as the
teacher model on Emilia dataset (He et al., 2024) and com-
pared it against other recent state-of-the-art models, includ-
ing F5-TTS itself and MaskGCT (Wang et al., 2024). We
followed the setup in (Chen et al., 2024c) to train the teacher
model and used the same hyperparameters as detailed in
section 4.1 to train the student model for 200k steps. Our
model and baseline models were evaluated on the Seed-TTS
test set (Anastassiou et al., 2024). As shown in Table 5, our
model performs comparably or better than other state-of-
the-art models but operates in a significantly faster speed,
showcasing our model’s strength in both efficiency and ef-
fectiveness.
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Table 5. Ablation study comparing our proposed model with different conditions. MOS-N, MOS-Q, SMOS-V, and SMOS-S are reported
as mean (± standard error). Models with statistically significant differences (p < 0.05) compared to DMOSpeech are marked with one
asterisk (*). Additional evaluation results on emotion reflection are presented in Table 8.

Model MOS-N MOS-Q SMOS-V SMOS-S WER SIM CVf0

Teacher (N=128) 4.22 (± 0.04) 4.40 (± 0.03) 4.03 (± 0.04)∗ 3.87 (± 0.04)∗ 9.51 0.55 0.70

DMD 2 only (N=1) 3.11 (± 0.05)∗ 2.99 (± 0.05)∗ 2.57 (± 0.05)∗ 2.74 (± 0.05)∗ 5.93 0.42 0.68
DMD 2 only (N=4) 4.19 (± 0.03)∗ 4.43 (± 0.04) 3.69 (± 0.05)∗ 3.62 (± 0.05)∗ 5.67 0.53 0.61

+LCTC only 4.25 (± 0.04) 4.42 (± 0.03) 3.73 (± 0.05)∗ 3.62 (± 0.05)∗ 1.79 0.55 0.57
+LSV only 4.07 (± 0.04)∗ 4.33 (± 0.03) ∗ 4.35 (± 0.04) 4.15 (± 0.04) 6.62 0.70 0.61

DMOSpeech (N=4) 4.27 (± 0.03) 4.45 (± 0.03) 4.35 (± 0.03) 4.16 (± 0.03) 1.94 0.69 0.58
B. S. 96 → 16 4.20 (± 0.04) 4.30 (± 0.03)∗ 4.27 (± 0.04)∗ 4.11 (± 0.04) 3.38 0.67 0.60

4.4. Ablation Study

We conducted ablation studies to assess the contribution of
each proposed component, with results summarized in Table
5. We evaluated models trained solely with DMD 2 using
one sampling step (DMD 2 only, N=1) and four sampling
steps (DMD 2 only, N=4), as well as models trained with
only CTC loss or SV loss on top of four-step DMD 2 model.
Additionally, we examined the impact of reducing the batch
size from 96 to 16 (B. S. 96 → 16). The ablation study
used the same 80 samples for subjective evaluation as in the
second experiment and 3,711 samples for objective evalu-
ation. To measure the trade-off between speech diversity
and model capacity, we included the coefficient of variation
of pitch (CVf0). This metric was calculated by synthesiz-
ing speech with the same text and prompt 50 times and
computing the coefficient of variation of the frame-level F0
values averaged over the speech frames. The final results re-
ported were averaged over 40 prompts from the LibriSpeech
test-clean subset, covering all 40 speakers.

Effects of Distribution Matching Distillation Using a
single sampling step resulted in significantly degraded per-
formance compared to the full DMOSpeech model. While
using four steps improved naturalness and sound quality
to approach the teacher model’s level, speaker similarity
remained significantly lower. Interestingly, the speaker veri-
fication model’s SIM score showed only a slight decrease,
suggesting a phenomenon we term mode shrinkage (Figure
2), where distillation emphasizes high-probability regions of
the data distribution. This focus can result in a more generic
speaker profile, reducing perceived uniqueness in the prompt
speaker’s voice, while maintaining global speaker features
as reflected in the SIM score. To address this, we introduced
speaker verification loss in this work to better capture the
distinct characteristics of the prompt speaker.

Mode shrinkage also led to reduced diversity, as indicated
by a lower CVf0 across student models compared to the
teacher. There is also a trade-off between diversity and sam-
ple quality, as one-step student obtained close-to-teacher
diversity despite its lowest sample quality. However, as
shown in Figure 5, this reduction in diversity applies only

1 2 3 4 5
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Figure 3. Scatter plot of human-rated voice similarity (SMOS-V)
versus speaker embedding cosine similarity (SIM) at the utterance
level. The correlation coefficient is 0.55.

when synthesizing speech from the same prompt and text.
Given that zero-shot TTS is highly conditional, requiring
strict adherence to the input text and speaker prompt, this
reduction in diversity is not necessarily undesirable. As
we found out in the subjective test, MOS-N increases even
when diversity decreases. The distilled model achieves suffi-
cient mode coverage across varying prompts and texts while
benefiting from direct metric optimization and faster infer-
ence. Notably, mode shrinkage also corrected a cut-off issue
in the teacher model, which mimicked the cutoff patterns
in the training data. Since these cutoff samples represent a
small portion of the dataset, they were significantly reduced
by the student models during distillation, leading to a much
lower word error rate. This observation prompted us to in-
clude CTC loss, further enhancing the model’s intelligibility
and robustness (see Appendix A for more discussion).

Lastly, since DMD training involves estimating the score
functions from training data through Monte Carlo simulation
in a mini-batch, the batch size plays a critical role in the
accuracy of distribution matching. Reducing the batch size
from 96 to 16 significantly decreases sound quality and
speaker similarity. Maintaining a sufficiently large batch
size is crucial for stable DMD training.

Effects of Direct Metric Optimization The metrics we
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directly optimize are significantly correlated with human
subjective ratings at the utterance level. Figure 3 shows the
scatter plot between human-rated similarity SMOS-V and
SIM, one of the optimized metrics, with a correlation coef-
ficient ρ = 0.55. Another metric, word error rate (WER),
is significantly correlated with naturalness (MOS-N) even
at the utterance level, with a correlation ρ = −0.15 (see
Figure 5). These correlations suggest a notable impact of
these metrics on their associated subjective ratings. When
using only the CTC loss, we observe a substantial reduction
in WER (from 5.67 to 1.79), but no improvement in speaker
similarity, alongside a slight reduction in diversity and a
minor improvement in naturalness. This aligns with the cor-
relation between WER and human-rated naturalness with
ρ = −0.15 (p≪ 0.01). In contrast, with only the SV loss,
we see significant improvements in all speaker similarity
metrics (SMOS-V, SMOS-S, SIM), but these gains come
with a decrease in naturalness and sound quality, as well
as an increase in WER. This suggests that while SV loss
can enhance speaker similarity, it negatively impacts intel-
ligibility and naturalness. Therefore, combining both CTC
and SV losses achieves a balance between these metrics,
yielding the best overall performance, with improvements
across speaker similarity, intelligibility, and naturalness.

5. Conclusions
We presented DMOSpeech, a text-to-speech model enabling
true end-to-end optimization of perceptual metrics while
achieving fast inference through distribution matching dis-
tillation. Our experiments demonstrate significant improve-
ments in synthesis quality while revealing insights about
controlled diversity reduction in conditional generation. The
current approach faces challenges in balancing sampling
speed and speech diversity, particularly when scaling to
larger datasets. Future work could explore larger-scale mul-
tilingual training data and develop new differentiable met-
rics for human preference alignment through RLHF.

Impact Statement
This work advances the capabilities of text-to-speech syn-
thesis in ways that warrant careful consideration of societal
implications. Our findings that DMOSpeech can generate
speech with higher perceived similarity to the prompt than
real utterances from the same speaker raises important con-
cerns about potential misuse, particularly in the creation of
unauthorized synthetic speech or deepfakes. This capability
highlights current limitations in speaker verification systems
and emphasizes the need for robust detection methods to
distinguish between synthetic and authentic speech.

To address these concerns, we recommend several mitiga-
tion strategies. First, the development of more sophisticated

speaker verification techniques specifically designed to iden-
tify synthetic speech is crucial. Second, implementing ro-
bust audio watermarking systems could help track the origin
and authenticity of synthesized content. Third, establishing
clear ethical guidelines and legal frameworks for the deploy-
ment of TTS technology is essential to prevent misuse while
preserving beneficial applications.

The technology also has significant potential for positive
impact. It could enable more accessible communication
tools for individuals with speech impairments, improve edu-
cational resources through personalized audio content, and
enhance human-computer interaction across languages and
cultures. However, these benefits must be balanced against
the need for responsible development and deployment.

We encourage the research community to prioritize these eth-
ical considerations in future work, particularly in developing
better detection methods and establishing best practices for
responsible TTS deployment. As this technology continues
to evolve, maintaining a balance between innovation and
ethical responsibility will be crucial for ensuring its positive
contribution to society.
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A. Mode Shrinkage
To further explore the effects of mode shrinkage, we conducted experiments on unconditional diversity and mode coverage.
Specifically, we used a continuation task where the model was asked to generate speech following a truncated prompt with
its full text transcription, allowing us to compare the generated speech to its corresponding ground truth from real speakers.
We evaluated two key aspects of speech: pitch (F0) and energy. As shown in Figure 5, the student model closely matches
the teacher’s distribution in both F0 and energy, demonstrating minimal mode shrinkage in contrast to the results shown in
Figure 2, where mode shrinkage was evident.
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Figure 4. Two examples for mode coverage with continuation task from LibriSpeech test-clean subset. The model continues from a
prompt with the exact same text as the ground truth. This task synthesizes speech with varying prompts and texts but from the same
speaker, allowing us to compare the mode coverage without the same text and prompt. The student exhibits very similar behavior to the
teacher and shows minimal mode shrinkage. The misalignment in energy between ground truth and our models is caused by normalization
during data pre-processing where the audio is normalized between -1 to 1 in amplitude, causing the generated samples to have a different
amplitude range.

We further assessed the model’s mode coverage quantitatively by calculating the Wasserstein distance between the student
and teacher models, as well as the ground truth, in terms of pitch (F0) and energy. The Wasserstein distances Wf0 (for pitch)
and WN (for energy) were computed across all 40 speakers in the LibriSpeech test-clean subset. Additionally, we compared
the Wasserstein distance between the student and teacher W (pθ, pϕ) in both conditional and unconditional settings. The
conditional case involved synthesizing speech 50 times with the same text and prompt, while the unconditional case used
varying texts and prompts from the same speaker as a speech continuation task.
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Table 6. Wasserstein distance between student distribution (pθ), teacher distribution (pϕ) and real data distribution (preal) when samples
are generated with the same text and prompt and varying texts and prompts in terms of pitch (F0) and log energy.

Sample Conditons Aspect W (pθ, pdata) W (pϕ, pdata) W (pθ, pϕ)

Varying text-prompt pairs (unconditional) Pitch (Wf0 ) 3.35 2.25 2.55
Same text-prompt pairs (conditional) Pitch (Wf0 ) — — 16.53

Varying text-prompt pairs (unconditional) Energy (WN ) 5.47 4.88 1.34
Same text-prompt pairs (conditional) Energy (WN ) — — 12.49

As shown in Table 6, the difference between the student and teacher in terms of Wasserstein distance to the ground truth is
relatively small in the unconditional case, and the distance between the student and teacher is much smaller compared to the
conditional case (2.55 vs. 16.53). This suggests that the reduction in diversity, or mode shrinkage, primarily occurs in the
conditional setting (i.e., when synthesizing with the same text and prompt). In the unconditional setting, the student model
still spans the entire support of the teacher’s distribution and closely matches the ground truth distribution.

Given that zero-shot TTS is highly conditional, where the output must closely match the prompt in both voice and style, this
reduction in conditional diversity is not necessarily a drawback. In fact, this narrowing of diversity is often preferred by
human listeners, as it leads to outputs that are more aligned with the prompt, as demonstrated in Figure 2 and Table 5.

B. Additional Evaluation Results
We conducted additional evaluations of acoustic features that capture emotional nuances in speech, following Li et al. (2022),
focusing on pitch (mean and standard deviation), energy (mean and standard deviation), Harmonics-to-Noise Ratio (HNR),
jitter, and shimmer.

Table 7 compares our model with several baselines. Our model consistently outperforms others across all metrics, except
for energy mean, likely due to data normalization during preprocessing, which scales audio between -1 and 1, misaligning
the energy with the prompt. Nevertheless, our model’s higher scores across other features demonstrate its capability to
reproduce the emotional content of the prompt speech effectively.

Table 7. Correlation of acoustic features related to speech emotions between synthesized speech and prompt compared to other baseilne
models.

Model Pitch
mean

Pitch
standard
deviation

Energy
mean

Energy
standard
deviation

HNR Jitter Shimmer

DMOSpeech (N=4) 0.93 0.52 0.40 0.52 0.86 0.77 0.69
Teacher (N=128) 0.86 0.37 0.30 0.34 0.79 0.65 0.56

DiTTo-TTS 0.89 0.41 0.76 0.17 0.82 0.71 0.65
VoiceCraft 0.84 0.38 0.74 0.23 0.78 0.61 0.60
CLaM-TTS 0.85 0.39 0.61 0.31 0.79 0.66 0.61
XTTS 0.91 0.42 0.38 0.01 0.85 0.70 0.64

In the ablation study presented in Tables in 8, we compare the impact of different training strategies on preserving emotional
content in synthesized speech. The teacher model shows strong correlations for most acoustic features, while DMD 2 only
models demonstrate performance improvements with additional sampling steps, similar to SIM results in Table 5. Adding
CTC loss improves word error rate (WER) but does not significantly enhance speaker-related features. However, including
SV loss significantly improves speaker-related features, with the model trained with SV loss only achieving the highest
scores in multiple metrics, such as pitch mean (0.94), HNR (0.87), and shimmer (0.65). This highlights the importance of
SV loss in capturing speaker identity and emotional content.

Finally, reducing the batch size from 96 to 16 resulted in a slight performance drop across most metrics, demonstrating the
importance of maintaining a larger batch size for optimal performance in distribution matching distillation.
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Table 8. Correlation of acoustic features related to speech emotions between synthesized speech and prompt for the ablation study. The
best-performing model is highlighted while the second best model is underlined.

Model Pitch
mean

Pitch
standard
deviation

Energy
mean

Energy
standard
deviation

HNR Jitter Shimmer

Teacher (N=128) 0.86 0.37 0.30 0.34 0.79 0.65 0.56

DMD 2 only (N=1) 0.84 0.32 0.15 0.43 0.65 0.60 0.10
DMD 2 only (N=4) 0.87 0.36 0.38 0.36 0.76 0.64 0.44

+LCTC only 0.91 0.40 0.34 0.40 0.77 0.63 0.46
+LSV only 0.94 0.54 0.41 0.52 0.87 0.77 0.65

DMOSpeech (N=4) 0.93 0.52 0.40 0.52 0.86 0.77 0.69
B. S. 96 → 16 0.92 0.48 0.39 0.51 0.85 0.74 0.60

C. Implementation Details
C.1. DAC Variational Autoencoder

We utilize a latent audio autoencoder to compress raw waveforms into compact latent representations for diffusion modeling.
Our architecture follows the DAC model proposed by Kumar et al. (2024), with a key modification to use a variational
autoencoder (VAE) bottleneck instead of residual vector quantization, enabling continuous latent spaces and end-to-end
differentiable training.

The DAC consists of an encoder E , a VAE bottleneck, and a decoder D. The encoder maps the input waveform y ∈ R1×T

into a latent representation x ∈ RC×L, where C and L denote channels and downsampled temporal resolution. The
VAE bottleneck introduces stochasticity by modeling x as a distribution, and the decoder reconstructs the waveform by
minimizing the reconstruction loss.

The encoder applies an initial convolution followed by residual units with dilated convolutions at scales 1, 3, 9 to capture
multi-scale temporal features. After each block, strided convolutions reduce the temporal resolution by a factor of 1200. For
48 kHz audio, the encoded latent is 40 Hz, making it ideal for efficient speech synthesis tasks. The latent channel dimension
of our autoencoder is C = 64.

The encoder’s output is split into mean µ and scale σ parameters:

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I), (11)

where z is sampled using the reparameterization trick (Kingma, 2013). The decoder mirrors the encoder with transposed
convolutions and residual units to upsample latent representations back to the original waveform ŷ = D(z), where ŷ is the
reconstructed waveform. The encoder and decoder architectures are the same as DAC (Kumar et al., 2024).

The KL divergence between the approximate posterior q(z|y) and prior p(z) is computed as:

LKL = Ey

[
1

N

N∑
i=1

(
µ2
i + σ2

i − log σ2
i − 1

)
·mi

]
, (12)

where N is the number of channels, and mi is the channel mask. The autoencoder is trained to minimize a combination of
reconstruction loss and KL divergence:

LAE = Ey [∥y − ŷ∥1] + λKLLKL, (13)

where λKL = 0.1 to balance the KL loss. In addition to the KL loss, we also employ adversarial training following Kumar
et al. (2024) with the complex STFT discriminator.
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C.2. DMOSpeech

In this section, we present the implementation details of our DMOSpeech model, including the noise schedule, gradient
calculation of DMD loss, detailed architecture, and sampling algorithm.

C.2.1. SHIFTED COSINE NOISE SCHEDULE

We follow Lovelace et al. (2023); Hoogeboom et al. (2023) and use the shifted cosine noise schedule with αt and σt denoting
the amount of signal and noise at time t. The noise-to-signal ratio (SNR) λt = αt/σt of the noise schedule is shifted by a
factor s, from which the shifted SNR λt,s and noise schedule αt,s, σt,s are defined:

αt = cos
(π
2
t
)

(14) λt,s =
αt,s

σt,s
= λt · s2 =

αt

σt
· s2, (15)

Using the fact αt = sigmoid (log(λt)) as stated in Kingma et al. (2021), the shifted noise schedule can then be computed in
the log space for numerical stability:

αt,s = sigmoid (log(λt) + 2 log(s)) , (16) σt,s =
√

1− α2
t,s. (17)

Lower s emphasizes the higher noise levels and can potentially improve the model’s performance. We set s = 0.5 following
Lovelace et al. (2023) as it is shown to produce the most robust results.

C.2.2. GRADIENT CALCULATION OF DMD LOSS

The gradient of the DMD loss with respect to the generator parameters θ is given by eq. 3. The actual implementation of
gradient calculation follows the following steps.

We first sample latent variables xt are generated via forward diffusion process as:

xt = αtx0 + σtϵ, (18)

where x0 is the clean latent representation, and ϵ ∼ N (0, I).

The clean latents x̂real
0 and x̂fake

0 then are estimated using the predicted noise by both of the teacher fϕ and student gψ
diffusion models following eq. 5.

From there, we calculate the numerical gradient of LDMD. We define the following quantity as the difference between the
ground truth clean latent and estimated latents:

preal = x0 − x̂real
0 , (19) pfake = x0 − x̂fake

0 . (20)

Then the difference in score ∆ (numerical gradient) can be calculated as:

∆ = ωtαt (sreal − sθ) (21)

= ωtαt

(
−
(
xt − αtx̂

real
0

)
−
(
xt − αtx̂

fake
0

)
σ2
t

)
(22)

= ωt
α2
t

σ2
t

(
−
(
x̂real
0 − x̂fake

0

))
. (23)

(24)

where the weighting factor ωt is defined as:

ωt =
σ2
t

αt

∥∥x0 − x̂real
0

∥∥
1

=
σ2
t

αt ∥preal∥1
. (25)

Hence, eq. 21 can be written as:

∆ =
(preal − pfake)

∥preal∥1
, (26)

which is back-propagated to Gθ via gradient descent algorithm.

17



DMOSpeech: Direct Metric Optimization Speech Synthesis

C.2.3. DETAILED ARCHITECTURE

In this section, we present the architecture of our Diffusion Transformer (DiT) model (Peebles & Xie, 2023). The DiT model
integrates diffusion processes with transformer architectures to generate high-quality speech representations conditioned on
textual input.

Our DiT model consists of the following key components:

• Embedding Layers: Transform input IPA tokens, binary prompt masks, and speech latents into continuous embeddings.

• Transformer Encoder: Encodes the textual input (IPA tokens) into contextual representations.

• Transformer Decoder: Decodes the latent representations conditioned on the encoder outputs and additional embeddings.

The model parameters are summarized in Table 9.

Table 9. DMOSpeech DiT model parameters.
Parameter Value

Latent dimension 64
Model dimension 1024
Feed-forward dimension 3072
Number of attention heads 8
Number of encoder layers 8
Number of decoder layers 16
Feed-forward activation function SwiGLU
Text conditioning dropout 0.1
Noise schedule shifting scale (s) 0.5

The embedding layer maps input tokens and latent variables into continuous embeddings. Specifically, IPA tokens are
embedded into vectors of size 1024 using an embedding matrix, and speech latents are projected from dimension 64 to 1024
using a linear layer. A binary mask prompt indicating prompt positions m in the latent sequence is encoded into a mask
embedding, and a sinusoidal time embedding represents the diffusion timestep t. Positional embeddings are added to both
IPA and latent embeddings to encode positional information.

The encoder processes the embedded IPA tokens through 8 layers, each containing multi-head self-attention and feed-forward
sublayers with layer normalization and residual connections. The feed-forward sublayers use a hidden dimension of 3072
and the SwiGLU activation function. The encoder outputs the text condition c.

The decoder generates latent representations conditioned on the encoder outputs and additional embeddings over 16 layers.
Each layer includes self-attention, cross-attention with the encoder outputs, and feed-forward sublayers. Adaptive layer
normalization (AdaLN), conditioned on the timestep embedding, is applied within the decoder. The output layer projects the
decoder outputs back to the latent space dimension of 64 using a linear layer.

Classifier-free guidance (CFG) is employed by randomly dropping the textual conditioning during training with a probability
of 0.1 and ω is the guidance scale. The modified sreal with CFG becomes:

sreal(xt;ω) = fϕ(xt ; c,m, t) + ω (fϕ(xt ; c,m, t)− fϕ(xt ; ∅,m, t)) , (27)

where ∅ denotes the null condition of c which is a fixed embedding. We set ω = 2 both for inference of the teacher model
and DMD training.

The teacher model generates samples through DDPM sampler (Ho et al., 2020) with discrete time steps {ti}Ni=1 ⊂ [0, 1]
where N is the total sampling steps:

xn−1 =
1

αtn

(
xn −

σ2
tn

αtn

fϕ(xn ; c,m, tn)

)
+ σtn−1

ϵ, (28)

where ϵ ∼ N (0, I) if n > 1, and ϵ = 0 if n = 1.
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C.2.4. DMD SAMPLING

Our sampling algorithm of the student (DMOSpeech) is similar to that of the consistency model (Song et al., 2023). The
sampling procedure is outlined in Algorithm 1.

Algorithm 1 DMD Multi-Step Sampling Procedure
Require:

• c: the text embeddings
• xprompt: the prompt latent
• L: total length of the target speech
• {ti}Ni=1: noise level schedule with N steps

1: Initialize noisy latent xt ∼ N (0, I) of shape (L, dlatent)
2: for i = 1 to N do
3: xt ← xt ⊙ (1−m) + xprompt ⊙m ▷ Re-apply prompt
4: v ← Gθ(xt; c,m, ti) ▷ Run student network
5: x0 ← xt · αti − σti · v ▷ Predict x0 from v
6: x0 ← x0 ⊙ (1−m) + xprompt ⊙m ▷ Re-apply prompt to x0

7: if i < N then
8: ϵ ∼ N (0, I)
9: xt = αti+1

x0 + σti+1
ϵ ▷ Re-noise x0 to get new xt at ti+1

10: end if
11: end for
12: return x0

C.3. Latent CTC-based ASR Model

To directly optimize word error rate (WER) within our speech synthesis framework, we implement a Connectionist Temporal
Classification (CTC)-based ASR model that operates on latent speech representations. Traditional ASR models work on raw
audio or mel-spectrograms, adding computational overhead and potential mismatches when integrated with latent-based
synthesis since we need to decode the latent back into waveforms before computing the ASR output. Our latent ASR
model processes these representations directly, enabling efficient, end-to-end computation of the CTC loss and direct WER
optimization.

The ASR model is based on the Conformer architecture (Gulati et al., 2020), which effectively captures local and global
dependencies using convolution and self-attention. Input latent representations z ∈ RT×d are processed through a 6-layer
conformer stack and the model outputs a logit for each latent token over IPA phonemes.

The ASR model is trained using the CTC loss, allowing alignment-free training of sequence-to-sequence models. The CTC
loss is defined using softmax function:

LCTC = − log p (y | o) , (29)

where y is the target IPA sequence, o represents the logits over the IPA symbols, and p (y | o) is computed by summing
over all valid alignments between the input and target sequences. The probabilities are calculated as:

pπt
(t) =

exp (ot,πt)∑V
k=1 exp (ot,k)

. (30)

We trained our ASR model on CommonVoice (Ardila et al., 2019) and LibriLight (Kahn et al., 2020) datasets for 200k
steps with the AdamW (Loshchilov & Hutter, 2018) optimizer. The optimizer configuration is the same as teacher training
described in Section 4.1.

C.4. Latent Speaker Verification Model

We develop a latent speaker verification (SV) model that operates directly on latent speech representations in order to
optimize speaker similarity within our speech synthesis framework. Unlike traditional SV models, which process raw
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audio waveforms, our latent SV model integrates seamlessly with our latent-based synthesis, enabling efficient, end-to-end
computation of speaker verification loss for direct speaker similarity optimization.

Our latent SV model fine-tunes our CTC-based ASR model for feature extraction following (Cai & Li, 2024) and integrates
it with an ECAPA-TDNN architecture (Desplanques et al., 2020) for speaker embedding extraction. We train the latent SV
model using a distillation approach, transferring knowledge from two pre-trained teacher models: a ResNet-based SV model
5 from the WeSpeaker (Wang et al., 2023b) and EPACA-TDNN with a fine-tuned WavLM Large model 6 as the feature
extractor. The training objective minimizes the cosine similarity loss between embeddings from the latent SV model and the
concatenated embeddings from the teacher models:

LSV = Ez,y

[
1− eteacher · elatent

∥eteacher∥ ∥elatent∥

]
, (31)

where elatent and eteacher are the embeddings from the latent SV and teacher models, respectively.

Our latent SV model was trained on CommonVoice (Ardila et al., 2019) and LibriLight (Kahn et al., 2020) datasets for 400k
steps with the AdamW optimizer. Since we did not use VoxCeleb dataset that was used originally to train the teacher SV
models, we used data augmentation 7 to shift the pitch of the speakers to create new speaker identity to prevent overfitting
during training.

D. Human Rating Correlations
We generated scatter plots to visualize the relationships between the four subjective metrics: MOS-N (naturalness), MOS-Q
(sound quality), SMOS-V (voice similarity), and SMOS-S (style similarity), and two objective evaluation metrics: word
error rate (WER) and speaker embedding cosine similarity (SIM). The scatter plots are displayed in Figure 5, and they cover
all subjective evaluation experiments conducted in this work at the utterance level.

Despite the noise and variance in the utterance-level subjective ratings, the plots reveal important trends. A strong correlation
exists between human-rated speaker similarity (SMOS-V and SMOS-S) and the SIM score from the speaker verification
model, with correlation coefficients of 0.55 and 0.50, respectively. This highlights the alignment between subjective human
judgments and the objective speaker embedding similarity. On the other hand, there is a weaker but still significant negative
correlation between WER and both naturalness (MOS-N) and sound quality (MOS-Q), with coefficients of −0.16 for both.
These findings validate our approach to directly optimize these metrics. Future research could explore other differentiable
metrics or reward models that align even more closely with human auditory preferences.

E. Evaluation Details
E.1. Baseline Models

This section briefly introduces the baseline models used in our evaluations and the methods employed to obtain the necessary
samples.

• CLaM-TTS: CLaM-TTS (Kim et al., 2024) is a strong autoregressive baseline for zero-shot speech synthesis, trained
on various datasets including Multilingual LibriSpeech (MLS) (Pratap et al., 2020), GigaSpeech (Chen et al., 2021),
LibriTTS-R (Koizumi et al., 2023), VCTK (Yamagishi et al., 2019), and LJSpeech (Ito & Johnson, 2017). Since this
model is not publicly available, we obtained 3,711 samples from the authors using instructions provided by the authors
at https://github.com/keonlee9420/evaluate-zero-shot-tts.

• DiTTo-TTS: DiTTo-TTS (Lee et al., 2024) is a previous state-of-the-art (SOTA) end-to-end model for zero-shot speech
synthesis, trained on the same datasets as CLaM-TTS, with the addition of Expresso (Nguyen et al., 2023). Like
CLaM-TTS, this model is also not publicly available, so we acquired the same set of 3,711 samples from the authors.

• NaturalSpeech 3: NaturalSpeech 3 (Ju et al., 2024) is a previous SOTA model in zero-shot speech synthesis, trained
on LibriLight (Kahn et al., 2020). Using factorized codec and discrete diffusion models, it achieves near-human

5Available at https://huggingface.co/pyannote/wespeaker-voxceleb-resnet34-LM
6https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
7https://github.com/facebookresearch/WavAugment
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Figure 5. Top: Scatter plots showing the relationship between human-rated naturalness (MOS-N) and sound quality (MOS-Q) versus
word error rate (WER). The correlation coefficients are -0.16 for both, indicating a weak negative correlation (p ≪ 0.01). Bottom: Scatter
plots of human-rated voice similarity (SMOS-V) and style similarity (SMOS-S) versus speaker embedding cosine similarity (SIM). The
correlation coefficients are 0.55 and 0.50, reflecting a strong positive correlation (p ≪ 0.01). These plots demonstrate how objective
evaluations (WER and SIM) align with subjective human ratings.

performance in prompt speaker similarity. Since it is not publicly available, we collected 40 samples from the authors,
along with text transcriptions and 3-second prompt speeches, to synthesize speech for comparison. We also sourced
7 official samples from https://www.microsoft.com/en-us/research/project/e2-tts/ tested on
the LibriSpeech test-clean subset, totally 47 samples.

• StyleTTS-ZS: StyleTTS-ZS (Li et al., 2024b) is another previous SOTA model for zero-shot speech synthesis, known
for its fast inference speed and high naturalness and speaker similarity. As the model is not publicly available, we
requested 47 samples from the authors to match those provided by Ju et al. (2024).

• VoiceCraft: VoiceCraft (Peng et al., 2024) is a strong autoregressive baseline model trained on GigaSpeech (Chen et al.,
2021) and LibriLight (Kahn et al., 2020), performing well in speaker similarity and can be used for speech editing.
This model is publicly available at https://github.com/jasonppy/VoiceCraft, and we synthesized 3,711
samples using the same text and 3-second speech prompts provided for CLaM-TTS and DiTTo-TTS with the 830M
TTS-enhanced model.

• XTTS: XTTS (Casanova et al., 2024) is another strong zero-shot speech synthesis baseline, trained on various public
and proprietary datasets totaling around 17k hours. The model is publicly available at https://huggingface.
co/coqui/XTTS-v2, and we synthesized the same 3,711 samples as above.
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E.2. Subjective Evaluation

Figure 6. Screenshot of the subjective evaluation survey used for the perceptual quality assessment of speech synthesis models. Participants
are presented with a reference (prompt) and sample to be evaluated and are asked to rate various attributes such as naturalness, voice
similarity, style similarity, and quality on a scale from 1 to 5. If the sample is unintelligible, participants must mark it as "Yes" under the
"Is content broken?" section. The survey prevents submission if any slider remains at the default "N/A" position, ensuring that each aspect
is rated.

We conducted two subjective evaluations using the Prolific crowdsourcing platform 8 to assess the perceptual quality of the
generated speech samples. These evaluations measured key attributes including naturalness, voice similarity, style similarity,
and audio quality based on a reference speech sample provided to the raters.

Because some workers may “game” the systems by answering randomly, or skipping the reference sample, we used two
forms of validation tests. The first uses mismatched speaker where the test presents the workers with different voices for the
reference and test sample, both being real speakers. If a participant rated these mismatched samples with a speaker similarity
score above 3, all their ratings were excluded from the analysis. The second validation test involved identical sample pairs,
where participants were asked to rate identical reference and sample pairs. If any of the subjective attributes, including
naturalness, similarity, style, or quality, were rated below 4 for these identical pairs, all responses from that participant were
excluded.

The first subjective evaluation experiment, referred to as the “bigger” experiment, involved 501 unique workers. There are a
total of 80 parallel utterances for each method, which include all end-to-end (E2E) baselines and models in the ablation
study were rated. The results were present in Table 2 and 5. Each worker was assigned provide ratings for 30 samples. There
are 4 validation tests in this experiment. Approximately 30% of the responses were invalidated due to participants failing the
validation test at least once. The second, “smaller” experiment that compared non-E2E baselines over 47 utterances per
method. There are 290 unique workers, with each worker completing 28 ratings. The validation test is doubled to 8 per test.

8https://www.prolific.com/
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In this smaller study, 40% of the ratings were invalidated because the stricter validation process led to more failures. The
number of invalid samples are consistent with prior work carried out on similar platforms.

The survey (Figure 6) interface presented participants with a reference (prompt) and a corresponding sample recording.
Participants rated each sample on a scale from 1 to 5 across several categories:

1. Naturalness, evaluating how real or synthetic the voice sounded;

2. Quality, determining whether the audio quality was maintained or degraded compared to the prompt;

3. Voice similarity, assessing how closely the sample matched the reference speaker;

4. Style similarity, considering the alignment of the speaking style and emotion;

5. Intelligibility, for which raters were asked to mark it as such to flag broken samples during the analysis if the audio
sample was entirely unintelligible.

The last rating category “is the content broken¿‘ helps us to identify if any samples are unintelligible which would indicate
completely failed generation or corrupted files. In the end, we do not have any samples that are rated "broken" by the
majority.

Compensation for both experiments is set to a rate of $15 per hour, higher than Prolific’s recommendation of $12 per hour
with a target average time of 12 minutes per test.
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