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Abstract

Despite the rise to dominance of deep learning in unstructured data domains, tree-1

based methods such as Random Forests (RF) and Gradient Boosted Decision Trees2

(GBDT) are still the workhorses for handling discriminative tasks on tabular data.3

We explore generative extensions of these popular algorithms with a focus on4

explicitly modeling the data density (up to a normalization constant), thus enabling5

other applications besides sampling. As our main contribution we propose an6

effective energy-based generative boosting algorithm that is analogous to the second7

order boosting algorithm implemented in popular packages like XGBoost. We8

show that, despite producing a generative model capable of handling inference tasks9

over any input variable, our proposed algorithm can achieve similar discriminative10

performance to GBDT algorithms on a number of real world tabular datasets and11

outperform competing approaches for sampling.12

1 Introduction13

Generative models have achieved tremendous success in computer vision and natural language14

processing, where the ability to generate synthetic data guided by user prompts opens up many15

exciting possibilities. While generating synthetic table records does not necessarily enjoy the same16

wide appeal, this problem has still received considerable attention as a potential avenue for bypassing17

privacy concerns when sharing data. Estimating the data density, p(x), is another typical application18

of generative models which enables a host of different use cases that can be particularly interesting19

for tabular data. Unlike discriminative models which are trained to perform inference over a single20

target variable, density models can be used more flexibly for inference over different variables or for21

out of distribution detection. They can also handle inference with missing data in a principled way by22

marginalizing over unobserved variables.23

The development of generative models for tabular data has mirrored its progression in computer24

vision with many of its Deep Learning (DL) approaches being adapted to the tabular domain [Jordon25

et al., 2018, Xu et al., 2019, Engelmann and Lessmann, 2020, Fan et al., 2020, Zhao et al., 2021,26

Kotelnikov et al., 2022]. Unfortunately, these methods are only useful for sampling as they either27

don’t model the density explicitly or can’t evaluate it due to untractable marginalization over high28

dimensional latent variable spaces. Furthermore, despite growing in popularity, DL has still failed to29

displace tree-based ensemble methods as the tool of choice for handling tabular discriminative tasks30

with gradient boosting still being found to outperform neural-network-based methods in many real31

world datasets [Grinsztajn et al., 2022, Borisov et al., 2022a].32

While there have been recent efforts to extend the success of tree-based models to generative modeling33

[Correia et al., 2020, Wen and Hang, 2022, Nock and Guillame-Bert, 2022, Watson et al., 2023,34

Nock and Guillame-Bert, 2023, Jolicoeur-Martineau et al., 2023], we find that direct extensions of35

Random Forests (RF) and Gradient Boosted Decision Tree (GBDT) are still missing. It is this gap36

that we try to address, seeking to keep the general algorithmic structure of these popular algorithms37
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Figure 1: Downsampled MNIST samples generated by NRGBoost and two tabular DL methods.

but replacing the optimization of their discriminative objective with a generative counterpart. Our38

main contributions in this regard are:39

• Proposing NRGBoost, a novel energy-based generative boosting model that, analogously to40

the boosting algorithms implemented in popular GBDT packages, is trained to maximize a41

local second order approximation to the likelihood at each boosting round.42

• Proposing an approximate sampling algorithm to speed up the training of any tree-based43

multiplicative generative boosting model.44

• Exploring the use of bagged ensembles of Density Estimation Trees (DET) [Ram and Gray,45

2011] with feature subsampling as the generative counterpart to RF.46

The longstanding popularity of GBDT models in machine learning practice can, in part, be attributed47

to the strength of its empirical results and the efficiency of its existing implementations. We therefore48

focus on an experimental evaluation in real world datasets spanning a range of use cases, number49

of samples and features. We find that, on smaller datasets, our implementation of NRGBoost can50

be trained in a few minutes on a mid-range consumer CPU and achieve similar discriminative51

performance to a standard GBDT model while also being able to generate samples that are generally52

harder to distinguish from real data than state of the art neural-network-based models.53

2 Energy Based Models54

An Energy-Based Model (EBM) parametrizes the logarithm of a probability density function directly55

(up to an unspecified normalizing constant):56

qf (x) =
exp (f(x))

Z[f ]
. (1)

Here f(x) : X → R is a real function over the input domain.1 We will avoid introducing any57

parametrization, instead treating the function f ∈ F(X ) lying in an appropriate function space over58

the input space as our model parameter directly. Z[f ] =
∑

x∈X exp (f(x)), known as the partition59

function, is then a functional of f giving us the necessary normalizing constant.60

This is the most flexible way one could represent a probability density function making essentially61

no compromises on its structure. The downside to this is that for most interesting choices of F ,62

computing or estimating this normalizing constant is untractable which makes training these models63

difficult. Their unnormalized nature however does not prevent EBMs from being useful in a number64

of applications besides sampling. Performing inference over a small enough subset of variables65

requires only normalizing over the set of their possible values and for anomaly or out of distribution66

detection, knowledge of the normalizing constant is not necessary.67

One common way to train an energy-based model to approximate a data generating distribution, p(x),68

is to minimize the Kullback-Leibler divergence between p and qf , or equivalently, maximize the69

expected log likelihood functional:70

L[f ] = Ex∼p log qf (x) = Ex∼pf(x)− logZ[f ] (2)

1We will assume that X is finite and discrete to simplify the notation and exposition but everything is
applicable to bounded continuous input spaces, replacing the sums with integrals as appropriate.
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This optimization is typically carried out by gradient descent over the parameters of f , but due to71

the untractability of the partition function, one must rely on Markov Chain Monte Carlo (MCMC)72

sampling to estimate the gradients [Song and Kingma, 2021].73

3 NRGBoost74

Expanding the increase in log-likelihood in equation 2 due to a variation δf around an energy function75

f up to second order we have76

L[f + δf ]− L[f ] ≈ Ex∼pδf(x)− Ex∼qf δf(x)−
1

2
Varx∼qf δf(x) =: ∆Lf [δf ] . (3)

The δf that maximizes this quadratic approximation should thus have a large positive difference77

between the expected value under the data and under qf while having low variance under qf . We78

note that just like the original log-likelihood, this Taylor expansion is invariant to adding an overall79

constant to δf . This means that, in maximizing equation 3 we can consider only functions that have80

zero expectation under qf in which case we can simplify ∆Lf [δf ] as81

∆Lf [δf ] = Ex∼pδf(x)−
1

2
Ex∼qf δf

2(x) . (4)

We thus formulate our boosting algorithm as modelling the data density with an additive energy82

function. At each boosting iteration we improve upon the current energy function ft by finding an83

optimal step δf∗
t that maximizes ∆Lft [δf ]84

δf∗
t = arg max

δf∈Ht

∆Lft [δf ] , (5)

where Ht is an appropriate space of functions (satisfying Ex∼qft
δf(x) = 0 if equation 4 is used).85

The solution to this problem can be interpreted as a Newton step in the space of energy functions.86

Because for an energy-based model, the Fisher Information matrix with respect to the energy function87

and the hessian of the expected log-likelihood are the same, we can also interpret the solution to88

equation 5 as a natural gradient step (see the Appendix A). This approach is essentially analogous89

to the second order step implemented in modern discriminative gradient boosting libraries such as90

XGBoost [Chen and Guestrin, 2016] and LightGBM [Ke et al., 2017] and which can be traced back91

to Friedman et al. [2000].92

In updating the current iterate, ft+1 = ft + αt · δf∗
t , we scale δf∗

t by an additional scalar step-size93

αt. This can be interpreted as a globalization strategy to account for the fact that the quadratic94

approximation in equation 3 is not necessarily valid over large steps in function space. A common95

strategy in nonlinear optimization would be to select αt via a line search based on the original96

log-likelihood. Common practice in discriminative boosting however is to interpret this step size97

as a regularization parameter and to select a fixed value in ]0, 1] with (more) smaller steps typically98

outperforming fewer larger ones when it comes to generalization. We choose to adopt a hybrid99

strategy, first selecting an optimal step size by line search and then shrinking it by a fixed factor. We100

find that this typically accelerates convergence allowing the algorithm to take comparatively larger101

steps that increase the likelihood in the initial phase of boosting. For a starting point, f0, we can102

choose the logarithm of any probability distribution over X as long as it is easy to evaluate. Sensible103

choices are a uniform distribution (i.e., f ≡ 0), the product of marginals for the training set, or any104

mixture distribution between these two.105

3.1 Weak Learners106

As a weak learner we will consider functions defined by trees over the input space. I.e., letting107 ⋃J
j=1 Xj = X be the partitioning of the input space induced by the leaves of a binary tree whose108

internal nodes represent a split along one dimension into two disjoint partitions, we take as H the set109

of functions such as110

δf(x) =

J∑
j=1

wj1Xj
(x) , (6)

where 1X denotes the indicator function of a subset X and wj are values associated with each111

leaf j ∈ [1..J ]. In a standard decision tree these values would typically encode an estimate of112
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p(y|x ∈ Xj), with y being a special target variable that is never considered for splitting. In our113

generative approach they encode unconditional densities (or more precisely energies) over each leaf’s114

support and every variable can be used for splitting. Note that our functions δf are thus parametrized115

by the values wj as well the structure of the tree and the variables and values for the split at each116

node which ultimately determine the Xj . We omit these dependencies for brevity.117

Replacing the definition in equation 6 in our objective (equation 4) we get the following optimization118

problem to find the optimal decision tree:119

max
w1,...,wJ ,X1,...,XJ

J∑
j=1

(
wjP (Xj)−

1

2
w2

jQf (Xj)

)

s.t.
J∑

j=1

wjQf (Xj) = 0 ,

(7)

where P (Xj) and Qf (Xj) denote the probability of the event x ∈ Xj under the respective distribution120

and the constraint ensures that δf has zero expectation under qf . With respect to the leaf weights this121

is a quadratic program whose optimal solution and objective values are respectively given by122

w∗
j =

P (Xj)

Qf (Xj)
− 1 , ∆L∗

f (X1, . . . , XJ) =
1

2

 J∑
j=1

P 2(Xj)

Qf (Xj)
− 1

 . (8)

Because carrying out the maximization of this optimal value over the tree structure that determines123

the Xj is hard, we approximate its solution by greedily growing a tree that maximizes it when124

considering how to split each node individually. A parent leaf with support XP is thus split into 2125

child leaves, with disjoint support, XL ∪XR = XP , so as to maximize over all possible partitionings126

along a single dimension, P (XP ), the following objective:127

max
XL,XR∈P(XP )

P 2(XL)

Qf (XL)
+

P 2(XR)

Qf (XR)
− P 2(XP )

Qf (XP )
. (9)

Note that when using parametric weak learners, computing a second order step would typically128

involve solving a linear system with a full Hessian. As we can see, this is not the case when the129

weak learners are decision trees where the optimal value to assign to a leaf j does not depend on130

any information from other leaves and, likewise, the optimal objective value is a sum of terms, each131

depending only on information from a single leaf. This would have not been the case had we tried to132

optimize the likelihood functional in Equation 2 directly instead of its quadratic approximation.133

3.2 Sampling134

To compute the leaf values in equation 8 and the splitting criterion in equation 9 we would have to135

know P (X) and be able to compute Qf (X) which is infeasible due to the untractable normalization136

constant. We therefore estimate these quantities, with recourse to empirical data for P (X), and to137

samples approximately drawn from the model with MCMC. Because even if the input space is not138

partially discrete, f is still discontinuous and constant almost everywhere we can’t use gradient based139

samplers and therefore rely on Gibbs sampling instead. This only requires evaluating each ft along140

one dimension at a time, while keeping all others fixed which can be computed efficiently for a tree141

by traversing it only once. However, since at boosting iteration t our energy function is a sum of t142

trees, this computation scales linearly with the iteration number. This makes the overall time spent143

sampling quadratic in the number of iterations and thus precludes us from training models with a144

large number of trees.145

In order to reduce the burden associated with this sampling, which can dominate the runtime of146

training the model, we propose a new sampling approach that leverages the cumulative nature of147

boosting. The intuition behind this approach is that the set of samples used in the previous boosting148

round are (approximately) drawn from a distribution that is already close to the new model distribution.149

It could therefore be helpful to keep some of those samples, especially those that conform the best to150

the new model. Rejection sampling allows us to do just that. The boosting update in terms of the151

densities takes the following multiplicative form:152

qt(x) = kt qt−1(x) exp (αtδft(x)) . (10)
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Here, k is an unknown multiplicative constant and since δft is given by a tree, we can easily bound153

the exponential factor by finding the leaf with the largest value. We can therefore use the previous154

model, qt−1(x), as a proposal distribution for which we already have a set of samples and keep each155

sample, x, with an acceptance probability of:156

paccept(x) = exp
[
αt

(
δft(x)−max

x
δft(x)

)]
. (11)

We note that knowledge of the constant kt is not necessary to compute this acceptance probability.157

After removing samples from the pool, we can use Gibbs sampling to draw a new set of samples in158

order to keep a fixed total number of samples per round of boosting. Note also that q0 is typically a159

simple model for which we can both directly evaluate the desired quantities (i.e., Q0(X) for a given160

partition X) and cheaply draw exact samples from. As such, no sampling is required for the first161

iteration of boosting and for the second we can draw exact samples from q1 with rejection sampling162

using q0 as a proposal distribution.163

This approach works better when either the range of ft is small or when the step sizes αt are small as164

this leads to larger acceptance probabilities. Note that in practice it can be helpful to independently165

refresh a fixed fraction samples, prefresh, at each round of boosting in order to encourage more166

diverse samples between rounds. This can be accomplished by keeping each sample with a probability167

paccept(x)(1− prefresh) instead.168

3.3 Regularization169

The simplest way to regularize a boosting model is to stop training when overfitting is detected by170

monitoring a suitable performance metric on a validation set. For NRGBoost this could be the increase171

in log-likelihood at each boosting round. However, estimating this quantity would require drawing172

additional validation samples from the model (see Appendix A). An alternative viable validation173

strategy which needs no additional samples is to simply monitor a discriminative performance metric174

(over one or more variables). This essentially amounts to monitoring the quality of qf (xi|x−i) instead175

of the full qf (x).176

Besides early stopping, the decision trees themselves can be regularized by limiting the depth or total177

number of leaves of each tree. Additionally we can rely on other strategies such as disregarding splits178

that would result in a leaf with too little training data, P (X), model data, Qf (X), volume V (X) or179

too high of a ratio between training and model data P (X)/Qf (X). We found the latter to be the most180

effective of these, not only yielding better generalization performance than other approaches, but also181

having the added benefit of allowing us to lower bound the acceptance probability of our rejection182

sampling scheme.183

4 Density Estimation Trees and Density Estimation Forests184

Density Estimation Trees (DET) were proposed by Ram and Gray [2011] as an alternative to185

histograms and kernel density estimation but have received little attention as generative models186

for sampling or other applications. They model the density function as a constant value over the187

support of each leaf in a binary tree, q =
∑J

j=1
P̂ (Xj)
V (Xj)

1Xj
, with P̂ (X) being an empirical estimate188

of probability of the event x ∈ X and V (X) denoting the volume of X . Note that it is possible189

to draw an exact sample from this type of model by randomly selecting a leaf, j ∈ [1..J ], given190

probabilities P̂ (Xj), and then drawing a sample from a uniform distribution over Xj .191

To fit a DET, Ram and Gray [2011] propose optimizing the Integrated Squared Error (ISE) between the192

data and model distributions which, following a similar approach to Section 3.1, leads the following193

optimization problem when considering how to split a leaf node:194

max
XL,XR∈P(XP )

D(P (XL), V (XL)) +D(P (XR), V (XR))−D(P (XP ), V (XP )) . (12)

For the ISE, D should be taken as the function DISE(P, V ) = P 2
/V which leads to a similar splitting195

criterion to Equation 12 but replacing the previous model’s distribution with the volume measure V196

which can be interpreted as the uniform distribution on X (up to a multiplicative constant).197
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Maximum Likelihood Often generative models are trained to maximize the likelihood of the198

observed data. This was left for future work in Ram and Gray [2011] but, as we show in Appendix199

B, can be accomplished by replacing the D in Equation 12 with DKL(P, V ) = P log (P/V ).This200

choice of minimization criterion can be seen as analogous to the choice between Gini impurity and201

Shannon entropy in the computation of the information gain in decision trees.202

Bagging and Feature Subsampling Following the common approach in decision trees, Ram and203

Gray [2011] suggest the use of pruning for regularization of DET models. Practice has however204

evolved to prefer bagging as a form of regularization rather than relying on single decision trees. We205

employ same principle to DETs by fitting many trees on bootstrap samples of the data. We also adopt206

the common practice from Random Forests of randomly sampling a subset of features to consider207

when splitting any leaf node in order to encourage independence between the different trees in the208

ensemble. The ensemble model, which we call Density Estimation Forests (DEF) in the sequence,209

is thus an additive mixture of DETs with uniform weights, therefore still allowing for normalized210

density computation and exact sampling.211

5 Related Work212

Generative Boosting Most prior work on generative boosting focuses on unstructured data and213

the use of parametric weak learners and is split between two approaches: (i) Additive methods that214

model the density function as an additive mixture of weak learners such as Rosset and Segal [2002],215

Tolstikhin et al. [2017]. (ii) Those that take a multiplicative approach modeling the density function as216

an unnormalized product of weak learners. The latter is equivalent to the energy based approach that217

writes the energy function (log density) as an additive sum of weak learners. Welling et al. [2002] in218

particular also approach boosting from the point of view of functional optimization of the likelihood219

or the logistic loss of an energy-based model. However, they rely on a first order local approximation220

of the objective since they focus on parametric weak learners such as restricted boltzman machines221

for which a second order step would be impractical.222

Greedy Multiplicative Boosting Another more direct multiplicative boosting framework was first223

proposed by Tu [2007]. At each boosting round a discriminative classifier is trained to distinguish224

between empirical data and data generated by the current model by estimating the likelihood ratio225
p(x)/qt(x). This estimated ratio is used as a direct multiplicative factor to update the current model226

qt (after being raised to an appropriate step size). In ideal conditions this greedy procedure would227

converge in a single iteration if a step size of 1 would be used. While Tu [2007] does not prescribe a228

particular choice of classifier to use, Grover and Ermon [2017] proposes a similar concept where the229

ratio is estimated based on an adversarial bound for an f -divergence and Cranko and Nock [2019]230

provides additional analysis on this method. In Appendix C we dive deeper into the differences231

between NRGBoost and this approach when it is adapted to use trees as weak learners. We note, how-232

ever, that the main difference is that NRGBoost attempts to update the current density proportionally233

to an exponential of the ratio, exp (αt · p(x)/qt(x)), instead of the ratio directly.234

Tree-Based Density Modelling Other authors have proposed tree-based density models similar to235

DET [Nock and Guillame-Bert, 2022] or additive mixtures of tree-based models [Correia et al., 2020,236

Wen and Hang, 2022, Watson et al., 2023] but perhaps surprisingly, the natural idea of creating an237

ensemble of DET models through bagging has not been explored before as far as we are aware. Two238

distinguishing features of some of these alternative approaches are: (i) Unlike DETs, the partitioning239

of each tree is not driven directly by a density estimation goal. Correia et al. [2020] leverages240

a standard discriminative Random Forest, therefore giving special treatment to a particular input241

variable whose conditional estimation drives the choice of partitions and Wen and Hang [2022]242

proposes using a mid-point random tree partitioning. (ii) Besides modelling the density function as243

uniform at the leaf of each tree, other authors propose leveraging more complex models [Correia244

et al., 2020, Watson et al., 2023] which can allow for the use of trees that are more representative245

with a smaller number of leaves. (iii) Nock and Guillame-Bert [2022] and Watson et al. [2023] both246

propose generative adversarial frameworks where the generator and discriminator are both a tree or247

an ensemble of trees respectively. Note that, unlike with boosting, in these approaches the new model248

doesn’t add to the previous one but replaces it instead.249
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Table 1: Single variable inference results. The reported values are the averages over 5 cross-validation
folds. The corresponding sample standard deviations are reported in Appendix G.

R2 ↑ AUC ↑ Accuracy ↑
AB CH PR AD MBNE MNIST CT

XGBoost 0.552 0.849 0.678 0.927 0.987 0.976 0.972

RFDE 0.071 0.340 0.059 0.862 0.668 0.302 0.681
DEF (ISE) 0.467 0.737 0.566 0.854 0.653 0.206 0.790
DEF (KL) 0.482 0.801 0.639 0.892 0.939 0.487 0.852

NRGBoost 0.547 0.850 0.676 0.920 0.974 0.966 0.949

Other Recent Tree-Based approaches Nock and Guillame-Bert [2023] proposes a different250

ensemble approach where each tree does not have their own leaf values that get added or multiplied251

to produce the final density, but instead serve to collectively define the partitioning of the input space.252

To train such models the authors propose a boosting framework where, rather than adding a new tree253

to the ensemble at every iteration, the model is initialized with a fixed number of tree root nodes and254

each iteration adds a split to an existing leaf node. Finally Jolicoeur-Martineau et al. [2023] propose255

a diffusion model where a tree-based model (e.g., GBDT) is used to regress the score function. Being256

a diffusion model, however, means that computing densities is untractable.257

6 Experiments258

For our experiments we use 5 tabular datasets from the UCI Machine Learning Repository [Dheeru259

and Karra Taniskidou, 2017]: Abalone (AB), Physicochemical Properties of Protein Tertiary Structure260

(PR), Adult (AD), MiniBooNE (MBNE) and Covertype (CT) as well as the California Housing (CH)261

available through the Scikit-Learn package [Pedregosa et al., 2011]. We also include a downsampled262

version of MNIST (by 2x along each dimension) which allows us to visually assess the quality of263

individual samples, something that is generally not possible with structured tabular data, and provides264

an example of the performance that can be achieved in an unstructured dataset with many features265

that are correlated among themselves. More details about these datasets are given in Appendix E.266

We split our experiments into two sections, the first to evaluate the quality of density models directly267

on a single variable inference task and the second to investigate the performance of our proposed268

models when used for sampling.269

6.1 Single Variable Inference270

In this section we test the ability of a generative model, trained to learn the density over all input271

variables, q(x), to infer the value of a single one. I.e., we wish to test how good is its estimate of272

q(xi|x−i). For this purpose we pick xi = y as the original target of the dataset, noting that the273

models that we train do not treat this variable in any special way, except for the selection of the best274

model in validation. As such, we would expect that the model’s performance in inference over this275

particular variable is indicative of its strength on any other single variable inference task and also276

indicative of the quality of the full q(x) from which the conditional probability estimate is derived.277

We use XGBoost [Chen and Guestrin, 2016] as a baseline for what should be achievable by a very278

strong discriminative model. Note that this model is trained to maximize the discriminative likelihood,279

Ex∼p log q(xi|x−i), directly, not wasting model capacity in learning other aspects of the full data280

distribution. As another generative baseline we use our own implementation of RFDE [Wen and281

Hang, 2022] which allows us to gauge the impact of the guided partitioning used in the DEF models282

over a random partitioning of the input space.283

We use random search to tune the hyperparameters of the XGBoost model and a grid search to tune the284

most important hyperparameters of the generative density models. We employ 5-fold cross-validation,285

repeating the hyperparameter tuning on each fold for all datasets except for the largest one (CT) for286

which we report results on a single fold. For the full details of the experimental protocol please refer287

to Appendix F.288
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Table 2: ML Efficiency results. The reported values are the averages over 5 different datasets
generated by the same model. The best methods for each dataset are in bold and methods whose
difference is < 2σ away from zero are underlined. The performance of XGBoost trained on the real
data is also reported for reference.

R2 ↑ AUC ↑ Accuracy ↑
AB CH PR AD MBNE MNIST CT

XGBoost 0.554 0.838 0.682 0.927 0.987 0.976 0.972

TVAE 0.483 0.758 0.365 0.898 0.975 0.688 0.724
TabDDPM 0.539 0.807 0.596 0.910 0.984 0.579 0.818

DEF (KL) 0.450 0.762 0.498 0.892 0.943 0.230 0.753
NRGBoost 0.528 0.801 0.573 0.914 0.977 0.959 0.895

We find that NRGBoost performs better than the additive ensemble models (see Table 1) despite289

producing more compact ensembles. It often achieves comparable performance to XGBoost on the290

smaller datasets and with a small gap on the three larger ones. We note also that for the regression291

datasets the generative models provide an estimate of the full conditional distribution over the target292

variable rather than a point estimate like XGBoost. While there are other variants of discriminative293

boosting that also provide an estimate of the aleatoric uncertainty [Duan et al., 2020], they rely on a294

parametric assumption about p(y|x) that needs to hold for any x.295

6.2 Sampling296

In this section, we compare the sampling performance of our proposed methods to neural-network-297

based methods TVAE [Xu et al., 2019] and TabDDPM [Kotelnikov et al., 2022] on two metrics.298

Machine Learning Efficiency The Machine Learning (ML) efficiency has been a popular way299

to measure the quality of generative models for sampling [Xu et al., 2019, Kotelnikov et al., 2022,300

Borisov et al., 2022b]. It relies on using samples from the model to train a discriminative model which301

is then evaluated on the real data. Note that this is similar to the single variable inference performance302

from Section 6.1. In fact, if the density model’s support covers that of the full data, one would expect303

the discriminative model to recover the generator’s q(y|x), and therefore its performance, in the limit304

where infinite generated data is used to train it.305

We use an XGBoost model (with the hyperparameters tuned in real data) as the discriminative model306

and train it using a similar number of training and validation samples as in the original data. For307

the density models, we generate samples from the best model found in the previous section and308

for non-density models we select their hyperparameters by evaluating the ML Efficiency in the309

real validation set. Note that this leaves the sampling models at a potential advantage since the310

hyperparameter selection is based on the metric that is being evaluated rather than the direct inference311

performance of the previous section.312

Discriminator Measure Similar to Borisov et al. [2022b] we test the capacity of a discriminative313

model to distinguish between real and generated data. We use the original validation set as the real314

part of the training data in order to avoid benefiting generative methods that overfit their original315

training set. A new validation set is carved out of the original test set (20%) and used to tune the316

hyperparameters of an XGBoost model which we use as our choice of discriminator, evaluating its317

AUC on the remainder of the real test data.318

We repeat all experiments 5 times, with 5 different generated datatsets from each model. Results are319

reported in Tables 2 and 3 showing that (i) NRGBoost outperforms all other methods by substantial320

margins in the discriminator measure except for the PR and the MBNE datasets. (ii) On the ML321

Efficiency metric, TabDDPM outperforms NRGBoost by small margins on the small datasets which322

could in part be explained by the denser hyperparameter tuning favouring models that perform323

particularly well at inferring the target variable at the expense of the others. Nevertheless, NRGBoost324

still significantly outperforms all other models on MNIST and CT. Its samples also look visually325

similar to the real data in both the MNIST and California datasets (see Figures 1 and 2).326
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Table 3: Discriminator measure results. All results are the AUC of an XGBoost model trained to
distinguish real from generated data an therefore lower means better. The reported values are the
averages over 5 different datasets generated by the same model.

AB CH PR AD MBNE MNIST CT

TVAE 0.971 0.834 0.940 0.898 1.000 1.000 0.999
TabDDPM 0.818 0.667 0.628 0.604 0.789 1.000 0.915

DEF (KL) 0.823 0.751 0.877 0.956 1.000 1.000 0.999
NRGBoost 0.625 0.574 0.631 0.559 0.993 0.943 0.724

Longitude

La
tit

ud
e

Training Data

Longitude

NRGBoost

Longitude

DEF (KL)

Longitude

TabDDPM

Longitude

TVAE

Figure 2: Joint histogram for the latitude and longitude for the California Housing dataset.

7 Discussion327

While the additive tree models like DEF require no sampling to train and are easy to sample from, we328

find that in practice they require very deep trees to model the data well which, in turn, also requires329

using a large number of trees in the ensemble to regularize. In our experiments we found that their330

performance was often capped by the maximum number of leaves we allowed them to grow to (214).331

In contrast, we find that NRGBoost is able to model the data better while using shallower trees332

and in fewer number. Its main downside is that it can only be sampled from approximately using333

more expensive MCMC and also requires sampling during the training process. While our fast334

Gibbs sampling implementation coupled with our proposed sampling approach were able to mitigate335

the slow training, making these models much more usable in practice they are still cumbersome to336

use for sampling due to autocorrelation between samples from the same Markov Chain. We argue337

however that unlike in image or text generation where fast sampling is necessary for an interactive338

user experience, this can be less of a concern for the task of generating synthetic datasets where the339

one time cost of sampling is not as important as faithfully capturing the data generating distribution.340

We also find that tuning the hyperparameters of tree-based models is easier and less crucial than DL341

models for which many trials fail to produce a reasonable model. In particular we found NRGBoost342

to be rather robust, with different hyperparameters leading to small differences in performance.343

Finally, we note that like any other machine learning models, generative models are susceptible to344

overfitting and are thus liable to leak information about their training data when generating synthetic345

samples. In this respect, we believe that NRGBoost offers better tools to monitor and control346

overfitting than other alternatives (see Section 3.3) but, still, due consideration for this risk must be347

taken into account when sharing synthetic data.348

8 Conclusion349

In this work, we extend the two most popular tree-based discriminative methods for use in generative350

modeling. We find that our boosting approach, in particular, offers generally good discriminative351

performance and better overall sampling performance than alternatives. We hope that these results352

encourage further research into generative boosting approaches for tabular data, in particular exploring353

other applications besides sampling that are enabled by density models.354
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A Additional Derivations457

The expected log-likelihood for an energy-based model (EBM),458

qf (x) =
exp (f(x))

Z[f ]
, (13)

is given by459

L[f ] = Ex∼p log qf (x) = Ex∼pf(x)− logZ[f ] . (14)

The first variation of L can be computed as460

δL[f ; g] :=
dL[f + ϵg]

dϵ

∣∣∣∣
ϵ=0

= Ex∼p g(x)− δ logZ[f ; g] = Ex∼p g(x)− Ex∼qf g(x) . (15)

This is a linear functional of its second argument, g, and can be regarded as a directional derivative461

of L at f along a variation g. The last equality comes from the following computation of the first462

variation of the log-partition function:463

δ logZ[f ; g] =
δZ[f ; g]

Z[f ]
(16)

=
1

Z[f ]

∑
x

exp′ (f(x)) g(x) (17)

=
∑
x

exp (f(x))

Z[f ]
g(x) (18)

= Ex∼qf g(x) . (19)

Analogous to a Hessian, we can differentiate Equation 15 again along a second independent variation464

h of f yielding a symmetric bilinear functional which we will write as δ2L[f ; g, h]. Note that the465

first term in equation 2 is linear in f and thus has no curvature, so we only have to consider the log466

partition function itself:467

δ2L[f ; g, h] :=
∂2L[f + ϵg + εh]

∂ϵ∂ε

∣∣∣∣
(ϵ,ε)=0

(20)

= −δ2 logZ[f ; g, h] = −δ {δ logZ[f ; g]} [f ;h] (21)

= −δ

{
1

Z[f ]

∑
x

exp (f(x)) g(x)

}
[f ;h] (22)

=
δZ[f ;h]

Z2[f ]

∑
x

exp (f(x)) g(x)− 1

Z[f ]

∑
x

exp′ (f(x)) g(x)h(x) (23)

=
δZ[f ;h]

Z[f ]
· Ex∼qf g(x)−

1

Z[f ]

∑
x

exp (f(x)) g(x)h(x) (24)

= Ex∼qfh(x) · Ex∼qf g(x)− Ex∼qfh(x)g(x) (25)

= −Covx∼qf (g(x), h(x)) . (26)

Note that this functional is negative semi-definite for all f , i.e. δ2L[f ;h, h] ≤ 0, meaning that the468

log-likelihood is a concave functional of f .469

Using these results, we can now compute the Taylor expansion of the increment in log-likelihood L470

from a change f → f + δf up to second order in δf :471

∆Lf [δf ] = δL[f ; δf ] +
1

2
δ2L[f ; δf, δf ] (27)

= Ex∼pδf(x)− Ex∼qf δf(x)−
1

2
Varx∼qf δf(x) . (28)
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As an aside, defining the functional derivative, δJ[f ]
δf(x) , of a functional J implicitly by:472 ∑

x

δJ [f ]

δf(x)
g(x) = δJ [f ; g] , (29)

we can formally define, by analogy with the parametric case, the Fisher Information "Matrix" (FIM)473

at f as the following bilinear functional of two independent variations g and h:474

F [f ; g, h] := −
∑
y,z

[
Ex∼qf

δ2 log qf (x)

δf(y)δf(z)

]
g(y)h(z) (30)

=
∑
y,z

δ2 logZ[f ]

δf(y)δf(z)
g(y)h(z) (31)

= δ2 logZ[f ; g, h] . (32)

The only difference to the second-order variation of 2 computed in equation 20 would be that the475

expectation is taken under the model distribution, qf , instead of the data distribution p. However,476

because the only term in log qf (x) that is non-linear in f is the log-partition functional, which is not477

a function of x, this expectation plays no role in the computation and we get the result that the FIM is478

the same as the negative Hessian of the log-likelihood for these models.479

A.1 Application to Piecewise Constant Functions480

Considering a weak learner such as481

δf(x) =

J∑
j=1

wj1Xj
(x) , (33)

where the subsets Xj are disjoint and cover the entire input space, X , we have that482

Ex∼qδf(x) =
∑
x∈X

q(x)

J∑
j=1

wj1Xj
(x) (34)

=

J∑
j=1

wj

∑
x∈Xj

q(x) =

J∑
j=1

wjQ(Xj) . (35)

Similarly, making use of the fact that 1Xi(x)1Xj (x) = δij1Xi(x), we can compute483

Ex∼qδf
2(x) =

∑
x∈X

q(x)

 J∑
j=1

wj1Xj (x)

2

=

J∑
j=1

w2
jQ(Xj) . (36)

In fact, we can extend this to any ordinary function of δf :484

Ex∼q g (δf(x)) =
∑
x∈X

q(x)

J∑
j=1

1Xj
(x)g (δf(x)) (37)

=

J∑
j=1

∑
x∈Xj

q(x)g(wj) (38)

=

J∑
j=1

g(wj)Q(Xj) , (39)

where we made use of the fact that the 1Xj
constitute a partition of unity:485

1 =

J∑
j=1

1Xj
(x) . (40)
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Finally, we can compute the increase in likelihood from a step f → f + α · δf as486

L[f + α · δf ]− L[f ] = Ex∼p [α · δf(x)]− logZ[f + α · δf ] + logZ[f ] (41)
= αEx∼pδf(x)− logEx∼qf exp(αδf(x)) (42)

= α

J∑
j=1

wjP (Xj)− log

J∑
j=1

Qf (Xj) exp (αwj) , (43)

where in equation 42 we made use of the equality:487

logZ[f + α · δf ]− logZ[f ] = log

∑
x exp(f(x) + αδf(x))

Z[f ]
= log

∑
x

qf (x) exp(αδf(x)) ,

(44)
and of the result in equation 39 in the final step.488

This result can be used to conduct a line search over the step size using training data and to estimate489

an increase in likelihood at each round of boosting for the purpose of early stopping, using validation490

data.491

B Training Density Estimation Trees492

Density Estimation Trees (DET) [Ram and Gray, 2011] model the density function as a piecewise493

constant function,494

q(x) =

J∑
j=1

vj1Xj
(x) , (45)

where Xj are given by a partitioning of the input space X induced by a binary tree and the vj are the495

density values associated with each leaf that, for the time being, we will only require to be such that496

q(x) sums to one.497

Ram and Gray [2011] proposes fitting DET models to directly minimize a generative objective, the498

Integrated Squared Error (ISE) between the data generating distribution, p(x) and the model:499

min
q∈Q

∑
x∈X

(p(x)− q(x))
2
. (46)

Noting that q is a function as in Equation 45 and that
⋃J

j=1 Xj = X , we can rewrite this as500

min
v1,...,vJ ,X1,...,XJ

∑
x∈X

p2(x) +

J∑
j=1

∑
x∈Xj

(
v2j − 2vjp(x)

)
s.t.

J∑
j=1

∑
x∈Xj

vj = 1 .

(47)

Since the first term in the objective does not depend on the model this optimization problem can be501

further simplified as502

min
v1,...,vJ ,X1,...,XJ

J∑
j=1

(
v2jV (Xj)− 2vjP (Xj)

)
s.t.

J∑
j=1

vjV (Xj) = 1 ,

(48)

where V (X) denotes the volume of a subset X . Solving this quadratic program for the vj we obtain503

the following optimal leaf values and objective:504

v∗j =
P (Xj)

V (Xj)
, ISE∗ (X1, . . . , XJ) = −

J∑
j=1

P 2(Xj)

Vf (Xj)
. (49)

One can therefore grow a tree by greedily choosing to split a parent leaf with support XP into two505

leaves with supports XL and XR so as to maximize the following criterion:506

max
XL,XR∈P(XP )

P 2(XL)

V (XL)
+

P 2(XR)

V (XR)
− P 2(XP )

V (XP )
. (50)
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B.1 Maximum Likelihood507

To maximize the likelihood,508

max
q

Ex∼p log q(x) , (51)

rather than the ISE one can use the same approach. Here the optimization problem to solve is:509

max
v1,...,vJ ,X1,...,XJ

J∑
j=1

P (Xj) log vj

s.t.
J∑

j=1

vjV (Xj) = 1 .

(52)

This is, again, easy to solve for vj since it is separable over j after removing the constraint using510

Lagrange multipliers. The optimal leaf values and objective are in this case:511

v∗j =
P (Xj)

V (Xj)
, L∗ (X1, . . . , XJ) =

J∑
j=1

P (Xj) log
P (Xj)

Vf (Xj)
. (53)

The only change is therefore to the splitting criterion which should become:512

max
XL,XR∈P(XP )

P (XL) log
P (XL)

V (XL)
+ P (XR) log

P (XR)

V (XR)
− P (XP ) log

P (XP )

V (XP )
. (54)

C Greedy Tree Based Multiplicative Boosting513

In multiplicative generative boosting an unnormalized current density model, q̃t−1(x), is updated at514

each boosting round by multiplication with a new factor δqαt
t (x):515

q̃t(x) = q̃t−1(x) · δqαt
t (x) . (55)

For our proposed NRGBoost, this factor is chosen in order to maximize a local quadratic approx-516

imation of the log likelihood around qt−1 as a functional of the log density (see Section 3). The517

motivation behind the greedy approach of Tu [2007] or Grover and Ermon [2017] is to instead make518

the update factor δqt(x) proportional to the likelihood ratio rt(x) := p(x)/qt−1(x) directly, which519

under ideal conditions would mean that the method converges immediately when choosing a step size520

αt = 1. In more realistic setting, however, this method has been shown to converge under conditions521

on the performance of the individual δqt as discriminators between real and generated data [Tu, 2007,522

Grover and Ermon, 2017, Cranko and Nock, 2019].523

While in principle this desired rt(x) could be derived from any binary classifier that is trained to524

predict a probability of a datapoint being generated (e.g., by training it to minimize a strictly proper525

loss) and Tu [2007] does not prescribe any particular choice, Grover and Ermon [2017] propose526

relying on the following variational bound of an f -divergence to derive an estimator for this ratio:527

Df (P∥Qt−1) ≥ sup
u∈Ut

[
Ex∼p u(x)− Ex∼qt−1

f∗(u(x))
]
. (56)

Here f∗ denotes the convex conjugate of f . This bound is tight, with the optimum being achieved for528

u∗
t (x) = f ′(p(x)/qt−1(x)), if Ut is capable of representing this function. (f ′)

−1
(u∗

t (x)) can thus be529

interpreted as an approximation of rt(x).530

Adapting this method to use trees as weak learners can be accomplished by considering Ut in Equation531

56 to be defined by tree functions u = 1/J
∑J

j=1 wj1Xj with leaf values wj and leaf supports Xj .532

At each boosting iteration a new tree, u∗
t can thus be grown to greedily optimize the lower bound in533

the r.h.s. of Equation 56 and setting δqt(x) = (f ′)
−1

(u∗
t (x)) which is thus also a tree with the same534

leaf supports and leaf values given by vj := (f ′)
−1

(wj). This leads to the seaprable optimization535

problem:536

max
w1,...,wJ ,X1,...,XJ

J∑
j

[P (Xj)wj −Q(Xj)f
∗(wj)] . (57)
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Table 4: Comparison of splitting criterion and leaf weights for the different versions of boosting.

Splitting Criterion Leaf Values (Density)

DiscBGM (KL) P log (P/Q) P/Q
DiscBGM (χ2) P 2

/Q P/Q
NRGBoost P 2

/Q exp (P/Q − 1)

Note that we drop the iteration indices from this point onward for brevity. Maximizing over wj with537

the Xj fixed we have that w∗
j = f ′ (P (Xj)/Q(Xj)) which yields the optimal value538

J∗(X1, . . . , Xj) =
∑
j

[
P (Xj)f

′
(
P (Xj)

Q(Xj)

)
−Q(Xj)(f

∗ ◦ f ′)

(
P (Xj)

Q(Xj)

)]
(58)

that in turn determines the splitting criterion as a function of the choice of f . Finally, the optimal539

density values for the leaves are given by540

v∗j = (f ′)
−1

(w∗
j ) =

P (Xj)

Q(Xj)
. (59)

It is interesting to note two particular choices of f -divergences. For the KL divergence, f(t) = t log t541

and f ′(t) = 1 + log t = (f∗)
−1

(t). This leads to542

JKL(X1, . . . , Xj) =
∑
j

P (Xj) log
P (Xj)

Q(Xj)
(60)

as the splitting criterion. The Pearson χ2 divergence, with f(t) = (t− 1)2, leads to the same splitting543

criterion as NRGBoost. Note however that for NRGBoost the leaf values for the multiplicative update544

of the density are given by exp (P (Xj)/Q(Xj) − 1) instead of the ratio directly. Table 4 summarizes545

these results.546

Another interesting observation is that a DET model can be interpreted as a single round of greedy547

multiplicative boosting starting from a uniform initial model. The choice of the ISE as the criterion to548

optimize the DET corresponds to the choice of Pearson’s χ2 divergence and likelihood to the choice549

of KL divergence.550

D Implementation Details551

Discretization In our practical implementation of tree based methods we first discretize the input552

space by binning continuous numerical variables by quantiles. Furthermore we also bin discrete553

numerical variables in order to keep their cardinalities smaller than 256. This can also be interpreted554

as establishing a priori a set of discrete values to consider when splitting on each numerical variable555

and is done for computational efficiency, being inspired by LightGBM [Ke et al., 2017].556

Categorical Splitting For splitting on a categorical variable we once again take inspiration from557

LightGBM. Rather than relying on one-vs-all splits we found it better to first order the possible558

categorical values at a leaf according to a pre-defined sorting function and then choose the optimal559

many-vs-many split as if the variable was numerical. The function used to sort the values is the leaf560

value function. E.g., for splitting on a categorical variable xi we order each possible categorical value561

k by P̂ (xi=k,X−i)/Q̂(xi=k,X−i) in the case of NRGBoost where X−i denotes the leaf support over the562

remaining variables.563

Tree Growth Strategy We always grow trees in best first order. I.e., we always split the current564

leaf node that yields the maximum gain in the chosen objective value.565

Line Search As mentioned in Section 3, we perform a line search to find the optimal step size after566

each round of boosting in order to maximize the likelihood gain in Equation 43. Because evaluating567

multiple possible step sizes, αt, is inexpensive, we simply do a grid search over 101 different step568

sizes in the range [10−3, 10] with their logarithm uniformly distributed.569
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Table 5: Dataset Information. We respect the original test sets of each dataset when provided,
otherwise we set aside 20% of the original dataset as a test set. 20% of the remaining data is set aside
as a validation set used for hyperparameter tuning.

Abbr Name Train + Val Test Num Cat Target Cardinality

AB Abalone 3342 835 7 1 Num 29
CH California Housing 16512 4128 8 0 Num Continuous
PR Protein 36584 9146 9 0 Num Continuous
AD Adult 32560 16280∗ 6 8 Cat 2
MBNE MiniBooNE 104051 26013 50 0 Cat 2
MNIST MNIST (downsampled) 60000 10000∗ 196 0 Cat 10
CT Covertype 464810 116202 10 2 Cat 7

∗ Original test set was respected.

Random Forest Density Estimation (RFDE) We implement the RFDE method [Wen and Hang,570

2022] after quantile discretization of the dataset and therefore split at the midpoint of the discretized571

dimension instead of the original one. When a leaf support has odd cardinality over the splitting572

dimension a random choice is made over the two possible splitting values. Finally, the original paper573

does not mention how to split over categorical domains. We therefore choose to randomly split the574

possible categorical values for a leaf evenly as we found that this yielded slightly better results than a575

random one vs all split.576

Code Our implementation of the proposed tree-based methods is mostly Python code using the577

NumPy library [Harris et al., 2020]. We implement the tree evaluation and Gibbs sampling in C,578

making use of the PCG library [O’Neill, 2014] for random number generation.579

E Datasets580

We use 5 datasets from the UCI Machine Learning Repository [Dheeru and Karra Taniskidou, 2017]:581

Abalone, Physicochemical Properties of Protein Tertiary Structure (referred to as Protein in the582

sequence), Adult, MiniBooNE and Covertype. We also use the California Housing dataset which was583

downloaded through the Scikit-Learn package Pedregosa et al. [2011] and a downsampled version of584

the MNIST dataset Deng [2012]. Table 5 summarizes the main details of these datasets as well as the585

approximate number of samples used for train/validation/test for each cross-validation fold.586

F Experimental Setup587

F.1 XGBoost Hyperparameter Tuning588

To tune the hyperparameters of XGBoost we use 100 trials of random search with the search space589

defined in Table 6.590

Table 6: XGBoost hyperparameter tuning search space. δ(0) denotes a point mass distribution at 0.

Parameter Distribution or Value

learning_rate LogUniform
([
10−3, 1.0

])
max_leaves Uniform ({16, 32, 64, 128, 256, 512, 1024})
min_child_weight LogUniform

([
10−1, 103

])
reg_lambda 0.5 · δ(0) + 0.5 · LogUniform

([
10−3, 10

])
reg_alpha 0.5 · δ(0) + 0.5 · LogUniform

([
10−3, 10

])
max_leaves 0 (we already limit the number of leaves)
grow_policy lossguide
tree_method hist
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Each model was trained for 1000 boosting rounds on regression and binary classification tasks. For591

multi-class classification tasks a maximum number of 200 rounds of boosting was used due to the592

larger size of the datasets and because a separate tree is built at every round for each class. The593

best model was selected based on the validation set, together with the boosting round where the best594

performance was attained. The test metrics reported correspond to the performance of the selected595

model at that boosting round on the test set.596

F.2 TVAE Hyperparameter Tuning597

To tune the hyperparameters of TVAE we use 50 trials of random search with the search spaces598

defined in Table 7.599

The TVAE implementations used are from the latest version of the SDV package (https://github.600

com/sdv-dev/SDV) available at the time.601

Table 7: TVAE hyperparameter tuning search space. We set both compress_dims and
decompress_dims to have the number of layers specified by num_layers, with hidden_dim
hidden units in each layer. We use larger batch sizes and smaller number of epochs for the larger
datasets (MBNE, MNIST, CO).

Parameter Datasets Distribution or Value

epochs AB, CH, PR, AD Uniform ([100..500])

MBNE, MNIST, CO Uniform ([50..200])

batch_size AB, CH, PR, AD Uniform ({100, 200, . . . , 500})
MBNE, MNIST, CO Uniform ({500, 1000, . . . , 2500})

embedding_dim all Uniform ({32, 64, 128, 256, 512})
hidden_dim all Uniform ({32, 64, 128, 256, 512})
num_layers all Uniform ({1, 2, 3})
compress_dims all (hidden_dim,) * num_layers
decompress_dims all (hidden_dim,) * num_layers

F.3 TabDDPM Hyperparameter Tuning602

To tune the hyperparameters of TabDDPM we use 50 trials of random search with the same search603

space that the original authors use in their paper [Kotelnikov et al., 2022].604

We use the official implementation (https://github.com/yandex-research/tab-ddpm)605

adapted to use our datasets and validation setup.606

F.4 Random Forest Density Estimation607

For RFDE models we train a total of 1000 trees. The only hyperparameter that we tune is the608

maximum number of leaves per tree for which we test the values [26, 27, . . . , 214]. For the Adult609

dataset, due to limitations of our tree evaluation implementation we only values test up to 213.610

F.5 Density Estimation Forests Hyperparameter Tuning611

We train ensembles with 1000 DET models. Only three hyperparameters are tuned, using three nested612

loops. Every loop runs over the possible values of a single parameter in a pre-defined order with early613

stopping triggering if a value fails to improve the validation metric over the previous one. The tuned614

parameters along with their possible values are reported in Table 8615

F.6 NRGBoost616

We train NRGBoost models for a maximum of 200 rounds of boosting. The starting point of each617

NRGBoost model was selected as a mixture model between a uniform distribution (10%) and the618
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Table 8: DEF models grid search space. Rows are in order of outermost loop to innermost loop.
Note that for the Adult dataset, due to limitations of the implementation a maximum number of 8192
leaves is used instead of 16384.

Parameter Description

max_leaves The maximum number of leaves per tree [16384, 4096, 1024, 256]

feature_frac The fraction of features to consider when splitting a node
as a function of the total number of features d

[d−1/2, d−1/4, 1]

min_data_in_leaf The minimum number of data points that need to be left
in each leaf for a split to be considered

[0, 1, 3, 10, 30]

product of training marginals (90%) on the discretized input space. We observed that this mixture619

coefficient does not have much impact on the results however.620

We only tune two parameters for NRGBoost Models:621

• The maximum number of leaves for which we try the values [64, 256, 1024, 4096] in order,622

stopping if performance fails to improve from one value to the next. For the CT dataset we623

also include 16384 in the values to test.624

• The constant factor by which the optimal step size determined by the line search is shrunk625

at each round of boosting. This is essentially the "learning rate" parameter. To tune it we626

perform a Golden-section search for the log of its value using a total of 6 evaluations. The627

range we use is [0.01, 0.5].628

This means that at maximum we train only 24 NRGBoost models (30 for CT).629

All other relevant parameters are fixed and their values, along with a short description, is given in630

Table 9.631

Table 9: NRGBoost fixed parameters.

Parameter Description

num_rounds Total number of rounds of boosting 200
splitter How the next leaf to split is determined best
line_search Whether to use a line search in determining the step size True
max_ratio_leaf Maximum ratio between training data and model data in each leaf 2

num_samples Total number of samples in the sample pool 80000
320000 (CT)

p_refresh Indepdendent probability that a sample from the pool is replaced 0.1
burn_in Number of samples to discard from the beginning of each chain 100
num_chains Number of independent chains used for sampling 16

64 (CT)

F.7 Evaluation Setup632

Single variable inference For the single variable inference evaluation, the best models are selected633

by their discriminative performance on a validation set. The entire setup is repeated five times with634

different cross-validation folds and with different seeds for all sources of randomness except on the635

CT dataset due to its large size. For the Adult and MNIST datasets the test set is fixed but training636

and validation splits are still rotated.637

Sampling For the sampling evaluation we use a single train/validation/test split of the real data638

(corresponding to the first fold in the previous setup) for training the generative models. The density639

models used are those previously selected based on their single variable inference performance640

on the validation set. For the sampling models (TVAE and TabDDPM) we directly evaluate their641

19



ML Efficiency using the validation data by training an XGBoost model on generated data. The642

hyperparameters used for this XGBoost model are those selected on the real data in the previous643

experiment. We only use a generated validation set in order to select the best stopping point for644

XGBoost.645

ML Efficiency For each selected model we sample a train and validation sets with the same number646

of samples as those used on the original data. For NRGBoost we generate these samples by running647

64 chains in parallel with 100 steps of burn in and downsampling their outputs by 30 (for the smaller648

datasets) or 10 (for MBNE, MNIST and CT). The setup is repeated 5 times with 5 different datasets649

generated for each method.650

Discriminator Measure We create the training, validation and test sets to train an XGBoost model651

to discriminate between real and generated data using the following process:652

• The original validation set is used as the real part of the training set in order to avoid653

benefitting generative methods that overfit their training set.654

• The original test set is split 20%/80%. The 20% portion is used as the real part of the655

validation set and the 80% portion as the real part of the test set.656

• To form the generated part of the training, validation and test sets for the smaller datasets657

we sample data according to the original number of samples in the train, validation and658

test splits on the real data. Note that this makes the ratio of real to synthetic data 1:4 in the659

training set. This is deliberate because for these smaller datasets the original validation has660

few samples and adding extra synthetic data helps the discriminator.661

• For the larger datasets we generate the same number of synthetic samples as there are real662

samples on each split, therefore making every ratio 1:1 because the discriminator is typically663

already too powerful and doesn’t need extra data.664

Because, in contrast to the previous metric, having a lower number of effective samples helps rather665

than hurts we take extra precautions to not generate correlated data with NRGBoost. We draw each666

sample by running its own independent chain for 100 steps starting from an independent sample from667

the initial model which is a rather slow process. The setup is repeated 5 times with 5 different sets of668

generated samples from each method.669

F.8 Computational Resources670

The experiments were run on a machine equipped with an AMD Ryzen 7 7700X 8 core CPU and 32671

GB of RAM. The comparisons with TVAE and TabDDPM further made use of a GeForce RTX 3060672

GPU with 12 GB of VRAM.673

G Additional Results674

G.1 Standard Errors675

In Tables 10, 11 and 12 we report the sample standard deviations obtained for the main tables676

presented in the paper.677

G.2 Samples678

In Figure G.2 we show the convergence of a Gibbs sampler sampling from a NRGBoost model. In679

only a few samples each chain appears to have converged to the data manifold after starting at a680

random sample from the initial model (a mixture between the product of training marginals and a681

uniform). Note how consecutive samples are autocorrelated. In particular it can be rare for a chain682

to switch between two different modes of the distribution (e.g., switching digits) even though a few683

such transitions can be observed.684
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Table 10: Single variable inference sample standard deviations.

R2 AUC Accuracy

AB CH PR AD MBNE MNIST

XGBoost 0.0354 0.0092 0.0036 0.0004 0.0005 0.0017

RFDE 0.0963 0.0039 0.0071 0.0023 0.0078 0.0101
DEF (ISE) 0.0373 0.0080 0.0023 0.0026 0.0108 0.0107
DEF (KL) 0.0271 0.0083 0.0038 0.0005 0.0009 0.0073

NRGBoost 0.0358 0.0113 0.0087 0.0006 0.0007 0.0009

Table 11: ML Efficiency results sample standard deviations.

R2 AUC Accuracy

AB CH PR AD MBNE MNIST CT

TVAE 0.0059 0.0054 0.0054 0.0011 0.0002 0.0088 0.0013
TabDDPM 0.0182 0.0049 0.0072 0.0007 0.0000 0.0250 0.0012

DEF (KL) 0.0131 0.0063 0.0073 0.0011 0.0022 0.0283 0.0029
NRGBoost 0.0161 0.0010 0.0076 0.0009 0.0009 0.0008 0.0011

Table 12: Discriminator measure sample standard deviations.

AB CH PR AD MBNE MNIST CT

TVAE 0.0039 0.0055 0.0017 0.0012 0.0001 0.0000 0.0001
TabDDPM 0.0146 0.0045 0.0043 0.0022 0.0024 0.0000 0.0074

DEF (KL) 0.0129 0.0081 0.0022 0.0016 0.0000 0.0000 0.0001
NRGBoost 0.0167 0.0115 0.0059 0.0032 0.0005 0.0026 0.0058

Figure 3: Downsampled MNIST samples generated by Gibbs sampling from a NRGBoost model.
Each row corresponds to an independent chain initialized with a sample from the initial model f0
(first column). Each column represents a consecutive sample from the chain.
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Table 13: Best NRGBoost model parameters per dataset and the wall time taken to train it. The
format is minutes:seconds.

AB CH PR AD MBNE MNIST CT

max_leaves 64 1024 1024 256 1024 4096 16384
shrinkage 0.14 0.063 0.14 0.09 0.199 0.199 0.098
Time 1:18 4:17 5:27 3:54 20:36 149:30 179:11

G.3 Time685

In Table 13 we report the best hyperparameters found for NRGBoost for the first cross-validation686

fold together with the time taken to train this best model.687
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NeurIPS Paper Checklist688

1. Claims689

Question: Do the main claims made in the abstract and introduction accurately reflect the690

paper’s contributions and scope?691

Answer: [Yes]692

Justification: Claims about proposal of novel methods are justified in Sections 3 and 4.693

Claims about empirical results are justified in Section 6 and Appendix G.694

Guidelines:695

• The answer NA means that the abstract and introduction do not include the claims696

made in the paper.697

• The abstract and/or introduction should clearly state the claims made, including the698

contributions made in the paper and important assumptions and limitations. A No or699

NA answer to this question will not be perceived well by the reviewers.700

• The claims made should match theoretical and experimental results, and reflect how701

much the results can be expected to generalize to other settings.702

• It is fine to include aspirational goals as motivation as long as it is clear that these goals703

are not attained by the paper.704

2. Limitations705

Question: Does the paper discuss the limitations of the work performed by the authors?706

Answer: [Yes]707

Justification: We discuss limitations of our proposed method both in the section that intro-708

duces it (Section 3) as well as in the experiments (Section 6) and discussion (Section 7)709

sections.710

Guidelines:711

• The answer NA means that the paper has no limitation while the answer No means that712

the paper has limitations, but those are not discussed in the paper.713

• The authors are encouraged to create a separate "Limitations" section in their paper.714

• The paper should point out any strong assumptions and how robust the results are to715

violations of these assumptions (e.g., independence assumptions, noiseless settings,716

model well-specification, asymptotic approximations only holding locally). The authors717

should reflect on how these assumptions might be violated in practice and what the718

implications would be.719

• The authors should reflect on the scope of the claims made, e.g., if the approach was720

only tested on a few datasets or with a few runs. In general, empirical results often721

depend on implicit assumptions, which should be articulated.722

• The authors should reflect on the factors that influence the performance of the approach.723

For example, a facial recognition algorithm may perform poorly when image resolution724

is low or images are taken in low lighting. Or a speech-to-text system might not be725

used reliably to provide closed captions for online lectures because it fails to handle726

technical jargon.727

• The authors should discuss the computational efficiency of the proposed algorithms728

and how they scale with dataset size.729

• If applicable, the authors should discuss possible limitations of their approach to730

address problems of privacy and fairness.731

• While the authors might fear that complete honesty about limitations might be used by732

reviewers as grounds for rejection, a worse outcome might be that reviewers discover733

limitations that aren’t acknowledged in the paper. The authors should use their best734

judgment and recognize that individual actions in favor of transparency play an impor-735

tant role in developing norms that preserve the integrity of the community. Reviewers736

will be specifically instructed to not penalize honesty concerning limitations.737

3. Theory Assumptions and Proofs738

Question: For each theoretical result, does the paper provide the full set of assumptions and739

a complete (and correct) proof?740
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Answer: [Yes]741

Justification: All results presented in the main paper are justified in Appendices A and B.742

Guidelines:743

• The answer NA means that the paper does not include theoretical results.744

• All the theorems, formulas, and proofs in the paper should be numbered and cross-745

referenced.746

• All assumptions should be clearly stated or referenced in the statement of any theorems.747

• The proofs can either appear in the main paper or the supplemental material, but if748

they appear in the supplemental material, the authors are encouraged to provide a short749

proof sketch to provide intuition.750

• Inversely, any informal proof provided in the core of the paper should be complemented751

by formal proofs provided in appendix or supplemental material.752

• Theorems and Lemmas that the proof relies upon should be properly referenced.753

4. Experimental Result Reproducibility754

Question: Does the paper fully disclose all the information needed to reproduce the main ex-755

perimental results of the paper to the extent that it affects the main claims and/or conclusions756

of the paper (regardless of whether the code and data are provided or not)?757

Answer: [Yes]758

Justification: Additional implementation details of our method are provided in Appendix D759

and the full experimental setup is described in detail in Appendix F.760

Guidelines:761

• The answer NA means that the paper does not include experiments.762

• If the paper includes experiments, a No answer to this question will not be perceived763

well by the reviewers: Making the paper reproducible is important, regardless of764

whether the code and data are provided or not.765

• If the contribution is a dataset and/or model, the authors should describe the steps taken766

to make their results reproducible or verifiable.767

• Depending on the contribution, reproducibility can be accomplished in various ways.768

For example, if the contribution is a novel architecture, describing the architecture fully769

might suffice, or if the contribution is a specific model and empirical evaluation, it may770

be necessary to either make it possible for others to replicate the model with the same771

dataset, or provide access to the model. In general. releasing code and data is often772

one good way to accomplish this, but reproducibility can also be provided via detailed773

instructions for how to replicate the results, access to a hosted model (e.g., in the case774

of a large language model), releasing of a model checkpoint, or other means that are775

appropriate to the research performed.776

• While NeurIPS does not require releasing code, the conference does require all submis-777

sions to provide some reasonable avenue for reproducibility, which may depend on the778

nature of the contribution. For example779

(a) If the contribution is primarily a new algorithm, the paper should make it clear how780

to reproduce that algorithm.781

(b) If the contribution is primarily a new model architecture, the paper should describe782

the architecture clearly and fully.783

(c) If the contribution is a new model (e.g., a large language model), then there should784

either be a way to access this model for reproducing the results or a way to reproduce785

the model (e.g., with an open-source dataset or instructions for how to construct786

the dataset).787

(d) We recognize that reproducibility may be tricky in some cases, in which case788

authors are welcome to describe the particular way they provide for reproducibility.789

In the case of closed-source models, it may be that access to the model is limited in790

some way (e.g., to registered users), but it should be possible for other researchers791

to have some path to reproducing or verifying the results.792

5. Open access to data and code793
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Question: Does the paper provide open access to the data and code, with sufficient instruc-794

tions to faithfully reproduce the main experimental results, as described in supplemental795

material?796

Answer: [No]797

Justification: Unfortunately we did not have time to clean up the code and document it798

so that it could be useful at the time of the paper deadline. But we intend to make our799

implementations of the proposed algorithms available as a python library as soon as possible800

and will also open source the full experimental setup on Github.801

Guidelines:802

• The answer NA means that paper does not include experiments requiring code.803

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/804

public/guides/CodeSubmissionPolicy) for more details.805

• While we encourage the release of code and data, we understand that this might not be806

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not807

including code, unless this is central to the contribution (e.g., for a new open-source808

benchmark).809

• The instructions should contain the exact command and environment needed to run to810

reproduce the results. See the NeurIPS code and data submission guidelines (https:811

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.812

• The authors should provide instructions on data access and preparation, including how813

to access the raw data, preprocessed data, intermediate data, and generated data, etc.814

• The authors should provide scripts to reproduce all experimental results for the new815

proposed method and baselines. If only a subset of experiments are reproducible, they816

should state which ones are omitted from the script and why.817

• At submission time, to preserve anonymity, the authors should release anonymized818

versions (if applicable).819

• Providing as much information as possible in supplemental material (appended to the820

paper) is recommended, but including URLs to data and code is permitted.821

6. Experimental Setting/Details822

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-823

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the824

results?825

Answer: [Yes]826

Justification: The experimental setup is described in as much detail as the space allows in827

Section 6. The full setup is described in Appendix F.828

Guidelines:829

• The answer NA means that the paper does not include experiments.830

• The experimental setting should be presented in the core of the paper to a level of detail831

that is necessary to appreciate the results and make sense of them.832

• The full details can be provided either with the code, in appendix, or as supplemental833

material.834

7. Experiment Statistical Significance835

Question: Does the paper report error bars suitably and correctly defined or other appropriate836

information about the statistical significance of the experiments?837

Answer: [Yes]838

Justification: Sample standard deviations for all experiments are reported in Appendix G.839

Guidelines:840

• The answer NA means that the paper does not include experiments.841

• The authors should answer "Yes" if the results are accompanied by error bars, confi-842

dence intervals, or statistical significance tests, at least for the experiments that support843

the main claims of the paper.844
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• The factors of variability that the error bars are capturing should be clearly stated (for845

example, train/test split, initialization, random drawing of some parameter, or overall846

run with given experimental conditions).847

• The method for calculating the error bars should be explained (closed form formula,848

call to a library function, bootstrap, etc.)849

• The assumptions made should be given (e.g., Normally distributed errors).850

• It should be clear whether the error bar is the standard deviation or the standard error851

of the mean.852

• It is OK to report 1-sigma error bars, but one should state it. The authors should853

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis854

of Normality of errors is not verified.855

• For asymmetric distributions, the authors should be careful not to show in tables or856

figures symmetric error bars that would yield results that are out of range (e.g. negative857

error rates).858

• If error bars are reported in tables or plots, The authors should explain in the text how859

they were calculated and reference the corresponding figures or tables in the text.860

8. Experiments Compute Resources861

Question: For each experiment, does the paper provide sufficient information on the com-862

puter resources (type of compute workers, memory, time of execution) needed to reproduce863

the experiments?864

Answer: [Yes]865

Justification: This information is provided in Appendix G.866

Guidelines:867

• The answer NA means that the paper does not include experiments.868

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,869

or cloud provider, including relevant memory and storage.870

• The paper should provide the amount of compute required for each of the individual871

experimental runs as well as estimate the total compute.872

• The paper should disclose whether the full research project required more compute873

than the experiments reported in the paper (e.g., preliminary or failed experiments that874

didn’t make it into the paper).875

9. Code Of Ethics876

Question: Does the research conducted in the paper conform, in every respect, with the877

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?878

Answer: [Yes]879

Justification: As far as we are aware there are no violations of the Code of Ethics.880

Guidelines:881

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.882

• If the authors answer No, they should explain the special circumstances that require a883

deviation from the Code of Ethics.884

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-885

eration due to laws or regulations in their jurisdiction).886

10. Broader Impacts887

Question: Does the paper discuss both potential positive societal impacts and negative888

societal impacts of the work performed?889

Answer: [Yes]890

Justification: We discuss the main potential misuse of our work in Section 7.891

Guidelines:892

• The answer NA means that there is no societal impact of the work performed.893

• If the authors answer NA or No, they should explain why their work has no societal894

impact or why the paper does not address societal impact.895
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• Examples of negative societal impacts include potential malicious or unintended uses896

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations897

(e.g., deployment of technologies that could make decisions that unfairly impact specific898

groups), privacy considerations, and security considerations.899

• The conference expects that many papers will be foundational research and not tied900

to particular applications, let alone deployments. However, if there is a direct path to901

any negative applications, the authors should point it out. For example, it is legitimate902

to point out that an improvement in the quality of generative models could be used to903

generate deepfakes for disinformation. On the other hand, it is not needed to point out904

that a generic algorithm for optimizing neural networks could enable people to train905

models that generate Deepfakes faster.906

• The authors should consider possible harms that could arise when the technology is907

being used as intended and functioning correctly, harms that could arise when the908

technology is being used as intended but gives incorrect results, and harms following909

from (intentional or unintentional) misuse of the technology.910

• If there are negative societal impacts, the authors could also discuss possible mitigation911

strategies (e.g., gated release of models, providing defenses in addition to attacks,912

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from913

feedback over time, improving the efficiency and accessibility of ML).914

11. Safeguards915

Question: Does the paper describe safeguards that have been put in place for responsible916

release of data or models that have a high risk for misuse (e.g., pretrained language models,917

image generators, or scraped datasets)?918

Answer: [NA]919

Justification: We do not believe our proposed models have a high risk of misuse but will920

nonetheless highlight the potential risks in the documentation when we release the code.921

Guidelines:922

• The answer NA means that the paper poses no such risks.923

• Released models that have a high risk for misuse or dual-use should be released with924

necessary safeguards to allow for controlled use of the model, for example by requiring925

that users adhere to usage guidelines or restrictions to access the model or implementing926

safety filters.927

• Datasets that have been scraped from the Internet could pose safety risks. The authors928

should describe how they avoided releasing unsafe images.929

• We recognize that providing effective safeguards is challenging, and many papers do930

not require this, but we encourage authors to take this into account and make a best931

faith effort.932

12. Licenses for existing assets933

Question: Are the creators or original owners of assets (e.g., code, data, models), used in934

the paper, properly credited and are the license and terms of use explicitly mentioned and935

properly respected?936

Answer: [Yes]937

Justification: As far as we are aware we cite all the sources of the data used in our experiments938

as well the main software packages used.939

Guidelines:940

• The answer NA means that the paper does not use existing assets.941

• The authors should cite the original paper that produced the code package or dataset.942

• The authors should state which version of the asset is used and, if possible, include a943

URL.944

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.945

• For scraped data from a particular source (e.g., website), the copyright and terms of946

service of that source should be provided.947
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• If assets are released, the license, copyright information, and terms of use in the948

package should be provided. For popular datasets, paperswithcode.com/datasets949

has curated licenses for some datasets. Their licensing guide can help determine the950

license of a dataset.951

• For existing datasets that are re-packaged, both the original license and the license of952

the derived asset (if it has changed) should be provided.953

• If this information is not available online, the authors are encouraged to reach out to954

the asset’s creators.955

13. New Assets956

Question: Are new assets introduced in the paper well documented and is the documentation957

provided alongside the assets?958

Answer: [NA]959

Justification: We don’t release any new assets at the time of submission. We plan to release960

the code later and will fully document it.961

Guidelines:962

• The answer NA means that the paper does not release new assets.963

• Researchers should communicate the details of the dataset/code/model as part of their964

submissions via structured templates. This includes details about training, license,965

limitations, etc.966

• The paper should discuss whether and how consent was obtained from people whose967

asset is used.968

• At submission time, remember to anonymize your assets (if applicable). You can either969

create an anonymized URL or include an anonymized zip file.970

14. Crowdsourcing and Research with Human Subjects971

Question: For crowdsourcing experiments and research with human subjects, does the paper972

include the full text of instructions given to participants and screenshots, if applicable, as973

well as details about compensation (if any)?974

Answer: [NA]975

Justification: We don’t conduct any experiments involving human subjects.976

Guidelines:977

• The answer NA means that the paper does not involve crowdsourcing nor research with978

human subjects.979

• Including this information in the supplemental material is fine, but if the main contribu-980

tion of the paper involves human subjects, then as much detail as possible should be981

included in the main paper.982

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,983

or other labor should be paid at least the minimum wage in the country of the data984

collector.985

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human986

Subjects987

Question: Does the paper describe potential risks incurred by study participants, whether988

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)989

approvals (or an equivalent approval/review based on the requirements of your country or990

institution) were obtained?991

Answer: [NA]992

Justification: We don’t conduct any experiments involving human subjects.993

Guidelines:994

• The answer NA means that the paper does not involve crowdsourcing nor research with995

human subjects.996

• Depending on the country in which research is conducted, IRB approval (or equivalent)997

may be required for any human subjects research. If you obtained IRB approval, you998

should clearly state this in the paper.999
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• We recognize that the procedures for this may vary significantly between institutions1000

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1001

guidelines for their institution.1002

• For initial submissions, do not include any information that would break anonymity (if1003

applicable), such as the institution conducting the review.1004
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