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ABSTRACT

Accurate uncertainty measurement is a key step in building robust and reliable
machine learning systems. Conformal prediction is a distribution-free uncertainty
quantification framework popular for its ease of implementation, finite-sample
coverage guarantees, and generality for underlying prediction algorithms. However,
existing conformal prediction approaches for time series are limited to single-step
prediction without considering the temporal dependency. In this paper, we propose
the Copula Conformal Prediction algorithm for multivariate, multi-step Time
Series forecasting, CopulaCPTS. We prove that CopulaCPTS has finite-sample va-
lidity guarantee. On four synthetic and real-world multivariate time series datasets,
we show that CopulaCPTS produces more calibrated and efficient confidence
intervals for multi-step prediction tasks than existing techniques. Our code is
open-sourced at https://github.com/Rose-STL-Lab/CopulaCPTS.

1 INTRODUCTION

Deep learning models are becoming widely used in high-risk settings such as healthcare and trans-
portation. In these settings, it is important that a model produces calibrated uncertainty to reflect
its own confidence. Confidence regions are a common approach to quantify prediction uncertainty
(Khosravi et al., 2011). A (1 − α)-confidence region Γ1−α for a random variable y is valid if it
contains y’s true value with high probability: P[y ∈ Γ1−α] ≥ 1 − α. Note that one can make the
confidence region infinitely large to satisfy validity. But for the confidence region to be useful, we
also want to minimize its area while remaining valid; this is known as the efficiency of the region.

Conformal prediction (CP) is a powerful framework to produce confidence regions with finite-sample
guarantees of validity (Vovk et al., 2005; Lei et al., 2018). Furthermore, it makes no assumptions
about the underlying prediction model or the data distribution. CP’s generality, simplicity, and
statistical guarantees have made it popular for many real-world applications including time series
prediction (Xu & Xie, 2021), drug discovery (Eklund et al., 2015) and safe robotics (Luo et al., 2021).

This paper considers the setting of multi-step time series forecasting from a set of independent
sequences. Consider the problem of vehicle trajectory prediction, illustrated in Figure 1. Given a

Figure 1: Illustration of the multi-step time series forecasting setting. (Left) The timesteps within a
time series are temporally dependent, and (Right) the observations in the dataset are independent.
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dataset of trajectories, the task is to predict a future trajectory for k steps given its past trajectory of
t time steps. We assume that the trajectories are independent from each other. For each trajectory,
these time steps are temporally dependent.

There are many real-world tasks that present the same challenges as the example above, such as EEG
forecasting (each patient is independent), short-term weather forecasting (local meteorology history is
independent), etc. They require predicting multiple time steps into the future, so it is desired to have
a “cone of uncertainty” that covers the entire course of the forecasts. Existing CP methods for time
series data either only provide coverage guarantee for individual time steps (Gibbs & Candes, 2021;
Xu & Xie, 2021) or produce confidence regions that are often too inefficient to be useful, especially
in long horizons or multivariate settings (Stankevičiūtė et al., 2021).

In this paper, we present a practical and effective conformal prediction algorithm for multi-step time
series forecasting. We introduce CopulaCPTS, a Copula-based Conformal Prediction algorithm
for multi-step Time Series forecasting. A copula is a multivariate cumulative distribution function
that models the dependence between multiple random variables. By using copulas to model the
uncertainty jointly over future time steps, we can shrink the confidence regions significantly while
maintaining validity. Copulas have been used for conformal prediction (Messoudi et al., 2021), but
they focus on multiple target prediction in non-temporal settings and did not provide a validity proof.

In summary, our contributions are:

• We introduce CopulaCPTS, a general uncertainty quantification algorithm that can be
applied to any multivariate multi-step forecaster.

• We prove that CopulaCPTS produces valid confidence regions for the full forecast horizon.

• CopulaCPTS produces significantly sharper and more calibrated uncertainty estimates than
state-of-the-art baselines on two synthetic and two real-world benchmark datasets.

• We extend CopulaCPTS to obtain valid confidence intervals for time series forecasts of
varying lengths.

2 RELATED WORK

Deep Uncertainty Quantification for Time-Series Forecasting. The two major paradigms of
Uncertainty Quantification (UQ) methods for deep neural networks are Bayesian and Frequentist.
Bayesian approaches estimate a distribution over the model parameters given data, and then marginal-
ize these parameters to form output distributions via Markov Chain Monte Carlo (MCMC) sampling
(Welling & Teh, 2011; Neal, 2012; Chen et al., 2014) or variational inference (VI) (Graves, 2011;
Kingma et al., 2015; Blundell et al., 2015; Louizos & Welling, 2017). Wang et al. (2019); Wu
et al. (2021) propose Bayesian Neural Networks (BNN) for UQ of spatiotemporal forecasts. In
practice, Bayesian UQ can be computationally expensive and difficult to optimize, especially for
larger networks (Lakshminarayanan et al., 2017; Zadrozny & Elkan, 2001). Furthermore, Bayesian
methods do not provide any finite sample coverage guarantees. Therefore, UQ for deep neural
network time series forecasts often adopts approximate Bayesian inference such as MC-dropout (Gal
& Ghahramani, 2016b; Gal et al., 2017).

Frequentist UQ methods emphasize robustness against variations in the data. These approaches either
rely on resampling the data or learning an interval bound to encompass the dataset. For time series
forecasting UQ, approaches include ensemble methods such as bootstrap (Efron & Hastie, 2016; Alaa
& Van Der Schaar, 2020) and jackknife methods (Kim et al., 2020; Alaa & Van Der Schaar, 2020);
interval prediction methods include interval regression through proper scoring rules (Kivaranovic
et al., 2020; Wu et al., 2021), and quantile regression (Takeuchi et al., 2006), with many recent
advances for time series UQ (Tagasovska & Lopez-Paz, 2019; Gasthaus et al., 2019; Park et al., 2022;
Kan et al., 2022). Many of the frequentist methods produce asymptotically valid confidence regions
and can be categorized as distribution-free UQ techniques as they are (1) agnostic to the underlying
model and (2) agnostic to data distribution.

Conformal Prediction. Conformal prediction (CP) is an important member of distribution-free
UQ methods; we refer readers to Angelopoulos & Bates (2021) for a comprehensive introduction and
survey of CP. CP has become popular because of its simplicity, generality, theoretical soundness, and
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low computational cost. A key feature of CP is that under the exchangeability assumption, conformal
methods guarantee validity in finite samples (Vovk et al., 2005).

Most relevant to our work is the recent endeavor in generalizing CP to time-series forecasting.
According to Stankevičiūtė et al. (2021) there are two settings: data generated from (1) one single
time series or (2) multiple independent time series. For the first setting, ACI (Gibbs & Candes, 2021)
and EnbPI (Xu & Xie, 2021) developed CP algorithms that relax the exchangeability assumption
while maintaining asymptotic validity via online learning (former) and ensembling (later); Zaffran
et al. (2022) further improves online adaptation. Sousa et al. (2022) combines EnbPI with conformal
quantile regression (Romano et al., 2019) to model heteroscedastic time series. However, because
these algorithms operate on one single time series, the validity guarantees do not cover the full
horizon, posing issues for application in high-risk settings.

We focus on the setting where data consists of many independent time series. Stankevičiūtė et al.
(2021) shares the same setting as ours but provides only a univariate time series solution. We show
that their method of applying Bonferroni correction produces inefficient confidence regions, especially
for multidimensional data or long prediction horizons. Messoudi et al. (2021) uses a copula function
for multi-target CP for non-temporal data, creating box-like regions to account for the correlations
between the labels. However, they do not provide theoretical proof and empirical results have shown
that are often invalid. This paper builds upon these works and presents a novel two-step algorithm
with guaranteed multivariate multi-step coverage and efficient confidence regions.

3 BACKGROUND

3.1 INDUCTIVE CONFORMAL PREDICTION (ICP)

Let D = {zi = (xi, yi)}ni=1 be a dataset with input xi ∈ X and output yi ∈ Y such that each data
point zi ∈ Z := X × Y is drawn i.i.d. from an unknown distribution Z .

We will briefly present the algorithm and theoretical results for conformal prediction, and refer readers
to Angelopoulos & Bates (2021) for a thorough introduction. The goal of conformal prediction is to
produce a valid confidence region (Def. 3.1) for any underlying prediction model.

Definition 3.1 (Validity). Given a new data point (x, y) and a desired confidence 1− α ∈ (0, 1), the
confidence region Γ1−α(x) is a subset of Y containing probable outputs ỹ ∈ Y given x. The region
Γ1−α is valid if

P[y ∈ Γ1−α(x)] ≥ 1− α (1)

Conformal prediction splits the dataset into a proper training set Dtrain and a calibration set Dcal. A
prediction model f̂ : X → Y is trained onDtrain. We use a nonconformity score A : Z |Dtrain|×Z →
R to quantify how well a data sample from calibration conforms to the training dataset. Typically,
we choose a metric of disagreement between the prediction and the true label as the non-conformity
score, such as the Euclidean distance:

A(Dtrain, (x, y))
e.g.
= d(y, f̂(x))

e.g.
= ∥y − f̂(x)∥2 (2)

For conciseness, we write A(Dtrain, (x
i, yi)) as A(zi) in rest of the paper.

Let S = {A(zi)}zi∈Dcal
denote the set of nonconformity scores of all samples in the calibration set

Dcal. We can define a quantile function for the nonconformity scores S as:

Q(1− α,S) := inf{s∗ : (
1

|S|
∑
si∈S

1si≤s∗) ≥ 1− α}. (3)

Conformal prediction is guaranteed to produce valid confidence regions (Vovk et al., 2005), under the
exchangeablility assumption defined as follows,

Definition 3.2 (Exchangeability). In a dataset {zi}ni=1 of size n, any of its n! permutations are
equally probable.

The procedure introduced above is known as inductive conformal prediction, as it splits the dataset
into training and calibration sets to reduce computation load (Vovk et al., 2005; Lei & Wasserman,
2012). Our method is based on inductive CP, but can also be easily adapted for other CP variants.
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3.2 COPULA AND ITS PROPERTIES

Copula is a concept from statistics that describes the dependency structure in a multivariate distri-
bution. It has also been used in generative models for multivariate time series (Salinas et al., 2019;
Drouin et al., 2022). We can use copulas to capture the joint distribution for multiple future time
steps. We briefly introduce its notations and concepts.
Definition 3.3 (Copula). Given a random vector (X1, · · ·Xk), define the marginal cumulative density
function (CDF) for each variable Xh, h ∈ {1, . . . , k} as

Fh(x) = P[Xh ≤ x]

The copula of (X1, · · ·Xk) is the joint CDF of (F1(X1), · · · , Fk(Xk)), written as

C(u1, · · · , uk) = P [F1(X1) ≤ u1, · · · , Ft(Xk) ≤ uk]

In other words, the copula function captures the dependency structure between the variable Xs; we
can view an k dimensional copula C : [0, 1]k → [0, 1] as a CDF with uniform marginals, as illustrated
in Figure 2. A fundamental result in the theory of copula is Sklar’s theorem.
Theorem 3.4 (Sklar’s theorem). Given a joint CDF as F (X1, · · · , Xk) and the marginals
F1(x), . . . , Fk(x), there exists a copula such that

F (x1, · · · , xk) = C(F1(x1), · · · , Fk(xk))

for all xj ∈ (−∞,∞), j ∈ {1, . . . , k}.

Sklar’s theorem states that for all multivariate distribution functions, there exists a copula function
such that the distribution can be expressed using the copula and multiple univariate marginal dis-
tributions. When all the Xks are independent, the copula function is known as the product copula:
C(u1, · · · , uk) = Πk

i=1ui.

Figure 2: An example copula, where we express a multivariate Gaussian with correlation ρ = 0.8
with two univariate distributions and a copula function C(u1, u2).

4 COPULA CONFORMAL PREDICTION FOR TIME SERIES (COPULACPTS)

UQ methods are evaluated on two properties: validity and efficiency. A model is valid when the
predicted confidence is greater than or equal to the probability of events falling into the predicted
range (Definition 3.1). The term calibration describes the case of equality in the validity condition.
Efficiency, on the other hand, refers to the size of the confidence region. In practice, we want the
measure of the confidence region (e.g. its area or length) to be as small as possible, given that the
validity condition holds. CopulaCPTS improves the efficiency of confidence regions by modeling the
dependency of the time steps using a copula function.

Denote the time series dataset of size n as D = {zi = (xi
1:t, y

i
1:k)}ni=1, where x1:t ∈ Rt×d is t input

steps, and y1:k ∈ Rk×d is k prediction steps, both with dimension d at each step. Each data point
zi is sampled i.i.d. from an unknown distribution Z . In the multi-step forecasting setting, given a
confidence level 1− α, the algorithm produces k confidence regions for a test input xn+1

1:t , denoted
as [Γ1−α

1 , . . . ,Γ1−α
k ]. We say the confidence regions are valid if all time steps in the forecast are

covered:
P[ ∀j ∈ {1, . . . , k}, yj ∈ Γ1−α

j ] ≥ 1− α. (4)
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In the following sections, we introduce CopulaCPTS, a conformal prediction algorithm that is both
valid and efficient for multivariate multi-step time series forecasts.

4.1 ALGORITHM DETAILS

The key insight of our algorithm is that we can model the joint probability of uncertainty for multiple
predicted time steps with a copula, hence better capturing the confidence regions. We divide the
calibration set Dcal into two subsets: Dcal−1, which we use to estimate a Cumulative Distribution
Function (CDF) on the nonconformity score of each time step, and Dcal−2, to calibrate the copula.

The two calibration sets allow us to prove validity for both components of our algorithm. At the cost
of using a subset of the data to calibrate a copula, our approach produces provably more efficient
confidence regions compared to worst-case corrections such as union bounding in Stankevičiūtė et al.
(2021) which is a lower bound for copulas (Appendix B.1), and more valid regions than Messoudi
et al. (2021) (table 1).

Nonconformity of Multivariate Forecasts. If the time series is multivariate, we have each target
time step yj ∈ Rd. Given z = (x, y) ∼ Z , let the nonconformity score be the L-2 distance
sij = A(zi)j

e.g.
= ∥yij − f̂(xi)j∥ for each timestep j = 1, . . . , k, where f̂(x) is a forecasting model

trained on Dtrain. The confidence region Γ1−α(x) therefore is a d-dimensional ball. We chose this
metric for simplicity, but one can choose other metrics such as Mahalanobis (Johnstone & Cox, 2021)
or L-1 (Messoudi et al., 2021) distance based on domain needs, and our algorithm will remain valid.

For brevity, we will use S1 = {si}zi∈Dcal−1
to denote the set of nonconformity scores of data in

Dcal−1 and S2 = {si}zi∈Dcal−2
the set of nonconformity scores of data inDcal−2. Subscript j will be

used to index the set of specific time steps of the scores: S1j = {sij}zi∈Dcal−1
, S2j = {sij}zi∈Dcal−2

.

Calibrating CDF on Dcal−1. We use Dcal−1 to build conformal predictive distributions for each
time step’s anomaly scores, which provides desirable validity properties (Vovk et al., 2017). The
conformal cumulative distribution function is constructed as follows. 1

F̂j(sj) :=
1

|S1j |+ 1

(
τ +

∑
si∈S1j

1sij<sj

)
, where τ ∼ (0, 1), for j ∈ {1, . . . , k} (5)

Copula Calibration on Dcal−2. Next, for every data point in Dcal−2, we evaluate the cumulative
probability of its anomaly scores with the estimated conformal predictive distributions:

U = {ui}i∈Dcal−2
, ui = (ui

1, . . . , u
i
k) =

(
F̂1(s

i
1), . . . , F̂k(s

i
k)
)

(6)

We adopt the empirical copula (Ruschendorf, 1976) for modeling and proof in this work. The
empirical copula is a non-parametric method of estimating marginals directly from observation,
and hence does not introduce any bias. For the joint distribution of k time steps, we construct
Cempirical : [0, 1]

k → [0, 1] as Eqn 7.

Cempirical(u) =
1

|Dcal−2|+ 1

∑
i∈Dcal−2∪{∞}

k∏
j=1

1ui
j<uj

(7)

Here boldface ∞ is a k-dimensional vector with each ∞j =∞ for j = 1, . . . , k.

To fulfill the full-horizon validity condition of Eqn 4, we only need to find appropriate u∗ such that
Cempirical(u

∗) ≥ 1− α.

argmin
u∗

k∑
j=1

u∗
j s.t. Cempirical(u

∗) ≥ 1− α (8)

1Because of the random component, equation 5 is a “thick” CDF of thickness 1
|S1|+1

, which becomes
inconsequential when the calibration set is large. See Vovk et al. (2017) for theoretical justifications. In
implementation, we treat τ = 1 for simplicity and better coverage.
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Note that the u∗ is not and does not have to be unique; any solution that satisfies the constraint in
Eq. 8 will guarantee multi-step validity (Appendix A). The minimization helps with efficiency, i.e.
the sharpness of the confidence regions. We use a gradient descent algorithm for the optimization in
implementation (see Appendix B.2 for details, and Appendix C.5 for a study of its effectiveness).
Lastly, We obtain (s∗1, . . . , s

∗
k) by F̂−1

j (u∗
j ) and construct the confidence region for each time step

j ∈ {1, . . . , k} as the set of all yj ∈ Rd such that the nonconformity score is less than s∗j . Algorithm
1 summarizes the CoupulaCPTS procedure.

The full proof of CopulaCPTS’s validity (theorem 4.1) can be found in Appendix A. Intuitively,
CopulaCPTS performs conformal prediction twice: first calibrating the nonconformity scores of each
time step with Dcal−1, and then calibrating the copula with Dcal−2.

Theorem 4.1 (Validity of CopulaCPTS). CopulaCPTS (algorithm 1) produces valid confidence
regions for the entire forecast horizon. i.e.

P[ ∀j ∈ {1, . . . , k}, yj ∈ Γ1−α
j ] ≥ 1− α.

Algorithm 1: Copula Conformal Time Series Prediction (CopulaCPTS)
Input: Dataset D, test inputs Dtest, target significant level 1− α.
Output: Γ1−α

1 , . . . ,Γ1−α
k for each test input.

1

2 // Training
3 Randomly split dataset D into Dtrain and Dcal.
4 Train k-step forecasting model f̂ on training set Dtrain.
5 // Calibration
6 Randomly split Dcal into Dcal−1 and Dcal−2.
7 for (xi

1:t, y
i
1:k) ∈ Dcal−1 ∪ Dcal−2 do

8 ŷi1:k ← f̂(xi
1:t)

9 sij ← ∥yij − ŷij∥ for j = 1, . . . , k

10 end for
11 F̂1, . . . , F̂k ← Eq. (5) on Dcal−1

12 Cempirical(·)← Eq. (7) on Dcal−2

13 u∗ ← Eq. (8)
14 s∗j = F̂−1

j (u∗
j ) for j = 1, . . . , k

15 // Prediction
16 for xi

1:t ∈ Dtest do
17 ŷi1:k ← f̂(xi

1:t)

18 Γ1−α
j ← {y : ∥y − ŷih∥ < s∗j} for j = 1, . . . , k

19 yield Γ1−α
1 , . . . ,Γ1−α

k

20 end for

5 EXPERIMENTS

In this section, we show that CopulaCPTS produces more calibrated and efficient confidence regions
compared to existing methods on two synthetic datasets and two real-world datasets. We demonstrate
that CopulaCPTS’s advantage is more evident over longer prediction horizons in Section 5.2. We
also show its effectiveness in the autoregressive prediction setting in Section 5.2.

All experiments in this paper split the calibration set in half into equal-sized Dcal−1 and Dcal−2.
Although the split does not significantly impact the result when calibration data is ample, performance
deteriorates when there are not enough data in either one of the subsets.

Baselines. We compare our model with three representative works in different paradigms of deep
uncertainty quantification: the Bayesian-motivated Monte Carlo dropout RNN (MC-dropout) by
Gal & Ghahramani (2016a), the frequentist blockwise jackknife RNN (BJRNN) by Alaa & Van
Der Schaar (2020), a conformal forecasting RNN (CF-RNN) by Stankevičiūtė et al. (2021), and
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Table 1: Performance in synthetic and real-world datasets with target confidence 1 − α = 0.9.
Methods that are invalid (coverage below 90%) are greyed out. CopulaCPTS achieves high level of
calibration (coverage is close to 90%) while producing more efficient confidence regions.

MC-dropout BJRNN CF-RNN Copula CopulaCPTS

Particle Sim
(σ = .01)

Cov 91.5 ± 2.0 98.9 ± 0.2 97.3 ± 1.2 86.9 ± 1.9 91.3 ± 1.5

Area 2.22 ± 0.05 2.24 ± 0.59 1.97 ± 0.4 0.63 ± 0.07 1.08 ± 0.14

Particle Sim
(σ = .05)

Cov 46.1 ± 3.7 100.0 ± 0.0 94.5 ± 1.5 88.6 ± 1.7 90.6 ± 0.6

Area 2.16 ± 0.08 12.13 ± 0.39 5.80 ± 0.52 4.67 ± 0.16 5.27 ± 1.02

Drone Sim
(σ = .02)

Cov 84.5 ± 10.8 90.8 ± 2.8 91.6 ± 9.2 89.2 ± 1.3 90.0 ± 0.8

Vol 9.64 ± 2.13 49.57 ± 3.77 32.18 ± 13.66 16.92 ± 8.9 17.12 ± 6.93

COVID-19
Daily Cases

Cov 19.1 ± 5.1 79.2 ± 30.8 95.4 ± 1.9 90.8 ± 1.4 90.5 ± 1.6

Area 34.14 ± 0.84 823.3 ± 529.7 610.2 ± 96.0 414.42 ± 5.08 408.6 ± 65.8

Argoverse
Trajectory

Cov 27.9 ± 3.1 92.6 ± 9.2 98.8 ± 1.9 89.7 ± 0.9 90.2 ± 0.1

Area 127.6 ± 20.9 880.8 ± 156.2 396.9 ± 18.67 107.2 ± 9.56 126.8 ± 12.22

the multi-target copula algorithm that does not have the two step calibration (Copula) by Messoudi
et al. (2021). We use the same underlying prediction model for post-hoc uncertainty quantification
methods BJRNN, CF-RNN, and CopulaCPTS. The MC-dropout RNN is of the same architecture but
is trained separately, as it requires an extra dropout step during training and inference.

Metrics. We evaluate calibration and efficiency for each method. For calibration, we report the
empirical coverage on the test set. Coverage should be as close to the desired confidence level 1− α
as possible. Coverage is calculated as:

Coverage1−α = Ex,y∼ZP[y ∈ Γ1−α(x)] ≈ 1
|Dtest|

∑
xi,yi∈|Dtest| 1(y

i ∈ Γ1−α(xi)).

For efficiency, we report the average area (2D) or volume (3D) of the confidence regions. The measure
should be as small as possible while being valid (coverage maintains above-specified confidence
level). The area or volume is calculated as:

Area1−α = Ex∼X [∥Γ1−α(x)∥] ≈ 1
|Dtest|

∑
xi∈|Dtest| ∥Γ

1−α(xi)∥.

5.1 SYNTHETIC DATASETS

We first test the effectiveness of our models on two synthetic spatiotemporal datasets - interacting
particle systems (Kipf et al., 2018), and drone trajectory following simulated with PythonRobotics
(Sakai et al., 2018). For particle simulation, we predict yt+1:t+h where t = 35, h = 25 and yt ∈ R2;
for drone simulation t = 60, h = 10, and yt ∈ R3. To add randomness to the tasks, we added
Gaussian noise of σ = .01 and .05 to the dynamics of particle simulation and σ = .02 to drone
dynamics. We generate 5000 samples for each dataset, and split the data by 45/45/10 for train,
calibration, and test, respectively. For baselines that does not require calibration, the calibration split
is used for training the model. Please see Appendix C.1 for forecaster model details.

We visualize the calibration and efficiency of the methods in Figure 3 for confidence levels 1−α = 0.5
to 0.95. We can see that Copula-RNN, the red lines, are more calibrated and efficient compared to
other baseline methods, especially when the confidence level is high (90% and 95%). We can see that
for harder tasks (particle σ = 0.05, and drone trajectory prediction), MC-Dropout is overconfident,
whereas BJ-RNN and CF-RNN produce very large (hence inefficient) confidence regions. This
behavior of CF-RNN is expected because they apply Bonferroni correction to account for joint
prediction for multiple time steps, which is an upper bound of copula functions. Numerical results
for confidence level 90% are presented in Table 1. A qualitative comparison of confidence regions
for drone simulation can be found in Figure 9 in Appendix C.4.

5.2 REAL WORLD DATASETS

COVID-19. We replicate the experiment setting of Stankevičiūtė et al. (2021) and predict new daily
cases of COVID-19 in regions of the UK. The models take 100 days of data as input and forecast 50
days into the future. We used 200 time series for training, 100 for calibration, and 80 for testing.
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Figure 3: Calibration (upper row) and efficiency (lower row) comparison on different 1− α levels
for synthetic data sets. Shaded regions are ± 2 standard deviations over 3 runs. For calibration, the
goal is to stay above the green dotted (validity) and coincide as closely as possible (calibration).
CopulaCPTS is more calibrated across different significance levels. For efficiency, we want the metric
to be small. CopulaCPTS outperforms the baselines consistently. (MC-dropout for the right two
experiments produces invalid regions, so we don’t consider its efficiency.)

Vehicle trajectory prediction. The Argoverse autonomous vehicle motion forecasting dataset (Chang
et al., 2019) is a widely used vehicle trajectory prediction benchmark. The task is to predict 3 second
trajectories based on all vehicle motion in the past 2 seconds sampled at 10Hz. Because trajectory
prediction is a challenging task, we utilize a state-of-the-art prediction algorithm LaneGCN (Liang
et al., 2020) as the underlying model for both CF-RNN and Copula-RNN (details in Appendix
C.1). Flexibility of underlying forecasting model is an advantage of post-hoc UQ methods such as
conformal prediction. For model-dependent baselines MC-dropout and BJRNN, we have to train an
RNN forecasting model from scratch for each method, which induces additional computational cost.

CopulaCPTS is both more calibrated and efficient compared to baseline models for real-world datasets
(Table 1). The Covid-19 dataset demonstrates a potential failure case for our model when calibration
data are scarce. Because there are only 100 calibration data, CDF and copula estimations are more
stochastic depending on the dataset split, resulting in 1 case of invalidity among 3 experiment trials.
Even so, CopulaCPTS shows strong performance on average by remaining valid and reducing the
confidence width by 33%. For the trajectory prediction task, learning the copula results in a 40%
sharper confidence region while still remaining valid for the 90% confidence interval. We visualize
two samples from each dataset in Figure 3.The importance of efficiency in these scenarios is clear -
the confidence regions need to be narrow enough for them to be useful for decision making. Given
the same underlying prediction model, we can see that CopulaCPTS produces a much more efficient
region while still remaining valid.

Comparison of models at different horizon lengths. CopulaCPTS is an algorithm designed to
produce calibrated and efficient confidence regions for multi-step time series. When the prediction
horizon is long, CopulaCPTS’s advantage is more pronounced. Figure 5 shows the performance
comparison over increasing time horizons on the particle dataset. See Table 3 of Appendix C for
numerical results. CopulaCPTS achieves a 30% decrease in area at 20 time steps compared to
CF-RNN, the best performing baseline; the decrease is above 50% at 25 time steps. This experiment
shows significant improvement of using copula to model the joint distribution of future time steps.
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Figure 4: Illustrations of 90% confidence regions given by CF-RNN (blue) and CopulaCPTS (orange)
on two real-world datasets, COVID-19 forecast (left 2) and Argoverse (right 2 at time steps 1, 10,
20, and 30). For the Argoverse data, The red dotted lines (ego agent) and blue dotted lines (other
agents) are input to the underlying prediction model and the red solid lines are the prediction output.
Note that the confidence region produced CF-RNN is uninformatively large, as it covers all the lanes:
these examples illustrate the importance of efficiency. Overall, CopulaCPTS is able to produce much
more efficient confidence regions while maintaining valid coverage.

CopulaCPTS for Autoregressive prediction. The autoregressive extension of CopulaCPTS is
illustrated in detail in Appendix B.3. To provide preliminary evidence of effectiveness, we present test
results on the COVID-19 dataset. We train an RNN model with k = 7 and use it to autoregressively
forecast the next 14 steps. Table 2 compares the performance of re-estimating the copula for each
7-step forecasts versus using a fixed copula calibrated using the first 7 steps. We also compare the
model to a 14-step joint forecaster using CopulaCPTS. It is evident that daily cases of the pandemic
is a non-stationary time series, where re-estimating the copula is necessary for validity.

Figure 5: CopulaCPTS remains more calibrated and efficient
than baselines over increasing forecast horizons.

Method Coverage Area

AR re-estimate 90.1 89.4
AR fixed 88.2 75.9

Joint 90.7 102.3

Table 2: Performance of autoregres-
sive (AR) CopulaCPTS. Re-estimating
copula gives us valid confidence re-
gion over time and is more efficient
than joint CopulaCPTS forecast.

6 CONCLUSION AND DISCUSSION

In this paper, we present CopulaCPTS, a conformal prediction algorithm for multi-step time series
prediction. CopulaCPTS significantly improves calibration and efficiency of multi-step conformal
confidence intervals by incorporating copulas to model the joint distribution of the uncertainty at each
time step. We prove that CopulaCPTS has a finite sample validity guarantee over the entire prediction
horizon. Our experiments show that CopulaCPTS produces confidence regions that are (1) valid, and
(2) more efficient than state-of-the-art UQ methods on all 4 benchmark datasets, and over varying
prediction horizons. The improvement is especially pronounced when the data dimension is high or
the prediction horizon is long, cases when other methods are prone to be highly inefficient. Hence,
we argue that our method is a practical and effective way to produce useful uncertainty quantification
for machine learning forecasting models.

The limitations of our algorithm are as follows. As CopulaCPTS requires two calibration steps, it
is suitable only when there are abundant data for calibration. The validity proof relies on using the
empirical copula, so it does not apply to other learnable copula classes. Future work includes (1)
improving the autoregressive extension of CopulaCPTS, to achieve coverage over the whole horizon,
and (2) developing online settings of CopulaCPTS for decision making.
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A PROOF OF THEOREM 4.1

Theorem A.1 (Validity of CopulaCPTS). The confidence region provided by CopulaCPTS (algorithm
1) is valid. i.e. P[ ∀j ∈ {1, . . . , k}, yt+j ∈ Γ1−α

j ] ≥ 1− α.

Proof. Define notations to be the same as in Section 4. Let D = {zi = (xi, yi)}ni=1 be a dataset
with input xi ∈ Rt×d, a time series with length t, and output yi ∈ Rk×d a time series with length k.
Each data sample (of entire time series, not time step) zi = (xi, yi) is drawn i.i.d. from an unknown
distribution Z . This means that any other sample drawn Z is exchangeable with D. from Dataset D
is divided into training set Dtrain and two calibration sets Dcal−1 and Dcal−2.

We have nonconformity score function A with prediction model f̂ trained on Dtrain. For each data
point zi = (xi, yi) ∈ Dcal, we calculate the nonconformity score for each time step j, concatenating
them into a vector si of dimension k.

sij = A(zi)j
e.g.
= ∥yij − f̂(xi)j∥, j = 1, . . . , k (9)

Let S1 = {si}zi∈Dcal−1
be the set of nonconformity scores of data in Dcal−1 and S2 =

{si}zi∈Dcal−2
the set of nonconformity scores of data in Dcal−2. Subscript j will be used to

index the set of specific time steps of the scores: S1j = {sij}zi∈Dcal−1
, S2j = {sij}zi∈Dcal−2

.

CDF Estimation on Dcal−1. We use Dcal−1 to build conformal predictive distributions (CPD)
(Vovk et al., 2017) for each time step’s anomaly scores. The cumulative distribution function is
constructed as:

F̂j(sj) :=
1

|S1j |+ 1

∑
si∈S1j∪{∞}

1sij<sj , for j ∈ {1, . . . , k} (10)

Lemma A.2 (Validity of CPD. Theorem 11 of Vovk et al. (2017) ). Given a nonconformity score
function A : Z → R and a data sample z ∼ Z , calculate the nonconformity score as s = A(z).
Then, the distribution F̂j(·) is valid in the sense that PZ [F̂j(sj) ≤ 1−α] = 1−α, for any 0 < α < 1
.

Copula Calibration on Dcal−2. Next, for every data point Dcal−2, we calculate

U = {ui}i∈Dcal−2
, ui = (ui

1, . . . , u
i
k) =

(
F̂1(s

i
1), . . . , F̂k(s

i
k)
)

Each ui can be seen as a multivariate nonconformity score for data sample zi. We will now illustrate
that an empirical copula on U is a rank statistic, and hence we can apply the proof of conformal
prediction to prove a finite sample validity guarantee.

Definition A.3 (Vector partial order). Define a partial order for k-dimensional vectors ⪯.

u ⪯ v i.f.f. ∀j ∈ {1, . . . , k}, uj ≤ vj (11)

i.e. u ⪯ v⇐⇒
k∏

j=1

1uj≤vj (12)

Next, we define an empirical multivariate quantile function for U , a set of k-dimensional vectors,
based on the partial order defined in Eqn 11. 2

Q̂(1− α,U) = argmin
u∗

k∑
j=1

u∗
j s.t.

( 1

|U|
∑
u∈U

1u⪯u∗
)
≥ 1− α (13)

The empirical copula formula in CopulaCPTS (Eqn 7 in section 4.1) is the same as the expression
inside the inf function of Q(1− α,U ∪ {∞}). Therefore, finding s∗1, . . . , s

∗
k by Equation 8 implies:

Q̂(1− α,U ∪ {∞}) = z

2There exist other definitions of multivariate quantiles, but they cannot be used in place of our definition in
this proof. We have chosen this form because it connects directly to the empirical copula.
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The rest of the proof follows that of Inductive Conformal Prediction (ICP) in Vovk et al. (2005).

Given a test data sample zn+1 = (xn+1
1:t , yn+1

1:k ) ∼ Z , we want to prove that the confidence regions
Γ1−α
1 , . . . ,Γ1−α

k output by CopulaCPTS satisfies:

P[yj ∈ Γ1−α
j ] ≥ 1− α, ∀j ∈ {1, . . . , k}

We first calculate
un+1
j = F̂j(A(zn+1)j) for j ∈ {1, . . . , k}

Let u∗ = Q(1− α,U ∪ {∞}), u∗ ∈ [0, 1]k. An important observation for the conformal prediction
proof is that if u∗ ⪯ un+1, then

Q̂(1− α,U ∪ {∞}) = Q̂(1− α,U ∪ {un+1})

the quantile remains unchanged. This fact can be re-written as

un+1 ⪯ Q̂(1− α,U ∪ {∞})⇐⇒ un+1 ⪯ Q̂(1− α,U ∪ {un+1})

The above describes the condition where un+1 is among the ⌈(1 − α)(n + 1)⌉ smallest of U . By
exchangability, the probability of un+1’s rank among U is uniform. Therefore,

P[un+1 ⪯ Q̂(p,U ∪ {∞})] = ⌈(1− α)(|U|+ 1)⌉
(|U|+ 1)

≥ 1− α

Hence we have

P[un+1 ⪯ Q̂(1− α,U ∪ {∞})] ≥ 1− α (14)

Note again that:

• u∗ = Q̂(1− α,U ∪ {∞}) = (F̂1(s
∗
1), . . . , F̂t(s

∗
k))

• un+1 = (F̂1(s
n+1
1 ), . . . , F̂t(s

n+1
k ))

• The uncertain regions are constructed as (Algorithm 1, line 17):

Γ1−α
j ← {y : ∥y − ŷn+1

j ∥ < s∗j} (15)

By definition of ⪯, we have

un+1 ⪯ u∗ (16)
(11)⇐⇒ ∀j ∈ {1, . . . , k}, un+1

j ≤ u∗
j (17)

Lemma A.2
=⇒ ∀j ∈ {1, . . . , k}, sn+1

j ≤ s∗j (18)
(15)⇐⇒ ∀j ∈ {1, . . . , k}, yj ∈ Γ1−α

j (19)

Combining Eqn 14 and Eqn 19, we have

P[ ∀j ∈ {1, . . . , k}, yj ∈ Γ1−α
j ] ≥ P[un+1 ⪯ Q̂(1− α,U ∪ {∞})] ≥ 1− α (20)
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B ADDITIONAL ALGORITHM DETAILS

B.1 UPPER AND LOWER BOUNDS FOR COPULAS

To provide a better understanding of the properties of Copulas, consider the Frechet-Hoeffding
Bounds (Theorem B.1). In fact, the Frechet-Hoeffding upper- and lower- bounds are both copulas.
The lower bound is precisely the Bonferroni correction used in Stankevičiūtė et al. (2021) - therefore
by estimating the copula more precisely instead of using a lower bound, we have a guaranteed
efficiency improvement for the confidence region.
Theorem B.1 (The Frechet-Hoeffding Bounds). Consider a copula C(u1, . . . , uk). Then

max {1− k +

k∑
i=1

ui, 0} ≤ C(u1, . . . , uk) ≤ min {u1, . . . , uk}

B.2 NUMERICAL OPTIMIZATION WITH SGD FOR SEARCH

We continue to use the notation defined in Appendix A. The inverse of the predictive distributions
(Equation 10) can be written as follows, similar to the empirical quantile function (Equation 3).

F̂−1
j (p) := inf{sj : (

1

|S1j |+ 1

∑
si∈S1j∪{∞}

1sij<sj ) ≥ p} (21)

We find the optimal s∗j in Equation 8 and Algorithm 1 by minimizing the following loss:

L(s1, . . . , sk) =
1

|Dcal−2|
∑

i∈Dcal−2

k∏
j=1

1

[
ui
j < F̂−1

j (sj)
]
− (1− α)

The indicator function is implemented using a sigmoid function whose input is multiplied by a
constant for differentiability. A small amount of L2 regularization is added to the loss function to
ensure the searched scores are as low as possible. We use the Adam optimizer and perform gradient
descent for 500 steps to get the final result. The optimization process to find s∗ typically takes
a few seconds on CPU. For each run of our experiments, the calibration and prediction steps of
CopulaCPTS combined took less than 1 minute to run on an Apple M1 CPU. Please refer to the CP
class in the reference code for implementation details.

B.3 COPULACPTS IN AUTO-REGRESSIVE FORECASTING

Auto-regressive forecasting is a common framework in time series forecasting. So far, we have been
looking at forecasts for a predetermined number of time steps k. One can use a fixed-length model to
forecast variable horizons k′ autoregressively, taking the model output as part of the input. In the
conformal prediction setting, we want not only to autoregressively use the point forecasts, but also to
propagate the uncertainty measurement.

If the time series and uncertainty are stationary (for example additive Gaussian noise), the copula
remains the same for any sliding window of k steps, i.e. C(u1, . . . , uk) = C(u2, . . . , uk+1). There-
fore, after finding (u∗

1, . . . , u
∗
k) such that C(u∗

1, . . . , u
∗
k) ≥ 1 − α, we can simply search for u∗

k+1

such that C(u∗
2, . . . , u

∗
k, u

∗
k+1) ≥ 1 − α. The guarantee proven in Theorem 4.1 still holds for the

new estimate. In this way, we can achieve the coverage guarantee over the entire autoregressive
forecasting horizon.

On the other hand, if the time series is non-stationary, we need to fit copulas C1(u1, . . . , uk),
C2(u2, . . . , uk+1), . . . , Ck′−k(uk′−k, . . . , uk′), one for each autoregressive prediction, which re-
quires a calibration set with ≥ k′ time steps. The k′ step autoregressive problem is then reduced to
k′ − k multi-step forecasting problems that can be solved by CopulaCPTS. It follows that each of the
autoregressive predictions is valid. Appendix B.4 provides an example scenario where re-estimating
the copula is necessary for validity.
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B.4 AUTOREGRESSIVE PREDICTION

In the context of this paper to forecast autoregressively is given input x1:t and a k step forecasting
model f̂ , perform prediction

ŷt+1:t+k = f̂(x1:t)

ŷt+2:t+k+1 = f̂(x2:t, ŷt+1)

· · ·

until all k′ time steps are predicted.

We now provide a toy scenario to illustrate when re-estimating the copula is necessary and improves
validity. Consider a time series of three time steps t0, t1, t2. The two scenarios are illustrated
in Figure 6. In both scenarios, the mean and variance of all time steps are 0 and 1 respectively.
In scenario (a), t0 = t1 and hence their covariance is 1. The copula estimated on t0 and t1 is
C0:1(F (t0), F (t1)) = F (t0) = F (t1). This copula will significantly underestimate the confidence
region of t2 where its covariance with t1 is −1. In fact the coverage of C0:1(F1(t1), F2(t2)) = 0.74.
On the other hand, (b) illustrates a scenario where the copula for any 2 consecutive time series
remains the same C0 = C1. In this case, applying C0 directly to forecast C1 achieves precisely 90%
coverage.

(a) Time steps 0 and 1 are positively corre-
lated while 1 and 2 are negatively correlated

(b) Stationary time series where each time
steps are uncorrelated

Figure 6: Two scenarios to illustrate the autoregressive case

C EXPERIMENT DETAILS AND ADDITIONAL RESULTS

C.1 UNDERLYING FORECASTING MODELS

Particle Dataset. The underlying forecasting model for the particle experiments is an 1-layer
LSTM network with embedding size = 24. The hidden state is then passed through a linear network
to forecast the timesteps concurrently (output has dimension k × dy). We train the model for 150
epochs with batch size 128. Hyperparameters of the network are selected through a model search by
performance on a 5-fold cross-validation split of the dataset. The architecture and hyperparameters
are shared for all baselines and CopulaCPTS in Table 1.

Drone. For the drone trajectory forecasting task, we use the same LSTM forecasting network as
the particle dataset, but with its hidden size increased to 128. We train the model for 500 epochs
with batch size 128. The same architecture and hyperparameters are shared for all baselines and
CopulaCPTS reported in Table 1.

Covid-19. The COVID-19 dataset is downloaded directly from the official UK government website
https://coronavirus.data.gov.uk/details/download by selecting region for area
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type and newCasesByPublishDate for metric. There are in total 380 regions and over 500 days of
data, depending on when it is downloaded. We selected 150-day time series from the collection to
construct our dataset.

The base forecasting model for Covid-19 dataset is the same as the model for synthetic datasets, with
hidden size = 128, and were trained for 150 epochs with batch size 128. The same architecture and
hyperparameters are shared for all baselines and CopulaCPTS reported in Table 1.

Argoverse. As highlighted in the main text, we utilize a state-of-the-art prediction algo-
rithm LaneGCN (Liang et al., 2020) as the underlying forecaster model for CF-RNN and
Copula-RNN. We refer the readers to their paper and code base for model details. The ar-
chitecture of the RNN network used for MC-Dropout and BJRNN is an Encoder-Decoder net-
work. Both the encode and decoder contain a LSTM layer with encoding size 8 and hid-
den size 16. We chose this architecture because the is part of the official Argoverse base-
lines (https://github.com/jagjeet-singh/argoverse-forecasting) and demon-
strates competitive performance.

C.2 CALIBRATION AND EFFICIENCY CHART FOR COVID-19

Figure 7 shows a comparison of calibration and efficiency for the daily new COVID 19 cases
forecasting.

Figure 7: Calibration and efficiency comparison on different ϵ level for COVID-19 Daily Forecasts.
The copula methods (orange and red lines) are more calibrated (coinciding with the green dotted line)
and sharp (low width) compared to baselines.

To see if the daily fluctuation due to testing behavior disrupts other methods, we also ran the same
experiment on weekly aggregated new cases forecast. We take 14 weeks of data as input and output
forecasts for the next 6 weeks. The results are illustrated in Figure 8. The weekly forecasting scenario
gives us similar insights as the daily forecasts.

C.3 ARGOVERSE

The Argoverse autonomous vehicle dataset contains 205,942 samples, consisting of diverse driving
scenarios from Miami and Pittsburgh. The data can be downloaded from the official Argoverse dataset
website. We split 90/10 into a training set and validation set of size 185,348 and 20,594 respectively.
The official validation set of size 39,472 is used for testing and reporting performance. We preprocess
the scenes to filter out incomplete trajectories and cap the number of vehicles modeled to 60. If
there are less than 60 cars in the scenario, we insert dummy cars into them to achieve consistent car
numbers. For map information, we only include center lanes with lane directions as features. Similar
to vehicles, we introduce dummy lane nodes into each scene to make lane numbers consistently equal
to 650.
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Figure 8: Covid Weekly Forecasts

C.4 ADDITIONAL EXPERIMENT RESULTS

We present in Figures 8 and 9 some qualitative results for uncertainty estimation.

To test how the effects of copulaCPTS compare with baseline on other base forecasters, we also
include an encoder-decoder architecture with the same embedding size as the RNN models introduced
in Appendix C.1 for each dataset. The results are presented in Table 3. We omit these results in the
main text because we found that they did not bring significant improvement to time series forecasting
UQ.

Table 4 compares model performance compared across different prediction horizons. We show that
the advantage of our method is more pronounced for longer horizon forecasts.

(a) Copula-EncDec (b) MC Dropout (c) CF-RNN

Figure 9: 99% Confidence region produced by three methods for the drone dataset. Copula methods
(a) produce a more consistent, expanding cone of uncertainty compared to MC-Dropout (b) sharper
one compared to CF-RNN (c).

C.5 STUDY ON αj SEARCH

Figure 11 shows the αj values for each 1− αj = F̂j(s
∗
j ) used in Copula CPTS as outlined in line

15 of Algorithm 1. We present αj values searched using two methods of searching, with dichotomy
search for a constant α value for the horizon as in Messoudi et al. (2021), and by stochastic gradient
descent as outlined in section 4.2.

The αj values are an indicator of how interrelated the uncertainty between each time step are:
Bonferroni Correction used in Stankevičiūtė et al. (2021) (grey dotted line in Figure 11) assumes that
the time steps are independent, with CopulaCPTS we have lower 1− αj levels while having valid
coverage (blue and orange lines in Figure 11). This shows that the uncertainty of the time steps is not
independent, and we are able to utilize this dependency to shrink the confidence region while still
maintaining the coverage guarantee.
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Particle Simulation (σ = .01)

Coverage (90%) Area (90%) Coverage (99%) Area (99%)

MC-dropout 691.5 ± 2.0 2.22 ± 0.05 95.2 ± 1.4 3.16 ± 0.08

BJRNN 98.9 ± 0.2 2.24 ± 0.59 99.6 ± 0.3 2.75 ± 0.71

CF-RNN 97.1 ± 0.8 1.2 ± 0.21 99.3 ± 0.6 3.16 ± 0.86

CF-EncDec 97.3 ± 1.2 1.97 ± 0.4 98.9 ± 0.6 2.75 ± 0.42

Copula-vanilla 86.9 ± 1.9 0.63 ± 0.07 91.9 ± 1.8 0.76 ± 0.12

Copula-RNN 91.3 ± 1.5 1.08 ± 0.14 99.4 ± 0.3 2.23 ± 0.19

Copula-EncDec 90.8 ± 2.5 1.19 ± 0.08 99.3 ± 0.5 2.16 ± 0.23

Particle Simulation (σ = .05)

Coverage (90%) Area (90%) Coverage (99%) Area (99%)

MC-dropout 16.1 ± 4.3 0.79 ± 0.02 33.9 ± 5.1 2.12 ± 0.03

BJRNN 100.0 ± 0.0 12.13 ± 0.39 100.0 ± 0.0 15.43 ± 0.85

CF-RNN 94.5 ± 1.5 5.79 ± 0.51 99.8 ± 2.2 19.21 ± 8.19

Copula-vanilla 88.5 ± 1.7 4.37 ± 0.16 91.7 ± 1.6 4.8 ± 0.18

Copula-RNN 90.3 ± 0.7 4.50 ± 0.07 99.1 ± 0.8 12.82 ± 3.98

Copula-EncDec 91.4 ± 1.1 4.40 ± 0.15 98.7 ± 0.1 9.31 ± 1.97

Drone Simulation (σ = .02)

Coverage (90%) Area (90%) Coverage (99%) Area (99%)

MC-dropout 84.5 ± 10.8 9.64 ± 2.13 90.0 ± 7.8 16.02 ± 3.62

BJRNN 90.8 ± 2.8 49.57 ± 3.77 100.0 ± 4.0 65.77 ± 4.56

CF-RNN 91.6 ± 9.2 32.18 ± 13.66 100.0 ± 0.0 36.79 ± 14.03

CF-EncDec 100.0 ± 0.0 21.83 ± 26.29 100.0 ± 0.0 25.03 ± 12.53

Copula-vanilla 89.5 ± 1.3 54.67 ± 28.9 94.5 ± 0.5 68.9 ± 33.42

Copula-RNN 90.0 ± 1.5 16.52 ± 15.08 98.5 ± 0.5 21.48 ± 8.91

COVID-19 Daily Cases Dataset

Coverage (90%) Area (90%) Coverage (99%) Area (99%)

MC-dropout 19.1 ± 5.1 34.14 ± 0.84 100.0 ± 0.0 1106.57 ± 25.41

BJRNN 79.2 ± 30.8 823.3 ± 529.7 85.7 ± 27.5 149187. ± 51044.

CF-RNN 95.4 ± 1.9 610.2 ± 96.0 100.0 ± 0.0 121435. ± 26495.

CF-EncDec 91.7 ± 1.4 570.3 ± 22.1 100.0 ± 0.0 108130. ± 10889.

Copula-vanilla 90.8 ± 1.4 414.42 ± 5.08 91.2 ± 1.3 41346. ± 59.0

Copula-RNN 92.1 ± 1.0 429.0 ± 15.1 100.0 ± 0.0 88962. ± 9643.

Copula-EncDec 90.8 ± 0.3 429.4 ± 27.9 100.0 ± 0.0 60852. ± 12263.

Argoverse Trajectory Prediction Dataset

Coverage (90%) Area (90%) Coverage (99%) Area (99%)

MC-dropout 27.9 ± 3.1 127.6 ± 20.9 31.5 ± 3.9 242.1 ± 54.0

BJRNN 92.6 ± 9.2 880.8 ± 156.2 100.0 ± 0.0 3402.8 ± 268.

CF-LaneGCN 98.8 ± 1.9 396.9 ± 18.67 100. ± 0.2 607.2 ± 8.67

Copula-vanilla 89.7 ± 0.9 107.2 ± 9.56 96.5 ± 2.3 289.0 ± 38.1

Copula-LaneGCN 90.4 ± 0.3 126.8 ± 12.22 99.1 ± 0.4 324.1 ± 42.22

Table 3: Additional results. Copula methods achieve a high level of calibration while producing
sharper prediction regions. The sharpness gain is even more pronounced at higher confidence levels
(99%), where we want the prediction region to be useful while remaining valid.
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Figure 10: Illustrations for confidence regions given by CF-RNN (blue) and CopulaCPTS (orange) at
time steps 0, 10, 20, and 30. Note that in order to achieve 90% coverage, the regions are larger than
needed, especially in straight-lane cases like the middle two. Using copulas to couple together time
steps results in a much smaller region while achieving similarly good coverage.

1 Step 5 Steps 15 Steps

Method Coverage Area Coverage Area Coverage Area

MC-Dropout 97.8 ± 2.0 0.4 ± 0.04 88.0 ± 7.0 0.69 ± 0.25 52.3 ± 1.4 0.94 ± 0.2

BJRNN 45.3 ± 39.4 0.27 ± 0.18 97.7 ± 2.1 2.69 ± 1.79 95.5 ± 2.8 19.99 ± 4.83

CF-RNN 100.0 ± 0.0 0.01 ± 0.01 77.8 ± 19.2 0.8 ± 0.64 66.7 ± 0.0 18.82 ± 3.73

CF-EncDec 89.9 ± 19.2 0.01 ± 0.01 100.0 ± 0.0 0.75 ± 0.99 88.9 ± 19.2 13.07 ± 16.1

Copula-RNN 90.1 ± 0.2 0.01 ± 0.01 89.8 ± 0.6 0.54 ± 0.45 90.1 ± 1.2 8.25 ± 3.44

Copula-EncDec 90.0 ± 0.3 0.01 ± 0.0 90.3 ± 0.6 0.67 ± 1.01 90.5 ± 0.5 7.13 ± 9.5

Table 4: Performance comparison across different horizons at 90% confidence level on the drone
simulation dataset. The improvement on efficiency is more pronounced when the horizon is longer.

Table 5 shows that there are no significant differences between coverage and area performance for the
two search methods within the scope of datasets we study in this paper. However, we want to highlight
that SGD search is O(n) complexity to optimization steps, regardless of the prediction horizon. SGD
also allows for varying αj which might be useful in some settings, for example capturing uncertainty
spikes for some time steps as seen in the COVID-19 dataset of Figure 11. Dichotomy search, on
the other hand, is O(nlog(n)) complexity to the search space depends on granularity, and will be
O(knlog(kn) if we want to search for varying αj .

Dataset Coverage (90%) Area

Fixed αj Varying αj Fixed αj Varying αj

Particle (σ = .01) 91.7 ± 1.9 91.5 ± 2.1 1.13 ± 0.45 1.06 ± 0.36

Particle (σ = .05) 92.1 ± 1.3 90.3 ± 0.7 4.89 ± 0.05 4.50 ± 0.07

Drone 90.3 ± 0.5 90.0 ± 1.5 15.92 ± 1.98 16.52 ± 7.08

Covid-19 92.9 ± 0.1 92.1 ± 1.0 498.44 ± 6.36 429.0 ± 15.1

Argoverse 90.2 ± 0.1 90.4 ± 0.3 117.1 ± 7.3 126.8 ± 12.2

Table 5: Coverage and area comparison between stochastic search for fixed αj and SGD for Varying
αj . We do not see a significant difference between the performance of the two.

C.6 COMPARISON TO ADDITIONAL BASELINES

We include a comparison to two additional simple UQ baselines on the particle simulation dataset.

L2-Conformal. L2-Conformal uses the same underlying RNN forecaster as CF-RNN and Copula
RNN. We use the nonconformity score of the vector norm of all timesteps concatenated together
∥ŷt+1:t+k−yt+1:t+k∥ to perform ICP. As there are no analytic way to represent a k×dy-dimensional
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Figure 11: Comparison between dichotomy search for fixed αj values (blue) and stochastic gradient
search for varying αj (blue) through timesteps. Shaded regions are the standard deviation of the
values over 3 runs.

uncertainty region on 2-D space, we calculate the area and plot the region for L2 Conformal baseline
with the maximum deviation at each timestep such that the vector norm still stays within range.

Direct Gaussian. Direct Gaussian uses the same model architecture and training hyperparameters,
with the addition of a linear layer that outputs the variance for each timestep, and is optimized using
negative log loss, a proper scoring rule for probabilistic forecasting. We obtain the area by analytically
calculating the 90% confidence interval for each variable.

Results in Table 6 show that L2-conformal produces inefficient confidence area, and directly out-
putting variance under-covers test data. These results align with previous findings and motivate
our method, which is both more calibrated and sharper compared to these baselines. We show a
visualization in Figure 12 to illustrate the different properties of the methods qualitatively.

Particle (σ = .01) Particle (σ = .05)

Method Coverage (90%) Area ↓ Coverage (90%) Area ↓
L2-Conformal 88.5± 0.4 7.21± 0.35 89.7± 0.6 7.21± 0.35

Direct Gaussian 11.9± 0.09 0.07± 0.31 0.0± 0.0 0.08± 0.02
CF-RNN 97.0± 2.3 3.13± 3.24 97.0± 2.3 5.79± 0.51

CopulaCPTS 91.3± 2.1 1.08± 0.36 90.3± 0.7 4.50± 0.07

Table 6: Comparison with two additional baselines on the particle dataset.

Ellipsoidal conformal inference for Multi-Target Regression We also compare CopulaCPTS
to a newer work, Ellipsoidal CP (Messoudi et al., 2022). The result is presented in Table 7. This
method models the uncertainty region of multi-target outputs as a high-dimensional ellipsoid, by
estimating a covariance matrix on calibration data. We apply EllipsoidalCP on our data by flattening
the time and space dimensions, so the particle simulation, for example, is treated as a multi-target
prediction of dim = 50 = 25 (time steps) × 2 (dims) . We see that the results are comparable in our
experiment. When the correlation is more pronounced such as in the covid experiment, EllipsoidalCP
can capture the correlation better than CopulaCPTS resulting in improved efficiency. On the other
hand, the flexibility of our method allows us to achieve better efficiency than that of EllipsoidalCP. A
notable concern for using EllipsoidalCP is that for higher output dimensions, the determinant of the
covariance matrix can be extremely large (up to 1050 in our experiments) and can result in numerical
instabilities.
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(a) L2 Conformal (b) Direct RNN Gaussian

(c) CF-RNN (d) Copula-RNN

Figure 12: Visualization of on a sample from the Particle dataset’s test set.

Table 7: Performance comparison with EllipsoidalCP in synthetic and real-world datasets with target
confidence 1− α = 0.9.

EllipsoidalCP CopulaCPTS

Particle Sim
(σ = .01)

cov 90.1 ± 0.9 91.3 ± 1.5

area 0.84 ± .005 1.08 ± 0.14

Particle Sim
(σ = .05)

cov 90.8 ± 0.4 90.6 ± 0.6

area 8.76 ± 0.41 5.27 ± 1.02

Drone Sim
(σ = .02)

cov 90.5 ± 0.2 90.0 ± 0.8

area 28.3 ± 3.1 17.12 ± 6.93

COVID-19
Daily Cases

cov 93.3 ± 1.5 90.5 ± 1.6

area 231.5 ± 22.4 408.6 ± 65.8

Argoverse
Trajectory

cov 90.3 ± 0.1 90.2 ± 0.1

area 144.8 ± 8.1 126.8 ± 12.2
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