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Abstract
Target-directed agents utilize self-generated targets, to guide their behaviors for
better generalization. These agents are prone to blindly chasing problematic tar-
gets, resulting in worse generalization and safety catastrophes. We show that
these behaviors can be results of delusions, stemming from improper designs
around training: the agent may naturally come to hold false beliefs about certain
targets. We identify delusions via intuitive examples in controlled environments,
and investigate their causes and mitigations. With the insights, we demonstrate
how we can make agents address delusions preemptively and autonomously. We
validate empirically the effectiveness of the proposed strategies in correcting
delusional behaviors and improving out-of-distribution generalization.

1 Introduction

An important use of Reinforcement Learning (RL) is to learn skills generalizable for application,
after training from limited training tasks. Despite numerous efforts to bridge the “generalization
gap” between performance during training and evaluation, generalization abilities of RL agents
remain largely unsatisfactory. Recent works attributed this to existing agents’ lack of reasoning
abilities to face Out-Of-Distribution (OOD) changes (Di Langosco et al., 2022).
Thus, embracing the concept of intentions, a certain type of decision-time planning agents are
developed, which make use of their more adaptive planning outcomes, which we call targets, to
direct its behaviors to generalize better in novel situations (Alver & Precup, 2022). For instance,
these targets can help decompose a complicated task into small and familiar steps. In this paper,
we use targets to denote (sub-)goals produced by the agents themselves during decision-time plan-
ning. These “target-directed” agents make use of generators to propose candidate targets, as well
as optional estimators to evaluate the favorability of the candidates, to select a target to commit to.
While target-directed agents were supposed to be able to generalize well OOD, they are often ob-
served to be blindly chasing unreachable or unsafe targets (Bengio et al., 2024). This paper focuses
on the investigations of these behaviors, which existing literature has largely neglected. We intro-
duce the readers to a new perspective to show that these agents are likely designed to be delusional.
Unlike hallucinations, delusions are obviously wrong beliefs that an agent holds, and reflect an in-
ability to reject false beliefs (Kiran & Chaudhury, 2009). These in the RL context correspond to false
beliefs that are natural results of an agent’s improper learning process, which limit the agents’ sit-
uational understanding and lead to worse generalization or even safety catastrophes. Delusional
behaviors stem from the incoordination of the generator and the estimator : problematic targets
should not be generated, and even if they were, they should not be favored (Corlett, 2019).
This paper discusses some necessary conditions for agents to address delusions autonomously and
preemptively: 1) incorporation of an estimator, enabling the rejection of problematic targets; 2)
adequate learning rules with which false beliefs about targets can be counteracted and 3) proper
training data that can counteract delusions. With clear diagnoses in the controlled environments,
we identify types of delusions, and investigate proper designs of the training processes. We then
applied our ideas to hindsight relabeling, a fundamental form of target-directed RL training, and
validated experimentally that our strategies led to lower delusion-related errors and reduction in
delusional behaviors, resulting in significant improvements in OOD generalization performance.

∗Source code of experiments available at https://github.com/mila-iqia/delusions
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2 Preliminaries

RL & Problem Setting.: An RL agent takes actions to interact with an environment to
gain rewards. The interaction may be modeled as a Markov Decision Process (MDP) M ≡
⟨S,A, P,R, d, γ⟩, where S and A are the sets of states and actions, P : S × A → Dist(S) is
the state transition function, R : S × A × S → R is the reward function, d : S → Dist(S) is
the initial state distribution, and γ ∈ (0, 1] is the discount factor. An agent needs to learn a pol-
icy π : S → Dist(A) that maximizes the value, i.e. the expected discounted cumulative reward
Eπ,P [

∑T⊥
t=0 γ

tR(St, At, St+1)|S0 ∼ d], where T⊥ denotes the timestep when the episode termi-
nates. Often, environments are partially observable, which means, instead of a state, the agent
receives an observation xt+1, with which the agent needs to infer the state from the history.
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Figure 1: Target-Directed Frame-
work: A generator proposes candidate
target(s). An estimator can be used
to evaluate and select the favorable
among candidates.

Target-Directed RL offers a perspective to better identify
delusions, inspired by delusion-related research in psychi-
atry (Kiran &Chaudhury, 2009). It abstracts existingmeth-
ods that belong to the intersection of decision-time plan-
ning and generalized goal-conditioned RL (Zadem et al.,
2024). The framework emphasizes an algorithmic design,
where a generator proposes candidate targets, and an (op-
tional) estimator evaluates them and select one target for
policies to execute (Dayan & Hinton, 1992). The two com-
ponents correspond to the belief formation and belief eval-
uation systems, respectively, whose incoordination causes
delusions in the human brain, as shown in Fig. 1.
Source-Target Pairs & Hindsight Relabeling Essen-
tially, target-directed agents are trained on “source-target
pairs”, which are organized training data that could let
the agents learn about the relationship between the source
state and the target state. Training target-directed agents
with only contemporary targets (the ones being followed)
can lead to poor performance (Dai et al., 2021), since contemporary targets may be low-quality,
hard to achieve, or lack in diversity (Moro et al., 2022; Davchev et al., 2021). Hindsight Experience
Replay (HER) is proposed to be an experience organization mechanism, transforming collected
experiences into relabeled transitions augmented with alternative targets (Andrychowicz et al.,
2017). HER augments a transition ⟨xt, at, rt+1, xt+1⟩with an additional observation x⊙ (or its en-
coding), the relabeled target, creating a source-target pair, with one decision point for the current
step and another for the relabeled target. Relabeling strategies, which correspond to how x⊙ is
selected, are critical for the performance of HER-trained agents (Shams & Fevens, 2022). Most pop-
ular choices are trajectory-level, meaning x⊙ comes from the same trajectory as xt. These include
“future”, where x⊙ = xt′ with t′ > t, and “episode”, with 0 ≤ t′ ≤ T⊥.
SSM In existing works, failure modes of target-directed agents are often overlooked, possibly due
to a lack of access to ground truths in benchmark environments. To identify the causes, and provide
intuitive examples, we craft a set of fully-observable environments based on the MiniGrid-BabyAI
framework (Chevalier-Boisvert et al., 2018b; Hui et al., 2020), named SwordShieldMonster
(SSM for short). In SSM, the agent moves one step at a time in 4 absolute directions to navigate
fields with episode-terminating, randomly placed lava traps. The density of traps is specified by a
difficulty parameter δ, while guaranteeing a viable path to success, i.e. acquiring a sparse terminal
reward. Agents must collect a sword and a shield, both also randomly placed, before reaching the
“monster” guarding the reward. Reaching the monster prematurely ends the episode. Visualiza-
tions of SSM are in Fig. 2, with examples of delusional behaviors discussed later. The sword and
shield are picked up by moving to their respective grid cells, and agents cannot drop them. Such
design introduces temporary unreachability in the state structure, as non-terminal states are not
fully traversable from one to another. Semantically, this segments SSM states into 4 equivalence
classes, formed by 2 binary indicators: the agent’s possession of the sword and shield. For ex-
ample, ⟨0, 1⟩ denotes sword not acquired, shield acquired”. Despite SSM’s simplicity in terms of
observation space, a similar set of environments much simpler than SSM was already shown to be
a significant challenge for state-of-the-art methods due to the OOD challenges (Zhao et al., 2024).
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3 Delusions in Target-Directed RL

To ultimately enable the agents to address delusions autonomously, we first need to identify where
the problems reside. We first look into the generator to find its contributions to the emergence of
delusional behaviors, and then locate delusions and their causes in the estimator.

D=1?

D=1?

delusional target 
(G.1)

(a) E.1: both planned steps are delusional

D=1?

D=10

delusional target 
(G.2)

(b) E.2 (current state in ⟨1, 1⟩, target in ⟨0, 0⟩): first planned step is delusional

Figure 2: Delusional Behaviors in SSM: The agent location is marked as a red triangle, lava traps’
as orange squares, and monsters’ as green loops. In both cases, the estimators, lacking understanding
of the problematic targets, fail to estimate the reachability of the problematic targets proposed at
decision-time (yellow dots), leading to the delusions that shorter paths to the task goal exist through
the problematic targets.

3.1 Generator’s Role in Delusional Behaviors: Proposing Bad Targets

Most learned generators are subjected to unwanted generalization, thus inevitably generate prob-
lematic targets (unreachable or unsafe), a behavior characterized as hallucination (Jafferjee et al.,
2020). While hallucination can be reduced to a degree, they are generally unavoidable, especially
in OOD scenarios. Despite that not all delusions are caused by problematic targets, generator
hallucinations pose a major safety risk (Liu et al., 2022; Bengio et al., 2024).
Generators are implemented in various ways, thus it is ineffective to enumerate the detailed causes
of problematic target generation. We skip these discussions and directly focus on a categorization
of problematic targets, based on an often neglected perspective - the temporal relationship inside
the source-target pairs. This leads to the following two disjoint types of problematic targets:

3.1.1 Type G.1 - Nonexistent

The first type of problematic targets includes those that do not correspond to valid states in the
task MDP. They can be classified into: 1) Invalid: semantically invalid targets for the task, such
as a target SSM observation generated without the agent’s location; 2) Impossible: semantically
valid but unreachable targets, e.g. an SSM target cell surrounded by lava traps, (such as in Fig. 2 a).
G.1 targets only cause delusional behavior if the estimator produces matching E.1 delusions, to be
discussed later. Imperfectly generated targets corresponding to valid states may not be problematic,
as estimators may filter out imperfections, possibly using a state encoder.

3.1.2 Type G.2 - Temporarily Unreachable

The second type includes targets that correspond to valid states in the task MDP, but cannot be
fulfilled from the current state. Unlike G.1, these G.2 targets are only temporarily inappropriate and
could be perfectly good targets if the agent were in a different state. For the time-dependency, G.2
can be easily overlooked. There are some notable subtypes, such as: 1) Irreversible: targets once
reachable but are now blocked due to a past transition. For instance, after acquiring the sword
in SSM, the agent transitions from class ⟨0, 0⟩ to ⟨1, 0⟩, sealing off access to ⟨0, 0⟩ or ⟨0, 1⟩; 2)
Segregated: targets that can only be reached from specific initial states that are not available to
the agent. For example, an agent spawned in class ⟨1, 0⟩ cannot reach states in ⟨0, 0⟩ or ⟨0, 1⟩.
G.2 targets are often overlooked in literature, since hallucinations are mostly discussed in contexts
without temporal progression, and also they do not exist in all MDPs. G.2 can appear more fre-
quently if we do not avoid training the generators with them. For example, a conditional target
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generator which learns from “episode” will be more likely to produce G.2 targets (compared to
“future”), such as the one in Fig. 2 b). This applies to training beyond HER as well.
Problematic targets such as G.1 and G.2 can cause delusional behaviors of chasing unreachable
targets, if they are favored during decision-time.

3.2 Estimator’s Role in Delusional Behaviors: Bad Evaluation

An estimator evaluates the favorability of proposed targets, based on some relationship between
the current states (sources) and the candidates (targets), which often involve assessing the imple-
mentability of targets, represented as, e.g., distances, etc. Acting as a firewall, the estimator of a
target-directed agent can enable the selection among the candidates, enabling the potential to filter
out hallucinated targets. Agents without estimators, e.g. Director (Hafner et al., 2022), must accept
proposed targets unconditionally, and thus are at significant risk of chasing problematic targets.
Incorporating an estimator only delegates the responsibility of avoiding delusional behavior from
the generator to the estimator, as the estimators’ own delusional beliefs about targets can directly
cause delusional behaviors. A lack of either of the following two necessary aspects results in blind
spots of knowledge about targets, i.e. delusions regarding both delusional or non-delusional targets.
Update Rules: we expect estimators to learn to reject problematic, undesirable or unsafe targets,
by evaluating them with low favorability. However, such expectation may not be achieved, if the
estimators’ update rules do not have the characteristic that (continuously) punishes unachieved /
unsafe targets, when these targets are sampled during training for the estimator to learn from.
Training Data Even with proper update rules, delusions can still arise from the lack of exposure
to data counteracting the estimators’ false beliefs. This is often caused by improper experience
organization mechanisms, responsible for transforming the experienced interactions with envi-
ronments into training data, as shown in Fig. 1. Despite these mechanisms like HER can lead to
more diversity in training data, they are often accompanied by delusions: 1) Certain relabeling
strategies naturally cause delusions. For instance, “future” only relabels with future observations,
thus only exposes a learner to future reachable targets, leaving the estimator to guess when a “past”
target is proposed at decision-time; 2) Trajectory-level relabeling can also be problematic. Short
trajectories, common in many training procedures, only cover limited portions of the state space
and prevent estimators from learning about distant targets, leaving estimators to guess when a dis-
tant target is generated at decision-time. Short trajectories can be a product of experimental design
(initial state distributions, Maximum Episode Lengths, MELs (Erraqabi et al., 2021)) or innate envi-
ronmental characteristics (density of terminal states). It is worth noting that delusions caused by
improper training data (organizing mechanisms) also extend to cases like few-shot generalization.
With these necessary conditions, we identify types of estimator delusions based on the targets they
evaluate. We use the identifiers E.0, E.1, and E.2 for their resulting delusional behaviors.

3.2.1 Type E.0 - Misevaluating Non-Delusional Targets

The standalone type of delusions describes false estimations about non-delusional targets. E.0 delu-
sions can lead to undesirable or delusional targets being favored and thus can hurt generalization.

3.2.2 Type E.1 - Misevaluating G.1 Targets

This type of delusion appears when an estimator misevaluates the favorability of a G.1 target. If
effective learning rules are present, this can still be caused by the lack of necessary training data
(e.g., relabeled transitions with G.1 targets in buffer). In Fig. 2 a), an example is visualized. Note that
the resulting E.1 behaviors, i.e. those chasing selected G.1 targets, can be potentially catastrophic
if the G.1 targets are beyond safety constraints.

3.2.3 Type E.2 - Misevaluating G.2 Targets

Similar to E.1, in Fig. 2 b), an example of delusional behavior is visualized, a result of a combination
of G.2 (temporarily unreachable) and E.2. E.2 behaviors can hurt the agents’ generalization abilities.
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4 Addressing Delusions in Target-Directed Agents

Having identified delusions, taking advantage of the shared reliance on source-target pairs, we
can develop strategies applicable to general target-directed agents coming from various training
procedures. Then, we provide examples on how to materialize such strategies in agents trained
with HER, because of its popularity, its direct association with source-target pairs and the fact that
one can trivially transformHER-based training into losses established over two sampled transitions
from ordinary experience replays.
Without the loss of generality, assume we are dealing with a hypothetical target-directed agent
with a dual-component architecture as in Fig. 1, learning both components exclusively from
hindsight-relabeled transitions. The generator proposes targets corresponding to potentially dis-
tant states, and the estimator learns the favorability of targets by (continuously) punishing the
unachieved or unsafe targets sampled during training. Note that even for methods whose genera-
tors are not trained with HER, our estimator-focused strategies still apply.
As discussed earlier, to address delusions, we need effective update rules and training data. By
assuming this framework, we skip discussing update rules, as they depend on the specific designs
of the chosen target-directed agents. Our emphasis on the training data shines light on the fact
that most existing RL agents only learn from experienced data, while addressing delusions requires
learning from targets that can never be experienced. This corresponds to a discrepancy between
(most existing) target-directed agents’ behaviors and training: at decision-time, targets outside
experience can be proposed; while during training, only experienced targets are learned from.

4.1 Assistive Strategies for Addressing Delusions

We first introduce two ideas to improve training data distributions, which can then be material-
ized as two hindsight relabeling strategies for HER. These ideas seek to expand the support of
the training data distribution, to include those source-target combinations that the agent could
never experience, i.e. those involving G.1 and G.2 targets. Since our proposed ideas do not rely on
additional assumptions, they should be expected to be applicable generally. Additionally, with con-
vergent learning rules (provided by the target-directed framework that these strategies are applied
to), the strategies should also lead to the correct estimation of G.1 and G.2 targets.
Later, we compare the ideas behind all HER strategies, including the existing and the newly pro-
posed, and study how the two groups can be combined to accommodate the learning needs.

4.1.1 “generate”: Let Estimators Learn About Candidates (to be generated)

The first strategy, named “generate”, is to let the estimator learn about targets that could be proposed
at decision time, s.t. it could figure out preemptively that problematic targets are not favorable.
Zhao et al. (2024) identified delusional behaviors resulted from E.1 delusions, in the language of
this paper, and proposed to train the estimator additionally with candidate targets proposed by the
generator. With HER, we can transform this auxiliary loss into a Just-In-Time (JIT) HER strategy
that, as a transition is sampled for training, relabels it with a proposed target by the generator. We
can expect “generate” to be effective for training estimators, as the estimators will get exposed to
all kinds of problematic targets that the generator could offer: When a generator learns to generate
mostly viable targets, “generate” will be primarily effective at dealing with the E.0 and E.1 (G.1s
are unlikely to be eradicated). “generate” requires the use of the generator, thus it incurs additional
computational burden, depending on the complexity of target generation processes.
Adapting “generate” beyond HER should be straightforward: whenever a target is involved during
estimator learning, we may replace it with generated targets. “generate” comes at a cost of extra
computation, to which attention may be required in real-world applications with speed demands.

4.1.2 “pertask”: Let Estimators Learn About Experienced Targets Outside the Episode

The second strategy, namely “pertask”, is to expose the estimator to all targets experienced before, s.t.
it could figure out that some previously achieved targets are unreachable from the current state.
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We materialize “pertask” into an assistive atomic strategy that relabels transitions with observa-
tions from the same training task, sampled across the entire memory. Importantly, “pertask” brings
exposure to the estimator to learn against E.2 delusions and to the long-distance source-target pairs
against E.0 caused by short trajectories. Take SSM as an intuitive example, a current state in situ-
ation ⟨1, 0⟩ in the current episode can now be paired with a target in ⟨0, 1⟩ in another episode, s.t.
the estimator learns such G.2 target is unreachable, as shown in Fig. 4 (in Appendix).
It is worth noting that “pertask” also biases the training data distribution, making the agent spread
out its efforts into learning the source-target pairs potentially far away from each other. Despite
increasing training data diversity, long-distance pairs are less likely to contribute to better decision-
making compared to the shorter-distance in-episode ones offered by “episode”, as shown later.
Adapting “pertask” beyond HER requires algorithmic designs recording all past observations.
Both strategies help the estimator figure out the features shared by problematic targets, s.t. OOD
delusions can also be identified. Note that “pertask” cannot be used to address E.1 delusions. How-
ever, “generate” can be used for E.2 if the generator generates the respective problematic targets.

4.2 Mixtures

Creating amixture of sources of training data increases the diversity of source-target combinations.
For HER specifically, each atomic strategy, enumerated in Tab. 1, exhibits a tradeoff in estimation
accuracy among all sorts of source-target pairs, including short-distance and long-distance ones
involving only valid targets, and those involving problematic targets.
A mixture of more-than-one atomic strategies in certain proportions while relabeling (Nasiriany
et al., 2019; Yang et al., 2021a), can be used to achieve a tradeoff in HER-based training, s.t. the
shortcomings of each atomic strategy are mitigated by the introduction of others.

Strategies Advantages Disadvantages Gist

“episode”
Efficient for estimator
to learn close-proximity
relationships

Can cause G.2 targets when used to train
generators; When used exclusively to train
estimator, 1) cannot handle E.2; 2) prone to E.0 -
cannot learn well from short trajectories

Creates training data
with source-target pairs
sampled from the same
episodes

“future”
Can be used to learn a
conditional generator
with temporal
abstractions

In addition to the shortcomings of “episode”
(those for estimators only), this additionally
causes E.0 when used as the exclusive strategy
for estimator training

Creates training data
with temporally ordered
source-target pairs from
the same episodes

“generate”
Addresses E.1 with data
diversity (also E.2 when
generator produces G.2)

Relies on the generator with additional
computational costs; Potentially low efficiency
in learning non-delusional relationships.

Augments training data
to include candidate
targets proposed at
decision time

“pertask”
Addresses estimator
delusions (E.2 & E.0 for
long-distance pairs)

Can cause extensive G.2 targets if used to train
generators; low efficiency in learning
close-proximity source-target relationships

Augments training data
to include targets that
were experienced

Table 1: Hindsight Relabeling Strategies &The Ideas Behind: “episode” and “future” are widely
used as they increase sample efficiency in non-delusional cases significantly; “generate” and “pertask”,
proposed in this paper, are effective against delusions, useful in specific scenarios.

When the training budget is fixed, i.e., training frequency, batch sizes, etc., stay unchanged, the
mixing proportions of strategies pose a tradeoff to the investment towards different kinds of source-
target pairs, and the resulting accuracies. In experiments, we show that, assisting “episode” with
“generate” and “pertask” often results in better performance in estimator training, striking a bal-
ance between the investment of training budgets in non-delusional and delusional estimations.
Mixtures of multiple relabeling strategies can also be extended to other training procedures, and
can also be implemented by independent training losses based on different sources.

4.3 Hybrid Strategies - A 2-Slotted Approach

While an estimator needs the exposure to problematic targets to counteract delusions, a generator
benefits from learning to generate only useful targets, and should avoid exposure to problematic
targets. Thus, generators and estimators often have conflicting needs during training.
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Each source of training data has its own biases. Atomic hindsight relabeling strategies in HER,
as shown in Tab. 1, can simultaneously help one component while hindering another. Instead of
trying to tradeoff the needs of both components with a single source of training data, we propose a
hybrid (2-slotted) approach, allowing the generator and estimator to receive data tailored to their
needs, through two independent relabeling processes. This combination of 2 slots and mixtures
can produce various hybrid strategies, as demonstrated in Sec. 5.4.
Separating training data for the generator and estimator based on their needs is straightforward
in training procedures beyond HER.
In the Appendix, we provide summaries for the design of mitigation strategies on agents beyond HER.

5 Experiments

To investigate the effectiveness of our strategies against delusions and how they help target-
directed agents achieve better generalization, we implement a combination of environments with
clearly defined delusional cases, as well as methods whose estimators can be easily analyzed. This
leads to our 4 sets of experiments, coming from a combination of 2 environments (one dominantly
haunted by G.1, and another by G.2) and 2 target-directed frameworks. Due to page limit, 3 out of
4 sets of experiments are presented in the Appendix. We summarize those at the end of this section.

5.1 Environments & Settings

For environments, we favor tasks where the delusions are present, dangerous and intuitive to
inspect, for which the introduced SSM offers us clear advantage. Introduction and the results on
another environment are presented in the Appendix.
For each training seed, we sample and preserve 50 training tasks of size 12 × 12 and difficulty
δ = 0.4. All agents are trained for 1.5 × 106 interactions by randomly selecting one of the 50
frozen tasks for each training episode. To speed up training, we make the initial state distributions
span all the non-terminal states in each training task. This change increases risks of E.2, due to the
presence of dense episode-terminating lava traps and relatively short MELs (128 for SSM).

5.2 Evaluative Criteria

We use the following criteria to investigate the changes in agent’s estimations and behaviors:
Estimation Error - E.0, E.1, E.2 & Non-Delusional: At each evaluation point, we solve the
ground truth distances between states and inspect the agents’ estimation errors. The errors are
split based on the source-target pairs, into those involving problematic targets, i.e., E.1 and E.2,
and those involving only valid targets, which includes the case of E.0. The estimation errors show
the internal degree of delusions about targets within the estimators.
Delusional Behavior Frequencies: We also monitor the frequency of a problematic target (G.1
or G.2) being chosen by the agents, as the result of their delusions in decision-time planning. The
frequencies demonstrate how often delusional targets are being favored because of delusions.
Improvement on OOD Generalization Performance: We analyze the changes in agents’ OOD
generalization performance, due to the strategies introduced to handle delusions. The evaluation
tasks are sampled from a gradient of OOD difficulties - 0.25, 0.35, 0.45 and 0.55. For aggregated
OOD performance, such as in Fig. 3 g), we sample 20 tasks from each of the 4 OOD difficulties,
and combine the performance across all 80 episodes, which have a mean difficulty matching the
training tasks. By comparing the resulted performances of atomic strategies with those of the
newly proposed hybrids, we can also have an intuitive grasp of the “delusion gap”, which is the
amount of performance degradation caused by delusions. To maximize difficulty, the initial state is
fixed in each novel evaluation task instance: the agents are not only spawned to be at the furthest
side of the monster, but also in semantic class ⟨0, 0⟩, i.e., without the sword nor the shield in hand.
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5.3 Methods

We seek to demonstrate the generality of our strategies by applying them onto different methods
with very different behaviors. Thus, we adapted the following target-directed methods:
Skipper: generates candidate target states that, together with the current state, form a directed
graph at decision-time. The states act as vertices and the edges are pairwise estimations of cumu-
lative rewards and discounts (interchangeable with distances), under its evolving policy. A target
state is chosen after applying value iteration (VI), i.e. the favorability of targets are defined by the
Q values of the planned paths (Zhao et al., 2024).
LEAP (in Appendix): Instead of VI, LEAP uses an evolutionary algorithm to evolve sequences of
subgoals leading to the task goal, with distances as fitness. The immediate subgoal of the elitest
sequence is chosen to be the target, and used to condition a lower-level policy. LEAP is prone to
delusions, since one problematic subgoal can destroy a whole sequence (Nasiriany et al., 2019).
For both agents, the generators and estimators are trained with HER, allowing easy switching of re-
labeling strategies for comparison. Roughly, both agents employ update rules that can reject wrong
estimations with data exposure (more discussions in Appendix). Targets are acquired by encoding
observations imagined by the generators, where G.1 & G.2 propositions are clearly identified.

5.4 Hindsight Relabeling Strategies

We focus on the following baselines for fairer comparison (excluding bad generator performance):

• “F-E”: “future” for generator, “episode” for estimator;
• “F-P”: “future” for generator, “pertask” for estimator;
• “F-G”: “future” for generator, with 100% chance using “generate” JIT on estimator;

Additionally, the following hybrid strategies are proposed and compared:

* “F-(E+G)”: A hybrid strategymostly for E.1. “future” for generator, “episode” for estimatorwith
50% chance using “generate” JIT, resulting in a half-half mixture of “episode” & “generate”;

* “F-(E+P)”: mostly for E.2. “future” for generator, half “episode” & half “pertask” for estimator;
* “F-(E+P+G)”: for both E.1 & E.2 behaviors. “future” for generator, mixture of 2/3 “episode”
and 1/3 “pertask” for estimator, with 1/4 chance using “generate” JIT, resulting in a mixture
of 50% “episode”, 25% “pertask” and 25% “generate” for estimator;

5.5 Skipper on SSM (Set 1/4)

Generators: We first verify the generator’s contributions to delusional behaviors. For the HER-
trained generators, Fig. 3 a), shows that none among “future”, “episode” and “pertask” could signif-
icantly address G.1 target generation, validating our claims about the challenges of hallucination.
While, Fig. 3 e) indicates that, “future” generates G.2 delusional targets significantly less frequently
than “episode” and “pertask”, as the other two wasted training budget on G.2 targets, especially
“pertask” that brings in more problematic training samples from long distances. For fairer compar-
ison in the estimators, we only compare variants with “future” for the generator training, i.e., “F-*”.

Estimators: Now, we look into the degrees of delusions inside the learned estimators. Exclusive
use of “episode” for estimators resulted in high accuracy in non-delusional cases (cases involving
pairs of non-delusional states, “F-E” in Fig. 3 d)) for source-target pairs of both short and long
distances, but low accuracies in E.1 and E.2 cases (Fig. 3 b) & f)). This shows the source of popu-
larity of these baseline strategies in existing literature; Unsurprisingly, exclusive use of “pertask”
results in significantly worse non-delusional short-distance estimates (“F-P” in d)), yet much better
than “episode” (“F-E”) and “future” (“F-F”) in long-distance cases (indicating that trajectory-level
“future” and “episode” lead to E.0 cases for longer-distance source-target pairs). This is likely be-
cause, without the presence of a backbone strategy such as “episode”, the estimator wastes its
budget learning long-distance non-delusional or E.2 cases; Demonstrating a similar tradeoff, for
“generate” (“F-G”), high accuracy is achieved for E.1 related cases, at the sacrifice of E.2 and non-
delusional cases; All 3 hybrid non-baseline strategies achieve good estimation accuracies in both
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short- and long-distance non-delusional estimation, as shown in d). At the same time, we can
observe particularly significant improvement in accuracy in E.2 delusional estimates in f), by “F-
(E+P)” and “F-(E+P+G)”, the hybrids assisted by “pertask”. These indicate their effectiveness.

(a) G.1 Candidate Ratio (b) E.1 Estimation Errors (c) E.1 Behavior Ratio (d) Non-Delusional Estim. Errors

(e) G.2 Candidate Ratio (f) E.2 Estimation Errors (g) E.2 Behavior Ratio
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(h) Aggregated OOD Perfor-
mance

Figure 3: Skipper on SSM: each mean curve and CI (95% for all subfigures except c) & g), which
used 50% due to the chaotic overlap) bar are established over 20 seed runs. Legends are shared among
b,c,d,f,g,h). a-c) focus on E.1 delusions: a) Evolving ratio of G.1 targets among all candidates at
each target selection, throughout training. Variants are differentiated only with the generator HER
strategies; b) Evolving E.1 delusions measured by L1 error in estimated distance throughout training.
The distances to unreachable targets are clipped to be the maximum values that the estimator could
output (16 in experiments). A more detailed breakdown of this error is in the Appendix; c) The curves
represent the frequencies of choosing G.1 targets whenever a selection of targets is initiated; d) Final
estimation accuracies of non-delusional source-target pairs after training completed, across a spectrum
of ground truth distances. Both estimated and true distances are conditioned on the policies of the last
timestep. Note that a part of the errors comes from E.0; Subfigures e-g) are the E.2-counterparts of a-c);
h) Each data point represents OOD evaluation performance aggregated over 4× 20 newly generated
tasks, with mean difficulty matching training. The decomposed curves are presented in the Appendix.

Behaviors: Finally, we examine how reducing delusions affect the agents’ behaviors. For all com-
pared variants, we can deduce from 3 that generally, less frequent G.2 generation (e)) and lower
E.2 errors (f)) lead to less frequent delusional behaviors in g), which in turn improves the OOD
performance in h); “episode” (“F-E”) showed mediocre OOD performance (h)) for its good esti-
mation accuracy in short-distance non-delusional cases, but was prone to delusional behaviors;
While, despite that “pertask” (“F-P”) showed decent accuracies in longer-distance non-delusional
and E.2 cases (d)& f)), its low accuracy in short-distance non-delusional estimation (d)) devastated
the baseline to the lowest performance in h); Similarly, despite “generate”’s (“F-G”’s) effectiveness
in addressing E.1-behaviors (c)), its resulting bad estimation accuracies in the non-delusional cases
destroyed its OOD performance. In contrast, all 3 hybrids achieve significantly better OOD perfor-
mance in h). Aassisted by “pertask”, “F-(E+P)” and “F-(E+P+G)” performed the best in reducing E.2
delusions (in f)) and consequently addressed the most delusional behaviors (in g)). This indicates
a major presence of E.2 behaviors of Skipper’s failure modes on SSM.

5.6 Summary of Experiments

With the proposed strategies, we saw a reduction in delusions in terms of estimation errors and in
delusional behaviors in both Skipper and LEAP (in Appendix, more prone to delusions), which led
to better OOD generalization performance in 2 sets of environments, posing challenges of G.1 &
G.2, respectively (more results in Appendix). All 4 sets of experiments align in terms of conclusions.
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6 Related Works

Target-Directed Agents. Dual-component frameworks are explicitly investigated with temporal
abstraction for purposes such as path planning (Nasiriany et al., 2019), OOD generalization (Zhao
et al., 2024) and task decomposition (Nair & Finn, 2020; Zadem et al., 2024). Davchev et al. (2021)
employs the similar framework to assist exploration, without using HER for training.
Hindsight Relabeling is crucial for enhancing sample efficiency in goal-directed RL (Andrychow-
icz et al., 2017), as it enables learning from failed experiences (Dai et al., 2021). From the perspective
of source-target pairs, improvements were proposed, including divergence maximization (Zhang
& Stadie, 2022), addressing distributional change (Bai et al., 2023), multistep relabeling strategies
(Yang et al., 2021b), prioritizing rarely-seen achieved transitions (Kuang et al., 2020), etc.
HER’s success was centered on its performance gains via sample efficiency (in non-delusional
cases), aroundwhichmost follow-upworks revolved as well. In reality, performance deficiencies of
target-directed frameworks can be resulted frommultiple factors, one of which is delusions. Shams
& Fevens (2022) studied the performance of atomic strategies from the view of sample efficiency,
without looking into the failure modes. Deshpande et al. (2018) detailed experimental techniques
in sparse reward settings using “future”. In (Yang et al., 2021a), a mixture strategy similar to “gen-
erate” improved non-delusional estimations, though the impact on delusions was not explored,
possibly because of the lack of an appropriate environment. Nasiriany et al. (2019) used a mixture
of up to 3 atomic strategies for producing effective training data in a single-task setting, while the
contributions of the mixture to addressing delusions were not investigated. It is widely known
that performance of existing HER-trained agents are often limited by their exclusive reliance on
“future” or “episode” (He et al., 2020), whose delusions this paper intends to address.
Delusions in RL can stem from other improper designs. Lu et al. (2018) identified delusions caused
by the limitations of function approximators for greedy policies in model-free RL; Often accompa-
nying hallucinations, delusions can arise in non-target-directed frameworks as well. In an offline
planning framework such as Dyna, hallucinations can irreversibly destabilize value estimations
(Jafferjee et al., 2020). Di Langosco et al. (2022) classified goal misgeneralization, a class of delu-
sional behaviors with which an agent competently pursues an undesired target leading in novel
test situations. Zhao et al. (2024) gave first examples of delusional behaviors caused by improper
hindsight relabeling. The perspective of delusions can often be overlooked because of the lack of
estimators in target-directed methods, as discussions regarding hallucinations get magnified.

7 Empirical Guidelines

The following steps can be applied to target-directed methods (applicable also beyond HER):

1. Incorporate an estimator to enable rejection of unwanted targets;
2. Use proper update rules and try to maximize the diversity of the training data (against E.0);
3. Inspect the candidate targets if possible, as their low quality may indicate higher E.1 risks,

which can be mitigated with “generate”;
4. Analyze the state structure of the target tasks and identify temporary unreachabilities. These

E.2 risks may indicate the effectiveness of “pertask”.

8 Conclusion & Future Work

We investigated the causes of delusional behaviors, a shared failure mode of target-directed agents.
When applying our mitigation strategies on HER, the resulting hybrid hindsight relabeling strate-
gies flexibly satisfy the needs of the generator and the estimator, granting the agents the ability to
address delusions autonomously and preemptively avoid delusional behaviors.
It is likely that we did not exhaustively identify all potential types of delusions in target-directed
agents. We wish to continue the investigation into unidentified causes of failure modes and design
more useful skill-learning agents.
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9 Reproducibility Statement

The results presented in the experiments are fully-reproducible with the submitted source code.
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new trajectory to be labeled:

old trajectory sampled by “pertask”:

a relabeled transition (source --• target pair) 
that helps estimators understand that it’s 
impossible to go from <1, 0> to <0, 1>

Figure 4: An Example of How “pertask” Addresses E.2: The new trajectory contains the events of ac-
quiring the sword first and the shield later. While the old trajectory sampled by “pertask” acquired the shield
first and then the sword. The acquisition of swords and shields are marked with icons on the corresponding
states. when relabeling a transition in the new trajectory over timestep t to t + 1 (in ⟨1, 0⟩), a target obser-
vation in an existing trajectory (in ⟨0, 1⟩) can be paired to create a source-target pair that can make an agent
realize the pair’s un-implementability, therefore reducing E.2 delusions about the G.2 target.

A Summaries

For better understanding of the contributions of this paper, we provide some brief summaries about
the identified delusions / delusional behaviors and the corresponding mitigation strategies. For
generator delusions, please check Tab. 2. For estimator delusions, please check Tab. 3. We hope
that these could inspire the application on more target-directed methods.

Types Causes Solutions

G.1
The use of neural networks in the
generator architecture makes G.1
targets almost inevitable

Can cause G.2 targets when used to
train generators; No general solution
for this type

G.2
Problematic training procedures that
did not isolate the generators from
temporarily unreachable targets

Isolate generator from learning
temporarily unreachable states

Table 2: Causes & Solutions for Generator Delusions

Causes Explanations Solutions

Inappropriate
Update Rules

Some update rules do not lead to
punishment of the favorability of
unachieved targets

Adjust the learning rules to
continuously punish the unachieved
targets

Bad Training Data
Distributions

the collected experience was not
organized in a way that produced
sufficiently diverse source-target
distributions to make the agent realize,
via appropriate update rules, that
wrong beliefs are wrong

Augment the training data with
source-target pairs involving targets
that could participate in planning, but
will never be experienced, i.e. G.1 and
G.2

Table 3: Causes & Solutions for Estimator Delusions

B Experiments

B.1 Skipper on SSM (Set 1 / 4, cont.)

B.1.1 Breakdown of E.1 errors

Skipper utilizes policy evaluation based on Temporal Difference updates to learn the cumulative
rewards and discounts along the way from one state to another. These recursive update rules based
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on state-action (Q) values enable the effective learning of estimates conditioned on the evolving
policy within the trust regions. However, they are constrained in the sense that they can only learn
the unfavorability of hallucinated targets from non-delusional states, not the other way around, if
the considerate training procedure is present to provide samples against the delusions. This is
particularly problematic for cases involving G.1 targets, but not those with G.2, since there exist
source-target pairs in ER where the generated G.2 targets serve as sources.
Fig. 5 provides a breakdown of the E.1 errors, into cases depending on if the G.1 targets serve as
the source or the target in the corresponding relationship estimation on the source-target pairs.
From the accuracy gaps between pairs of variants in each case, we can see that, with our proposed
hybrid strategies, Skipper can effectively deal with case e), therefore leading to better accuracy in
case c) and a).

(a) Overall (b) from G.1 only (c) to G.1 only (d) G.1 to non-delusional (e) non-delusional to G.1

Figure 5: Breakdown of E.1 Errors of Skipper on SSM: eachmean curve and CI (95%) bar are over
20 seed runs. In each subfigure, the evolution of L1 errors against the ground truth is presented,
with each data point computed based on the evolving policy.

B.1.2 Breakdown of Task Performance

In Fig. 6, we present the evolution of Skipper variants’ performance on the training tasks as well
as the OOD evaluation tasks throughout the training process. Note that Fig. 3 h) is an aggregation
of performances in Fig. 6 b-e).
From the performance advantages of the hybrid variants (in both training and evaluation tasks),
we can see that learning to address delusions during training brings better understanding for novel
situations posed in OOD tasks.

(a) training, δ = 0.4 (b) OOD eval., δ = 0.25 (c) OOD eval., δ = 0.35 (d) OOD eval., δ = 0.45 (e) OOD eval., δ = 0.55

Figure 6: Evolution of Performances of Skipper Variants on SSM: each mean curve and CI
(95%) bar are over 20 seed runs.

B.2 Skipper on RDS (Set 2 / 4)

The second environment we employ is RandDistShift, abbreviated as RDS. RDSwas originally
proposed in Zhao et al. (2021) as a variant of the counterparts in the MiniGrid Baby-AI platform
(Chevalier-Boisvert et al., 2018a;b; Hui et al., 2020) and then later used as the experimental back-
bone in Zhao et al. (2024). We can view RDS as a simpler version of SSM, where everything happens
in semantic class ⟨1, 1⟩, i.e., agents always spawn with the sword and the shield in hand, thus can
acquire the terminal sparse reward by simply navigating to the goal. RDS instances thus have
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smaller state spaces than its SSM counterparts. The most important difference, in the views of this
paper, is that RDS removed the challenges introduced by temporary unreachabilities. This means
that G.2 and E.2 are no longer relevant, shifting the dominance towards G.1 + E.1 combination.
Using RDS not only showcase the performance of the proposed strategies on a controlled environ-
ment with G.1 + E.1 dominance, contrasting the G.2 + E.2 dominance of SSM, it also can be used to
validate the performance of our adapted agents, on an environment where previous benchmarks
exist.
We present Skipper’s evaluative curves in Fig. 7.

(a) G.1 Candidate Ratio (b) E.1 Estimation Errors (c) G.1 + E.1 Behavior Ratio (d) Non-Delusional Estim.
Errors

(e) Aggregated OOD Per-
formance

Figure 7: Skipper on RDS: each mean curve and CI (95%) bar are over 20 seed runs. Subfigures b-
e) share the same legends. Subfigures a-c) focus on G.1 & E.1 related delusions: a) Evolving ratio
of G.1 among targets at each candidate selection throughout the training process is presented;
b) E.1 delusions in terms of L1 error in estimated distance is visualized, throughout the training
process. c) The curves represent the frequencies of choosing G.1 targets whenever a selection of
targets is initiated; d) The final estimation accuracies of non-delusional source-target pairs after
training completed, across a spectrum of ground truth distances. In this figure, both distances
(estimation and ground truth) are conditioned on the final version of the evolving policies; The
state structure of RDS does not permit G.2 targets and the corresponding E.2 delusions; e) Each
data point represents OOD evaluation performance aggregated over 4×20 newly generated tasks,
with mean difficulty matching the training tasks.

From Fig. 7 e), we can see that, probably because of the lack of dominant G.2 + E.2 cases, the
OOD performance of even the most basic “episode” variant is high, despite the hybrid variants
perform even better. “F-(E+G)”, i.e. the hybrid with the most investment in “generate” (aiming at
E.1), performs the best both in terms of E.1 delusion suppression (b)), and OOD generalization (e)),
as expected. In RDS, the short-distance non-delusional estimation accuracy as well as the OOD
performance of “F-P” are not as bad as in SSM. This is possibly due to the fact that RDS has much
smaller state spaces, where “episode” and “pertask” produce more similar results (than in large
state spaces of SSM).

B.2.1 Breakdown of E.1 Errors

Similarly, for RDS, we provide a breakdown of E.1 errors for the Skipper variants in Fig. 8. Similar
observations can be made as for SSM.

(a) Overall (b) from G.1 only (c) to G.1 only (d) G.1 to non-delusional (e) non-delusional to G.1

Figure 8: Breakdown of E.1 Errors of Skipper on RDS: eachmean curve and CI (95%) bar are over
20 seed runs. In each subfigure, the evolution of L1 errors against the ground truth is presented,
with each data point computed based on the evolving policy.
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B.2.2 Breakdown of Task Performance

In Fig. 9, we present the evolution of Skipper variants’ performance on the training tasks as well
as the OOD evaluation tasks throughout the training process. Note that Fig. 7 e) is an aggregation
of performances in Fig. 9 b-e).

(a) training, δ = 0.4 (b) OOD evaluation, δ =
0.25

(c) OOD evaluation, δ =
0.35

(d) OOD evaluation, δ =
0.45

(e) OOD evaluation, δ =
0.55

Figure 9: Evolution of Performances of Skipper Variants on RDS: each mean curve and CI
(95%) bar are over 20 seed runs.

B.3 LEAP on SSM (Set 3 / 4)

The third set of experiments, similar to the previous two, is a comparative study for LEAP vari-
ants’ performance on SSM. LEAP is different from Skipper, as its decision-time planning process
constructs a singular sequence of subgoals leading to the task goal. Due to a lack of backup sub-
goals, even if one among them is problematic, the whole resulting plan would be delusional, mak-
ing LEAP much more prone to failures compared to Skipper, where candidate targets can still be
reused if deviation from the original plan occurred.
SSM has a relatively large state space that requires more intermediate subgoals for LEAP’s plans.
However, an increment of the number of subgoals also dramatically increases the frequencies of
delusional plans, damaging the agents’ performance. Because of this, our experimental results of
LEAP on SSM with size 12 × 12 became difficult to analyze because of the rampant failures. We
chose instead to present the results on SSM with size 8× 8 here.

(a) G.1 Ratio in Planned
Sequence

(b) G.2 Ratio in Planned Se-
quence

(c) Delusional Plan Ratio
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Figure 10: LEAP on SSM: each mean curve and CI (95%) bar are over 20 seed runs. a) Ratio of G.1
subgoals among the evolved sequence; b) Ratio of G.2 subgoals in the evolved sequence; c) Ratio
of evolved sequences containing at least one G.1 or G.2 target; d) The final estimation accuracies
of non-delusional source-target pairs after training completed, across a spectrum of ground truth
distances. In this figure, both distances (estimation and ground truth) are conditioned on the final
version of the evolving policies; e) Each data point represents OOD evaluation performance ag-
gregated over 4× 20 newly generated tasks, with mean difficulty matching the training tasks.

For LEAP, we use some different metrics to analyze the effectiveness of the proposed strategies
in addressing delusions. This is because, if LEAP’s estimator successfully addressed delusions and
learned not to favor the problematic targets (G.1 and G.2), then they will not be selected in the
evolved elitest sequence of subgoals. This makes it inconvenient for us to use the distance error

17



in the delusional source-target pairs during decision-time as a metric to analyze the reduction of
delusional estimates, because of their growing scarcity.
As we can see from Fig. 10, similar arguments about the effectiveness of the proposed hybrid
strategies can be made, to those with Skipper. The hybrids with more investment in addressing
E.1, i.e., “F-(E+G)” and “F-(E+P+G)”, exhibit the lowest E.1 errors (a)). Similarly, “F-(E+P)” and “F-
(E+P+G)” achieve the lowest E.2 errors (b)). In e), we see that the 3 hybrid variants achieve better
OOD performance than the baseline “F-E”. Specifically, “F-(E+G)” achieved the best performance.
This is likely because that it induced the highest sample efficiency in terms of learning the esti-
mations between non-delusional subgoals, as shown in d). Assistive strategies such as “generate”
and “pertask” do not only induce problematic targets, but also non-delusional ones that can shift
the training distribution towards higher sample efficiencies in the traditional sense.

B.3.1 Breakdown of Task Performance

In Fig. 11, we present the evolution of LEAP variants’ performance on the training tasks as well as
the OOD evaluation tasks throughout the training process. Note that Fig. 10 e) is an aggregation
of performances in Fig. 11 b-e).

(a) training, δ = 0.4 (b) OOD evaluation, δ =
0.25

(c) OOD evaluation, δ =
0.35

(d) OOD evaluation, δ =
0.45

(e) OOD evaluation, δ =
0.55

Figure 11: Evolution of Performances of LEAPVariants on SSM: eachmean curve and CI (95%)
bar are over 20 seed runs.

B.4 LEAP on RDS (Set 4 / 4)

The last set of experiments focus on LEAP’s performance on RDS. Similarly, we present the eval-
uative metrics in Fig. 12.

(a) G.1 Ratio in Planned Sequence (b) Delusional Plan Ratio
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mance

Figure 12: LEAP on RDS: each mean curve and CI (95%) bar are over 20 seed runs. a) Ratio of
G.1 subgoals among the evolved sequence; b) Ratio of evolved sequences containing at least one
G.1 target; c) The final estimation accuracies of non-delusional source-target pairs after training
completed, across a spectrum of ground truth distances. In this figure, both distances (estimation
and ground truth) are conditioned on the final version of the evolving policies; d) Each data point
represents OOD evaluation performance aggregated over 4×20 newly generated tasks, with mean
difficulty matching the training tasks.
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The conclusions are similar, despite that the OOD performance gain by addressing delusions is
significantly higher than in SSM.

B.4.1 Breakdown of Task Performance

In Fig. 13, we present the evolution of LEAP variants’ performance on the training tasks as well as
the OOD evaluation tasks throughout the training process. Note that Fig. 12 d) is an aggregation
of performances in Fig. 13 b-e).

(a) training, δ = 0.4 (b) OOD evaluation, δ =
0.25

(c) OOD evaluation, δ =
0.35

(d) OOD evaluation, δ =
0.45

(e) OOD evaluation, δ =
0.55

Figure 13: Evolution of Performances of LEAPVariants on SSM: eachmean curve and CI (95%)
bar are over 20 seed runs.

B.5 Discussions & More Details of “generate” & “pertask”
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Figure 14: Representative Atom Hindsight Relabeling Strategies & Newly Proposed Ones: The first
two strategies, “future” and “episode”, are widely used as they create relabeled transitions that help estimators
efficiently handle non-delusional planning. The last two, “generate” and “pertask”, are effective at addressing
delusions, making them useful in specific scenarios. Atomic hindsight strategies from the first group can
serve as backbones for mixture strategies, complemented by the second group to address delusions.

B.5.1 Implementation pf “pertask”

“pertask” takes the advantage for the fact that training is done on limited number of fixed task
instances. We give each task a unique task identifier. At relabeling time, “pertask” samples ob-
servations among all the transitions marked with the same identifier as the current training task
instance. This can be trivially implemented with individual auxiliary ERs that store only the expe-
rienced states with memory-efficient pointers to the buffered xt’s in the main HER.

B.5.2 Discussions

“generate” not only creates targets with G.1 targets, but also generate valid targets that should
resemble the distribution it was trained on. Thus, it is not clear if mixing in data augmented by
“generate” would result in lower sample efficiency in the estimation cases involving valid targets.
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Take SSM as an example, “generate” seemed to have detrimental effect to non-delusional cases
when applied to Skipper, while it greatly boosted accuracies for LEAP overall.
In some experiments, “pertask” demonstrated clear effectiveness in addressing E.1 as well, despite
that it was not designed to. This is likely because of some generalization effects of the estimator,
which were trained with additional data that boosted data diversity.
In some environments, we expect that “pertask” could also be used (for mixtures of the generator)
to learn to generate longer-distance targets from the current states if the generator has trouble
doing so with “future”, with the accompanied risks of lower efficiency and G.2 hallucinations.

C Implementation Details for Experiments

C.1 Skipper

Our adaptation of Skipper over the original implementation1 in Zhao et al. (2024) is minimal. We
have additionally added two simple vertex pruning procedures before the vertex pruning based
on k-medoids. These two procedures include: 1) prune vertices that are duplicated, and 2) prune
vertices that cannot be reached from the current state with the estimated connectivity.
We implemented a version of generator that can reliably handle both RDS and SSM with the same
architecture. Please consult models.py in the submitted source code for its detailed architecture.
For SSM instances, since the state spaces are 4-times bigger than those of RDS, we ask that Skipper
generate twice the number of candidates (both before and after pruning) for the proxy problems.
All other architectures and hyperparameters are identical to the original implementation.
For better adaptability during evaluation and faster training, Skipper variants in this paper keeps
the constructed proxy problem for the whole episode during training and replanning only triggers
a re-selection, while during evaluation, the proxy problems are always erased and re-constructed.
The quality of our adaptation of the original implementation can be assured by the fact the “F-E”
variant’s performance matches the original on RDS.

C.2 LEAP

C.2.1 Adaptation for Discrete Action Spaces

LEAP’s training involves two pretraining stages, that are, generator pretraining and distance esti-
mator training.
We improved upon the adopted discrete-action space compatible implementation of LEAP (Nasiri-
any et al., 2019) from Zhao et al. (2024). We gave LEAP additional flexibility to use fewer subgoals
along the way to the task goal if necessary. Also, we improved upon the Cross-Entropy Method
(CEM), such that elite sequences would be kept intact in the next population during the optimiza-
tion process. We increased the base population size of each generation to 512 and lengthened the
number of iterations to 10.
For RDS 12 × 12 and SSM 8 × 8, at most 3 subgoals are used in each planned path. We find that
employing more subgoals greatly increases the burden of CEM and lower the quality of the evolved
subgoal sequences, leading to bad performance that cannot be effectively analyzed.
We used the same generator architecture and hyperparameters as in Skipper. All other architec-
tures and hyperparameters remain unchanged.
Similarly for LEAP, for better adaptability during evaluation, the planned sequences of subgoals
are always reconstructed whenever planning is triggered. While in training, the sequence is reused
and only a subgoal selection is conducted.
The quality of our adaptation of the original implementation can be assured by the fact the “F-E”
variant’s performance matches the original on RDS.

1https://github.com/mila-iqia/Skipper
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