
I Can’t Believe It’s Not Better Workshop @ ICLR 2025

DO NOT OVERESTIMATE BLACK-BOX ATTACKS

Han Wu
Department of Physics and Astronomy
University of Southampton
{han.wu}@soton.ac.uk

Sareh Rowlands & Johan Wahlström
Department of Computer Science
University of Exeter
{s.rowlands, j.wahlstrom}@exeter.ac.uk

ABSTRACT

As cloud computing becomes pervasive, deep learning models are deployed on
cloud servers and then provided as APIs to end users. However, black-box ad-
versarial attacks can fool image classification models without access to model
structure and weights. Recent studies have reported attack success rates of over
95% with fewer than 1,000 queries. Then the question arises: whether black-
box attacks have become a real threat against cloud APIs? To shed some light
on this, our research indicates that black-box attacks against cloud APIs are not
as effective as proposed in research papers due to several common mistakes that
overestimate the efficiency of black-box attacks. To avoid similar mistakes, we
conduct black-box attacks directly on cloud APIs rather than local models.

1 INTRODUCTION

Image classification models are widely used in real-world applications , often achieving top-5 accu-
racy exceeding 90%. Cloud-based image classification services, such as Google Cloud Vision, offer
pre-trained models as APIs, allowing users to classify images by sending requests to cloud servers.
This is useful for IoT devices that lack the computational power to run deep learning models locally.

However, image classification cloud services are vulnerable to black-box adversarial attacks, which
generate imperceptible perturbations on input images to mislead classification models. Although
prior research has shown that black-box attacks can achieve higher than 95% success rates with only
1,000 queries without access to model structure and weights (Bhambri et al., 2019), most research
generates adversarial images offline on local models (see Fig.1) rather than online on cloud APIs
(see Fig. 2), thereby inadvertently exploits information that is unavailable for cloud-based black-box
models. The actual efficiency of online black-box attacks against cloud services remains unclear.

Black-box attacks generate adversarial images by sending queries to the target model. Implementing
online black-box attacks is more challenging because cloud APIs generally have slower response
times compared to offline attacks against local models. While local models with GPU acceleration
can respond to more than 100 queries per second, the typical response time from an API server
is 0.5 - 2s per query. Online black-box attacks pose a limited practical threat because generating
multiple adversarial images could take several hours. Therefore, online attacks must be both time-
efficient and can achieve high success rates. However, previous research often underestimates the
time consumption and overestimates the attack success rate.

Figure 1: Most prior research tests black-box attacks on local models, where the adversarial per-
turbation is applied after pre-processing and just before the input is fed into deep learning models,
assuming access to the input of a black-box model.
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Figure 2: We initiate black-box attacks directly against cloud APIs, applying the adversarial pertur-
bation before image encoding and pre-processing. This approach assumes no access to the internal
workflow of cloud-based black-box models.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

Given an input image x and the true label y, the objective of the adversary is to add a small perturba-
tion δ to the original image, and generate an adversarial image x′ = x + δ that can fool a black-box
image classifier C(x), such that C(x′) ̸= C(x). Typically, the perturbation δ is bounded by the l2
or l∞ norm with user-defined constants ϵ (Bhambri et al., 2019).

The adversary does not know the model structure and weights. Further, the attacker has limited
access to model outputs for cloud-based black-box models. For example, in the partial-information
setting, the adversary only has access to the prediction probabilities of the top k classes {y1, ..., yk}.
In the label-only setting, the adversary can only access the prediction label without any knowledge
of prediction probabilities (Ilyas et al., 2018a).

2.2 COMMON MISTAKES

We observed that some previous research made similar mistakes in the query process, which pro-
vided their attacks with an unfair advantage. This advantage led these methods to outperform state-
of-the-art black-box attacks, but it was based on the assumption of accessing information that is not
available in black-box attacks. These issues are present in several widely-used black-box attacks,
including Bandits Attack (Ilyas et al., 2018a;b), SimBA Attack (Guo et al., 2019), Parsimonious At-
tack (Moon et al., 2019), Square Attack (Andriushchenko et al., 2020) and some recently published
research (Liu et al., 2024; Park et al., 2024; Ran et al., 2025). It is important to raise awareness
within the research community and prevent similar mistakes in future publications.

2.2.1 IMAGE ENCODING

In real-world scenarios, images are encoded before being sent to cloud services to reduce the amount
of data transmitted and save bandwidth. However, prior research, as mentioned above, assumes that
perturbations can be added directly to the raw input of deep neural networks (see Fig. 1).

Cloud services such as Google Cloud Vision and Imagga accept raw binary and base64-encoded
JPEG images as input. Since JPEG compression is lossy, it may discard some of the perturbations
during encoding, thereby reducing the success rate of attacks Dziugaite et al. (2016). Therefore,
evaluating black-box attacks on local models without considering image encoding could lead to an
overestimation of their effectiveness against real-world cloud APIs.

2.2.2 IMAGE PRE-PROCESSING

Papers listed above apply perturbations after image resizing, implicitly assuming knowledge of the
input shape of the black-box model. Moreover, note that original input images are typically larger
than the model input shape. Resizing high-resolution images to a lower resolution reduces the
sampling space, thereby making it less computationally intensive to generate perturbations.

Besides, image classification cloud services do not accept images with invalid pixel values (pixel
value > 255 or < 0). For example, the Bandits Attack does not clip the pixel value of adversarial
images, and thus overestimate the attack success rate by sending invalid pixel values to the model.
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2.3 POSSIBLE CAUSES

Most prior research tests their attacks on local models rather than on online models because it is both
faster and less costly. Sending queries to real-world cloud APIs typically costs around $1 for every
1,000 requests (for example, using Google Cloud Vision). In other words, an experiment attacking
1,000 images and maintaining a query budget of 1,000 queries per image would require 1,000,000
queries and cost $1000.

As a result, most prior research evaluates their attacks on local models and relies on themselves to
restrain access to extra model information. However, either intentionally or unintentionally, they
exploit extra information that enhances their attacks for the following reasons:

• The PyTorch prediction function only accepts input images x as an array with the same
shape. Thus, it is tempting to resize all input images to match the model’s required input
size, thereby exploiting extra information about the model input shape.

• The PyTorch prediction function accepts input images as floating-point numbers and does
not produce an error even if the input image x contains negative values. Consequently, prior
research, without considering image encoding, can sent invalid pixel values to the model.

2.4 SOLUTIONS

To avoid these common mistakes, we designed an open-source image classification cloud service,
named DeepAPI (see Appendix A), to ensure adversarial perturbations are generated and applied
before image encoding and pre-processing.

Additionally, we provide an open-source Black-box Adversarial Toolbox that demonstrates how to
conduct online black-box attacks against cloud APIs (see Appendix B), with a focus on practical
considerations in real-world scenarios.

3 EXPERIMENTAL RESULTS

3.1 BLACK-BOX ADVERSARIAL ATTACKS

Black-box attacks aim to deceive deep-learning models without having access to their internal struc-
ture or weights. We evaluated two common types of black-box attacks: Gradient Estimation and
Local Search methods, which have been widely studied in the literature (Bhambri et al., 2019; Wang
et al., 2022).

Local Search Methods: The task of generating adversarial inputs can be approached as a problem
of selecting what pixels to attack. Thus, we can use existing local search methods to search for
combinations of pixels to be perturbed. One simple, yet effective, baseline attack that use this idea
is the Simple Black-box Attack (SimBA) (Guo et al., 2019). With SimBA, a vector is randomly
sampled from a predefined orthonormal basis and then added or subtracted from the image.

To improve sample efficiency, Andriushchenko et al. proposed the Square Attack (Andriushchenko
et al., 2020). This attack initializes the perturbation using vertical stripes because CNNs are sensitive
to high-frequency perturbations (Yin et al., 2019), and then generates square-shaped perturbations
at random locations to deviate model predictions.

Gradient Estimation Methods: Inspired by white-box attacks that use gradients to generate ad-
versarial perturbations (Goodfellow et al., 2015) (Madry et al., 2017), gradient estimation methods
estimate gradients through queries, and then use these estimated gradients to construct adversarial
perturbations. To estimate gradients, Chen et al. used the finite-differences method to compute the
directional derivative at a local point (Chen et al., 2017). To improve query efficiency, Ilyas et al.
proposed a natural evolutionary strategy (NES) based method (Wierstra et al., 2014) to approxi-
mate gradients, and proved that the standard least-squares estimator is an optimal solution to the
gradient-estimation problem (Ilyas et al., 2018a).

In our experiments, we evaluated the Bandits Attack, which further improved the classifier by using
priors on the gradient distribution (Ilyas et al., 2018b), thereby exploiting the fact that the gradients
at the current and previous steps are highly correlated.
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3.2 ATTACKING LOCAL MODEL AND CLOUD APIS

We evaluated three black-box attacks, SimBA, Square Attack, and Bandits Attack, using 1,000
images, each belonging to a unique class in ImageNet. For all attacks, we applied perturbations with
a consistent strength of ϵ = 0.05 under the L∞ norm1. Our experimental results reveal that these
attacks achieve significantly lower success rates when attacking cloud APIs.

The SimBA Attack, a baseline method, achieves comparable low attack success rates and requires
similar number of queries for both local models and cloud APIs (see Figs. 3a and 4a). However, it
is important to note that the success rate of SimBA is relatively low (approximately 5%), and most
attacks exhaust the full query budget (1,000 queries).

Square Attack, a local search method, applies perturbations to high-resolution images when attack-
ing cloud APIs, resulting in a a lower success rate (Fig. 3b) and requires more queries (Fig. 4b).
Due to the absence of image resizing, it is more challenging to find adversarial examples in a larger
space, and thus the attack against cloud APIs is less effective Guo et al. (2017).

Bandits Attack, a gradient estimation method, struggles to estimate gradients accurately before
image resizing. Bilinear interpolation creates low-resolution images by subsampling from high-
resolution inputs, resulting in zero gradients at unsampled points, which makes it difficult to pro-
duce valid estimates. As a result, the attack success rate against cloud APIs is significantly lower
compared to attacks on local models (Figs. 3c and 4c).

(a) SimBA (Baseline) (b) Square Attack (Local Search) (c) Bandits Attack (Gradients)

Figure 3: The attack success rate of attacking local models and cloud APIs.

(a) SimBA (Baseline) (b) Square Attack (Local Search) (c) Bandits Attack (Gradients)

Figure 4: The average number of queries of attacking local models and cloud APIs.

4 CONCLUSION

This paper aims to investigate if black-box adversarial attacks have become a practical threat against
image classification cloud services. We identify some common mistakes in prior research that leads
to an overestimation of the efficiency of black-box attacks.

Additionally, we contribute to the research community by open-sourcing our image classification
cloud service, DeepAPI, and Black-box Adversarial Toolbox to facilitate future research on practical
black-box attacks against cloud APIs.

1Our source code: https://github.com/wuhanstudio/adversarial-classification/.
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A DEEPAPI

To facilitate future research on black-box attacks that attack cloud APIs rather than local models, we
designed DeepAPI 2, an open-source image classification cloud service (see Fig. 5) that supports:

• The three most commonly evaluated classification models in existing research on black-box
attacks: VGG16, ResNet50, and Inceptionv3 provided by Keras model zoo.

• Both soft labels (with probabilities) and hard labels (no probabilities) for label-only setting.
• Top k predictions (k ∈ {1, 3, 5, 10}) for partial-information setting.

Figure 5: DeepAPI provides both web interface and APIs for research on black-box attacks.

B BLACK-BOX ADVERSARIAL TOOLBOX

To demonstrate how to implement online black-box attacks against cloud APIs, we open-source the
Black-box Adversarial Toolbox3. To further enhance the practicality of existing black-box attacks,
we propose horizontal and vertical distribution strategies (see Fig. 6), inspired by the horizontal and
vertical scaling of cloud resources (Millnert & Eker, 2020).

Horizontal Distribution concurrently sends queries for different images within the same iteration,
thereby allowing the generation of multiple adversarial examples concurrently. This can be achieved
without altering existing black-box attack methods. Since horizontal distribution does not require
significant modifications to the original attack method, we can apply horizontal distribution by im-
plementing a distributed query function that sends concurrent requests to cloud APIs.

Vertical Distribution, on the other hand, sends multiple concurrent queries for the same image,
thereby accelerating the attack for that particular image. Existing black-box attack methods need to
be redesigned to decouple the queries across iterations.

In summary, horizontal distribution achieves concurrent attacks against multiple images, while ver-
tical distribution speeds up attacks on a single image.

Figure 6: The difference between horizontal and vertical distribution.

2The source code of DeepAPI is available on Github: https://github.com/wuhanstudio/
DeepAPI/.

3The source code of the Black-box Adversarial Toolbox is available on GitHub: https://github.
com/wuhanstudio/blackbox-adversarial-toolbox.

6

https://github.com/wuhanstudio/DeepAPI/
https://github.com/wuhanstudio/DeepAPI/
https://github.com/wuhanstudio/blackbox-adversarial-toolbox
https://github.com/wuhanstudio/blackbox-adversarial-toolbox

	Introduction
	Methodology
	Problem Formulation
	Common Mistakes
	Image Encoding
	Image Pre-processing

	Possible Causes
	Solutions

	Experimental Results
	Black-box Adversarial Attacks
	Attacking Local Model and Cloud APIs

	Conclusion
	DeepAPI
	Black-box Adversarial Toolbox

