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Abstract

Diffusion Models have emerged as powerful generative mod-
els for high-quality image synthesis, with many subsequent
image editing techniques based on them. However, the ease
of text-based image editing introduces significant risks, such
as malicious editing for scams or intellectual property in-
fringement. Previous works have attempted to safeguard im-
ages from diffusion-based editing by adding imperceptible
perturbations. These methods are costly and specifically tar-
get prevalent Latent Diffusion Models (LDMs), while Pixel-
domain Diffusion Models (PDMs) remain largely unexplored
and robust against such attacks. Our work addresses this gap
by proposing a novel attack framework, AtkPDM. AtkPDM
is mainly composed of a feature representation attacking loss
that exploits vulnerabilities in denoising UNets and a latent
optimization strategy to enhance the naturalness of adversar-
ial images. Extensive experiments demonstrate the effective-
ness of our approach in attacking dominant PDM-based edit-
ing methods (e.g., SDEdit) while maintaining reasonable fi-
delity and robustness against common defense methods. Ad-
ditionally, our framework is extensible to LDMs, achieving
comparable performance to existing approaches. Our project
page is available at https://alexpeng517.github.io/AtkPDM.

1 Introduction

In recent years, Generative Diffusion Models (GDMs) (Ho,
Jain, and Abbeel 2020; Song, Meng, and Ermon 2021)
emerged as powerful generative models that can produce
high-quality images, propelling advancements in image edit-
ing and artistic creations. The ease of using these models to
edit (Meng et al. 2021; Wang, Zhao, and Xing 2023; Zhang
et al. 2023) or synthesize new images (Dhariwal and Nichol
2021; Rombach et al. 2022) has raised concerns about poten-
tial malicious usage and intellectual property infringement.
For example, malicious users could effortlessly craft fake
images with someone’s identity or mimic the style of a spe-
cific artist. An effective protection against these threats is
to craft an adversarial image to force the diffusion model
to generate corrupted images or unrelated images to the
original inputs. Researchers have made significant strides in
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Figure 1: Overview of our attack scenario. Diffusion-based
image editing can generate high-quality image variation
based on the clean input image. However, by adding care-
fully crafted perturbation to the clean image, the diffusion
process will be disrupted, producing a corrupted image or
unrelated image semantics to the original image.

crafting imperceptible adversarial perturbations on images
to protect against diffusion-based editing.

Previous works such as PhotoGuard (Salman et al. 2023)
and Glaze (Shan et al. 2023) have effectively attacked La-
tent Diffusion Models (LDMs) by minimizing the latent dis-
tance between the protected images and their target counter-
parts. PhotoGuard first introduces attacking either encoders
or diffusion process in LDMs via Projected Gradient De-
scent (PGD) (Madry et al. 2018) for the protection pur-
pose; however, it requires backpropagating the entire diffu-
sion process, making it prohibitively expensive. Subsequent
works AdvDM (Liang et al. 2023) and Mist (Liang and Wu
2023) leverage the semantic loss and textural loss combined
with Monte Carlo method to craft adversarial images both
effectively and efficiently. Diff-Protect (Xue et al. 2024)
further improve adversarial effectiveness and optimization



speed via Score Distillation Sampling (SDS) (Poole et al.
2023), setting the state-of-the-art performance on LDMs.

However, previous works primarily focus on LDMs, and
attacks on Pixel-domain Diffusion Models (PDMs) remain
unexplored. Xue et al. (Xue et al. 2024) also highlighted
a critical limitation of current methods: the attacking ef-
fectiveness is mainly attributed to the vulnerability of the
VAE encoders in LDM; however, PDMs don’t have such en-
coders, making current methods hard to transfer to PDMs.
The latest work (Xue and Chen 2024) has attempted to at-
tack PDMs, but the result suggests that PDMs are robust to
pixel-domain perturbations. Our goal is to mitigate the gap
between these limitations.

In this paper, we propose an innovative framework
AtkPDM, to effectively attack PDMs. Our approach in-
cludes a novel feature attacking loss that exploits the vul-
nerabilities in denoising UNet to distract the model from
recognizing the correct semantics of the image, a fidelity
loss that acts as optimization constraints that ensure the im-
perceptibility of adversarial image and controls the attack
budget, and a latent optimization strategy utilizing victim-
model-agnostic VAEs to further enhance the naturalness of
our adversarial image. With extensive experiments on dif-
ferent PDMs, the results show that our method is effective
and affordable while robust to prevalent defense methods
and exhibiting attack transferability in the black-box setting.
In addition, our approach outperforms current semantic-
loss-based and PGD-based methods, reaching state-of-the-
art performance on attacking PDMs. Our contributions are
summarized as follows:

1. We propose a novel attack framework targeting PDMs,
achieving state-of-the-art performance in safeguarding
images from being edited by SDEdit.

. We propose a novel feature attacking loss design to dis-
tract UNet feature representation effectively.

. We propose a latent optimization strategy via model-
agnostic VAEs to enhance the naturalness of our adver-
sarial images.

2 Related Work
2.1 Image Editing with SDEdit-based Methods

With the multi-step sampling nature and the ease of con-
verting a sample to intermediate noisy latent via forward
diffusion of Diffusion Models (Ho, Jain, and Abbeel 2020).
SDEdit (Meng et al. 2021) indicates that the diffusion model
sampling process is not necessarily required to begin with
random Gaussian noise, but allows starting with a mixture
of input image and noise at arbitrary strength, i.e. forwarded
tot € [0,7), for the editing. This technique is general-
ized to both PDMs and LDMs. Subsequent editing frame-
works (Hertz et al. 2023; Tumanyan et al. 2023; Parmar et al.
2023; Mokady et al. 2023) also build upon this concept.

2.2 Evasion Attack for Diffusion Model

To counteract SDEdit-based editing, Salman et al. first pro-
posed PhotoGuard (Salman et al. 2023) to introduce two
attacking paradigms based on Projected Gradient Descent
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(PGD) (Madry et al. 2018). The first is the Encoder Attack,
which aims to disrupt the latent representations of the Vari-
ational Autoencoder (VAE) of the LDMs, and the second is
the Diffusion Attack, which focuses more on disrupting the
entire diffusion process of the LDMs. The Encoder Attack is
simple yet effective, but the attacking results are sub-optimal
due to its less flexibility for optimization than the Diffusion
Attack. Although the Diffusion Attack achieves better attack
results, it is prohibitively expensive due to its requirement of
backpropagation through all the diffusion steps. In the fol-
lowing, we introduce other proposed method targeting dif-
ferent aspects for attacking diffusion models.

Diffusion Attacks. Despite the cost of performing the Dif-
fusion Attack, the higher generalizability and universally ap-
plicable nature drive previous works focusing on disrupting
the process with lower cost. Liang et al. (Liang et al. 2023)
proposed AdvDM to utilize the diffusion training loss as
their attacking semantic loss. Then, AdvDM performs gra-
dient ascent with the Monte Carlo method, aiming to disrupt
the denoising process without calculating full backpropaga-
tion. Mist (Liang and Wu 2023) also incorporates seman-
tic loss and performs constrained optimization via PGD to
achieve better attacking performance.

Encoder Attacks. On the other hand, researchers found
that VAEs in widely adopted LDMs are more vulnerable to
attack at a lower cost than the expensive diffusion process.
Hence, they (Salman et al. 2023; Liang and Wu 2023; Shan
et al. 2023; Xue et al. 2023) focus on disrupting the latent
representation in LDM via PGD and highlight the encoder
attacks are more effective against LDMs.

Conditional Module Attacks. Most of the LDMs con-
tain conditional modules for steering generation, previous
works (Shan et al. 2023, 2024; Lo et al. 2024) exploited
the vulnerability of text conditioning modules. By disrupting
the cross-attention between text concepts and image seman-
tics, these methods effectively interfere with the diffusion
model’s ability to capture image-text alignment, thereby
achieving the attack.

Limitations of Current Methods. To the best of our
knowledge, previous works primarily focus on adversarial
attacks for LDMs, while attacks on PDMs remain unex-
plored. Xue et al. (Xue and Chen 2024) further emphasized
the difficulty of attacking PDMs. However, in our work, we
find that by crafting an adversarial image to corrupt the in-
termediate representation of diffusion UNet, we can achieve
promising attack performance for PDMs, while the attack is
also compatible with LDMs. Moreover, inspired by (Laid-
law, Singla, and Feizi 2021; Liu et al. 2023) which utilize
LPIPS (Zhang et al. 2018) as the distortion measure, we also
propose a novel attacking loss as the measure to craft better
adversarial images for PDMs.

3 Methodology
3.1 Threat Model and Problem Setting

The malicious user collects an image x from the internet
and uses SDEdit (Meng et al. 2021) to generate unautho-
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Figure 2: Conceptual illustration of our method. We ran-
domly forward both the clean image x and adversarial image
x4V {0 noise level ¢, then utilize our feature attacking loss to
maximize the feature distance between noisy latent x; and
%24V in the reverse process of diffusion models while im-
posing our fidelity loss as a constraint to ensure the adver-
sarial image from being deviated from the original image.
We update the x®? in latent space instead of in pixel space
to ensure the naturalness of x4,

rized image translations or editing, denoted as SDEdit(x, t),
that manipulates the original input image x. Our work aims
to safeguard the input image x from the unauthorized ma-
nipulations by crafting an adversarial image x>V through
adding imperceptible perturbation to disrupt the reverse dif-
fusion process of SDEdit for corrupted editions. For exam-
ple, we want the main object of the image, e.g., the cat in the
source image x as shown in Figure 2 is unable to be recon-
structed by the reverse diffusion process. Meanwhile, the ad-
versarial image should maintain similarity to the source im-
age to ensure fidelity. The reason why we target SDEdit as
our threat model is that it is recognized as the most common
and general operation in diffusion-based unconditional im-
age translation and conditional image editing. Additionally,
it has been incorporated into various editing pipelines (Tsa-
ban and Passos 2023; Zhang et al. 2023). Here we focus
on the unconditional image translation for our main study,
as they are essential in both unconditional and conditional
editing pipelines. Formally, our objective to effectively safe-
guard images while maintaining fidelity is formulated as:

max d(SDEdit(x, t), SDEdit(x*,t))
x2dveM

subject to d’(x, x*1¥) < 4,

ey
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where M indicates natural image manifold, d and d’ in-
dicate image distance functions, and ¢ denotes the fidelity
budget.

In the following sections, we first present a conceptual
illustration of our method, followed by our framework for
solving the optimization problem. We then discuss the novel
design of our attacking loss and fidelity constraints, which
provide more efficient criteria compared to previous meth-
ods. Finally, we introduce an advanced design to enhance
adversarial image quality by latent optimization via victim-
model-agnostic VAE.

3.2 Overview

To achieve effective protection against diffusion-based edit-
ing, we aim to push the adversarial image away from the
original clean image by disrupting the intermediate step in
the reverse diffusion process. For practical real-world ap-
plications, it’s essential to ensure the adversarial image is
perceptually similar to the original image. In practice, we
uniformly sample the value of the forward diffusion step
t ~ [0,7T] to generate noisy images and then perform op-
timization to craft the adversarial image x*%V via our at-
tacking and fidelity losses, repeating the same process N
times or until convergence. Figure 2 depicts these two push-
and-pull criteria during different noise levels, the successful
attack is represented in the light orange line where the re-
verse sample moves far away from the normal edition of the
image. More specifically, our method can be formulated as
follows:
adv

nax By e x Laack (X¢, X§)

subject to Liigeity (X, xad") <9,
where § denotes the attacking budget. The details of the at-

tacking loss Laack and the fidelity loss Lqeriry Will be dis-
cussed in the following sections.

2)

Framework. Our framework, shown in Figure 3, utilizes
two identical and frozen victim UNets to extract feature rep-
resentations from clean and adversarial images for our at-
tacking loss calculation and a victim-model-agnostic VAE
for the latent optimization strategy.

3.3 Proposed Losses

We propose two novel losses as optimization objectives
to craft an adversarial example efficiently without running
through all the diffusion steps. The attacking loss is de-
signed to distract the feature representation of the denois-
ing UNet; The fidelity loss is a constraint to ensure the ad-
versarial image quality. For notation simplicity, we first de-
fine the samples x, x>V in different forwarded steps. Let
F(x,t,€) = J/ayx + /1 — qe be the diffusion forward
process. Given timestep ¢ sample from [0, 7', noises e, €2V
sample from AN (0,I). We denote x; = F(x,t,¢€), and
X?dv — ]_‘(Xadv7 t, Eadv)'

Attacking Loss. Our goal is to define effective criteria that
could finally distract the reverse denoising process. Pho-
toGuard (Salman et al. 2023) proposed to backpropagate
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Figure 3: Overview of our AtkPDM™ algorithm: Starting from the latent, z*1V, of the initial adversarial image, we first decode

back to pixel-domain to perform forward diffusion with both x and x?dV

and feed them to frozen victim UNet. We then extract

the feature representation of the middle block in UNet to calculate our Ly, aiming to distract the recognition of image
semantics. We also calculate our Lygeliry in pixel-domain to constrain the optimization. Finally, the 724V ig being alternatively

updated by loss gradients.

through all the steps of the reverse denoising process via
PGD. However, this approach is prohibitively expensive,
Diff-Protect (Xue et al. 2023) proposed to avoid the mas-
sive cost by leveraging Score Distillation (Poole et al. 2023)
in optimization. Nevertheless, Diff-Protect relies heavily on
gradients of attacking encoder of an LDM as stated in their
results. In PDM, we don’t have such an encoder to at-
tack; however, we find that the denoising UNet has a sim-
ilar structure to encoder-decoder models, and some previ-
ous works (Lin and Yang 2024; Li et al. 2023) characterize
this property to accelerate and enhance the generation. From
our observations of the feature roles in denoising UNets, we
hypothesize that distracting specific inherent feature repre-
sentation in UNet blocks could lead to effectively crafting
an adversarial image. In practice, we first extract the feature
representations of forwarded images x; and x4V in frozen
UNet blocks of timestep ¢. Then, we adopt 2-Wasserstein
distance (Arjovsky, Chintala, and Bottou 2017) to measure
the discrepancy in the UNet feature space. The reason for
choosing the 2-Wasserstein distance is that it better captures
the distributional discrepancy via Optimal Transport The-
ory (Chen, Georgiou, and Tannenbaum 2018). Note that we
aim to maximize the distance between x24V and x; in the
UNet feature space to distract the denoising process. For-
mally, the attacking 1oss Ly,ck is defined as:

Lavae (60 X10) = Wy (U™ (), U™ (5 ) . )

Assuming the feature distributions approximate normal
distributions expressed by mean p; and p2Y, and non-
singular covariance matrices ; and %24V, The calculation
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of the 2-Wasserstein distance between two normal distribu-
tions is viable through the closed-form solution (Dowson
and Landau 1982; Olkin and Pukelsheim 1982; Chen, Geor-
giou, and Tannenbaum 2018):

Wi (N (pe, Ze), N (g™, Z2)) = (e — i 13
1 1
+ trace(S, 4+ L2V — g(nadv2y, madv2ys),

Fidelity Loss. To control the attack budget for adversarial
image quality, we design a constraint function that utilizes
the feature extractor from a pretrained classifier to calculate
the fidelity loss. In our case, we sum up the 2-Wasserstein
feature losses of L different layers. Specifically, we define
Liigelity as:

“4)

L

adv
ﬁﬁdelity(xtaxt ): E :W2

=1

(¢e(x), de(x*M)), (5

where W, denotes 2-Wasserstein distance and ¢, denotes
layer ¢ of the feature extractor.

3.4 Alternating Optimization for Adversarial
Image

We solve the constrained optimization problem via alternat-
ing optimization to craft the adversarial images, detailed op-
timization loop of AtkPDM™ is provided in Algorithm 1.
To maximize the L,y,ck, We take the negative Ly,cx and per-
form gradient descent. AtkPDM algorithm and the deriva-
tion of the alternating optimization are provided in Ap-
pendix.



Algorithm 1: AtkPDM™
1:

Input: Image to be protected x, attack budget § > 0, step size
Yattack, Yiidelity > 0, VAE encoder £, and VAE decoder D

adv

2: Initialization: x < X, Lagack < 00
3: Encode adversarial image to latent space: z*1¥ «+ £(x*1")
4: while L.« not convergent do
5:  Decode adversarial latent to pixel space: x*3V « D(z*I")
6:  Sample timestep: ¢ ~ [0, T]
7:  Sample noise: €, 4 ~ N(0,1)
8:  Compute original noisy sample:
xi + F(x,t,¢€)
9:  Compute adversarial noisy sample:
X?dv — f-(xadv’t7€adv)
10:  Update z*?" by Gradient Descent:
Zadv <~ zadv — TYattack Sign(vzadv (_Callack(xt, X?dv)))
11:  while Lsgety (%, D(z*4Y)) > 6 do
12: 22V gadv Vadelity V gadv Lidelity (X, D(Zadv))
13:  end while

14: end while
15: Decode adversarial latent to pixel space: x**¥ < D(z*)
16: return x>

3.5 Latent Optimization via Pretrained-VAE

Previous works suggest that diffusion models have a strong
capability against adversarial perturbations (Xue and Chen
2024), making them hard to be attacked via pixel-domain
optimization. Moreover, they are even considered as good
purifiers of adversarial perturbations (Nie et al. 2022).

Here, we propose a strategy that crafts the perturbation in
the latent space of the pre-trained Variational Autoencoder
(VAE) (Kingma and Welling 2014), and the gradients are
used to update the latent. After IV iterations or losses con-
verge, we decode back via the decoder D to pixel domain
as our final adversarial image. The motivation for adopting
VAE is inspired by MPGD (He et al. 2024). This strategy
is effective for crafting a robust adversarial image against
pixel-domain diffusion models while also better preserving
the adversarial image quality rather than only incorporating
fidelity constraints. Note that, ideally, manifold preservation
is guaranteed when using perfect VAE. In practice, we use
the best available LDM’s VAE agnostic to the victim model
as our latent optimization VAE. Detailed latent optimization
loop is provided in Algorithm 1.

4 Experiment Results
4.1 Experiment Settings

Implementation Details. We conduct all our experiments
in white box settings and examine the effectiveness of
our attacks using SDEdit (Meng et al. 2021). For the
VAE (Kingma and Welling 2014) in our AtkPDM™, we uti-
lize the one provided by StableDiffusion v1.5 (Rombach
et al. 2022). We run all of our experiments with 300 opti-
mization steps, which empirically determined, balancing at-
tacking effectiveness and adversarial image quality with a
reasonable speed. Other loss parameters and running time
are provided in the Appendix. The implementation is built
on the Diffusers library (von Platen et al. 2022). All the ex-
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periments are conducted with a single Nvidia Tesla V100
GPU.

Victim Models and Datasets. We test our approach
on PDMs with three open-source checkpoints on Hug-
gingFace, specifically ‘“google/ddpm-ema-church-256,
“google/ddpm-cat-256” and “google/ddpm-ema-celebahq-
256”. For the results reported in Table 1, we run 30 images
for each victim model. Additionally, for generalizability
in practical scenarios, we synthesize the data with half
randomly selected from the originally trained dataset and
another half from randomly crawled with keywords from
the Internet.

Baseline Methods and Evaluation Metrics. To the best
of our knowledge, the previous methods have mainly fo-
cused on LDMs, and effective PDM attacks have not
yet been developed, however, we still implement Ad-
vDM (Liang et al. 2023) with the proposed semantic
loss by (Salman et al. 2023; Liang et al. 2023; Liang and
Wu 2023; Xue et al. 2023) for comparison. Notably, Diff-
Protect (Xue et al. 2023) proposed to minimize the se-
mantic loss and is counterintuitively better than maximiz-
ing the semantic loss. We also adopt this method in attack-
ing PDMs. To quantify the adversarial image visual quality,
we adopt Structural Similarity (SSIM) (Wang et al. 2004),
Peak Signal-to-Noise Ratio (PSNR), and Learned Percep-
tual Image Patch Similarity (LPIPS) (Zhang et al. 2018) as
the evaluation metrics but negatively quantify the effective-
ness of our attack. We also adopt the Image Alignment Score
(IA) (Kumari et al. 2023) that leverages CLIP (Radford et al.
2021) to calculate the cosine similarity between two image
encoder features. In distinguishing from the previous meth-
ods, to more faithfully reflect the attacking effectiveness, we
fix the same seed of the random generator when generating
clean and adversarial samples, then calculating the scores
based on the paired samples.

4.2 Attacking Effectiveness on PDMs

As quantitatively reported in Table 1 and qualitative results
in Figure 4, compared to the previous PGD-based meth-
ods incorporating semantic loss, i.e., negative training loss
of diffusion models, our method exhibits superior perfor-
mance in both adversarial image quality and attacking ef-
fectiveness. In addition, our reported numbers are generally
stable, as reflected in lower standard deviation. It is worth
noting that even if the adversarial image qualities of the
PGD-based methods are far worse than ours, their attack-
ing effectiveness still falls short, suggesting that PDMs are
robust against traditional perturbation methods. This find-
ing is also aligned with previous works (Xue et al. 2023;
Xue and Chen 2024). For AtkPDM™, combined with our
latent optimization strategy, the adversarial image quality
has been enhanced while slightly affecting the attacking ef-
fectiveness, still outperforming the previous methods. Be-
sides unconditional PDMs, we also compare with the pre-
vious best method Diff-Protect against a conditional PDM
DeepFloyd IF (at StabilityAl 2023), reported in Table 2.
Although the attacking effectiveness of Diff-Protect seems
better than ours, this may be due to their adversarial image



Methods Adversarial Image Quality Attacking Effectiveness
SSIM 1 PSNR 1 LPIPS | SSIM | PSNR | LPIPS 1 1A}

= AdvDM 0.37+0.09 28.17+022 0.73+0.16 | 0.89 £0.05 31.06+194 0.17+0.09 0.93 +0.04
g Diff-Protect 039+£0.07 28.03+0.12 0.67=£0.11 | 0.824+0.05 31.90+£1.08 0.23+0.07 091=+0.04
$ APDM (Ours) 0.75+0.03 28.22+0.10 0.26+0.04 | 0.75+0.04 29.61 +£0.23 0.40+0.05 0.76 & 0.06

AtkPDM™ (Ours) | 0.81+0.03 28.64 £0.19 0.13+£0.02 | 0.79 £0.04 30.054+ 047 0.334+0.07 0.8140.06

AdvDM 048 £0.09 28344+0.18 0.65£0.12 | 0.96+0.02 32.32+249 0.10+0.05 0.97£0.03
= Diff-Protect 033+£0.10 28.03+0.15 0.80=£0.15| 090+0.05 3394+193 0.18+0.08 0.95=+0.03
O AtkPDM (Ours) 0.71 £0.06 28.47+0.18 0.29+0.05 | 0.83+0.03 30.73+0.51 0.39+0.05 0.81+0.04

AtkPDM™ (Ours) | 0.834+0.04 29.41+037 0.09+0.02 | 0.93+0.01 33.02+0.74 0.18+0.02 0.92+0.01

AdvDM 048 £0.05 28.75+0.18 0.64=£0.10 | 0.99 +£0.00 3796=+1.75 0.024+0.01 0.99+0.00
§ Diff-Protect 025+0.04 28.09+020 091=£0.11 | 0.95+0.02 3533+£1.62 0.08+0.04 0.96=+0.02
=  AtkPDM (Ours) 0.56 £0.04 28.01£022 0.36+0.04 | 0.74 £0.03 29.14+0.36 0.40+0.05 0.62+0.07

AKkPDM™ (Ours) | 0.81+0.04 28394020 0.124+0.03 | 0.864+0.03 30264072 0.244+0.07 0.80 4 0.08

Table 1: Quantitative results in attacking different unconditional PDMs. The best is marked in bold and the second best is
underlined. Errors denote one standard deviation of all images in our test datasets.

Methods ‘ Adversarial Image Quality

Attacking Effectiveness
SSIM |

SSIM 1 PSNR 1 LPIPS | PSNR | LPIPS 1 1A |
Diff-Protect 0.47 £0.08 27.96+0.08 0.46+0.05 | 049 +0.10 28.13+0.15 0.36=+0.10 0.79 =+ 0.06
AtkPDM™ (Ours) | 0.79 +0.06 2848 £0.33 0.06 +0.02 | 0.72+0.10 28.50 £0.48 0.10 +0.04 0.86 + 0.08

Table 2: Quantitative results in attacking conditional PDM DeepFloyd IF. The best is marked in bold and the second best is
underlined. Errors denote one standard deviation of all images in our test datasets.

Attacking Effectiveness

Defense Method  goprvp | "psNR | LPIPS T 1A |
LDM-Pure 0.78 29.84 0.35 0.80
Crop-and-Resize 0.68 29.28 0.42 0.79
JPEG Comp. 0.78 29.82 0.36 0.79
None 0.79 30.05 0.33 0.81

Table 3: Quantitative results of our adversarial images
against defense methods. LDM-Pure, Crop-and-Resize, and
JPEG Compression fail to defend our attack. “None” indi-
cates no defense is applied, as the baseline for comparison.

quality being severely corrupted during the attack. Hence, it
cannot fulfill our two objectives simultaneously. In addition,
our framework is extensible to attack LDMs, please refer to
Appendix provided in the project page.

4.3 Black Box Transferability

We craft adversarial images with the proxy model,
“google/ddpm-ema-church-256", in white-box settings and
test their transferability against “google/ddpm-bedroom-
256” model as black-box attacks. Under identical validation
settings, Table 4 reveals only a slight decrease in attack ef-
fectiveness metrics, suggesting black-box transferability.

4.4 Robustness Against Defense Methods

We examine the robustness of our approach against three
widely recognized and effective adversarial defense meth-
ods. The quantitative results in Table 3 demonstrate that our

6910

Attacking Effectiveness

Setting SSIMJ PSNR| LPIPSt 1A
White Box 079 30.05 033 081
Black Box 086 3025 029  0.85
Difference 0.07 0.20 0.04 0.04

Table 4: Quantitative results of black box attack. We use the
same set of adversarial images and feed to white box and
black box models to examine the black box transferability.

method is robust against these three defense methods, with
four metrics listed in Table 3 not worse than no defenses.
Surprisingly, these defense methods even make the adver-
sarial image more effective than cases without defense. We
provide the implementation details of each defense method
in the following sections.

LDM Purification. Nie at. al. proposed DiffPure (Nie
et al. 2022) that leverages a pre-trained Diffusion Model to
purify adversarial images targeting classifier models to de-
fend effectively. The purification process is essentially an
unconditional SDEdit process with small forward ¢. Here,
we use a pre-trained LDM (StableDiffusion v1.5) and ¢t =
100 to purify our adversarial image as a defense method.

Crop and Resize. Noted by Diff-Protect, “crop and re-
size” is a simple yet the most effective defense method
against their attacks on LDMs. We test our method against
this defense using their settings, i.e., cropping 20% of the
adversarial image and resizing it to its original dimensions.
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Figure 4: Qualitative results compared to the previous methods. Our adversarial images can effectively corrupt the edited results
without significant fidelity decrease. The same column shares the same random seed for fair comparisons.

Losses VAE Adversarial Image Quality Attacking Effectiveness

SSIM t PSNR 1 LPIPS | SSIM | PSNR | LPIPS 1 1A}
Lsemantic 037£0.09 2817+022 0.73£0.16 | 0.89+0.05 31.06 194 0.17+0.09 0.93+£0.04
Lsemantic v 0.80£0.05 29.78+£042 0.17+0.03 | 0.82+0.05 3043+£0.75 0.15+£0.06 0.92=+0.04
Lsemantic + Leidelity v 082005 30.30+0.81 0.13£0.03 | 090+0.03 31.24£1.19 0.08+0.03 0.96+0.02
Laack + Leidelity 0.75+0.03 2822+0.10 0.26+0.04 | 0.75+0.04 29.61£023 0.40=+0.05 0.76+0.06
Lattack + Ledelity 0.81 £0.03 28.64+£0.19 0.13+0.02 | 0.79+£0.04 30.05+0.47 0.33+£0.07 0.81=+0.06

Table 5: Quantitative results of ablation study. The best is marked in bold and the second best is underlined. Errors denote one

standard deviation of all images in our test datasets.

JPEG Compression. Sandoval-Segura et al. (Sandoval-
Segura, Geiping, and Goldstein 2023) demonstrated that
JPEG compression is a simple yet effective adversarial de-
fense method. In our experiments, we implement the JPEG
compression at a quality setting of 25%.

4.5 Effectiveness of Latent Optimization via VAE

We first incorporate our VAE latent optimization strategy in
the previous semantic-loss-based methods. From Table 5,
without using Lgeliy, latent optimization has significantly
enhanced the adversarial image quality and even slightly
improved the attacking effectiveness. Adopting latent op-
timization in our approach enhances visual quality with a
negligible decrease in attacking effectiveness. Surprisingly,
incorporating our Lggeliy With current PGD-based method
will drastically decrease the adversarial image quality de-
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spite its attack performing better than ours. This may be due
to different constrained optimization problem settings.

5 Conclusion

This paper presents the first framework to protect against
image manipulation by Pixel-domain Diffusion Models
(PDMs). While denoising UNets withstand traditional PGD
attacks, their feature space remains vulnerable. Our feature
attacking loss exploits these vulnerabilities, generating ad-
versarial images that mislead PDMs, resulting in corrupted
output. We approach this image protection problem as a con-
strained optimization problem, solving it through alternating
optimization. Furthermore, our latent optimization strategy
via VAE enhances the naturalness of our adversarial images.
Extensive experiments validate the efficacy of our method,
achieving state-of-the-art performance in attacking PDMs.
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