Under review as a conference paper at ICLR 2026

EFFICIENT AND INTERPRETABLE MULTI-AGENT LLLM
ROUTING VIA ANT COLONY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The instruction-following and semantic understanding capabilities of large lan-
guage models (LLMs) serve as the core competence of Multi-Agent Systems
(MAS), enabling collective strategy coordination. However, task routing in MAS
remains a critical performance bottleneck, especially in dynamic and resource-
constrained environments. Existing LLM-based routing approaches often suf-
fer from limited transparency, static allocation strategies, and insufficient system
state awareness. To address these challenges, we propose AMRO: Ant colony in-
spired Multi-agent Routing Optimization. AMRO models agent interactions as a
function-based directed graph, utilizing a pheromone-driven node update mecha-
nism and an adaptive pheromone decay strategy to achieve real-time perception
and response to environmental changes, thereby continuously optimizing routing
assignments. This approach significantly enhances routing efficiency and overall
system performance, while the pheromone-guided path selection offers strong in-
terpretability for the routing process. We conduct extensive experiments on five
public benchmark datasets. The results show that AMRO achieves an average
improvement of 1.97% in pass@1 accuracy over the baseline and demonstrates
superior efficiency and robustness under high concurrency. These findings indi-
cate that AMRO provides an efficient and interpretable solution to the routing
problem in LLM-based MAS.

1 INTRODUCTION

MAS is a distributed system composed of multiple LLM-based agents. With LLMs as their core
capability carriers, these agents possess abilities such as natural language understanding and gen-
eration, contextual reasoning, knowledge representation, and decision-making planning. Through
mutual communication, collaboration, competition, or coordination, they collectively accomplish
complex tasks or achieve system goals (Alonso et al.l 2001} [Li et al., 2025). MAS can decompose
complex tasks and delegate them to specialized agents, showing strong performance and scalability
in domains such as automated programming (Yang et al.l 2025} |Yuan et al., 2024), mathematical
reasoning (Motwani et al., 2024), and collaborative decision-making (Jin et al., 2025; [Wang et al.|
2024c). However, in dynamic and resource-constrained environments, task routing becomes a criti-
cal performance bottleneck. The core objective of task routing is to select the most appropriate agent
to fulfill a request, based on task semantics and system state.

Current MAS routing methods typically rely on LLMs to understand and match task semantics,
routing requests to the most suitable agents (Chuang et al.l [2025; [Wang et al.l [2024b). Some ap-
proaches dynamically select model nodes with different capabilities to balance computational cost
and response quality, while others explore multi-stage collaboration mechanisms to optimize the
distribution process of complex tasks (Wang et all} [2024a). Despite these advancements, existing
methods exhibit notable limitations. First, many strategies depend heavily on the implicit reasoning
of black-box LLMs, lacking transparent explanations for routing decisions—problematic in high-
stakes domains such as healthcare and finance (Marey et al.| 2024; |Ramlochan, [2023)). Second,
most existing methods adopt static or semistatic allocation strategies, which struggle to adapt in real
time to changes in node load, network fluctuations, or task dynamics, leading to unstable perfor-
mance in complex settings. Additionally, the dependence on large-scale annotated data and costly
training procedures poses major deployment challenges in edge computing or low-latency scenar-
ios (Varangot-Reille et al., 2025 |[Zhang et al., 2024b). Although reward-based and meta-learning

Under review as a conference paper at ICLR 2026

strategies have been explored to improve adaptability and efficiency (Hu et al., 2024a; |2023)), these
solutions often involve complex designs and high training costs, hindering widespread adoption.

To address these issues, we propose AMRO, a
routing optimization approach based on the Ant ouscateten @) o sns @ o
Colony Optimization (ACO) algorithm (Dorigo - \
et all 2007). AMRO models MAS as a directed «;% 2 ‘
graph, where nodes represent agents with distinct \ 9%
functions, and edges denote connection relationships

between agents, reflecting possible paths for task
flow or information transmission. During the rout-
ing planning process, AMRO designs a pheromone-
guided probabilistic selection strategy that integrates
node capabilities, load, response speed, and resource N Lo
consumption to guide subsequent node selection.
AMRO employs a global pheromone decay mech- %i“““‘ v rox fjﬁww'—“ thod — Rale c%é ot — v ot
anism, uniformly decaying the pheromone on all

edges proportionally at the end of each epoch. This Figure 1: Tasks are routed through three
strategy aims to suppress infinite pheromone accu- stages: collection, analysis, and solution,
mulation, prevent the search from falling into local via probabilistic paths guided by pheromone
optima, and enhance the ability to explore new high- signals. After execution, high-quality paths
quality paths. Additionally, by combining with a receive reinforced pheromones, increasing
fitness function, it achieves a dynamic balance be- their selection likelihood in future iterations.
tween positive feedback and global search. AMRO

can dynamically respond to environmental changes and converge to optimal task allocation schemes
in real time.

Our main contributions are summarized as follows:

* We propose the first integration of ACO into routing for LLM-based MAS.

* By developing a pheromone-based feedback mechanism while designing a load-balancing
routing selection mechanism, we enable the system to achieve high-performance and effi-
cient routing planning.

* Addressing the limitations of the black-box selection process in existing routing planning,
we leverage the visualizable characteristics of pheromones to propose a novel transparency
solution, significantly enhancing the system’s interpretability. Concurrency tests and visu-
alization experiments confirm AMRO’s interpretability as well as stability.

* Experimental results on five datasets demonstrate that AMRO exhibits competitive perfor-
mance against existing methods.

2 RELATED WORK

2.1 LLM-BASED MULTI-AGENT SYSTEM ROUTING

MAS are composed of multiple agents with autonomous perception, learning, and decision-making
capabilities, completing complex tasks through distributed collaboration (Dorri et al., [2018)). They
overcome the limitations of single agent systems in memory capacity and scalability (Balaji & Srini-
vasan,|2010). LLM-based MAS integrate the powerful language understanding capabilities of LLMs
(Kasneci et al.l |2023; |Zheng et al., 2025) and group strategy coordination abilities (Li et al., [2024;
Han et al [2024), further enhancing their problem-solving capacity for complex tasks. To improve
system efficiency, LLM routing precisely allocates user requests to appropriate subagents, tools,
plugins, or modules based on task content (Hu et al., 2024b)), making the design of effective rout-
ing strategies a current research focus. AGENTVERSE (Chen et al.) dynamically determines the
composition of the agent through an expert recruitment phase. MAD (Liang et al.| [2023) designs
a multi-agent debate structure with sparse communication topologies, achieving comparable per-
formance while significantly reducing computational costs. However, non-learnable path strategies
in complex tasks restrict model generalization and flexibility. ZOOTER (Lu et al., [2023) proposes
reward-guided routing, extracting rewards from training queries to train a routing function that as-

Under review as a conference paper at ICLR 2026

signs each query to an LLM with relevant expertise. RouterDC (Chen et al., 2024)) learns a query-
based router using sample-LLM and inter-sample contrastive loss functions. Hybrid-LLM (Ding
et al.,2024) introduces a hybrid LLM routing method to improve reasoning efficiency by combining
the advantages of multiple LLMs. RouteLLM (Ong et al.| |2024) optimizes the balance between
cost and response quality through dynamic selection of strong and weak LL.Ms, while MasRouter
(Yue et al., 2025) addresses complex routing problems using a three-level cascaded framework for
collaboration mode determination, role allocation, and routing assignment.

Despite the good performance achieved by the above methods, practical applications still demand
higher training efficiency and accuracy. Additionally, the black-box nature of LLMs limits the inter-
pretability of routing. To address these issues, we introduce ACO and design a multi-agent routing
mechanism, enabling the MAS to maintain low cost, high efficiency, and high concurrent processing
capabilities while enhancing interpretability.

2.2 HEURISTIC PATH OPTIMIZATION

Heuristic path optimization rapidly searches for optimal or near-optimal paths through empirical
strategies (Tan et al. 2021} [Yahia & Mohammed, 2023)). Classic heuristic path optimization al-
gorithms include genetic optimization algorithms (Sivanandam et al., 2008)), simulated annealing
algorithms (Rutenbar, |1989), and particle swarm optimization algorithms (Wang et al., 2018} |Gad,
2022), among others. The ant colony algorithm, in particular, provides effective optimization strate-
gies for fields such as path planning (Cui et al 2024), network routing, and vehicle scheduling
due to its feedback mechanism and strong parallel computing characteristics. ACO algorithm is an
optimization method inspired by the foraging behavior of natural ant colonies (Blum) 2005} [Dorigo
& Sochal 2018)). In nature, ants indirectly communicate by releasing pheromones while searching
for food. Other ants prefer paths with higher pheromone concentrations, as these typically indi-
cate better routes. This mechanism forms a positive feedback loop, guiding more ants to follow
optimal paths until the colony identifies the shortest route from the nest to food sources. AddACO
(Scianna, 2024) proposed incorporating decision rules based on linear convex combinations into the
ant colony algorithm, improving the computational efficiency for the Traveling Salesman Problem
(TSP). DYACO (Liang et all 2024) optimized the impact of complex slopes in deep-sea mining
areas on path planning by dynamically adjusting key information such as heuristic guidance, signif-
icantly enhancing the convergence speed of path optimization. PACO (Si & Bao, |2024) addressed
the local optimum problem of traditional ACO through improved pheromone update methods and
hybrid strategies, and substantially boosted path planning efficiency via parallel computing.

3 METHOD

This paper introduces ant colony optimization into LLM-based MAS routing planning for the first
time. By quantifying node parameters, designing a pheromone-guided node selection method, and
introducing a pheromone update and decay mechanism, we construct a multi-parallel routing plan-
ning system for LLM-based MAS in complex scenarios. This provides a novel bio-inspired solution
for traffic allocation and node selection in LLM-based MAS routing planning.

Ant Colony Optimization (ACO) is a representative swarm intelligence optimization algorithm,
whose core lies in simulating the cooperative search process of ants via pheromone communica-
tion. The algorithm mainly comprises three mechanisms, probabilistic path selection, pheromone
update and evaporation, and positive feedback and diversity maintenance.

3.1 PRELIMINARIES

Probabilistic Path Selection.

Each “ant” incrementally selects nodes in the solution space, with the probability of choosing a
path determined by both pheromone concentration and heuristic factors (such as distance or cost).
Pheromones reflect historical experience, while heuristics capture local optimality, guiding ants to
balance global and local search.

Pheromone Update and Evaporation. After each iteration, ants reinforce the pheromone levels
on the paths according to the quality of the constructed solutions (positive feedback). Meanwhile,

Under review as a conference paper at ICLR 2026

4 N

® &) & | B B @
e ureA Role [Role | Role @ 4 < ...
Type Type Type[Type | Type

VA
&5
External
Knowledge

1. Data Collection

Question Pool

292| csmsk,
QUESTION MMEU,
HumanEval...}

Web Paper Pdf Social media
/

l

. A q (Phero
2 Auxiliary information -« mone-1)
2. Data Analysis
@
H AV
£ 0101010
e ID‘I)8| \
3 N ol B »\ (Pherom
[Context programming Operation Inspiration ! “A\ * | one-2)
- -
; ! ‘, " Process Process Process
;._ cepdcc
v3
&5 A (Pherom
- £ / one-3)
i = = /— wes
Answer Answer Answer

((‘)) Pheromone-3
\ y
«H)l’heromone Competence Cost @ Respones time
LLM-1
LLM-1
LLM-2 LLM-2 Indicators | Respones time

..g,. +Competence

*Cost

LLM-1

I
M2 |
LLM-3 |
M4 |

<
e |E
AEEE
z

£V o i
@ Respones time

Figure 2: Three-layer task routing in the AMRO architecture. AMRO employs a three-layer routing
strategy using model-method-role combinations. The first layer gathers external knowledge, the
second analyzes the task, and the third synthesizes the answer. Routing is guided by pheromone-
based probabilities and refined through multi-level feedback for dynamic agent coordination.

pheromones on all paths evaporate at a certain rate, preventing excessive accumulation and prema-
ture convergence.

Positive Feedback and Diversity Maintenance. High-quality paths accumulate more pheromones
due to frequent selection, forming a positive feedback loop that accelerates the discovery of optimal
solutions. Pheromone evaporation and probabilistic selection help maintain solution diversity and
enhance global search capability. Through these mechanisms, ACO enables distributed, adaptive,
and efficient search in complex combinatorial optimization and path planning problems, exhibiting
strong robustness and scalability

3.2 AMRO ALGORITHM

In this study, we propose an AMRO (see Figure [I] and 2, algorithm-based approach for routing
in MAS. We model the routing problem as a layered directed graph and apply AMRO to optimize
the paths for task transmission between agents. The methodology includes problem modeling, path
selection, pheromone update, and load management.

3.2.1 PROBLEM MODELING

Graph Structure and Path Definition. We model the MAS as a hierarchical directed graph
G = (V,E). Specifically, the graph consists of N layers, each containing n nodes. The
node set at the [-th layer is defined as: V; = {v;1,v12,...,v,}. so the total node set is

V = Ui\il V. The directed edge set F contains only the pairs of nodes between adjacent layers:
E={(v,vi41) |1 <I<N,1<i<n,1<j<n}, where (v, v41,;) represents the directed
edge from the i-th node in the [-th layer to the j-th node in the [+ 1-th layer. Each node v, ; cor-
responds to a functional agent, such as a question-answering system, search, or inference engine.

Under review as a conference paper at ICLR 2026

Each edge (v;;, vi41,5) represents the ability to route tasks from an agent in the I-th layer to an agent
in the [+ 1-th layer.

Task Description. The task is a single-objective task, where it must route from a source node
v1,s (a node in the first layer) to a target node vy 4 (a node in the final layer), and the rout-
ing can only move along directed edges between adjacent layers. The path is defined as P =
[v175,v27k2,v37k3, ...,UN,q4), Where v; ; denotes the source node in the first layer (start), with
s € {1,2,...,n}. For intermediate layers, v; s, denotes the k;-th node in the I-th layer, where
2<I<N-1landk €{1,2,...,n}. Finally, vy q denotes the target node in the N-th layer (end),
with d € {1,2,...,n}. The P represents a task starting from the source node in the first layer,
passing through one node in each layer, and finally reaching the target node in the last layer. For
each pair of adjacent nodes (v x,, Vi4+1,k,,) along the path, there is a directed edge, and the routing
strictly follows the layer-wise order (i.e., each step moves from layer [to layer [+ 1).

3.2.2 PHEROMONE AND HEURISTIC FACTOR DEFINITIONS

Pheromone Intensity. The pheromone intensity 7; ; ; is defined as the amount of pheromone on the
directed edge (vy,;,vi41,;) from the i-th node in layer [to the j-th node in layer [+ 1.

Heuristic Information. The heuristic information 7; ; ; is defined as the inverse of the response time
from the source node v; ; to the target node vy ; for the directed edge (vy,;, vi41,5). Specifically, it
is defined as: 1

ResponseTime(v; i, vi41,;) + €

)

Mg =

where ResponseTime(v; ;, v+1,;) is the average response time of edge (v; ;, vi41,;), and € is a small
constant to prevent division by zero.

Edge Cost and Normalized Unit Edge Cost. For each edge (vi;,vi41,5), let
UnitCost(vy,;, vi41,5) denote its token consumption. The total outgoing cost at layer [is

S; = ZUnitCost(vl,i, Vi41,5)- 2)
i,
and the normalized unit edge cost is defined as:
UnitCost(vy,i, Vi+1,5)

A= 3
1,3,7 Sl ()
System Load and Decay. The normalized current load is defined as:
Tasks(vi41 4
Oél,i,j — (l+1xj) (4)

Capacity(vj41,;)’
where Tasks(v;y1,;) is the number of tasks assigned to node v;1 ;, and Capacity(v;y1 ;) is the
maximum task processing capacity of node v;11 ;. The system load decay factor is defined
as:yy;,; = e P where B > 0 is a parameter controlling the decay rate.

Node Capability and Edge Weight. The capability of the model at node v;11 ; is defined as
Ability(Model; 11 ;), and the total ability of all models is given by:

N
W =) Ability(Modely,). (5)
k=1
The weight of the edge from v; ; to vy ; is defined as:
Ability(Model; 41 ;)

8145 = W . (6)

Edge Selection Probability. In the hierarchical directed graph, the probability p;; ; that an ant
moves from the i-th node v; ; in the [-th layer to the j-th node v;4 ; in the [+ 1-th layer is defined

as:
[716.5(1)]° [m,m']ﬁ [Vz,i,j]6 [Sl,mr i)

- —. @)
Siet [Tk ()] [771,1',1@]6 [’Yu,k]& [Sl,i,kr [11,i1] .

Drij =

Under review as a conference paper at ICLR 2026

where «, 3, §, A, 1 are the weight parameters, and 1 > 0 represents the negative exponent of cost.

Path Fitness Function. To evaluate the quality of the path P, found by the ant, the following fitness
function is introduced:
f(Py) = wy - Delay(Py,) + wa - (1 — Success(Py))

+ ws - Load(Pk). ®

We defined Total Token Consumption as Delay(Pr) = 2 ; yep, l,i,j» Cumulative Task Suc-
cess Rate as Success(Px) = [, jep, Si,i,j> Cumulative Task Success Rate as Success(P) =
[T j)ep, 51.i,; and Average Load as Load(P;) = ﬁ 2o (Lij)ep, Yirj- Where | Pyl is the length
of the path, and w1, we, w3 are the weight parameters to balance the importance of token consump-
tion, success rate, and load in the fitness function.

Pheromone Update Strategy. After each iteration, the pheromone increment ATZITZ-’ ; on the edge
(v1,4, Ui41,5) s inversely proportional to the path fitness, specifically defined as:

Q

if (vyi,vi41,5) € Pr

Arfiy = J(Pe) + ¢ ©)
, otherwise
The global pheromone update rule is defined as:
Tt +1) == p) 7as() + D> ATl (10)
k=1

where p is the pheromone evaporation rate, and m is the total number of ants in the current iter-
ation. This strategy reduces outdated pheromone traces while reinforcing high-quality paths (see
Appendix [A.3|for pseudocode).

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset and Benchmarks. We validated the model on five public datasets, including GSM8K
(Cobbe et al., 2021), MMLU (Hendrycks et al.,[2020), MATH (Hendrycks et al.,|2024)), HumanEval
(Chen et al.l 2021)), and MBPP (Austin et al., [2021). GSMS8K is a dataset of 8.5K high-quality,
linguistically diverse primary school math word problems, while MMLU covers 57 distinct cate-
gories ranging from basic knowledge to advanced professional disciplines. MATH, a math compe-
tition problem dataset, provides complete step-by-step solutions for each problem to train models to
generate answer derivation processes and explanations. HumanEval is designed for evaluating code-
generation models, containing programming problems with function signatures, docstrings, function
bodies, and multiple unit tests, whereas MBPP consists of short Python programs crowdsourced
from individuals with basic Python knowledge. These datasets collectively enable comprehensive
assessment of the model’s performance across mathematical reasoning, domain-specific knowledge,
code generation, and problem-solving capabilities.

Implementation Details. We adopted the widely used pass @K metric in the industry as the evalua-
tion standard for model performance, where the pass@ 1 metric is defined as whether the model can
successfully output the correct answer or a code solution meeting the requirements on its first genera-
tion. This metric concisely and intuitively reflects the model’s immediate effectiveness and practical
application value in no-trial scenarios. To comprehensively compare model performance, the exper-
iments covered single-agent methods (including CoT (Wei et al., [2022) (Chain of Thought), Com-
plexCoT (Fu et al., 2022), SC(COT) (Wang et al., 2022), SC(ComplexCoT)) (Wang et al., 2022),
multi-agent methods without routing support (encompassing LLM-debate, GPTSwarm (Zhuge et al.,
2024), Agent-prune (Zhang et al.,|2024a), Chain (Qian et al., [2024), Tree (Yao et al.| 2023)), Com-
plete Graph (Besta et al., [2024), AFlow (Zhang et al.)), single-agent routing methods (including
FrugalGPT (Chen et al., 2023), PromptLLM (Feng et al., 2024), RouteLLM (Ong et al., |2024),
RouterDC (Chen et al.| |2024)), and multi-agent routing methods represented by MASRouter (Yue
et al., [2025).

Under review as a conference paper at ICLR 2026

Table 1: Reordered performance of models using gpt—4o-mini, Mul. represents MAS and Rout.
represents utilizing the routing.

Method | Mul. | Rout. | GSM8K | MATH | MMLU | HumanEval | MBPP | Avg.
GPT-40-mini
Vanilla N N 93.17% | 66.09% | 77.81% 85.71% 72.20% | 79.00%
CoT N N 93.68% | 67.24% | 78.43% 86.69% 69.60% | 79.13%
ComplexCoT N N 93.43% | 67.05% | 81.05% 87.58% 75.80% | 80.98%
SC(CoT) N N 93.32% 66.28% | 81.05% 87.58% 73.00% | 80.25%
SC(ComplexCoT) N N 93.94% | 66.86% | 82.35% 88.19% 75.80% | 81.43%
Chain Y N 93.13% | 72.10% | 83.01% 82.50% 73.20% | 80.79%
Tree Y N 9491% | 71.36% | 81.74% 77.50% 73.60% | 79.82%
Complete Graph Y N 94.64% | 68.60% | 82.60% 83.75% 74.20% | 80.76%
LLM-Debate Y N 94.66% | 64.68% | 81.04% 84.38% 73.60% | 79.67%
GPTSwarm Y N 94.66% | 68.75% | 84.25% 86.28% 75.40% | 81.87%
Agentprune Y N 93.88% | 73.54% | 83.10% 82.55% 75.80% | 81.77%
AFlow Y N 9491% | 73.00% | 84.12% 85.69% 76.00% | 82.74%
LLM Pool

PromptLLM N Y 93.92% | 73.03% | 78.43% 86.33% 73.60% | 81.06%
RouteLLM N Y 93.42% | 71.29% | 81.04% 83.85% 72.60% | 80.44%
RouterDC N Y 93.68% | 73.46% | 82.01% 87.75% 75.20% | 82.42%
MasRouter Y Y 95.45% | 75.42% | 84.25% 90.62% 84.00% | 85.93%
AMRO (Ours) Y Y 96.10% | 77.12% | 85.00% 91.02% 85.24% | 86.90%

4.2 MAIN RESULTS

We compare AMRO with 17 baseline methods across five widely used benchmarks, as summarized
in Table[I] Several consistent patterns emerge. First, without routing design, multi-agent methods
generally surpass single-agent ones, as distributed collaboration enables task decomposition and re-
duces reliance on global historical information, thereby improving robustness. Within this setting,
AMRO shows clear superiority: compared with the strongest multi-agent baseline without rout-
ing, AFlow (82.74% average accuracy), AMRO achieves 86.90%, an improvement of 4.16 absolute
points. This highlights the value of dynamic routing and validates the role of pheromone-guided
path selection.

Second, the results also show that AMRO outperforms routing-enabled baselines. It achieves the
highest average pass@1 (86.90%), exceeding MASRouter (85.93%) and RouterDC (82.42%). The
advantage is especially clear on the MATH dataset, where AMRO reaches 77.12%, surpassing MAS-
Router by 1.7%. These findings indicate that the pheromone-driven probabilistic mechanism both
adapts node selection to current states and reinforces high-quality paths through positive feedback,
providing more competitive adaptability than methods relying on fixed allocation strategies or sim-
ple heuristic rules.

Figure [3] shows the inference time
and accuracy of AMRO on GSMSK 100
with 20-1000 parallel processes. As

g
8

processes increase from 20 to 200,
inference time decreases from 64.16
to 23.05 minutes in a near-linear
trend, while accuracy stays stable
between 94.4%-95.0%. Beyond
200 processes, accuracy even slightly
improves, indicating that the load-
decay— and pheromone-based path
selection strategy effectively prevents
overload and ensures robust perfor-
mance under high concurrency.

Total Inference Time (min)
8 8 & 8

5

72

0 200 400 600 800 1000
ACO Process Count

Accuracy (%)

20 40

95.5 95.5

944 946 oas B

50 80 100 200 500 1000
ACO Process Count

Figure 3: Impact of Parallel Process Scaling on the Infer-
ence Time and Accuracy of AMRO on GSM8K.

Under review as a conference paper at ICLR 2026

Table 2: Ablation results of - w/ and w/o Routing on five benchmarks.

Model | Mul. | Rout. | GSMSK | MATH | MMLU | HumanEval | MBPP | Avg.

gpt-40-mini N N 93.68% | 78.43% | 81.00% 86.60% 79.00% | 83.72%
claude-3.5-haiku 93.17% | 66.09% | 77.81% 72.05% 72.20% | 76.62%
gemini-1.5-flash 92.67% | 74.39% | 80.04% 80.75% 73.00% | 80.17%
llama-3.1-70b 92.58% | 74.00% | 79.08% 80.75% 75.80% | 80.44%
w/o Routing 92.88% | 76.25% | 78.31% 79.20% 77.02% | 80.73%
AMRO (Ours) 96.10% | 77.12% | 85.00% 91.02% 85.24% | 86.90%

<K Z 2z
=< Z 'z z z

To evaluate the transferability and general benefits of AMRO, we integrate it in a non-intrusive
manner into four representative multi-agent and collaborative reasoning frameworks: MAD, Mac-
Net, GPTSwarm, and HEnRY. We conduct evaluations on three benchmarks (MMLU, HumanEval,
and GSMS8K) under two widely used lightweight LLM configurations: gpt (gpt-40-mini) and gemini
(gemini-1.5-flash). Under identical computational and billing settings, we replace the native routing
or selection strategies of each framework with AMRO, resulting in a “Framework + AMRO” config-
uration. At each decision point, AMRO probabilistically selects the next agent and underlying LLM
according to its pheromone-based routing policy, thereby enabling dynamic routing across models
and agents.

Table [2] presents the ablation results of
AMRO with and without the routing Taple 3: Comparison of performance and cost before
mechanism. The single-agent baselines and after integrating with our method. gpt and gemini

(GPT-40-mini, Claude-3.5-haiku, Gemini- are abbreviations for gpt-4o-mini and gemini-1.5-flash,
1.5-flash, and LLaMA-3.1-70B) achieve respectively.

average accuracies between 76.20% and

80.54%, with GPT-4o-mini performing Data | Meth LLM Perf Cost
the best at 80.25However, when extend-
i Iti-agent setting without routin map B 8L 96
ing to a multi-agent setting without routing VMLU cemini 8094 $27.02
(“w/o Routing”), the performance drops to +MasRouter 8220 $19.39
77.48%, indicating that naive multi-agent +AMRO 8370 $19.01
collaboration does not yield consistent MAD gpt 86.05 $1.248
benefits and may even introduce coordi- HumEval gemini 8295 $1.526
tion overhead that harms effectiveness +MasRouter 87.60 $1.0%
natt . : ' +AMRO 8812 $1.032
In contrast, incorporating our pheromone-

. . > L ept 94.60 $5.664
guided routing mechanism significantly MAD gomini 0440 $5492
improves performance: AMRO achieves GSMBK +MasRouter 9491 $4.702
an average accuracy of 86.90%, surpass- +AMRO 9532 $4.679
ing the best single-agent baseline (GPT- MacNet gpt 8298 $7.812
4o0-mini) by 6.65% and the multi-agent MMLU Vack gemini Z;Zg igggg

. . . . +MasRouter K .
setting w1thogt routing by 9.42%. This T 8350 $5.500
improvement is consistent across GSM8K, P 0455
MATH, MMLU, HumanEval, and MBPP, MacNet gegmp ilni 8872 $0.568
demonstrating the robustness and gener- HumEval +MasRouter 8837 $0.404
ality of our approach. These results in- +AMRO 89.00 $0.377
dicate that the performance improvement MacNet gpt 9469 $2.142
of AMRO is not solely attributable to the GSMSK gemini 9431 :2016

. et +MasRouter 94.89 1.774
multi-agent structure, but also critically MG 9500 $1.658

guided by the pheromone-based routing
mechanism.

As shown in Table [3] both AMRO and MasRouter improve performance over the baseline frame-
works, but AMRO achieves consistently larger gains with lower costs. In MAD, AMRO outperforms
MasRouter on MMLU, HumanEval, and GSM8K, improving accuracy by an additional 1.50%,
0.52%, and 0.41%, while further reducing costs by $0.38, $0.064, and $0.023. Similarly, in MacNet,
AMRO surpasses MasRouter with accuracy improvements of 0.10%, 0.63%, and 0.11%, alongside
additional cost reductions of $0.392, $0.027, and $0.116. These consistent advantages indicate that

Under review as a conference paper at ICLR 2026

AMRO not only inherits the efficiency benefits of multi-agent routing but also optimizes accuracy—
cost trade-offs more effectively than MasRouter, demonstrating superior robustness and scalability.

4.3 SENSITIVITY ANALYSIS OF AMRO HYPERPARAMETERS

To systematically evaluate the stability of AMRO under varying configurations, we conduct a
sensitivity analysis on five key hyperparameters: pheromone weight o (determining the influ-
ence of pheromone concentration on path selection), heuristic weight 5 (controlling the sensi-
tivity of routing to response latency), load decay weight 6 (modulating the contribution of node
load to path scoring), node capacity weight A\ (reflecting the importance of model capacity in
routing decisions), and pheromone evaporation rate p (governing the forgetting rate of historical
pheromones and convergence stability). These parameters correspond to distinct regulatory di-
mensions in AMRO’s probabilistic routing mechanism, and their variations may significantly im-
pact the system’s exploration—exploitation balance, load distribution, and final convergence quality.

Table 4: Sensitivity of «a,3,0,A,p on Avg

Table [presents the average accuracy (Avg Pass@1 and Cost (relative to baseline).

Pass@]) and the relative change in inference
cost compared to the baseline across different pa-
rameter settings. The results demonstrate that

Param Value AvgPass@1 Cost

o 0.5 0-1.0% 3-8%
AMRO exhibits strong robustness to hyperparam- 075 ftoj% ? 1 1_372
eter variations: within reasonable ranges, accu- @1, Discline bascline
racy fluctuations typically remain within +2%, 15 (1)75.0/2% 46&41;8700/
and inference cost variations stay manageable. o 0_8 5517 3_6670
Specifically, adjustments to « and 3 primarily af- 075 i(‘).;%' ’ %:372
fect the trade-off between performance and la- A 1, Dascline bascline
tency; moderate increases in these parameters 1.5 05-12% 13-6%

0 .) 2 1-2% 5-9%
maintain stable accuracy while reducing costs,

. . . 1/ R0
though excessively high values may induce con- 0.25 %52_/{7% %_24;
vergence oscillations. The parameters § and A g 055 bascline - bascline

.J—170 =370
mainly influence cost allocation, with limited im- 1 0.3-0.8% 1-3%
pact on accuracy. In contrast, p proves to be the L5 05-12% 13-6%
most sensitive parameter: excessively low val- 0ss iég{qlb% gjgg
ues lead to pheromone over-accumulation and lo- A 935 b%sglnfg} ba;@ég;ﬂ

. . . . LO—170 =370

cal optima entrapment, while overly high values 1 0.8-1.5% 13-3%
. — 0 —69

cause rapid forgetting of historical information, 13 0.5-15% 14-6%
o : o 005 10-0.6% |2-4%

both resulting in performance instability. , 01 baseline el
. 02 103-09% 14-9%

Overall, the analysis indicates that the default 03 103-12% 18-15%

configuration (¢« = 1,8 = 1,6 = 0.5,A =

0.5,p = 0.1) achieves an optimal balance be-

tween performance and cost. These findings validate AMRO’s robustness and transferability, as the
system maintains stable performance even without meticulous hyperparameter tuning. This not only
provides flexible tuning options for practical applications but also establishes a reliable theoretical
foundation for deploying AMRO across diverse scenarios.

5 CONCLUSION

LLM-driven MAS face significant challenges in dynamic and resource-constrained environments,
particularly in task routing transparency and the inefficiency of static allocation strategies. To ad-
dress these issues, we propose AMRO, which guides agent node selection probabilistically through
a pheromone update mechanism and incorporates an adaptive pheromone decay strategy to enable
dynamic responses to environmental changes. Its path selection strategy, based on the load decay
factor and pheromone mechanism, effectively handles high-concurrency scenarios by preventing
node overload and ensuring balanced resource allocation, demonstrating strong scalability and ro-
bustness in complex network environments. Extensive performance evaluations and visualization
experiments demonstrate AMRO’s strong effectiveness and its interpretability in the routing plan-
ning process. Overall, AMRO offers a scalable solution for transparent, efficient task routing in
complex intelligent systems via bio-inspired multi-agent coordination.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive details and resources in the
main paper and supplementary materials:

Models and Algorithms: The proposed AMRO algorithm and its core ant colony optimization
mechanism are formally defined with mathematical formulations in Section [B] and pseudocode im-
plementations are provided in Appendix[A.3] In addition, the algorithm’s parameters, notations, and
update rules are systematically specified and explained in Appendices[A.2]

Theory and Interpretability: The path fitness function, pheromone update strategy, and related as-
sumptions are explicitly described in Section [B} Furthermore, Appendix [A.5] presents visual expla-
nations—such as heatmaps of pheromone dynamics and analyses of training processes—to facilitate
validation and interpretation of the model’s reasoning behavior.

Experimental Setup: Section]details the experimental configuration, including the publicly avail-
able datasets (GSM8SK, MATH, MMLU, HumanEval, MBPP) and evaluation metrics, with explicit
definitions such as the computation of pass@K.

Sensitivity and Ablation Studies: Section [4.3] provides sensitivity analyses of key hyperparam-
eters, with quantitative results reported in tables to demonstrate their impact on performance and
computational cost.

Training and Supplementary Materials: Appendix [A.6| presents intermediate training dynam-
ics across multiple epochs, including agent initialization, path selection, pheromone updates, and
convergence trends. These materials offer visualizations and detailed examples to support faithful
replication.

Finally, if the paper is accepted, we will release the complete source code to further facilitate repli-
cation and extension of our work by the research community.

REFERENCES

Rohan Ajwani, Shashidhar Reddy Javaji, Frank Rudzicz, and Zining Zhu. Llm-generated black-box
explanations can be adversarially helpful. arXiv preprint arXiv:2405.06800, 2024.

Eduardo Alonso, Mark d’Inverno, Daniel Kudenko, Michael Luck, and Jason Noble. Learning in
multi-agent systems. The Knowledge Engineering Review, 16(3):277-284, 2001.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Parasumanna Gokulan Balaji and Dipti Srinivasan. An introduction to multi-agent systems. Inno-
vations in multi-agent systems and applications-1, pp. 1-27, 2010.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682-17690, 2024.

Christian Blum. Ant colony optimization: Introduction and recent trends. Physics of Life reviews, 2
(4):353-373, 2005.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. Routerdc: Query-based
router by dual contrastive learning for assembling large language models. Advances in Neural
Information Processing Systems, 37:66305-66328, 2024.

10

Under review as a conference paper at ICLR 2026

W Chen, Y Su, J Zuo, C Yang, C Yuan, CM Chan, H Yu, Y Lu, YH Hung, C Qian, et al. Agentverse:
Facilitating multi-agent collaboration and exploring emergent behaviors, 2023.

Yu-Neng Chuang, Leisheng Yu, Guanchu Wang, Lizhe Zhang, Zirui Liu, Xuanting Cai, Yang Sui,
Vladimir Braverman, and Xia Hu. Confident or seek stronger: Exploring uncertainty-based on-
device llm routing from benchmarking to generalization. 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Junguo Cui, Lei Wu, Xiaodong Huang, Dengpan Xu, Chao Liu, and Wensheng Xiao. Multi-
strategy adaptable ant colony optimization algorithm and its application in robot path planning.
Knowledge-Based Systems, 288:111459, 2024.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS
Lakshmanan, and Ahmed Hassan Awadallah. Hybrid Ilm: Cost-efficient and quality-aware query
routing. arXiv preprint arXiv:2404.14618, 2024.

Marco Dorigo and Krzysztof Socha. An introduction to ant colony optimization. In Handbook of
approximation algorithms and metaheuristics, pp. 395—408. 2018.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28-39, 2007.

Ali Dorri, Salil S Kanhere, and Raja Jurdak. Multi-agent systems: A survey. leee Access, 6:28573—
28593, 2018.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
arXiv preprint arXiv:2410.03834, 2024.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Ahmed G Gad. Particle swarm optimization algorithm and its applications: a systematic review.
Archives of computational methods in engineering, 29(5):2531-2561, 2022.

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He. Llm
multi-agent systems: Challenges and open problems. arXiv preprint arXiv:2402.03578, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL
https://arxiv. org/abs/2103.03874, 2024.

Cong Hu, Kai Xu, Zhengqiu Zhu, Long Qin, and Quanjun Yin. Multi-agent chronological planning
with model-agnostic meta reinforcement learning. Applied Sciences, 13(16):9174, 2023.

Kai Hu, Mingyang Li, Zhigiang Song, Keer Xu, Qingfeng Xia, Ning Sun, Peng Zhou, and Min Xia.
A review of research on reinforcement learning algorithms for multi-agents. Neurocomputing, pp.
128068, 2024a.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-llm routing
system. arXiv preprint arXiv:2403.12031, 2024b.

Weiqgiang Jin, Hongyang Du, Biao Zhao, Xingwu Tian, Bohang Shi, and Guang Yang. A compre-

hensive survey on multi-agent cooperative decision-making: Scenarios, approaches, challenges
and perspectives. arXiv preprint arXiv:2503.13415, 2025.

11

Under review as a conference paper at ICLR 2026

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke Hiillermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems:
workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024.

Yaoru Li, Shunyu Liu, Tongya Zheng, and Mingli Song. Parallelized planning-acting for efficient
Ilm-based multi-agent systems. arXiv preprint arXiv:2503.03505, 2025.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng
Tu, and Shuming Shi. Encouraging divergent thinking in large language models through multi-
agent debate. arXiv preprint arXiv:2305.19118, 2023.

Weixing Liang, Min Lou, Zhangxing Chen, Huiyang Qin, Chen Zhang, Chengwei Cui, and
Yangyang Wang. An enhanced ant colony optimization algorithm for global path planning of
deep-sea mining vehicles. Ocean Engineering, 301:117415, 2024.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. arXiv preprint
arXiv:2311.08692, 2023.

Ahmed Marey, Parisa Arjmand, Ameerh Dana Sabe Alerab, Mohammad Javad Eslami, Abdelrah-
man M Saad, Nicole Sanchez, and Muhammad Umair. Explainability, transparency and black
box challenges of ai in radiology: Impact on patient care in cardiovascular radiology. Egyptian
Journal of Radiology and Nuclear Medicine, 55(1):183, 2024.

Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti Das, Rafael Rafailov, Ivan Laptev,
Philip HS Torr, Fabio Pizzati, Ronald Clark, and Christian Schroeder de Witt. Malt: Improv-
ing reasoning with multi-agent llm training. arXiv preprint arXiv:2412.01928, 2024.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route 1lms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial intelligence, 1(3-4):193-204,
1970.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

Sunil Ramlochan. The black box problem: opaque inner workings of large language models.
Prompt Engineering. URL: https://promptengineering. org/the-black-box-problem-opaque-inner-
workings-of-large-language-models/[accessed 2024-04-18], 2023.

Rob A Rutenbar. Simulated annealing algorithms: An overview. IEEE Circuits and Devices maga-
zine, 5(1):19-26, 1989.

Marco Scianna. The addaco: A bio-inspired modified version of the ant colony optimization algo-
rithm to solve travel salesman problems. Mathematics and computers in simulation, 218:357-382,
2024.

Jian Si and Xiaoguang Bao. A novel parallel ant colony optimization algorithm for mobile robot
path planning. 21(2):2568-2586, 2024.

SN Sivanandam, SN Deepa, SN Sivanandam, and SN Deepa. Genetic algorithm optimization prob-
lems. Introduction to genetic algorithms, pp. 165-209, 2008.

Haseeb Tahir, Mujahid N Syed, and Uthman Baroudi. Heuristic approach for real-time multi-agent
trajectory planning under uncertainty. IEEE Access, 8:3812-3826, 2019.

12

Under review as a conference paper at ICLR 2026

Chee Sheng Tan, Rosmiwati Mohd-Mokhtar, and Mohd Rizal Arshad. A comprehensive review
of coverage path planning in robotics using classical and heuristic algorithms. IEEE Access, 9:
119310-119342, 2021.

Clovis Varangot-Reille, Christophe Bouvard, Antoine Gourru, Mathieu Ciancone, Marion Schaeffer,
and Francois Jacquenet. Doing more with less—implementing routing strategies in large language
model-based systems: An extended survey. 2025.

Dongshu Wang, Dapei Tan, and Lei Liu. Particle swarm optimization algorithm: an overview. Soft
computing, 22(2):387-408, 2018.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. 2024a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024b.

Lexing Wang, Tenghai Qiu, Zhiqgiang Pu, and Jiangiang Yi. A cooperation and decision-making
framework in dynamic confrontation for multi-agent systems. Computers and Electrical Engi-
neering, 118:109300, 2024c.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Hazha Saeed Yahia and Amin Salih Mohammed. Path planning optimization in unmanned aerial
vehicles using meta-heuristic algorithms: A systematic review. Environmental Monitoring and
Assessment, 195(1):30, 2023.

Dayu Yang, Antoine Simoulin, Xin Qian, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng, and Grey Yang.
Docagent: A multi-agent system for automated code documentation generation. arXiv preprint
arXiv:2504.08725, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoa-
gent: Towards automatic multi-agent generation via evolutionary algorithms. arXiv preprint
arXiv:2406.14228, 2024.

Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng Wan, Kun Wang, Dawei Cheng, and Yiyan
Qi. Masrouter: Learning to route llms for multi-agent systems. arXiv preprint arXiv:2502.11133,
2025.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
Ilm-based multi-agent systems. arXiv preprint arXiv:2410.02506, 2024a.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiagi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow genera-
tion, 2024. URL https://arxiv. org/abs/2410.10762.

Mingjin Zhang, Xiaoming Shen, Jiannong Cao, Zeyang Cui, and Shan Jiang. Edgeshard: Efficient
IIm inference via collaborative edge computing. IEEE Internet of Things Journal, 2024b.

Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. Towards lifelong learning of large
language models: A survey. ACM Computing Surveys, 57(8):1-35, 2025.

13

Under review as a conference paper at ICLR 2026

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jiirgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs. In Forty-first International
Conference on Machine Learning, 2024.

A APPENDIX

A.1 DETAILED RELATED WORK
A.1.1 LLM-BASED MULTI-AGENT SYSTEM ROUTING

MAS based on LLMs tackle complex tasks through collaboration and interaction among multiple
agents (Dorr1 et al.L|2018];|Kasneci et al.| 2023} Zheng et al.,[2025)). Each agent, equipped with robust
language comprehension capabilities, communicates and shares information in natural language to
jointly achieve objectives. This architecture enables division of labor: agents specialize in subtasks,
leveraging LLMs’ reasoning and comprehension abilities to interpret requirements and coordinate
actions. Overall LLMs provide critical language understanding and collaboration capabilities that
enhance efficiency and flexibility. Compared to single-agent systems, LLM-based multi-agent sys-
tems are lighter, more flexible, and easily scalable (Balaji & Srinivasan, [2010). Each agent focuses
solely on its assigned tasks, reducing the need to retain extensive historical context. Through parallel
collaboration, the system can dynamically incorporate new agents to accommodate task expansion.

In complex tasks, LLM-based MAS path planning strategies can be categorized into non-learnable
(Chen et al.;|Liang et al.,[2023) and learnable (Lu et al., [2023; |Chen et al., |2024; Ding et al., [2024;
?;|Yue et al., [2025) approaches.

AGENTVERSE (Chen et al.) is a multi-agent framework that simulates human-like group collab-
oration for problem-solving, with the ability to dynamically adjust the agent composition based on
task progression. It achieves efficient problem-solving through four stages: expert recruitment, col-
laborative decision-making, action execution, and outcome evaluation. MAD (Liang et al.| [2023)
identifies a “rigid thinking” problem in LLMs during self-reflection. To address this issue, MAD
enhances reflection and reasoning accuracy by encouraging diverse thinking through the design of
agent interactions and an adjudication mechanism.

In complex task environments, using non-learnable path planning strategies may not only reduce
the model’s adaptability to diverse tasks, but also limit its flexibility and generalization capability
in dynamic scenarios. Learnable path planning strategies have become the mainstream in current
research. ZOOTER (Lu et al., |2023) introduces a reward-guided routing approach that learns a rout-
ing function by extracting supervision signals from training query rewards, enabling the assignment
of each query to the most specialized LLM. RouterDC (Chen et all [2024) trains a query-based
router using contrastive loss across samples and LLMs. Hybrid-LLM (Ding et al., [2024) improves
reasoning efficiency by combining strengths of different LLMs through hybrid routing. RouteLLM
(?) improves reasoning efficiency by combining strengths of different LLMs through hybrid rout-
ing, while MasRouter (Yue et al., 2025) handles complex routing with a three-stage cascade for
collaboration mode selection, role assignment, and final routing.

While existing methods have demonstrated promising performance, practical deployment scenar-
ios demand even greater training efficiency and accuracy. Furthermore, the inherent black-box
nature of LLMs (Ajwani et al., |2024) poses significant challenges to model transparency and in-
terpretability. To tackle these limitations, we propose a multi-agent routing framework inspired by
ant colony optimization. This approach not only enhances performance and scalability through par-
allel agent collaboration but also improves decision traceability by providing a more interpretable
routing mechanism, making it better suited for real-world, mission-critical applications.

A.1.2 HEURISTIC PATH OPTIMIZATION

Heuristic Path Optimization (Sivanandam et al., 2008} Rutenbar, |1989) is a rule-based approach de-
signed to efficiently find near-optimal paths in complex spaces. Unlike exhaustive search methods
that aim to evaluate all possible paths, heuristic strategies rely on informed rules or prior knowl-
edge—such as distance estimations, gradient information, or problem-specific heuristics—to guide

14

Under review as a conference paper at ICLR 2026

Algorithm 1 AMRO for MAS

Graph G = (V, E); initial pheromone 79; parameters «, 3, 8, A, i1;
evaporation rate p; load decay rate § Optimal Routing Allocation P
Initialize: Set 7, ; < 7o for each edge (vi;,vi41,;) € B

Parallel and Asynchronous Agent Processing:

while new agent request a; dynamically arrives do In parallel for all active agents
Edge Selection: Start at source node vy 4

for [= 1 N—1 do Choose next node v;1,; with probability p; ; ; based on pheromone, heuristic,
load, and capability Update current node to vy 41,;
Fitness Evaluation: Compute path fitness f(Py) based on delay, success, and load
Pheromone Update:
edge (v, vi41,;) € Pr, Compute A7y, ; = ﬁ Update 77,5 ; < (1=p) 71+ peq A1
Load Management:
node (vy,;,v11,;) Compute load factor oy ; ; Update decay factor 7 ; j — e~ P

return Py with fitness f(Phegt)

the search process toward promising regions of the solution space. It is widely used in tasks such as
robotic navigation (Tan et al., 2021), graph search (Pohl,|1970) and other tasks (Tahir et al.,[2019).

ACO algorithm draws inspiration from the foraging behavior of real ant colonies (Blum, 2005}
Dorigo & Sochal |2018).. In nature, ants communicate indirectly by depositing pheromones along
their paths. Trails with higher pheromone concentrations are more likely to be followed, as they of-
ten represent more efficient routes. This process creates a positive feedback loop, gradually guiding
the colony to converge on the shortest path between the nest and a food source. AddACO (Scianna,
2024) guides ant path selection through a linear convex combination of multiple migratory cues,
such as pheromones and distance. DYACO (Liang et al.,2024) improves path search efficiency and
global optimization capability by introducing guided direction, Gaussian distribution functions, and
a corner-turning heuristic, while also reducing redundant path selection. PACO (S1 & Bao, 2024)
is applied to robot path planning in a grid network. It overcomes the local optimum limitation of
traditional ACO by introducing enhanced pheromone update schemes and hybrid strategies, while
significantly accelerating path planning through parallel computing.

Despite the success of ant colony algorithms in other domains, their application to LLM routing
planning remains underexplored. This paper presents the first integration of ant colony optimization
into LLM routing. By redesigning pheromone representations and state transition rules, we develop
a distributed routing framework tailored to high-dimensional semantic spaces, offering a biologically
inspired solution to traffic allocation and path optimization challenges in LLM inference.

A.2 NOTATION

Table [A.2] provides a comprehensive overview of the notations and character representations used
throughout this study.

To facilitate clarity and consistency in the mathematical formulation of our proposed method, the
table categorizes these representations into five distinct sections:(1) Graph Structure; (2) Path Selec-
tion and Fitness; (3) Cost, Load, and Capability; (4)Pheromone Mechanism; (5) Algorithm Param-
eters.

15

Under review as a conference paper at ICLR 2026

Table 5: Categorized Notations in the AMRO Method

Graph Structure

G=(V,E) Layered directed graph representing the multi-agent system
UL The i-th node in the [-th layer (an agent node)

(v1,i, Vi41,5) Directed edge from v; ; to vi11

Py Path constructed by agent k

Path Selection and Fitness

Diij Probability of choosing v;41,; from v ;
f(Py) Fitness of path P considering delay, success, and load
w1, Wa, W3 Weights for token cost, failure, and load in f(Py)

Cost, Load, and Capability

lij Normalized token cost on edge (v;,;, vj+1,5)

Qg Load ratio: tasks assigned / capacity of node v; 1 ;
Vi Load decay factor: e~#%t.i.s

S1,i5 Normalized capability score of node v; 1 ;

3,5 Heuristic factor (inverse of response time of vy ;)

Pheromone Mechanism

714, (t) Pheromone value on edge (v;;, vi41,;) at time ¢
ATZ?L j Pheromone increment on edge by agent &

p Global pheromone evaporation rate

13 Local pheromone update coefficient

Q Scaling factor for pheromone reinforcement

Algorithm Parameters

m Number of agents (ants) in one iteration
T Number of total iterations
€ Small constant to avoid division by zero

Algorithm 2 Ant Colony Optimization (ACO)

Graph G = (V, E), ants m, iterations T, evaporation rate p, initial pheromone 7, parameters «, 3,
constant () Best solution found
Initialize 7(4, j) < 70, (¢, 7) for all (4, j) € E Initialize best solution and cost

fort < 17T do
for & < 1 m do Place ant k£ on a random node
while solution not complete do Select next node j from N; with probability:

PP %) (%))
Dien, [T D1 G, D)
Append j to solution Compute cost C', Update best solution if improved
for each (i,j) € Edo7(i,j) < (1 —p) - 7(3,))
for k < 1mdo
for each (¢, j) in ant k’s solution do 7 (7, j) + 7(¢,j) + C% return best solution

16

Under review as a conference paper at ICLR 2026

A.3 PSEUDOCODE

Algorithm 3 AMRO for MAS

Layered graph G = (V,FE), number of agents m, source-destination pairs, parameters
a, B0, A, i1, p, Q, &, 7o, w1, wo, w3z Optimized routing paths for each agent

Initialization:

edge (vy,;,vi41,;) € E Set pheromone 7y ; ;(0) < 703

for agent k = 1 to m do Initialize path Py < [v1 ,]; set current node vy ; <— v1 s}
while v; ; # vy ¢ do Compute transition probabilities to next layer:

(71,65 1% - [g)? - i) - Tsna)™ - Tl)™

o (i@ Imank)? - Iviwl® - [seae]® - [lie] =+
V41,6 ENi1

pii,j (t) =

Select next node vi11,; ~ py; ;(1);
Append vy 1 to Py; set vy ; < vi41,5;
Update pheromone locally:

T1,i () = (1= &) - 7,6,5(t) + & - 70
Compute fitness of path Pj:

1
f(Py) = wr - Z lijt+w2- [1= H S1,3,j +w3~@ Z Vg

(1,4,5) € Py (1,1,5) € Py (1,4,5)€ Py

edge (v;,i,vi4+1,;) € E Compute pheromone increment:

s

Ark e i (vn) € B
b 0, otherwise

Update pheromone globally:
T+ 1) (1= p) - maj(t) + Y AT,
k=1

(Optional) Adaptive evaporation:

A~
Pt(*p'<1+’y>
gl

return Paths P}, with the lowest fitness or highest accumulated pheromone

Algorithm 2] describes the ACO algorithm, which simulates the collective foraging behavior of ants
to solve combinatorial optimization problems over a graph. Initially, pheromone levels on all edges
are uniformly set, and each ant incrementally constructs a solution by probabilistically selecting
the next node based on pheromone intensity and heuristic desirability. After all ants complete their
paths, pheromone evaporation is applied to prevent convergence to suboptimal solutions, followed
by pheromone reinforcement based on the quality of each ant’s solution. This process iterates over
multiple rounds, progressively guiding the search toward high-quality solutions. The best solution
found during the process is returned as the final output.

AMRO is specifically designed for hierarchical graph structures, targeting task routing and path
planning problems in multi-agent systems. At its core, AMRO probabilistically guides agents to
discover optimal paths through a layered graph using pheromone-based decision-making, while
integrating multiple factors such as node load, capacity, and heuristic desirability. This results in an
efficient and interpretable solution for cooperative multi-agent path optimization.

The algorithm begins by initializing the pheromone value 7 for every edge in the graph. During each
iteration, every agent starts from a designated source node and constructs a path toward a destination

17

Under review as a conference paper at ICLR 2026

node. At each step, the agent selects the next-hop node from the adjacent layer by computing a
transition probability p‘l'f ij (t) that depends on the pheromone strength 7, heuristic factor 7, node
capacity -y, path feasibility s, and path load {. Local pheromone updates are performed immediately
after each move to reflect recent exploration behavior.

Once a complete path is constructed for each agent, a fitness score f(Py) is computed, which incor-
porates weighted metrics such as total path length, availability penalties, and average node capacity.
After all agents complete their path construction, global pheromone updates are applied across the
graph. Edges that appear in successful paths are reinforced proportionally to the pheromone incre-
ment A7 and the corresponding fitness value f(Py), while non-utilized edges undergo pheromone
evaporation. To improve adaptability to dynamic environments, AMRO also supports an adaptive
pheromone evaporation mechanism, which adjusts the evaporation rate p in response to real-time
system state changes.

Finally, the set of paths P, with the highest pheromone accumulation or optimal fitness values are
selected as the final output. By jointly optimizing path quality, system load balancing, and resource
allocation, AMRO demonstrates robust convergence and scalability, making it well-suited for high-
concurrency, multi-agent task scenarios.

A.4 MORE EXPERIMENTAL RESULTS
A.4.1 BASELINE

Single-Agent Methods

CoT (Chain of Thought) guides the model to decompose logic step-by-step and generate coher-
ent reasoning processes when tackling complex tasks by embedding intermediate reasoning steps
into input problems, thereby enhancing the ability to solve intricate problems. ComplexCoT uses
high-complexity chain-of-thought examples during prompting and selects the majority answer from
multiple generated reasoning chains during decoding, significantly improving model accuracy for
multi-step reasoning tasks. SC(COT) and SC(ComplexCOT) adopt a decoding strategy that com-
bines diverse reasoning path sampling with self-consistent answer selection, generating multiple sets
of reasoning chains and choosing the majority-consistent answer.

Multi-Agent Methods LLM-debate organizes multiple large language models to simulate human
multi-annotator collaborative evaluation processes, forming an autonomous debating jury to col-
laboratively assess the quality of generated responses. GPTSwarm models LLM agents and their
interaction relationships through computational graphs, integrating a node-level prompt optimizer
with an automatic graph optimizer that adjusts graph connections. Agent-prune identifies commu-
nication redundancy and performs one-time pruning on spatio-temporal message-passing graphs,
maintaining high model performance while significantly reducing token overhead and economic
costs. Within the three structures of the multi-agent collaboration network MACNET—Chain, Tree,
and Complete Graph—Chain arranges agents in a linear sequence with sequential interactions; Tree
allows agents to interact along different branches; and Complete Graph fully connects each node
to enable arbitrary interaction dependencies, facilitating dense information propagation and diverse
interactions. AFlow employs a Monte Carlo tree search mechanism to automate the optimization of
coded workflows, achieving efficient generation and refinement of complex task workflows through
iterative code modification, tree-structured experience accumulation, and execution feedback.

Learnable Single-Agent Routing Methods Frugal GPT proposes a lightweight and efficient LLM
cascading framework that dynamically selects the optimal LLM combination for different queries
through learning. PromptLLM incorporates query content, candidate models, and target require-
ments into prompt text, which is then input to an external large language model to screen for the
most suitable candidate model. RouteLLM utilizes a dynamic mechanism to select between strong
and weak LLMs, combined with a training framework based on human preference data and data aug-
mentation, to optimize the balance between cost and response quality during inference. RouterDC
presents a dual-contrastive learning-based approach that leverages encoders, LLM embeddings, and
two contrastive learning losses to achieve effective planning across multiple LLMs.

18

Under review as a conference paper at ICLR 2026

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Score
claude-3.5-haiku | 037 028 029 022 0.4 039 035 032 072 058 o051 043 o085 073 064 o058 B
gemini-1.5-flash | 0.95 105 110 092 102 115 123 105 120 133 138 114 148 155 137
llama-3.1-70b | 130 110 110 108 171 145 142 130 160 142
llama-3.1-70b | 0.56 058 o049 045 0.69 070 062 058 075 074 0.69 0.63 0.80 074 0.70
E gpt-40-mini 0.94 0.77 0.88 074 110 0.84 0.95 0.83 153 122 131 1.22 172 1.56 1.66 1.58
S claude-3.5-haiku | 1.05 0.92 0.88 0.78 111 0.98 0.94 0.88 1.29 115 1.02 0.96 141 128 115 104
= gemini-1.5-flash 113 122 1.03 111 127 142 114 122 145 1.57 1.28 1.37 171 156 1.50
claude-3.5-haiku | 029 022 017 023 039 033 022 028 055 049 037 043 o.66 0.59 0.4 052
gpt-do-mini | 0.82 058 0.64 0.47 103 078 0.85 0.63 122 0.95 105 0.80 145 162 135
llama-3.1-70b 122 1.05 0.93 103 135 118 1.08 110 1.45 1.30 118 115 1.60 1.47 136 132
gemini-L.5-flash | 135 145 110 115 145 158 122 125 156 172 145 135 155
COT TOT GOT AOT coT TOT GOT AOT coT TOT GOT AOT cOT TOT GOT AOT
Method Method Method Method

Figure 4: Heatmaps of pheromone-guided routing across four epochs, where color intensity denotes
model-method performance and AMRO progressively shifts from broad exploration to reinforced
high-performing paths while suppressing weaker ones.

A.5 INTERPRETABILITY OF AMRO

To evaluate AMRO’s interpretability, we visualize its pheromone update dynamics across four train-
ing epochs using heatmaps. As shown in Figure [the heatmaps illustrate the evolution of scores
for combinations of models and methods (e.g., CoT, ToT, GoT, AoT), with color intensity reflecting
the preference strength for selection. The scores evolve progressively, depicting AMRO’s transition
from exploration to convergence.

In the initial stage (Epoch 1), scores are relatively uniform, indicating robust exploration and avoid-
ance of premature convergence. During intermediate stages (Epochs 2-3), high-performing com-
binations, such as gpt—-4o-mini with ToT and GoT, show increasing scores, with deeper col-
ors reflecting pheromone accumulation and higher selection probability. Conversely, weaker com-
binations, such as claude-3.5-haiku with AoT, exhibit declining scores and are gradually
marginalized. By the convergence stage (Epoch 4), top-performing combinations dominate with
peak scores, while inefficient ones are naturally eliminated.

This evolution underscores AMRO’s pheromone-guided probabilistic path selection: successful
paths accumulate pheromones through positive feedback, increasing their attractiveness, while inef-
ficient paths decay due to evaporation. AMRO thus balances exploration and exploitation, initially
exploring diverse combinations and later converging to an optimized and stable routing strategy.

A.6 TRAINING EXAMPLES

This appendix presents three training epoch examples to systematically illustrate the performance
evolution trend of the AMRO framework during task scheduling and how its ACO-based path se-
lection mechanism iteratively optimizes through successive iterations. The content includes: initial
agent configurations, schematic diagrams of task path selection, dynamic pheromone updates, the
model performance evolution process, and final path convergence with agent weight distribution.

A.6.1 EPOCH

Initialization Phase Before the start of the first training round, the system performs parameter
initialization for all 30 available Agents. The dynamic weight and pheromone concentration of each
Agent are both set to 1.00, with only static weights differing due to variations in model capabilities
and role functions. Concentration The initial parameter configurations of each agent are shown in
Figure 1.

GPT-40-mini:

Prompt types:

Chain-of-Thought (COT), Tree-of-Thought (TOT), Root Cause Analysis (RCA), Reverse
Thinking (Reverse), Analogical Reasoning (Analogy), Hypothetical Deduction (Hypothe-
sis), and Six Thinking Hats (SixHats)

19

Under review as a conference paper at ICLR 2026

Initial weight:

Static weight of 2.71.

Dynamic weight of 1.00.

Initial pheromone concentration of 1.00.
Comprehensive weight of 2.71.

GPT-4.1-nano:

Prompt types:

COT, TOT, RCA, Reverse, Analogy, Hypothesis, and SixHats

Initial weight:

Static weight of 2.38.

Dynamic weight of 1.00.

Initial pheromone concentration of 1.00. omprehensive weight of 2.38.

Deepseek-chat:

Prompt types:

First Principle, COT

Initial weight:

Static weight of 1.83.

Dynamic weight of 1.00.

Initial pheromone concentration of 1.00.
Comprehensive weight of 1.83.

Qwen2.5-coder-7b-instruct :

Prompt types:

TOT

Initial weight:

Static weight of 1.38.

Dynamic weight of 1.00.

Initial pheromone concentration of 1.00.
Comprehensive weight of 1.38.

In the initial phase, the current load of all Agents is 0, with a maximum task capacity of 10, indicating
that each Agent in the system has sufficient computational resources to execute tasks. Due to the
highest static weight (2.71) among all models, GPT-40-mini Agents have the highest comprehensive
weight and thus a significant advantage in initial path selection. In contrast, Qwen Agents have
the lowest static weight (1.38), resulting in a relatively lower selection probability before feedback
mechanisms are introduced.

Path Selection and Load Balancing Based on Comprehensive Weight As the Epoch progresses,
the system dynamically selects execution paths for tasks based on comprehensive weights. Specif-
ically, when a new task requires allocation, the system calculates the comprehensive weights of all
candidate Agents and selects them in proportion to these weights—the greater an Agent’s compre-
hensive weight, the higher the probability of being chosen as the next node in the path. However, the
system also achieves load balancing through dynamic weights to prevent high-weight Agents from
monopolizing tasks.

Layer1 data_collection:

Initial weight:

GPT-40-mini-Hypothesis Agent of 2.71 (selected)
GPT-40-mini-TOT Agent of 2.71

GPT-4.1-nano-SixHats Agent of 2.38

20

Under review as a conference paper at ICLR 2026

Deepseek-chat-FirstPrinciple Agent of 1.83

Qwen?2.5-coder-7b-instruct-TOT Agent of 1.38

Layer2 Data_analysis:
GPT-40-mini-Hypothesis Agent of 2.71
GPT-40-mini-TOT Agent of 2.71

GPT-4.1-nano-SixHats Agent of 2.38 (selected)
Deepseek-chat-FirstPrinciple Agent of 1.83

Qwen2.5-coder-7b-instruct-TOT Agent of 1.38

Layer3 Answer_generation:
GPT-40-mini-Hypothesis Agent of 2.71
GPT-40-mini-TOT Agent of 2.71 (selected)

GPT-4.1-nano-SixHats Agent of 2.38
Deepseek-chat-FirstPrinciple Agent of 1.83

Qwen2.5-coder-7b-instruct-TOT Agent of 1.38

Agent Selection Process The system first designated the GPT-40-mini-Hypothesis agent as the first-
layer processing node, given its highest comprehensive weight (2.71) and suitability for hypothesis
generation. In the second layer (data_analysis), the system selected the GPT-4.1-nano-SixHats agent
for multi-perspective problem analysis, leveraging the previous output and original problem. Despite
sharing the same static weight (2.38) as other roles in the model, this agent was prioritized due to its
idle status and high comprehensive weight. In the third layer (answer_generation), the system chose
the GPT-40-mini-TOT agent—equipped with both problem-solving and evaluation capabilities—to
generate the final answer, as it had the highest comprehensive weight in this layer.

A.6.2 EPOCH?2

Dynamic Pheromone Adjustment After the first epoch, AMRO updates each Agent’s pheromone
values based on their problem-solving success status. Agents with higher success rates experience a
notable increase in pheromone. For Agents with lower success rates, pheromone increases are less
significant or nearly unchanged.

Dynamic Weight Adjustment At the start of the first Epoch, the current load of all Agents in the
system is 0 (with a maximum load set to 10), and their dynamic weights are initialized to 1.00. As
tasks are executed, the system assigns tasks to Agents in sequence, causing their loads to gradu-
ally increase. To reflect load changes, dynamic weights decrease proportionally to the remaining
capacity.

Layer1 data_collection:

Initial weight:

GPT-40-mini-Hypothesis Agent of 6.75 (selected)
GPT-40-mini-TOT Agent of 6.65

éPT—4.1-nan0—SixHats Agent of 5.63
GPT-4.1-nano-RCA Agent of 2.29 (lower success)

Deepseek-chat-FirstPrinciple Agent of 4.58

21

Under review as a conference paper at ICLR 2026

Qwen?2.5-coder-7b-instruct-TOT Agent of 2.90

Layer2 Data_analysis:
GPT-40-mini-Hypothesis Agent of 6.75
GPT-40-mini-TOT Agent of 6.65

GPT-4.1-nano-SixHats Agent of 5.63 (selected)
GPT-4.1-nano-RCA Agent of 2.29 (lower success)

Deepseek-chat-FirstPrinciple Agent of 4.58

Qwen2.5-coder-7b-instruct-TOT Agent of 2.90

Layer3 Answer_generation:
GPT-40-mini-Hypothesis Agent of 6.75
GPT-40-mini-TOT Agent of 6.65 (selected)

GPT-4.1-nano-SixHats Agent of 5.63
GPT-4.1-nano-RCA Agent of 2.29 (lower success)

Deepseek-chat-FirstPrinciple Agent of 4.58

Qwen?2.5-coder-7b-instruct-TOT Agent of 2.90

A.6.3 EPOCH 3

After the Epoch 2 iteration, selected agents receive further weight increases, with top-performing
agents having weights several times higher than some weaker ones. However, if certain agents
make mistakes in the Epoch 2, leading to a drop in the weights of previously overused agents,
this triggers corrective adjustments in subsequent path selections. Such adaptation is expected to
improve the success rate on previously failed problems in the next round, forming a new balance.
This mechanism ensures that, as training progresses, the multi-agent problem-solving system moves
toward higher overall success rates and more robust decision paths.

B LIMITATIONS

Although AMRO demonstrates strong performance and interpretability in multi-agent LLM routing
tasks, there are still some limitations. First, our work is mainly showcased within the designed
hierarchical network structure. Due to time and resource constraints, we have not yet validated the
method on a truly large-scale dynamic multi-agent network, nor have we demonstrated superior
performance on more diverse datasets. In addition, although AMRO reduces the reliance on large-
scale annotated data compared to end-to-end learning methods, it still requires careful tuning of
certain parameters (such as pheromone decay rate and weight coefficients) across different domains
and tasks to achieve optimal performance.

22

	Introduction
	Related Work
	LLM-based Multi-Agent System Routing
	Heuristic path optimization

	Method
	Preliminaries
	AMRO Algorithm
	Problem Modeling
	Pheromone and Heuristic Factor Definitions

	Experiment
	Experimental Setup
	Main Results
	Sensitivity Analysis of AMRO Hyperparameters

	Conclusion
	Appendix
	Detailed Related Work
	LLM-based Multi-Agent System Routing
	Heuristic path optimization

	Notation
	Pseudocode
	More Experimental Results
	Baseline

	Interpretability of AMRO
	Training Examples
	Epoch 1
	Epoch 2
	Epoch 3

	Limitations

