Under review as a conference paper at ICLR 2026

REVISITING DYNAMIC GRAPHS FROM THE PERSPEC-
TIVE OF TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Numerous studies have been conducted to investigate the temporal pattern of
dynamic graphs. Existing methods predominantly fall into two categories:
discrete-time dynamic graph (DTDG) methods and continuous-time dynamic
graph (CTDG) methods. While these approaches have proven effective in mod-
eling temporal dependencies within dynamic graphs, they exhibit several limita-
tions. For instance, DTDG approaches often lose fine-grained temporal informa-
tion. CTDG methods can preserve temporal details but may inadequately cap-
ture long-term dependencies due to computational constraints. Moreover, both
paradigms predominantly focus on existing historical interactions, often neglect-
ing the informative value of non-existing ones. These negative historical interac-
tions can provide complementary insights into the recurring patterns of node be-
havior. To fully leverage both types of interactions, we propose transforming node
interactions into binary time series. Building upon this formulation, we propose
a novel model termed the Time Series-based Dynamic Graph (TSDyG) model,
which approaches dynamic graph learning from a time series perspective. Com-
pared to existing DTDG and CTDG methods, our model offers several advantages:
it captures long-range dependencies, preserves fine-grained temporal details, and
leverages information from both existing and non-existing historical interactions.
We conduct extensive evaluations of our method on various benchmark datasets.
The results demonstrate that our proposed TSDyG model achieves competitive
performance on the downstream task such as link prediction.

1 INTRODUCTION

Dynamic graphs model evolving systems in which interactions between entities change over time.
Many real-world scenarios, such as social networks, user-item interactions, and financial transac-
tions, can be naturally represented as dynamic graphs. In recent years, a growing number of re-
search (Zhang et al., [2024; 2023; [Ji et al., 2024; |Cong et al., [2023)) on dynamic graph learning
has emerged, demonstrating its effectiveness in capturing temporal relationships among entities and
achieving promising results in forecasting tasks.

Current dynamic graph learning methods can
generally be categorized into two types:

_ _ C L) A ®) o
discrete-time dynamic graph (DTDG) meth- | | i I .
ods (Karmim et al., 2024} You et al.l [2022; E F - - A,*
Yang et al., 2021} |Sankar et al.| [2020; |Pareja M% m% Friday Saturday W‘“‘“E%
et al) 2020) and continuous-time dynamic ” o o) (%)
graph (CTDG) methods (Yu et al.l 2023} [Tian [V) ar ar ar

et al., 2023} |[Zhang et al.| 2024} 2023} Ji et al.| oy ate e ©.1,1,0) predicton T
2024; [Zou et al., [2024; [Poursafaei et al., 2022

Gravina et al, [2024). In DTDG methods, the Figure 1: Illustration of encoding historical inter-
dynamic graph is represented as a sequence of actions into binary data for future prediction. For
snapshots that are in the form of static graphs the target entities (the man and the woman), inter-
to capture the interactions of entities during the actions on Tuesday and Fnday are encoded as “1”’
specific time interval. These models typically while the absence of interactions at other times is
employ Graph Neural Networks (GNNs) (Kipf] encoded as “0.”

& Wellingl 2017} |[Hamilton et al., 2017; | Xu

Under review as a conference paper at ICLR 2026

et al.,|2019) in conjunction with Recurrent Neural Networks (RNNs) (Hochreiter & Schmidhuber;,
1997; |Cho et al.| |2014) to capture both the structural and temporal dependencies in the evolving
graph. However, DTDG methods exhibit several limitations (Fennell et al.,2016;|Cho et al., [2014).
First, due to the partitioning of interactions into discrete snapshots, fine-grained temporal informa-
tion is lost, which can negatively impact performance in time-sensitive prediction tasks. Second,
selecting an appropriate snapshot interval is non-trivial: if the interval is too small, it can lead to
redundant and computationally expensive graph sequences; if too large, important temporal details
may be overlooked. In addition to these challenges, scalability remains a concern, especially on
large-scale dynamic graphs.

Continuous-time dynamic graph (CTDG)
methods, in contrast to DTDG approaches,
represent dynamic graphs as sequences of
chronologically ordered events (Yu et al., 2023

Wang et all 2021a). Two main categories
of CTDG methods have been developed:
model-centric and memory-based approaches.
Compared to DTDG methods, CTDG models
can better preserve fine-grained temporal
information. However, CTDG methods also
face several limitations. Model-centric ap-
proaches (Yu et al. [2023; Zou et al., 2024
Wu et al., 2024) , such as those based on
Transformers, often struggle to capture long-
range temporal dependencies due to their high
computational complexity over continuous
event streams. On the other hand, memory-
based methods (Ji et al.| [2024; |Su et al., [2024;
Rossi et al., 2020), typically exhibit inferior
performance because they process batches of

© @ ©@ @
@ ®
(a) Discrete-time Dynamic Graph

OJORONON JOXCICXOIOIONOX JO)

® © ONOXOX NONO

(b) Continuous-time Dynamic Graph

ta t3 ts tg

th b3ty tg tg to

(c) Time Series-based Dynamic Graph
Figure 2: The illustration of discrete-time dy-

namic graph, continuous-time dynamic graph and
our proposed time series-based dynamic graph.

events concurrently rather than sequentially,
violating the natural chronological order of interactions, a challenge often referred to as temporal
discontinuity (Su et al.| 2024).

In dynamic graph modeling, both discrete-time and continuous-time approaches primarily cap-
ture temporal dependencies by focusing on positive interactions between target nodes and their
recent historical neighbors, often overlooking the informative value of non-existing historical in-
teractions. Given a sequence of interactions G = {(uy,v1, 1), (ug, va,t2),...), (ur, v, t7)} with
0 <t; <ty <--- <trp,the absence of interaction at a specific time ¢’, where (u,v,t') ¢ G, can be
equally informative. Such negative interactions capture the temporal recurring patterns of interac-
tions, reflecting behaviors like periodicity or seasonality. For instance, as shown in Example] the
illustration depicts email communications between employees. Our goal is to predict whether the
target entities (the man and the woman) will exchange emails next Wednesday. In such scenarios,
the absence of interaction (e.g., no email communication between the man and the woman on the
previous Monday and Saturday) also provides useful information for modeling their behavior. Both
existing and non-existing interactions form a predictable pattern that models should capture. To ef-
fectively capture both existing and non-existing interactions of target entities over time, we propose
transforming the interaction data into binary time series. Given the target node u and a historical
node v, their past interactions over time can be represented by the proposed function f, . (¢), which
captures the interaction dynamics as a function of time and can be defined as:

1, if (u,v,t) or (v,u,t) € G

Fun) ={y

This binary time series { f,, » (t)}iitl encapsulates the complete interaction history between u and v,
enabling models to learn from both the presence and absence of interactions. Incorporating negative
historical interactions in this manner allows for a more comprehensive understanding of temporal
dynamics. The difference of discrete-time dynamic graphs, continuous-time dynamic graphs and
our proposed time series-based dynamic graphs are illustrated in Figure

(D

otherwise

Under review as a conference paper at ICLR 2026

Enlightened by this transformation, we propose a novel dynamic graph learning method named
Time Series-based Dynamic Graph (TSDyG) model which handles the dynamic graph from the
perspective of time series. TSDyG comprises three key components: a time series formulation mod-
ule, an embedding generation module, and a cross-attention module. In the time series formulation
module, we convert node interactions into binary time series as defined in Eq. |I} Each time step
indicates the presence (1) or absence (0) of an interaction between node pairs. Next, the embedding
generation module employs a learnable codebook with two learnable embeddings to generate the in-
teraction embeddings from the binary time series data, To incorporate temporal information, a time
encoder is adopted to generate time-specific embeddings, which are combined with the interaction
embeddings to form the input for the cross-attention module. The cross-attention module, draw-
ing inspiration from prior work (Kim et al., [2024), introduces a learnable query token that interacts
with the key-value pairs derived from the input embeddings. This design facilitates the modeling
of long-range temporal dependencies from historical data while maintaining lower computational
complexity compared to traditional self-attention mechanisms. During training, our model is op-
timized with the binary cross-entropy (BCE) loss. Compared to the previous DTDG and CTDG
methods, TSDyG is distinguished by its ability to leverage both existing and non-existing interac-
tions to model the recurring interaction patterns among nodes, while effectively capturing long-term
dependencies in dynamic graphs. The contributions of our paper are summarized as follows:

e Unlike previous DTDG and CTDG methods that treat dynamic graphs as sequences of
snapshots or discrete events, we introduce a novel formulation that represents dynamic
graphs as time series. This formulation captures both existing and non-existing historical
interactions of target nodes, offering a more comprehensive perspective on node dynamics.

* Building on the formulated binary time series data, we propose the Time Series-based Dy-
namic Graph (TSDyG) model, which comprises three key components. In contrast to pre-
vious dynamic graph methods, TSDyG effectively captures recurring interaction patterns
between nodes and models long-term temporal dependencies in dynamic graphs.

* We extensively evaluate our model on multiple benchmark datasets, and the results demon-
strate that it achieves competitive performance on downstream tasks, such as link predic-
tion, compared to the baselines.

2 RELATED WORK

Dynamic Graph Learning. Existing methods can roughly categorized into discrete-time and
continuous-time approaches. Discrete-time methods (Karmim et al., 2024} [You et al.| |2022; [Yang
et al., 2021} |Sankar et al.,[2020) regard dynamic graphs as a sequence of snapshots taken at regular
time intervals, and typically extend the graph neural networks (GNNs) for static graphs to capture
the temporal correlations. Recent work (Karmim et al., 2024)) has explored graph transformers as
a powerful alternative to GNN for modeling node dependencies. However, discrete-time methods
usually suffer some significant limitations, such as the loss of temporal information. In contrast,
continuous-time methods (Zhang et al.l 2024; Zou et al., 2024} [Poursafaei et al) [2022; |Gravina
et al., 2024) represent dynamic graphs as the chronologically ordered sequences of events. Among
the continuous-time methods, memory-based methods (Ji et al., 2024; [Su et al.| 2024} |[Ross1 et al.}
2020) maintain a memory to update the node states based on interactions. However, during batch
processing, the strict chronological order of the events may be violated. Model-centric methods (Yu
et al., 2023} |Zou et al., [2024; |Wu et al., 2024) leverage sequential models such as LSTMs (Hochre-
iter & Schmidhuber,|1997)), Transformers (Vaswani et al.| 2017 and MLP-Mixers (Tolstikhin et al.,
2021)) to capture long-range node dependencies while aiming to reduce the time complexity. Other
methods have proposed techniques like temporal walk (Wang et al.| 2021b; Jin et al.l 2022)) and
graph ordinary differential equation (graph ODE) (Gravina et al., [2024; [Luo et al 2023)) for dy-
namic graph representation learning. Additionally, several studies (Yuan et al., 2024; |Yang et al.,
2024) have shown that existing dynamic graph methods often struggle to generalize under distribu-
tion shifts, prompting the development of new techniques to address these challenges.

Time Series Forecasting. Time series forecasting is one of the fundamental tasks in time series
analysis. Traditional statistical approaches, such as VAR (Watsonl [1994) and ARIMA (Box et al.,
1974) are often inadequate when dealing with non-linear temporal dynamics. In contrast, deep learn-
ing methods have demonstrated strong capabilities in capturing complex temporal patterns. Based

Under review as a conference paper at ICLR 2026

on their architectural backbones, these methods can be broadly classified into four categories: CNN-
based, RNN-based, Transformer-based, and MLP-based models. CNN-based methods (Liu et al.,
2022)) utilize convolution kernels to model local temporal variations. However, due to their lim-
ited receptive fields, they struggle to capture long-term dependencies. RNN-based methods (Salinas
et al.,[2020; Lai et al.||2018)) model the temporal state Transition via recurrent structure. In compar-
ison, transformer-based methods (Kitaev et al., [2020; Zhou et al., [2021; |[Kim et al., [2024; [Liu et al.,
2024; Nie et al.| |2023; |[Zhang & Yanl [2023)) achieve superior performance in forecasting tasks by
introducing techniques like patching for efficient modeling of long-range dependencies. More re-
cently, inspired by the MLP-based method (Zeng et al.l 2023; Wang et al., 2024), recent work (Kim
et al.l [2024) further demonstrates that cross-attention is more effective than self-attention in time
series forecasting. Beyond time-domain approaches, there is also a growing body of work (Zhou
et al., 2022; Wang et al.| [2025; [Eldele et al., 2024} Y1 et al., [2023) focusing on frequency-domain
modeling, which seeks to capture temporal patterns using spectral techniques. These frequency-
aware methods (Zhou et al., [2022; |Wang et al., 2025; Eldele et al.| 2024) have achieved competitive
results and offer a complementary perspective to traditional time-domain forecasting models.

3 PRELIMINARY

Discrete-time Dynamic Graph (DTDG). The discrete-time dynamic graph is represented as a se-
quence of snapshots G = {G1,Ga, ...}, where each snapshot G; = (V;,&;) is a static graph
sampled at regular time intervals. V; C) denotes the set of active nodes at timestamp ¢, where V is
the complete node set, and £, C V x V represents the set of observed edges at timestamp ¢.

Continuous-time Dynamic Graph (CTDG). The continuous-time dynamic graph usually consists
of non-decreasing chronological events G = {(uq,v1,%1), (u2,va,t2),..., (ur, vy, tr)}, where
0 <t <ty <--- < tp. Each triplet (u;,v;,t;) signifies an interaction between source node
u; € V and destination node v; € V at timestamp t;.

Time series-based Dynamic Graph (TSG). We define a time series-based dynamic graph by con-
verting node interactions into binary time series. For each pair node (u,v) € V x V, we define its
interaction series as { f,,, (t)}/Z,,, where f, ., (t) € {0, 1} indicates whether an interaction occurred
between node u and v at timestamp ¢. The function f, ., (¢) is formally defined in Eq.

For attributed dynamic graphs, each interaction (u,v,t) is associated with an edge feature ef“) €

R%, where dg denotes the dimension of the edge feature. If the graph is non-attributed, the edge
feature is simply set to zero vectors.

Problem Formalization. Given the formulated time series of the source node w and destination
node v prior to timestamp ¢, representation learning on the time series-based dynamic graphs aims to
develop a model that learns time-aware representations that capturing the temporal patterns of their
interactions. The effectiveness of the learned representation is evaluated through the link prediction.

4 METHODOLOGY

In this section, we introduce our proposed TSDyG. TSDyG is composed of three core components:
a time series formulation module, an embedding generation module, and a cross-attention module.
The overall architecture of TSDyG is illustrated in Figure 3]

Time Series Formulation Module. Given the historical interactions of source node u and desti-
nation node v, the time series formulation module aims to construct the time series leading up to
the current timestamp ¢.. However, selecting appropriate timestamps is a non-trivial task. Naively
including all timestamps before t. is suboptimal for two reasons. First, when ¢, is large, the time
sequence can become excessively long, making the model difficult to process effectively. Second,
for node pairs with sparse interactions, the time series may contain little meaningful information.
Conversely, randomly sampling timestamps may omit important interactions information. There-
fore, constructing a time series that is both tractable and informative requires a careful design. To
address this, we simply adopt the existing temporal neighbor sampling method and select only those
timestamps at which an interaction involving either the source or destination node occurs. This
design choice is motivated by two key considerations. First, timestamps without any interactions in-

Under review as a conference paper at ICLR 2026

>> denotes padding operation

1
BCE loss £ TSDyG !))
4 ! Codebook a Embedding Generation Module
: Time Series Xi;
I s W
i Ti r Xi= XA XTNXE
1 : . ime encoder X;
ﬁ | Interaction Timestamps [:> P i aaaaatanssssaans|
! T2 (0,0, ty, ty, te, tg)
Cross-attention Module : Projector yE Concatenation
1 Edge Sequence u @
, Eyov: (0,0,10,0,32,0) [::) X§, X7, XE, X!l are generated
Embedding Generation Module 1 Ina same manner.
1
- e i T Ty
[Codebook] [gme] [Projector] !
(EELET 1 Time Series
ﬁ 2 j : Time Series Formulation Module Suow: (1,0,1,0) >> (0,0,1,0,1,0)
I Sy-:(1,0,0,1,0) >> (0,1,0,0,1,0)
Time Series Timestamps Edge Sequence |
(0,0,1,0,1,0) (0,0, t1, 4, te, tg) (0,0,10,0,32,0) : o Q O ° Interaction Timestamps
Ty: (tity te, tg) >> (0,0, b1, by, b, tg)
1 t t. t. t. [> u 1> Y4 ter b8 1> 4> L6> '8
iy @ iy O O R T e R o o)
" . . Edge Sequence
Time Series Formulation Module !
[J H ©®© @ ® Eyoy: (10,0,32,0) >> (0,0,10,0,32,0)
ﬁ : Dynamic Graph G E,_,,:(10,0,0,32,0) >> (0,10,0,0,32,0)
1
1

Dynamic Graph G

Figure 3: The overview of the proposed Time Series-based Dynamic Graph (TSDyG) model. TS-
DyG comprises three main components: (1) the time series formulation module, which generates
binary time series, interaction timestamps, and edge sequences from dynamic graphs; (2) the embed-
ding generation module, which encodes these inputs into interaction, time, and edge embeddings;
and (3) the cross-attention module, which models temporal evolution by extracting informative pat-
terns from the time series to produce time-aware node representations.

volving the source or destination node provide little to no information about their temporal behavior
and thus are irrelevant for modeling interaction patterns. Second, by focusing on timestamps with
actual interactions, we can identify the counterpart nodes involved, which helps the model capture
nuanced behavioral patterns of the target nodes.

Based on this observation, we sample the timestamps at which actual interactions involving either
the source or destination node occur. Specifically, for source node u, we define the interaction
timestamps as T, = {t|(u,0,t) or (o,u,t) € G,0 € V,t < t.}. For efficient batch processing,
we retain the most recent N timestamps from 7,. Using these timestamps, we construct a binary
time series sequence for target node u with respect to neighboring node v, denoted as S, _,, =
fuw(Ty) € {0,1}Y, where each entry indicates whether an interaction occurs between nodes u and
v at the corresponding timestamp. For example, suppose target node v had historical interactions
from ¢ to tg. and only interacted with neighboring node v at t3 and ¢5. Then, the resulting binary
time series would be {0,0,1,0,1,0}. If the sequence length is shorter than N, zero-padding is
applied to maintain a consistent length.

For attributed dynamic graphs, we can also derive the corresponding edge ID sequences for source
node u with respect to node v, denoted as E,,, = f¢,(T,) C NV. The function f¢ ,(T,) is
defined as:
. et, if (u,v,t)or (v,u,t) €G

(1) = { (u, v,) or)

wv 0, otherwise

where e; denote the edge ID at timestamp ¢. Similarly, we can obtain T, S,_,, and F,_,,, for
destination node v in the same manner.

Embedding Generation Module. In embedding generation module comprises three components:
a discrete codebook with two entries, a time encoder and projection layers. These components are
responsible for generating the interaction embedding, time embedding and edge embedding from
the binary time series, interaction timestamps and the edge sequences produced by the time series
module. The codebook consists of two learnable vectors representing the presence or absence of
an interaction between the node pair. And the interaction embedding can be extracted from the
codebook by indexing it with entries from S,_,,. For instance, a value of 0 corresponds to the
first entry in the codebook. For source node u, the projected interaction embedding is computed
as XA = XAW, € RVN*4c, where X = codebook(S,_,) € RV*?4 s the codebook output
corresponding to the binary time series S,_,, and W, € R%4*dc is the weight matrix of the
interaction embedding projector. Here, d4 and dc denote the dimensions of the codebook vector
and the projected embedding, respectively. To capture the temporal information of the evolving
interaction patterns, we adopt a time embedding proposed by previous work (Cong et al.| [2023)).

Under review as a conference paper at ICLR 2026

The ¢-th entry of the time embedding for source node u is formulated as:

~ 1
XTi) =4/ d—[cos(wlAti), cos(waAty), ..., cos(wga, At;)], 3)

T
where At; = t. — t; is the time interval between the current timestamp ¢, and the i-th timestamp
t; € Ty. [wy,wa,...,wy,| are trainable parameters, and dr denotes the dimension of the time

embedding. The projected time embedding is obtained via linear transformation: X! = X Twr e
RN*de where Wy € R ¥4¢ represents the weight matrix of the time embedding projector.

The projected edge embedding is computed as: XF = XFWg € RV*dc where XF ¢ RNxds
denotes the raw edge embeddings, and Wg € R$EXdC is the weight matrix of the edge embed-
ding projector. dp represents the dimension of raw edge embeddings. The joint embedding for
source node u is constructed by concatenating projected interaction, time and edge embedding. For
attributed dynamic graph, X/ = X2||XT||XE € RN*3do or X7 = XA||XI € RV*2dc for
non-attributed dynamic graph. We apply a linear transformation on joint embedding to obtain the
input embedding X2 = X/Wg € RV*4# where Wy € R/ %44 ig the projection matrix (with
dj = 3d¢ for attributed or 2d for non-attributed) and d;, denotes the hidden dimension of the sub-
sequent model layers. The corresponding embeddings for destination node v, i.e., X', X', XF X7
and X are computed in the same manner.

Cross-attention Module. Inspired by the previous work, we introduce the cross-attention mech-
anism to model the temporal patterns of the time series. Specifically, we use a learnable latent
token ZF € R!*4# a5 the query which interacts with the key and value representations derived
from the time series embedding. This design allows the model to distill the most relevant temporal
information. Compared to self-attention, cross attention has a linear time complexity O(Nd%), en-
abling our model to efficiently capture long-range temporal dependencies. For the source node w,
the processing pipeline in the cross-attention module is illustrated as follows:

Zy =2,

Qi = Zi7Wo, Ki™t = ZHWy, Vitt = ZzHwy,

u
Zi=1 = cross-attention(Q% 1, K/ ~1 Vi~1),
ZL =LN(FFN(Z: Y+ Zi7Y), (i=1,2,3),
where LN denotes layer normalization. The final output embedding for source node is denoted as
Z9 = 73. The final output embedding for destination node u is obtained using the same process.

“4)

Training. To predict the likelihood of an interaction between the source node w and the desti-
nation node v, we employ a multi-layer perceptron (MLP) predictor that takes their final output
embeddings as input: p = MLP(Z2, Z9). The model is trained using the binary cross-entropy
loss £ = —2¢ Ziﬂil(pi log(p;) + (1 — p;)log(1l — p;)), where M denotes the number of training
samples (including both positive and negative pairs), and p; € {0, 1} denote the ground-truth label.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

In this section, we first present the details of our experimental setup. We then conduct extensive ex-
periments across multiple benchmark datasets, comparing the performance of our proposed method
with several strong baselines. Finally, we provide an in-depth analysis of our model through ablation
studies to investigate the contributions of each components.

Datasets and Baselines. In our experiments, we adopt five benchmark datasets from the Tem-
poral Graph Benchmark (TGB) (Huang et al., 2023)), namely tgbl-uci, tgbl-enron, tgbl-wiki, tgbl-
subreddit, and tgbl-lastfm, which span a diverse range of domains. To comprehensively evalu-
ate our proposed method, we compare it against seven popular dynamic graph learning methods:
JODIE (Kumar et al.,[2019), TGN (Rossi et al., [2020), TGAT (Xu et al., 2020), GraphMixer (Cong
et al., [2023), TCL (Wang et al., 2021a), DyGFormer (Yu et al., [2023),FreeDyG (Tian et al.l [2023))
and RepeatMixer (Zou et al 2024). Three representative time series models: BiLSTM (Hochre-
iter & Schmidhuber, [1997)), iTransformer (Liu et al., 2024), and CATS (Kim et al.| [2024), are also
incorporated in our evaluation. The details of the datasets are provided in supplementary material.

Under review as a conference paper at ICLR 2026

Table 1: Comparison of link prediction performance between our proposed method and baselines in
the transductive setting. Each experiment is repeated 5 times. Bold values indicate the best results.

Ci | | tgbl-uci tgbl-enron tgbl-wiki tgbl-subreddit tgbl-lastfm
ategory Methods

| | MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50
Dynamic graph JODIE 63.45+ 014 47.72+038 43.78+006 28.21+020 80.84x075 73.02+122 88.25+045s 81.83+t062 40.81+009 29.38+0.07
Dynamic graph TGN 63.97+052 47.92+064 27.02+115 15.18+171 88.13+049 83.35+073 89.57+003 83.68+t011 46.11+187 3345+ 197
Dynamic graph TGAT 69.36+038 52.88+0s8 38.77+o00s 23.23to016 8l.44:to61 T4.77+o0s9 87.78+t007 81.34+008 39.79+017 30.57+0.07
Dynamic graph | GraphMixer | 72.40+065 61.96x005 53.14x017 38.13x0.14 83.46+005 76.81+034 86.80+007 79.10+0.10 4570+003 34.19+024
Dynamic graph TCL 63.20+005 49.53+£005 40.43x062 25.09+049 86.48+021 83.47r028 87.49+003 81.71x006 48.45+013 40.14x014

Dynamic graph | DyGFormer | 76.46+004 69.89+0.11 7843022 69.90£037 92.16+011 89.95t010 93.94+003 91.06+002 64.83+001 55.01+022
Dynamic graph FreeDyG 80.46:+£086 75.45+097 77.86x011 67.56x081 93.56+008 91.38+002 93.64+004 90.51+001 64.16+005 54.75+006
Dynamic graph | RepeatMixer | 79.82+029 72.51+023 79.42+011 70.12+019 92.84+t024 90.42+052 94.51+012 9217+015 70.66+015 57.73+0.12

Time Series BIiLSTM 70.85+ 114 6691+ 112 77.27+119 65.50+126 88.63+032 87.02+053 83.36+106 80.63+112 70.10+£104 61.20+125
Time Series iTransformer | 78.09+0.12 71.80+011 75.49+014 64.00+040 91.33+028 88.66+0.13 89.07+010 84.07+024 72.03+020 61.98+025
Time Series CATS 72.064+017 65.18+023 79.84+061 66.96+077 90.21+115 87.38+06s 78.58+1s2 75.81+1s6 72.91+067 61.83+036

Joint TSDyG (Ours) | 80.53+004 75.70+039 81.58+013 74.03+x030 99.07+005 98.33+017 93.60+005 91.02+004 76.93+075 70.11+ 0385

Table 2: Comparison of forecasting performance between our proposed method and baselines. Each
experiment is repeated 5 times. Bold values indicate the best results.

Category | Methods | tgbl-uci tgbl-enron tgbl-wiki tgbl-subreddit tgbl-lastfm
| | MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
Time Series CATS 0.338+ 0001 0.173+£0001 0.341+0002 0.164+0001 0.135+£0001 0.079+0001 0.482+£0006 0.246+0001 0.391+0006 0.201:+ 0.002
Joint TSDyG | 0.267+0002 0.136+0001 0.242+0003 0.125+£0004 0.131+0002 0.071+0002 0.121+0002 0.060+0001 0.308+0009 0.160+ 0.003

Evaluation Task and Metics. In our experiments, we primarily focus on the future link prediction
task, which is consistent with prior works. This task aims to predict the probability of an inter-
action occurring between two given nodes at a specific timestamp. It can be evaluated under two
settings: the transductive setting, where all nodes are observed during training, and the inductive
setting, where some nodes are unseen during training. We follow the dataset splits provided by
TGB, dividing each benchmark into training, validation, and testing sets.

Following the Temporal Graph Benchmark (TGB), we formulate link prediction as a ranking prob-
lem by sampling multiple negative examples for each positive interaction. For a positive example
(u,v,t), we fix the source node u and the timestamp ¢, and sample multiple negative destination
nodes v. These negative nodes are either randomly selected or chosen from nodes that have inter-
acted with u but not at the current timestamp ¢. We adopt the Mean Reciprocal Rank (MRR) as the
evaluation metric, as suggested in TGB. MRR is calculated as the reciprocal of the rank of the true
destination node among all candidate (true and negative) destination nodes.

Model Configurations. In our model, the dimension of the codebook vectors d 4, time embeddings
dr and projected embeddings d¢ is set to 172, 100 and 86, respectively. The hidden dimension d gy
is set to 172. The Cross-attention module consists of three layers, each with four attention heads.
For all the baselines, we follow their official implementation settings to ensure a fair comparison.

Implementation Details. To adapt time series methods for our link prediction evaluation task, we
first apply the proposed time series formulation module to convert the dynamic graph into time
series representations compatible with the input requirements of these methods. The embeddings
produced by the time series models are then used to predict the probability of interaction between
node pairs. Unlike traditional regression tasks, we use binary cross-entropy loss instead of mean
squared error during training. We employ the Adam (Kingma & Bal[2015) optimizer with a learning
rate of 0.0001 and adopt an early stopping strategy with a patience of 20 epochs, selecting the model
that performs best on the validation set for final evaluation. In our experiments, we sample 20 and
50 negative examples per positive example, respectively. Each task is repeated five times, and all
experiments are conducted on an NVIDIA RTX A40 GPU.

5.2 MAIN RESULTS AND DISCUSSIONS

Table [1] presents the performance of our method and baselines on transductive benchmarks. DyG-
Former and FreeDyG outperform other models, highlighting their ability to capture temporal depen-
dencies. However, their performance drops on larger graphs due to the high computational cost of
sequential models like Transformers, which limits their scalability for long-range dependencies.

The results also suggest that time series methods can be effectively adapted to the link prediction
task in dynamic graphs. By converting dynamic graphs into time series using our proposed time
series formulation module, these methods can achieve competitive performance. To further validate

Under review as a conference paper at ICLR 2026

200: MM 20 T
5 ,/0/"’//4’/’ o TE o TE
o wTE 90 wE

MRR@50(%)

3 /f//;:
—— tgbl-uci ///’j
o

—— tgbl-enron —— tgbl-enron 0
—— tgbl-wiki —— tgbl-wiki

MRR@20(%)

g 3

MRR@50(%)
g

MRR@20(%)

g

B
3

S w0 @) W e we ;
Length of the sequence Length of the sequence tgbl-uci tgbl-enron tgbl-subreddit tgbl-uci tgbl-enron tgbl-subreddit

Figure 4: (a-b) Link prediction performance of our proposed TSDyG model with varying sequence
lengths. (c-d) Link prediction performance of our proposed TSDyG model with and without the
time embedding (TE).

codebook codebook wio EE wio EE
051 Mip 95 Mip o wEE o W EE

MRR@20(%)

MRR@50(%)

MRR@20(%)
2

MRR@50(%)
2

tgbl-enron tgbl-wiki tgbl-enron tgbl-wiki tgbl-wiki tgbl-subreddit tgbl-wiki tgbl-subreddit

Figure 5: (a-b) Comparison of link prediction performance of our proposed TSDyG model with the
codebook versus Mlp. (c-d) Link prediction performance of our proposed TSDyG model with and
without the edge embedding (EE).

the effectiveness of time series-based approaches on binary data, we evaluate the performance of a
traditional time series method (i.e., CATS (Kim et al.,|2024)) and our proposed TSDyG model in a
short-term forecasting setting. The fitness of each method on the binary time series data is assessed
using Mean Squared Error (MSE) and Mean Absolute Error (MAE) between the output probability
and the ground-truth value (either O or 1). The results, presented in Table [2] suggest that traditional
time series methods are indeed applicable to the short-term forecasting of our formulated binary time
series data. However, the performance of time series methods is not consistently strong across all
datasets. This variability can be attributed to two main reasons. First, traditional time series models
are primarily designed for multivariate, continuous time series data, whereas the time series derived
from dynamic graphs in our formulation are binary and discrete. As a result, the design of these
methods may not be well-suited for our setting. Second, most time series methods are tailored for
forecasting tasks (i.e., predicting future values in a continuous sequence), whereas our task involves
predicting the probability of interaction between specific node pairs at a given timestamp. This task
discrepancy limits the direct applicability and effectiveness of standard time series models in the
dynamic graph setting.

As shown in the results, our proposed TSDyG consistently outperforms the baselines across most
tasks. The strong performance of TSDyG can be attributed to several key factors. Unlike pre-
vious dynamic graph methods that aggregate temporal dependencies from all neighboring nodes,
our approach reformulates historical interactions between specific node pairs into binary time se-
ries. This targeted formulation allows the model to focus exclusively on the relevant interaction
patterns. Moreover, TSDyG is capable of extracting temporal dependencies, including recurring
interaction patterns, from both positive and negative interactions. This enhances the model’s ability
to distinguish true interactions from historically negative samples. Additionally, the integration of a
cross-attention mechanism enables our model to capture long-range temporal dependencies more ef-
ficiently than traditional Transformer-based models. This advantage becomes especially prominent
in large-scale dynamic graphs, contributing to the superior performance of our model.

Although our method approaches dynamic graphs through the lens of time series analysis, the pro-
posed framework is better suited to modeling dynamic graphs than traditional time series meth-
ods. Conventional time series models are typically designed for multivariate, continuous-valued
sequences, whereas our model introduces a discrete codebook tailored to handle the binary time
series derived from dynamic graphs. This design enables more accurate representation of node dy-
namics. Furthermore, unlike standard time series approaches, our model explicitly leverages unique
characteristics of dynamic graphs, such as edge features and temporal information. These additional
modalities, often overlooked by traditional time series methods, enrich the representation learning
process and contribute to the superior performance of our model on dynamic graph tasks.

Under review as a conference paper at ICLR 2026

5.3 ABLATION STUDY

In the ablation study, we first examine the impact of sequence length on the performance of our
proposed model. We vary the sequence length across 16, 32, 64, 128, and 256, and conduct ex-
periments on tgbl-uci, tgbl-enron, and tgbl-wiki. The results, presented in Figure [] indicate that
performance generally improves with longer sequence lengths. This is because longer sequences al-
low the model to capture more comprehensive temporal patterns from historical interactions, leading
to more accurate future predictions.

Next, we examine the contribution of the time embedding to the overall performance of our model.
We fix the sequence length and compare model performance with and without the time embedding.
Experiments are conducted on tgbl-uci, tgbl-enron, and tgbl-subreddit. The results, shown in Fig-
uref] indicate a significant performance drop when the time embedding is removed. This highlights
the importance of time embedding, which encodes the temporal context of interactions. It enables
the model to more accurately capture the behavioral patterns of nodes. Without the temporal signal,
the model struggles to distinguish between positive interactions and historical (negative) examples,
resulting in reduced performance.

We also evaluate the effectiveness of the

codebook component in our model by re- 00| = [y
placing it with a standard Mlp. Exper- zoo ™" |
iments are conducted on tgbl-enron and g
tgbl-wiki. As shown in Figure [5] replac- £
ing the codebook with an MLP results in |
a slight performance degradation, suggest- B0 NS BE BS O afthe soquance
ing that the codebook is a more effective

choice for modeling temporal dependen-
cies in dynamic graphs.

Training Time(min)

30 a0

Figure 6: (a) The training time of our proposed TS-
DyG and baselines across benchmark datasets. (b) The
Finally, we evaluate the impact of edge training time of our proposed TSDyG with different se-
features on the performance of our pro- quence lengths.

posed model in attributed dynamic graphs.

Experiments are conducted on tgbl-wiki and tgbl-subreddit. The results, shown in Figure[3] reveal a
noticeable performance drop when edge features are removed. These findings highlight the impor-
tance of edge features in enhancing the expressiveness of node embeddings and enable the model to
more effectively distinguish temporal dependencies across different node pairs.

5.4 RUNNING TIME ANALYSIS

To evaluate the efficiency of our proposed model,we measure the training time of TSDyG model
and compare it against baseline models, including CATS (Kim et al., |2024) and DyGFormer (Yu
et al., [2023). For a fair comparison, the sequence length is set to 128 for both CATS and TSDyG,
while DyGFormer uses a maximum sequence length of 48 due to its architectural constraints. The
evaluation is conducted across multiple benchmark datasets, and the results are presented in Figure[6]
These results show that our model is more computationally efficient than traditional CTDG methods.
In addition, we assess the impact of sequence length on the computational cost of TSDyG model
using the tgbl-enron and tgbl-wiki datasets. As illustrated in Figure[6] training time increases as the
sequence length grows, which is expected due to the higher computational demand associated with
processing longer temporal contexts.

6 CONCLUSION

We review prior work on discrete-time and continuous-time dynamic graph learning, highlighting
limitations such as loss of fine-grained temporal information, difficulty modeling long-range de-
pendencies, and neglect of non-existing interactions. To address these, we propose transforming
interactions into time series and introduce the TSDyG model. Experiments show that TSDyG ef-
fectively captures temporal dependencies and achieves strong performance on multiple benchmarks.
However, our model may under-perform in high-surprise dynamic graphs with low edge repetition.
Addressing such scenarios remains an important direction for future work.

Under review as a conference paper at ICLR 2026

REFERENCES

George EP Box, Gwilym M Jenkins, and John F MacGregor. Some recent advances in forecasting
and control. Journal of the Royal Statistical Society: Series C (Applied Statistics), 23(2):158-179,
1974.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder—decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1724-1734, Doha, Qatar, 2014. Association for
Computational Linguistics.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
In The Eleventh International Conference on Learning Representations, 2023.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. Tslanet: Rethinking
transformers for time series representation learning. In International Conference on Machine
Learning. OpenReview.net, 2024.

Peter G Fennell, Sergey Melnik, and James P Gleeson. Limitations of discrete-time approaches to
continuous-time contagion dynamics. Physical Review E, 94(5):052125, 2016.

Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas Grohnfeldt. Long
range propagation on continuous-time dynamic graphs. In International Conference on Machine
Learning. OpenReview.net, 2024.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pp. 1024-1034, 2017.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735-1780, 1997.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael M. Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal
graph benchmark for machine learning on temporal graphs. In Advances in Neural Information
Processing Systems, 2023.

Shuo Ji, Mingzhe Liu, Leilei Sun, Chuanren Liu, and Tongyu Zhu. Memmap: An adaptive and
latent memory structure for dynamic graph learning. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1257-1268, 2024.

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learn-
ing on continuous-time dynamic graphs. In Advances in Neural Information Processing Systems,
2022.

Yannis Karmim, Marc Lafon, Raphaél Fournier-S’Niehotta, and Nicolas Thome. Supra-laplacian
encoding for transformer on dynamic graphs. Advances in Neural Information Processing Sys-
tems, 37:17215-17246, 2024.

Dongbin Kim, Jinseong Park, Jaewook Lee, and Hoki Kim. Are self-attentions effective for time
series forecasting? In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (Poster), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations). OpenReview.net, 2017.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations. OpenReview.net, 2020.

10

Under review as a conference paper at ICLR 2026

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In KDD, pp. 1269—1278. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2019.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pp. 95-104, 2018.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in
Neural Information Processing Systems, 35:5816-5828, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In Infernational
Conference on Learning Representations. OpenReview.net, 2024.

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. Hope: High-order graph ode for modeling interacting dynamics. In International Conference
on Machine Learning, pp. 23124-23139. PMLR, 2023.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In /CLR. OpenReview.net, 2023.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. Evolvegen: Evolving graph convolutional
networks for dynamic graphs. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
pp- 5363-5370. AAAI Press, 2020.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better eval-
uation for dynamic link prediction. In Advances in Neural Information Processing Systems, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. In Proceedings of the
ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+), 2020.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International journal of forecasting, 36(3):1181—
1191, 2020.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
international conference on web search and data mining, pp. 519-527, 2020.

Junwei Su, Difan Zou, and Chuan Wu. PRES: toward scalable memory-based dynamic graph neu-
ral networks. In The Twelfth International Conference on Learning Representations. OpenRe-
view.net, 2024.

Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dynamic graph
model for link prediction. In The Twelfth International Conference on Learning Representations,
2023.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261—
24272, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Hao Wang, Lichen Pan, Yuan Shen, Zhichao Chen, Degui Yang, Yifei Yang, Sen Zhang, Xinggao
Liu, Haoxuan Li, and Dacheng Tao. Fredf: Learning to forecast in the frequency domain. In
International Conference on Learning Representations. OpenReview.net, 2025.

11

Under review as a conference paper at ICLR 2026

Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
Zhou, and Hongxia Yang. TCL: transformer-based dynamic graph modelling via contrastive
learning. CoRR, abs/2105.07944, 2021a.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In
International Conference on Learning Representations. OpenReview.net, 2024.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In International Conference on
Learning Representations. OpenReview.net, 2021b.

Mark W Watson. Vector autoregressions and cointegration. Handbook of econometrics, 4:2843—
2915, 1994.

Yuxia Wu, Yuan Fang, and Lizi Liao. On the feasibility of simple transformer for dynamic graph
modeling. In Proceedings of the ACM on Web Conference 2024, pp. 870-880. ACM, 2024.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-
sentation learning on temporal graphs. In International Conference on Learning Representations.
OpenReview.net, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations. OpenReview.net, 2019.

Kuo Yang, Zhengyang Zhou, Qihe Huang, Limin Li, Yuxuan Liang, and Yang Wang. Improving
generalization of dynamic graph learning via environment prompt. Advances in Neural Informa-
tion Processing Systems, 37:70048-70075, 2024.

Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King. Discrete-time tem-
poral network embedding via implicit hierarchical learning in hyperbolic space. In Proceedings
of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp. 1975-1985,
2021.

Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Long-
bing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
forecasting. In NeurlPS, 2023.

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining,
pp. 2358-2366, 2022.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 36:67686—
67700, 2023.

Haonan Yuan, Qingyun Sun, Xingcheng Fu, Ziwei Zhang, Cheng Ji, Hao Peng, and Jianxin Li.
Environment-aware dynamic graph learning for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 36, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Association for the Advancement of Artificial Intelligence, pp. 11121-11128.
AAALI Press, 2023.

Siwei Zhang, Yun Xiong, Yao Zhang, Xixi Wu, Yiheng Sun, and Jiawei Zhang. ilore: Dynamic
graph representation with instant long-term modeling and re-occurrence preservation. In Proceed-
ings of the 32nd ACM International Conference on Information and Knowledge Management, pp.
3216-3225, 2023.

Siwei Zhang, Xi Chen, Yun Xiong, Xixi Wu, Yao Zhang, Yongrui Fu, Yinglong Zhao, and Jiawei
Zhang. Towards adaptive neighborhood for advancing temporal interaction graph modeling. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp- 4290-4301, 2024.

12

Under review as a conference paper at ICLR 2026

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations.
OpenReview.net, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Association
for the Advancement of Artificial Intelligence, pp. 11106—11115. AAAI Press, 2021.

Tian Zhou, Ziging Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268-27286. PMLR, 2022.

Tao Zou, Yuhao Mao, Junchen Ye, and Bowen Du. Repeat-aware neighbor sampling for dynamic
graph learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 4722—-4733, 2024.

13

Under review as a conference paper at ICLR 2026

95-/"/?—_‘ /A//#‘

90

S s S
o n
® // ®
4 o 70
Sn s
- —— tgbl-uci —— tgbl-uci
tgbl-enron €0 tgbl-enron
0 —e— tgbl-wiki —e— tgbl-wiki
55 50
50 100 150 200 250 50 100 150 200 250
Length of the sequence Length of the sequence
(@ (b)

Figure 7: Link prediction performance of our proposed TSDyG model with varying sequence
lengths in the inductive setting. The evaluation is performed on tgbl-uci, tgbl-enron and tgbl-wiki.

100 100

w/o TE w/o TE
9
90 wTE 0 w TE
80
~ 80 —_
®] 70
g g
® 70 ® 60
g g
s 60 = 50
40
50
30
40 - ! 20 " !
tgbl-uci tgbl-enron tgbl-subreddit tgbl-uci tgbl-enron tgbl-subreddit
(a) inductive (b) inductive

Figure 8: Link prediction performance of our proposed TSDyG model with and without the time
embedding (TE).

A APPENDIX

A.1 EXPERIMENTAL SETTINGS

The details of the Temporal Graph Benchmark (TGB)[Huang et al.|(2023) are summarized in Table[d]
Among these datasets, tgbl-wiki and tgbl-subreddit include attributed edge features, while the others
do not. For our TSDyG model and the time series baselines, we use a sequence length of 512 for
tgbl-enron and tgbl-subreddit, and 256 for the remaining datasets. For dynamic graph baselines,
we follow the model configurations specified in their original papers. All models are trained for 60
epochs, and the best checkpoint is adopted for evaluation.

A.2 MAIN RESULTS

Table 3] presents the link prediction performance of our proposed TSDyG model compared to dy-
namic graph and time series baselines in the inductive setting across five datasets from the Temporal
Graph Benchmark. Notably, TSDyG shows substantial gains on datasets like tgbl-enron, tgbl-wiki
and tgbl-lastfm, highlighting its strength in capturing long-range temporal dependencies and recur-
ring patterns. These findings demonstrate the effectiveness of our approach in enhancing temporal
modeling of dynamic graphs in the inductive setting.

A.3 ABLATION STUDY

We investigate the impact of sequence length on our model’s performance in the inductive setting by
varying it from 16 to 256 on tgbl-uci, tgbl-enron, and tgbl-wiki. As shown in Figure[7} performance

14

Under review as a conference paper at ICLR 2026

100 100
w/o EE w/o EE

95 w EE 95 w EE
—~ 90 —~ 90
R >
] 2
® 85 ® 85
g g
= 80 = 80

75 75

70 70

tgbl-wiki tgbl-subreddit tgbl-wiki tgbl-subreddit
(a) inductive (b) inductive

Figure 9: Link prediction performance of our proposed TSDyG model with the codebook and Mlp.

100 100
w/o EE w/o EE

95 w EE 95 w EE
—~ 90 —~ 90
2 S
] 2
® 85 ® 85
g g
= 80 = 80

75 75

70 70

tgbl-wiki tgbl-subreddit tgbl-wiki tgbl-subreddit
(a) inductive (b) inductive

Figure 10: Link prediction performance of our proposed TSDyG model with and without the edge
embedding (EE).

consistently improves with longer sequences, mirroring the trend observed in the transductive set-
ting. This highlights the importance of capturing longer temporal histories for accurate prediction.

We further assess the impact of time embedding on model performance in the inductive setting
by comparing results with and without it, using a fixed sequence length. Experiments on tgbl-
uci, tgbl-enron, and tgbl-subreddit (Figure [8) reveal a noticeable performance drop when the time
embedding is removed, particularly on tgbl-uci. This underscores the critical role of time embedding
in capturing the temporal context of interactions across both inductive and transductive settings.

We also investigate the effectiveness of the codebook component in our model by replacing it with
a standard Mlp in the inductive setting. Experiments on tgbl-enron and tgbl-wiki (Figure [9) show
a slight performance drop when using the MLP, indicating that the codebook is better suited for
modeling binary time series data in our approach.

Finally, we evaluate the impact of edge features on our model’s performance in attributed dynamic
graphs under the inductive setting. Experiments on tgbl-wiki and tgbl-subreddit (Figure[I0) show a
clear performance drop when edge features are removed. This underscores the importance of edge
features in enriching node representations and helping the model better capture temporal dependen-
cies across diverse node pairs.

A.4 LIMITATION

Our proposed model relies on the historical recurring interactions of node pairs to capture temporal
dependencies. However, its effectiveness may be limited in dynamic graphs with the low repeat
ratio, as such settings do not provide sufficient information from individual node pair interactions
alone. In these cases, incorporating information from neighboring nodes becomes necessary to better
model the temporal dynamics. We leave this direction for future work.

15

Under review as a conference paper at ICLR 2026

Table 3: Comparison of link prediction performance between our proposed method and baselines in
the inductive setting. Each experiment is repeated 5 times. Bold values indicate the best results.

Ci | | tgbl-uci tgbl-enron tgbl-wiki tgbl-subreddit tgbl-lastfm
ategory Methods

| | MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50
Dynamic graph JODIE 58.83+013 42.44+0220 36.45+to041 25.66+030 75.45:t093 63.99+1s52 8235131 78.12+120 36.58+146 25.89+158
Dynamic graph TGN 59.37+081 4236+107 25.05+102 13.55+125 87.88+034 8270+032 81.68+021 83.68+0.11 44.66+1.14 31.23+ 144
Dynamic graph TGAT 65.20+120 49.95+164 30.85t026 12.82+031 80.06+064 73.78+049 84.68+132 7547+177 38.19+045 29.03+0.09
Dynamic graph | GraphMixer | 71.38+035 59.37+052 51.12x018 29.05x009 81.17+005 74.89+018 83.08£009 76.95+027 43.59+007 32.27x0.18
Dynamic graph TCL 57.90+044 44.35:002 36.48+x050 20.03x017 85.55+008 82.17+023 86.25+159 78231113 47.02+044 38.33x054

Dynamic graph | DyGFormer | 75.20+006 68.53+017 75.96+000 67.84x020 90.96+007 87.29+017 91.10+030 89.71+010 63.90+0.11 53.49+029
Dynamic graph FreeDyG 77.19+011 68.56+074 61.83:122 52.62+281 9296023 89.57+046 83.95+t265 78.85+243 61.80+060 50.13+075
Dynamic graph | RepeatMixer | 78.80+037 71.60+002 71.23+051 68.89+035 92.33+027 89.93+016 92.00+018 90.74+t051 68.49+018 55.88+009

Time Series BIiLSTM 67.90+098 64.97+090 76.35+102 63.92+124 86.76+021 84.92+026 80.38+124 7745108 68.37+085 59.42+0.64
Time Series iTransformer | 76.91+008 70.92+008 74.84+107 63.54+011 90.98+053 87.61+038 88.51+005 83.58+011 70.39+028 60.28+033
Time Series CATS, 70.184+ 024 63.16+027 78.07+056 65.48+064 88.11+121 84.41+122 77.67+011 73.70+025 71.88+037 60.81+0091

Joint TSDyG (Ours) | 79.83+ 008 74.08+0.13 80.83+022 73.23:082 98.80+006 97.55+002 91.26+002 89.22+004 75.64+005 68.95+ 043

Table 4: The details of benchmarks.

Dataset | Domain #Nodes #Edges #Steps Attributed
tgbl-uci social 3,212 59,835 58,911 No
tgbl-enron social 365 125,235 22,632 No
tgbl-wiki rating 9,227 157,474 152,757 Yes
tgbl-subreddit rating 10,984 672,447 588,915 Yes

tgbl-lastfm recommendation 1,980 1,293,103 1,283,614 No

A.5 USE OF LARGE LANGUAGE MODELS

In our work, we solely employ LLMs to check grammatical errors and refine sentence structures.

16

	Introduction
	Related Work
	Preliminary
	Methodology
	Experiments
	Experimental Settings
	Main Results and Discussions
	Ablation Study
	Running Time Analysis

	Conclusion
	Appendix
	Experimental Settings
	Main Results
	Ablation Study
	Limitation
	Use of Large Language Models

