
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REVISITING DYNAMIC GRAPHS FROM THE PERSPEC-
TIVE OF TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Numerous studies have been conducted to investigate the temporal pattern of
dynamic graphs. Existing methods predominantly fall into two categories:
discrete-time dynamic graph (DTDG) methods and continuous-time dynamic
graph (CTDG) methods. While these approaches have proven effective in mod-
eling temporal dependencies within dynamic graphs, they exhibit several limita-
tions. For instance, DTDG approaches often lose fine-grained temporal informa-
tion. CTDG methods can preserve temporal details but may inadequately cap-
ture long-term dependencies due to computational constraints. Moreover, both
paradigms predominantly focus on existing historical interactions, often neglect-
ing the informative value of non-existing ones. These negative historical interac-
tions can provide complementary insights into the recurring patterns of node be-
havior. To fully leverage both types of interactions, we propose transforming node
interactions into binary time series. Building upon this formulation, we propose
a novel model termed the Time Series-based Dynamic Graph (TSDyG) model,
which approaches dynamic graph learning from a time series perspective. Com-
pared to existing DTDG and CTDG methods, our model offers several advantages:
it captures long-range dependencies, preserves fine-grained temporal details, and
leverages information from both existing and non-existing historical interactions.
We conduct extensive evaluations of our method on various benchmark datasets.
The results demonstrate that our proposed TSDyG model achieves competitive
performance on the downstream task such as link prediction.

1 INTRODUCTION

Dynamic graphs model evolving systems in which interactions between entities change over time.
Many real-world scenarios, such as social networks, user-item interactions, and financial transac-
tions, can be naturally represented as dynamic graphs. In recent years, a growing number of re-
search (Zhang et al., 2024; 2023; Ji et al., 2024; Cong et al., 2023) on dynamic graph learning
has emerged, demonstrating its effectiveness in capturing temporal relationships among entities and
achieving promising results in forecasting tasks.

Figure 1: Illustration of encoding historical inter-
actions into binary data for future prediction. For
the target entities (the man and the woman), inter-
actions on Tuesday and Friday are encoded as “1,”
while the absence of interactions at other times is
encoded as “0.”

Current dynamic graph learning methods can
generally be categorized into two types:
discrete-time dynamic graph (DTDG) meth-
ods (Karmim et al., 2024; You et al., 2022;
Yang et al., 2021; Sankar et al., 2020; Pareja
et al., 2020) and continuous-time dynamic
graph (CTDG) methods (Yu et al., 2023; Tian
et al., 2023; Zhang et al., 2024; 2023; Ji et al.,
2024; Zou et al., 2024; Poursafaei et al., 2022;
Gravina et al., 2024). In DTDG methods, the
dynamic graph is represented as a sequence of
snapshots that are in the form of static graphs
to capture the interactions of entities during the
specific time interval. These models typically
employ Graph Neural Networks (GNNs) (Kipf
& Welling, 2017; Hamilton et al., 2017; Xu

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

et al., 2019) in conjunction with Recurrent Neural Networks (RNNs) (Hochreiter & Schmidhuber,
1997; Cho et al., 2014) to capture both the structural and temporal dependencies in the evolving
graph. However, DTDG methods exhibit several limitations (Fennell et al., 2016; Cho et al., 2014).
First, due to the partitioning of interactions into discrete snapshots, fine-grained temporal informa-
tion is lost, which can negatively impact performance in time-sensitive prediction tasks. Second,
selecting an appropriate snapshot interval is non-trivial: if the interval is too small, it can lead to
redundant and computationally expensive graph sequences; if too large, important temporal details
may be overlooked. In addition to these challenges, scalability remains a concern, especially on
large-scale dynamic graphs.

u

a

𝑡1

d

f

𝑡2

b

c

𝑡3

f

u

𝑡3

a

b

𝑡3

u

a

𝑡4

f

a

𝑡5

b

u

𝑡6

e

d

𝑡6

a

e

𝑡7

a

u

𝑡8

u

a

d

b

c

f

𝑡3

u

a

d

b

c

f

ee

d

c

𝑡9

f

a

𝑡9

u

c

𝑡9

u

a

d

b

c

f

e

d

f

𝑡9

𝑡6 𝑡9

(a) Discrete-time Dynamic Graph

(b) Continuous-time Dynamic Graph

𝑡1 𝑡3 𝑡4 𝑡6 𝑡8 𝑡9 𝑡3 𝑡5 𝑡9

(c) Time Series-based Dynamic Graph

𝑡2

…u a af

Figure 2: The illustration of discrete-time dy-
namic graph, continuous-time dynamic graph and
our proposed time series-based dynamic graph.

Continuous-time dynamic graph (CTDG)
methods, in contrast to DTDG approaches,
represent dynamic graphs as sequences of
chronologically ordered events (Yu et al., 2023;
Wang et al., 2021a). Two main categories
of CTDG methods have been developed:
model-centric and memory-based approaches.
Compared to DTDG methods, CTDG models
can better preserve fine-grained temporal
information. However, CTDG methods also
face several limitations. Model-centric ap-
proaches (Yu et al., 2023; Zou et al., 2024;
Wu et al., 2024) , such as those based on
Transformers, often struggle to capture long-
range temporal dependencies due to their high
computational complexity over continuous
event streams. On the other hand, memory-
based methods (Ji et al., 2024; Su et al., 2024;
Rossi et al., 2020), typically exhibit inferior
performance because they process batches of
events concurrently rather than sequentially,
violating the natural chronological order of interactions, a challenge often referred to as temporal
discontinuity (Su et al., 2024).

In dynamic graph modeling, both discrete-time and continuous-time approaches primarily cap-
ture temporal dependencies by focusing on positive interactions between target nodes and their
recent historical neighbors, often overlooking the informative value of non-existing historical in-
teractions. Given a sequence of interactions G = {(u1, v1, t1), (u2, v2, t2), . . .), (uT , vT , tT)} with
0 ≤ t1 ≤ t2 ≤ · · · ≤ tT , the absence of interaction at a specific time t′, where (u, v, t′) /∈ G, can be
equally informative. Such negative interactions capture the temporal recurring patterns of interac-
tions, reflecting behaviors like periodicity or seasonality. For instance, as shown in Example 1, the
illustration depicts email communications between employees. Our goal is to predict whether the
target entities (the man and the woman) will exchange emails next Wednesday. In such scenarios,
the absence of interaction (e.g., no email communication between the man and the woman on the
previous Monday and Saturday) also provides useful information for modeling their behavior. Both
existing and non-existing interactions form a predictable pattern that models should capture. To ef-
fectively capture both existing and non-existing interactions of target entities over time, we propose
transforming the interaction data into binary time series. Given the target node u and a historical
node v, their past interactions over time can be represented by the proposed function fu,v(t), which
captures the interaction dynamics as a function of time and can be defined as:

fu,v(t) =

{
1, if (u, v, t) or (v, u, t) ∈ G
0. otherwise

(1)

This binary time series {fu,v(t)}tTt=t1 encapsulates the complete interaction history between u and v,
enabling models to learn from both the presence and absence of interactions. Incorporating negative
historical interactions in this manner allows for a more comprehensive understanding of temporal
dynamics. The difference of discrete-time dynamic graphs, continuous-time dynamic graphs and
our proposed time series-based dynamic graphs are illustrated in Figure 2.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Enlightened by this transformation, we propose a novel dynamic graph learning method named
Time Series-based Dynamic Graph (TSDyG) model which handles the dynamic graph from the
perspective of time series. TSDyG comprises three key components: a time series formulation mod-
ule, an embedding generation module, and a cross-attention module. In the time series formulation
module, we convert node interactions into binary time series as defined in Eq. 1. Each time step
indicates the presence (1) or absence (0) of an interaction between node pairs. Next, the embedding
generation module employs a learnable codebook with two learnable embeddings to generate the in-
teraction embeddings from the binary time series data, To incorporate temporal information, a time
encoder is adopted to generate time-specific embeddings, which are combined with the interaction
embeddings to form the input for the cross-attention module. The cross-attention module, draw-
ing inspiration from prior work (Kim et al., 2024), introduces a learnable query token that interacts
with the key-value pairs derived from the input embeddings. This design facilitates the modeling
of long-range temporal dependencies from historical data while maintaining lower computational
complexity compared to traditional self-attention mechanisms. During training, our model is op-
timized with the binary cross-entropy (BCE) loss. Compared to the previous DTDG and CTDG
methods, TSDyG is distinguished by its ability to leverage both existing and non-existing interac-
tions to model the recurring interaction patterns among nodes, while effectively capturing long-term
dependencies in dynamic graphs. The contributions of our paper are summarized as follows:

• Unlike previous DTDG and CTDG methods that treat dynamic graphs as sequences of
snapshots or discrete events, we introduce a novel formulation that represents dynamic
graphs as time series. This formulation captures both existing and non-existing historical
interactions of target nodes, offering a more comprehensive perspective on node dynamics.

• Building on the formulated binary time series data, we propose the Time Series-based Dy-
namic Graph (TSDyG) model, which comprises three key components. In contrast to pre-
vious dynamic graph methods, TSDyG effectively captures recurring interaction patterns
between nodes and models long-term temporal dependencies in dynamic graphs.

• We extensively evaluate our model on multiple benchmark datasets, and the results demon-
strate that it achieves competitive performance on downstream tasks, such as link predic-
tion, compared to the baselines.

2 RELATED WORK

Dynamic Graph Learning. Existing methods can roughly categorized into discrete-time and
continuous-time approaches. Discrete-time methods (Karmim et al., 2024; You et al., 2022; Yang
et al., 2021; Sankar et al., 2020) regard dynamic graphs as a sequence of snapshots taken at regular
time intervals, and typically extend the graph neural networks (GNNs) for static graphs to capture
the temporal correlations. Recent work (Karmim et al., 2024) has explored graph transformers as
a powerful alternative to GNN for modeling node dependencies. However, discrete-time methods
usually suffer some significant limitations, such as the loss of temporal information. In contrast,
continuous-time methods (Zhang et al., 2024; Zou et al., 2024; Poursafaei et al., 2022; Gravina
et al., 2024) represent dynamic graphs as the chronologically ordered sequences of events. Among
the continuous-time methods, memory-based methods (Ji et al., 2024; Su et al., 2024; Rossi et al.,
2020) maintain a memory to update the node states based on interactions. However, during batch
processing, the strict chronological order of the events may be violated. Model-centric methods (Yu
et al., 2023; Zou et al., 2024; Wu et al., 2024) leverage sequential models such as LSTMs (Hochre-
iter & Schmidhuber, 1997), Transformers (Vaswani et al., 2017) and MLP-Mixers (Tolstikhin et al.,
2021)) to capture long-range node dependencies while aiming to reduce the time complexity. Other
methods have proposed techniques like temporal walk (Wang et al., 2021b; Jin et al., 2022) and
graph ordinary differential equation (graph ODE) (Gravina et al., 2024; Luo et al., 2023) for dy-
namic graph representation learning. Additionally, several studies (Yuan et al., 2024; Yang et al.,
2024) have shown that existing dynamic graph methods often struggle to generalize under distribu-
tion shifts, prompting the development of new techniques to address these challenges.

Time Series Forecasting. Time series forecasting is one of the fundamental tasks in time series
analysis. Traditional statistical approaches, such as VAR (Watson, 1994) and ARIMA (Box et al.,
1974) are often inadequate when dealing with non-linear temporal dynamics. In contrast, deep learn-
ing methods have demonstrated strong capabilities in capturing complex temporal patterns. Based

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

on their architectural backbones, these methods can be broadly classified into four categories: CNN-
based, RNN-based, Transformer-based, and MLP-based models. CNN-based methods (Liu et al.,
2022) utilize convolution kernels to model local temporal variations. However, due to their lim-
ited receptive fields, they struggle to capture long-term dependencies. RNN-based methods (Salinas
et al., 2020; Lai et al., 2018) model the temporal state Transition via recurrent structure. In compar-
ison, transformer-based methods (Kitaev et al., 2020; Zhou et al., 2021; Kim et al., 2024; Liu et al.,
2024; Nie et al., 2023; Zhang & Yan, 2023) achieve superior performance in forecasting tasks by
introducing techniques like patching for efficient modeling of long-range dependencies. More re-
cently, inspired by the MLP-based method (Zeng et al., 2023; Wang et al., 2024), recent work (Kim
et al., 2024) further demonstrates that cross-attention is more effective than self-attention in time
series forecasting. Beyond time-domain approaches, there is also a growing body of work (Zhou
et al., 2022; Wang et al., 2025; Eldele et al., 2024; Yi et al., 2023) focusing on frequency-domain
modeling, which seeks to capture temporal patterns using spectral techniques. These frequency-
aware methods (Zhou et al., 2022; Wang et al., 2025; Eldele et al., 2024) have achieved competitive
results and offer a complementary perspective to traditional time-domain forecasting models.

3 PRELIMINARY

Discrete-time Dynamic Graph (DTDG). The discrete-time dynamic graph is represented as a se-
quence of snapshots G = {G1, G2, . . . }, where each snapshot Gt = (Vt, Et) is a static graph
sampled at regular time intervals. Vt ⊆ V denotes the set of active nodes at timestamp t, where V is
the complete node set, and Et ⊆ V × V represents the set of observed edges at timestamp t.

Continuous-time Dynamic Graph (CTDG). The continuous-time dynamic graph usually consists
of non-decreasing chronological events G = {(u1, v1, t1), (u2, v2, t2), . . . , (uT , vT , tT)}, where
0 ≤ t1 ≤ t2 ≤ · · · ≤ tT . Each triplet (ui, vi, ti) signifies an interaction between source node
ui ∈ V and destination node vi ∈ V at timestamp ti.

Time series-based Dynamic Graph (TSG). We define a time series-based dynamic graph by con-
verting node interactions into binary time series. For each pair node (u, v) ∈ V × V , we define its
interaction series as {fu,v(t)}tTt=t1 , where fu,v(t) ∈ {0, 1} indicates whether an interaction occurred
between node u and v at timestamp t. The function fu,v(t) is formally defined in Eq. 1.

For attributed dynamic graphs, each interaction (u, v, t) is associated with an edge feature etu,v ∈
Rd

E , where dE denotes the dimension of the edge feature. If the graph is non-attributed, the edge
feature is simply set to zero vectors.

Problem Formalization. Given the formulated time series of the source node u and destination
node v prior to timestamp t, representation learning on the time series-based dynamic graphs aims to
develop a model that learns time-aware representations that capturing the temporal patterns of their
interactions. The effectiveness of the learned representation is evaluated through the link prediction.

4 METHODOLOGY

In this section, we introduce our proposed TSDyG. TSDyG is composed of three core components:
a time series formulation module, an embedding generation module, and a cross-attention module.
The overall architecture of TSDyG is illustrated in Figure 3.

Time Series Formulation Module. Given the historical interactions of source node u and desti-
nation node v, the time series formulation module aims to construct the time series leading up to
the current timestamp tc. However, selecting appropriate timestamps is a non-trivial task. Naively
including all timestamps before tc is suboptimal for two reasons. First, when tc is large, the time
sequence can become excessively long, making the model difficult to process effectively. Second,
for node pairs with sparse interactions, the time series may contain little meaningful information.
Conversely, randomly sampling timestamps may omit important interactions information. There-
fore, constructing a time series that is both tractable and informative requires a careful design. To
address this, we simply adopt the existing temporal neighbor sampling method and select only those
timestamps at which an interaction involving either the source or destination node occurs. This
design choice is motivated by two key considerations. First, timestamps without any interactions in-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Time Series Formulation Module

Embedding Generation Module

Codebook Time
Encoder

Projector

Cross-attention Module

Predictor

BCE loss ℒ

Dynamic Graph 𝒢

v

u

𝑡1

d

v

𝑡2

b

v

𝑡3

a

u

𝑡4

c

d

𝑡5

u

v

𝑡6

v

b

𝑡7

a

u

𝑡8

Time Series
𝑆𝑢→𝑣 : (1,0,1,0) >> (0,0,1,0,1,0)
𝑆𝑣→𝑢 :(1,0,0,1,0) >> (0,1,0,0,1,0)

Interaction Timestamps
𝑇𝑢 : (𝑡1, 𝑡4, 𝑡6, 𝑡8) >> (0, 0, 𝑡1, 𝑡4, 𝑡6, 𝑡8)
𝑇𝑣 : (𝑡1, 𝑡2, 𝑡3, 𝑡6, 𝑡7) >> (0, 𝑡1, 𝑡2, 𝑡3, 𝑡6, 𝑡7)

Edge Sequence
𝐸𝑢→𝑣 : (10,0,32,0) >> (0,0,10,0,32,0)
𝐸𝑣→𝑢 :(10,0,0,32,0) >> (0,10,0,0,32,0)

Codebook

𝑆𝑢→𝑣 : (0,0,1,0,1,0)

Interaction Timestamps
𝑇𝑢 : (0, 0, 𝑡1, 𝑡4, 𝑡6, 𝑡8)

Edge Sequence

𝐸𝑢→𝑣 : (0,0,10,0,32,0)

𝑋𝑢
𝐴

𝑋𝑢
𝑇

𝑋𝑢
𝐸

𝑋𝑢
𝐽= 𝑋𝑢

𝐴|| 𝑋𝑢
𝑇||𝑋𝑢

𝐸

Time Series

Time encoder

Projector Concatenation

(0,0,1,0,1,0) (0, 0, 𝑡1, 𝑡4, 𝑡6, 𝑡8) (0,0,10,0,32,0)

Time Series

Timestamps Edge Sequence

Time Series Formulation Module

Embedding Generation Module

𝑋𝑣
𝐴, 𝑋𝑣

𝑇, 𝑋𝑣
𝐸, 𝑋𝑣

𝐻 are generated
in a same manner.

TSDyG

>> denotes padding operation
Dynamic Graph 𝒢

Figure 3: The overview of the proposed Time Series-based Dynamic Graph (TSDyG) model. TS-
DyG comprises three main components: (1) the time series formulation module, which generates
binary time series, interaction timestamps, and edge sequences from dynamic graphs; (2) the embed-
ding generation module, which encodes these inputs into interaction, time, and edge embeddings;
and (3) the cross-attention module, which models temporal evolution by extracting informative pat-
terns from the time series to produce time-aware node representations.

volving the source or destination node provide little to no information about their temporal behavior
and thus are irrelevant for modeling interaction patterns. Second, by focusing on timestamps with
actual interactions, we can identify the counterpart nodes involved, which helps the model capture
nuanced behavioral patterns of the target nodes.

Based on this observation, we sample the timestamps at which actual interactions involving either
the source or destination node occur. Specifically, for source node u, we define the interaction
timestamps as Tu = {t|(u, o, t) or (o, u, t) ∈ G, o ∈ V, t < tc}. For efficient batch processing,
we retain the most recent N timestamps from Tu. Using these timestamps, we construct a binary
time series sequence for target node u with respect to neighboring node v, denoted as Su→v =
fu,v(Tu) ⊆ {0, 1}N , where each entry indicates whether an interaction occurs between nodes u and
v at the corresponding timestamp. For example, suppose target node u had historical interactions
from t1 to t6. and only interacted with neighboring node v at t3 and t5. Then, the resulting binary
time series would be {0, 0, 1, 0, 1, 0}. If the sequence length is shorter than N , zero-padding is
applied to maintain a consistent length.

For attributed dynamic graphs, we can also derive the corresponding edge ID sequences for source
node u with respect to node v, denoted as Eu→v = fe

u,v(Tu) ⊆ NN . The function fe
u,v(Tu) is

defined as:

fe
u,v(t) =

{
et, if (u, v, t) or (v, u, t) ∈ G
0, otherwise

(2)

where et denote the edge ID at timestamp t. Similarly, we can obtain Tv, Sv→u and Ev→u for
destination node v in the same manner.

Embedding Generation Module. In embedding generation module comprises three components:
a discrete codebook with two entries, a time encoder and projection layers. These components are
responsible for generating the interaction embedding, time embedding and edge embedding from
the binary time series, interaction timestamps and the edge sequences produced by the time series
module. The codebook consists of two learnable vectors representing the presence or absence of
an interaction between the node pair. And the interaction embedding can be extracted from the
codebook by indexing it with entries from Su→v . For instance, a value of 0 corresponds to the
first entry in the codebook. For source node u, the projected interaction embedding is computed
as XA

u = X̃A
u WA ∈ RN×dC , where X̃A

u = codebook(Su→v) ∈ RN×dA is the codebook output
corresponding to the binary time series Su→v and WA ∈ RdA×dC is the weight matrix of the
interaction embedding projector. Here, dA and dC denote the dimensions of the codebook vector
and the projected embedding, respectively. To capture the temporal information of the evolving
interaction patterns, we adopt a time embedding proposed by previous work (Cong et al., 2023).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The i-th entry of the time embedding for source node u is formulated as:

X̃T
u [i] =

√
1

dT
[cos(w1∆ti), cos(w2∆ti), . . . , cos(wdT

∆ti)], (3)

where ∆ti = tc − ti is the time interval between the current timestamp tc and the i-th timestamp
ti ∈ Tu. [w1, w2, . . . , wdT

] are trainable parameters, and dT denotes the dimension of the time
embedding. The projected time embedding is obtained via linear transformation: XT

u = X̃T
u WT ∈

RN×dC , where WT ∈ RdT×dC represents the weight matrix of the time embedding projector.

The projected edge embedding is computed as: XE
u = X̃E

u WE ∈ RN×dC , where X̃E
u ∈ RN×dE

denotes the raw edge embeddings, and WE ∈ RdE×dC is the weight matrix of the edge embed-
ding projector. dE represents the dimension of raw edge embeddings. The joint embedding for
source node u is constructed by concatenating projected interaction, time and edge embedding. For
attributed dynamic graph, XJ

u = XA
u ||XT

u ||XE
u ∈ RN×3dC or XJ

u = XA
u ||XT

u ∈ RN×2dC for
non-attributed dynamic graph. We apply a linear transformation on joint embedding to obtain the
input embedding XH

u = XJ
uWH ∈ RN×dH , where WH ∈ RdJ×dH is the projection matrix (with

dJ = 3dC for attributed or 2dC for non-attributed) and dh denotes the hidden dimension of the sub-
sequent model layers. The corresponding embeddings for destination node v, i.e., XA

v , XT
v , X

E
v , XJ

v
and XH

v are computed in the same manner.

Cross-attention Module. Inspired by the previous work, we introduce the cross-attention mech-
anism to model the temporal patterns of the time series. Specifically, we use a learnable latent
token ZL ∈ R1×dH as the query which interacts with the key and value representations derived
from the time series embedding. This design allows the model to distill the most relevant temporal
information. Compared to self-attention, cross attention has a linear time complexity O(Nd2H), en-
abling our model to efficiently capture long-range temporal dependencies. For the source node u,
the processing pipeline in the cross-attention module is illustrated as follows:

Z0
u = ZL

u ,

Qi−1
u = Zi−1

u WQ, K
i−1
u = ZH

u WK , V i−1
u = ZH

u WV ,

Zi−1
u = cross-attention(Qi−1

u ,Ki−1
u , V i−1

u),

Zi
u = LN(FFN(Zi−1

u) + Zi−1
u), (i = 1, 2, 3),

(4)

where LN denotes layer normalization. The final output embedding for source node u is denoted as
ZO
u = Z3

u. The final output embedding for destination node u is obtained using the same process.

Training. To predict the likelihood of an interaction between the source node u and the desti-
nation node v, we employ a multi-layer perceptron (MLP) predictor that takes their final output
embeddings as input: p̃ = MLP(ZO

u , ZO
v). The model is trained using the binary cross-entropy

loss L = − 1
M

∑M
i=1(pi log(p̃i) + (1 − pi) log(1 − p̃i)), where M denotes the number of training

samples (including both positive and negative pairs), and pi ∈ {0, 1} denote the ground-truth label.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

In this section, we first present the details of our experimental setup. We then conduct extensive ex-
periments across multiple benchmark datasets, comparing the performance of our proposed method
with several strong baselines. Finally, we provide an in-depth analysis of our model through ablation
studies to investigate the contributions of each components.

Datasets and Baselines. In our experiments, we adopt five benchmark datasets from the Tem-
poral Graph Benchmark (TGB) (Huang et al., 2023), namely tgbl-uci, tgbl-enron, tgbl-wiki, tgbl-
subreddit, and tgbl-lastfm, which span a diverse range of domains. To comprehensively evalu-
ate our proposed method, we compare it against seven popular dynamic graph learning methods:
JODIE (Kumar et al., 2019), TGN (Rossi et al., 2020), TGAT (Xu et al., 2020), GraphMixer (Cong
et al., 2023), TCL (Wang et al., 2021a), DyGFormer (Yu et al., 2023),FreeDyG (Tian et al., 2023)
and RepeatMixer (Zou et al., 2024). Three representative time series models: BiLSTM (Hochre-
iter & Schmidhuber, 1997), iTransformer (Liu et al., 2024), and CATS (Kim et al., 2024), are also
incorporated in our evaluation. The details of the datasets are provided in supplementary material.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of link prediction performance between our proposed method and baselines in
the transductive setting. Each experiment is repeated 5 times. Bold values indicate the best results.

Category Methods tgbl-uci tgbl-enron tgbl-wiki tgbl-subreddit tgbl-lastfm

MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50

Dynamic graph JODIE 63.45± 0.14 47.72± 0.38 43.78± 0.06 28.21± 0.20 80.84± 0.75 73.02± 1.22 88.25± 0.45 81.83± 0.62 40.81± 0.09 29.38± 0.07

Dynamic graph TGN 63.97± 0.52 47.92± 0.64 27.02± 1.15 15.18± 1.71 88.13± 0.49 83.35± 0.73 89.57± 0.03 83.68± 0.11 46.11± 1.87 33.45± 1.97

Dynamic graph TGAT 69.36± 0.38 52.88± 0.58 38.77± 0.08 23.23± 0.16 81.44± 0.61 74.77± 0.89 87.78± 0.07 81.34± 0.08 39.79± 0.17 30.57± 0.07

Dynamic graph GraphMixer 72.40± 0.65 61.96± 0.05 53.14± 0.17 38.13± 0.14 83.46± 0.05 76.81± 0.34 86.80± 0.07 79.10± 0.10 45.70± 0.03 34.19± 0.24

Dynamic graph TCL 63.20± 0.05 49.53± 0.03 40.43± 0.62 25.09± 0.49 86.48± 0.21 83.47± 0.28 87.49± 0.03 81.71± 0.06 48.45± 0.13 40.14± 0.14

Dynamic graph DyGFormer 76.46± 0.04 69.89± 0.11 78.43± 0.22 69.90± 0.37 92.16± 0.11 89.95± 0.10 93.94± 0.03 91.06± 0.02 64.83± 0.01 55.01± 0.22

Dynamic graph FreeDyG 80.46± 0.86 75.45± 0.97 77.86± 0.11 67.56± 0.81 93.56± 0.08 91.38± 0.02 93.64± 0.04 90.51± 0.01 64.16± 0.05 54.75± 0.06

Dynamic graph RepeatMixer 79.82± 0.29 72.51± 0.23 79.42± 0.11 70.12± 0.19 92.84± 0.24 90.42± 0.52 94.51± 0.12 92.17± 0.15 70.66± 0.15 57.73± 0.12

Time Series BiLSTM 70.85± 1.14 66.91± 1.12 77.27± 1.19 65.50± 1.26 88.63± 0.32 87.02± 0.53 83.36± 1.06 80.63± 1.12 70.10± 1.04 61.20± 1.25

Time Series iTransformer 78.09± 0.12 71.80± 0.11 75.49± 0.14 64.00± 0.40 91.33± 0.28 88.66± 0.13 89.07± 0.10 84.07± 0.24 72.03± 0.20 61.98± 0.25

Time Series CATS 72.06± 0.17 65.18± 0.23 79.84± 0.61 66.96± 0.77 90.21± 1.15 87.38± 0.68 78.58± 1.52 75.81± 1.56 72.91± 0.67 61.83± 0.36

Joint TSDyG (Ours) 80.53± 0.04 75.70± 0.39 81.58± 0.13 74.03± 0.30 99.07± 0.05 98.33± 0.17 93.60± 0.05 91.02± 0.04 76.93± 0.75 70.11± 0.85

Table 2: Comparison of forecasting performance between our proposed method and baselines. Each
experiment is repeated 5 times. Bold values indicate the best results.

Category Methods tgbl-uci tgbl-enron tgbl-wiki tgbl-subreddit tgbl-lastfm

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Time Series CATS 0.338± 0.001 0.173± 0.001 0.341± 0.002 0.164± 0.001 0.135± 0.001 0.079± 0.001 0.482± 0.006 0.246± 0.001 0.391± 0.006 0.201± 0.002

Joint TSDyG 0.267± 0.002 0.136± 0.001 0.242± 0.003 0.125± 0.004 0.131± 0.002 0.071± 0.002 0.121± 0.002 0.060± 0.001 0.308± 0.009 0.160± 0.003

Evaluation Task and Metics. In our experiments, we primarily focus on the future link prediction
task, which is consistent with prior works. This task aims to predict the probability of an inter-
action occurring between two given nodes at a specific timestamp. It can be evaluated under two
settings: the transductive setting, where all nodes are observed during training, and the inductive
setting, where some nodes are unseen during training. We follow the dataset splits provided by
TGB, dividing each benchmark into training, validation, and testing sets.

Following the Temporal Graph Benchmark (TGB), we formulate link prediction as a ranking prob-
lem by sampling multiple negative examples for each positive interaction. For a positive example
(u, v, t), we fix the source node u and the timestamp t, and sample multiple negative destination
nodes ṽ. These negative nodes are either randomly selected or chosen from nodes that have inter-
acted with u but not at the current timestamp t. We adopt the Mean Reciprocal Rank (MRR) as the
evaluation metric, as suggested in TGB. MRR is calculated as the reciprocal of the rank of the true
destination node among all candidate (true and negative) destination nodes.

Model Configurations. In our model, the dimension of the codebook vectors dA, time embeddings
dT and projected embeddings dC is set to 172, 100 and 86, respectively. The hidden dimension dH
is set to 172. The Cross-attention module consists of three layers, each with four attention heads.
For all the baselines, we follow their official implementation settings to ensure a fair comparison.

Implementation Details. To adapt time series methods for our link prediction evaluation task, we
first apply the proposed time series formulation module to convert the dynamic graph into time
series representations compatible with the input requirements of these methods. The embeddings
produced by the time series models are then used to predict the probability of interaction between
node pairs. Unlike traditional regression tasks, we use binary cross-entropy loss instead of mean
squared error during training. We employ the Adam (Kingma & Ba, 2015) optimizer with a learning
rate of 0.0001 and adopt an early stopping strategy with a patience of 20 epochs, selecting the model
that performs best on the validation set for final evaluation. In our experiments, we sample 20 and
50 negative examples per positive example, respectively. Each task is repeated five times, and all
experiments are conducted on an NVIDIA RTX A40 GPU.

5.2 MAIN RESULTS AND DISCUSSIONS

Table 1 presents the performance of our method and baselines on transductive benchmarks. DyG-
Former and FreeDyG outperform other models, highlighting their ability to capture temporal depen-
dencies. However, their performance drops on larger graphs due to the high computational cost of
sequential models like Transformers, which limits their scalability for long-range dependencies.

The results also suggest that time series methods can be effectively adapted to the link prediction
task in dynamic graphs. By converting dynamic graphs into time series using our proposed time
series formulation module, these methods can achieve competitive performance. To further validate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: (a-b) Link prediction performance of our proposed TSDyG model with varying sequence
lengths. (c-d) Link prediction performance of our proposed TSDyG model with and without the
time embedding (TE).

Figure 5: (a-b) Comparison of link prediction performance of our proposed TSDyG model with the
codebook versus Mlp. (c-d) Link prediction performance of our proposed TSDyG model with and
without the edge embedding (EE).

the effectiveness of time series-based approaches on binary data, we evaluate the performance of a
traditional time series method (i.e., CATS (Kim et al., 2024)) and our proposed TSDyG model in a
short-term forecasting setting. The fitness of each method on the binary time series data is assessed
using Mean Squared Error (MSE) and Mean Absolute Error (MAE) between the output probability
and the ground-truth value (either 0 or 1). The results, presented in Table 2, suggest that traditional
time series methods are indeed applicable to the short-term forecasting of our formulated binary time
series data. However, the performance of time series methods is not consistently strong across all
datasets. This variability can be attributed to two main reasons. First, traditional time series models
are primarily designed for multivariate, continuous time series data, whereas the time series derived
from dynamic graphs in our formulation are binary and discrete. As a result, the design of these
methods may not be well-suited for our setting. Second, most time series methods are tailored for
forecasting tasks (i.e., predicting future values in a continuous sequence), whereas our task involves
predicting the probability of interaction between specific node pairs at a given timestamp. This task
discrepancy limits the direct applicability and effectiveness of standard time series models in the
dynamic graph setting.

As shown in the results, our proposed TSDyG consistently outperforms the baselines across most
tasks. The strong performance of TSDyG can be attributed to several key factors. Unlike pre-
vious dynamic graph methods that aggregate temporal dependencies from all neighboring nodes,
our approach reformulates historical interactions between specific node pairs into binary time se-
ries. This targeted formulation allows the model to focus exclusively on the relevant interaction
patterns. Moreover, TSDyG is capable of extracting temporal dependencies, including recurring
interaction patterns, from both positive and negative interactions. This enhances the model’s ability
to distinguish true interactions from historically negative samples. Additionally, the integration of a
cross-attention mechanism enables our model to capture long-range temporal dependencies more ef-
ficiently than traditional Transformer-based models. This advantage becomes especially prominent
in large-scale dynamic graphs, contributing to the superior performance of our model.

Although our method approaches dynamic graphs through the lens of time series analysis, the pro-
posed framework is better suited to modeling dynamic graphs than traditional time series meth-
ods. Conventional time series models are typically designed for multivariate, continuous-valued
sequences, whereas our model introduces a discrete codebook tailored to handle the binary time
series derived from dynamic graphs. This design enables more accurate representation of node dy-
namics. Furthermore, unlike standard time series approaches, our model explicitly leverages unique
characteristics of dynamic graphs, such as edge features and temporal information. These additional
modalities, often overlooked by traditional time series methods, enrich the representation learning
process and contribute to the superior performance of our model on dynamic graph tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ABLATION STUDY

In the ablation study, we first examine the impact of sequence length on the performance of our
proposed model. We vary the sequence length across 16, 32, 64, 128, and 256, and conduct ex-
periments on tgbl-uci, tgbl-enron, and tgbl-wiki. The results, presented in Figure 4, indicate that
performance generally improves with longer sequence lengths. This is because longer sequences al-
low the model to capture more comprehensive temporal patterns from historical interactions, leading
to more accurate future predictions.

Next, we examine the contribution of the time embedding to the overall performance of our model.
We fix the sequence length and compare model performance with and without the time embedding.
Experiments are conducted on tgbl-uci, tgbl-enron, and tgbl-subreddit. The results, shown in Fig-
ure 4, indicate a significant performance drop when the time embedding is removed. This highlights
the importance of time embedding, which encodes the temporal context of interactions. It enables
the model to more accurately capture the behavioral patterns of nodes. Without the temporal signal,
the model struggles to distinguish between positive interactions and historical (negative) examples,
resulting in reduced performance.

Figure 6: (a) The training time of our proposed TS-
DyG and baselines across benchmark datasets. (b) The
training time of our proposed TSDyG with different se-
quence lengths.

We also evaluate the effectiveness of the
codebook component in our model by re-
placing it with a standard Mlp. Exper-
iments are conducted on tgbl-enron and
tgbl-wiki. As shown in Figure 5, replac-
ing the codebook with an MLP results in
a slight performance degradation, suggest-
ing that the codebook is a more effective
choice for modeling temporal dependen-
cies in dynamic graphs.

Finally, we evaluate the impact of edge
features on the performance of our pro-
posed model in attributed dynamic graphs.
Experiments are conducted on tgbl-wiki and tgbl-subreddit. The results, shown in Figure 5, reveal a
noticeable performance drop when edge features are removed. These findings highlight the impor-
tance of edge features in enhancing the expressiveness of node embeddings and enable the model to
more effectively distinguish temporal dependencies across different node pairs.

5.4 RUNNING TIME ANALYSIS

To evaluate the efficiency of our proposed model,we measure the training time of TSDyG model
and compare it against baseline models, including CATS (Kim et al., 2024) and DyGFormer (Yu
et al., 2023). For a fair comparison, the sequence length is set to 128 for both CATS and TSDyG,
while DyGFormer uses a maximum sequence length of 48 due to its architectural constraints. The
evaluation is conducted across multiple benchmark datasets, and the results are presented in Figure 6.
These results show that our model is more computationally efficient than traditional CTDG methods.
In addition, we assess the impact of sequence length on the computational cost of TSDyG model
using the tgbl-enron and tgbl-wiki datasets. As illustrated in Figure 6, training time increases as the
sequence length grows, which is expected due to the higher computational demand associated with
processing longer temporal contexts.

6 CONCLUSION

We review prior work on discrete-time and continuous-time dynamic graph learning, highlighting
limitations such as loss of fine-grained temporal information, difficulty modeling long-range de-
pendencies, and neglect of non-existing interactions. To address these, we propose transforming
interactions into time series and introduce the TSDyG model. Experiments show that TSDyG ef-
fectively captures temporal dependencies and achieves strong performance on multiple benchmarks.
However, our model may under-perform in high-surprise dynamic graphs with low edge repetition.
Addressing such scenarios remains an important direction for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

George EP Box, Gwilym M Jenkins, and John F MacGregor. Some recent advances in forecasting
and control. Journal of the Royal Statistical Society: Series C (Applied Statistics), 23(2):158–179,
1974.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, 2014. Association for
Computational Linguistics.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
In The Eleventh International Conference on Learning Representations, 2023.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. Tslanet: Rethinking
transformers for time series representation learning. In International Conference on Machine
Learning. OpenReview.net, 2024.

Peter G Fennell, Sergey Melnik, and James P Gleeson. Limitations of discrete-time approaches to
continuous-time contagion dynamics. Physical Review E, 94(5):052125, 2016.

Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas Grohnfeldt. Long
range propagation on continuous-time dynamic graphs. In International Conference on Machine
Learning. OpenReview.net, 2024.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael M. Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal
graph benchmark for machine learning on temporal graphs. In Advances in Neural Information
Processing Systems, 2023.

Shuo Ji, Mingzhe Liu, Leilei Sun, Chuanren Liu, and Tongyu Zhu. Memmap: An adaptive and
latent memory structure for dynamic graph learning. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1257–1268, 2024.

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learn-
ing on continuous-time dynamic graphs. In Advances in Neural Information Processing Systems,
2022.

Yannis Karmim, Marc Lafon, Raphaël Fournier-S’Niehotta, and Nicolas Thome. Supra-laplacian
encoding for transformer on dynamic graphs. Advances in Neural Information Processing Sys-
tems, 37:17215–17246, 2024.

Dongbin Kim, Jinseong Park, Jaewook Lee, and Hoki Kim. Are self-attentions effective for time
series forecasting? In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (Poster), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations). OpenReview.net, 2017.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations. OpenReview.net, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In KDD, pp. 1269–1278. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2019.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pp. 95–104, 2018.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in
Neural Information Processing Systems, 35:5816–5828, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In International
Conference on Learning Representations. OpenReview.net, 2024.

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. Hope: High-order graph ode for modeling interacting dynamics. In International Conference
on Machine Learning, pp. 23124–23139. PMLR, 2023.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In ICLR. OpenReview.net, 2023.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. Evolvegcn: Evolving graph convolutional
networks for dynamic graphs. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
pp. 5363–5370. AAAI Press, 2020.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better eval-
uation for dynamic link prediction. In Advances in Neural Information Processing Systems, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. In Proceedings of the
ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+), 2020.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International journal of forecasting, 36(3):1181–
1191, 2020.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
international conference on web search and data mining, pp. 519–527, 2020.

Junwei Su, Difan Zou, and Chuan Wu. PRES: toward scalable memory-based dynamic graph neu-
ral networks. In The Twelfth International Conference on Learning Representations. OpenRe-
view.net, 2024.

Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dynamic graph
model for link prediction. In The Twelfth International Conference on Learning Representations,
2023.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Hao Wang, Lichen Pan, Yuan Shen, Zhichao Chen, Degui Yang, Yifei Yang, Sen Zhang, Xinggao
Liu, Haoxuan Li, and Dacheng Tao. Fredf: Learning to forecast in the frequency domain. In
International Conference on Learning Representations. OpenReview.net, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
Zhou, and Hongxia Yang. TCL: transformer-based dynamic graph modelling via contrastive
learning. CoRR, abs/2105.07944, 2021a.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. In
International Conference on Learning Representations. OpenReview.net, 2024.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In International Conference on
Learning Representations. OpenReview.net, 2021b.

Mark W Watson. Vector autoregressions and cointegration. Handbook of econometrics, 4:2843–
2915, 1994.

Yuxia Wu, Yuan Fang, and Lizi Liao. On the feasibility of simple transformer for dynamic graph
modeling. In Proceedings of the ACM on Web Conference 2024, pp. 870–880. ACM, 2024.

Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-
sentation learning on temporal graphs. In International Conference on Learning Representations.
OpenReview.net, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations. OpenReview.net, 2019.

Kuo Yang, Zhengyang Zhou, Qihe Huang, Limin Li, Yuxuan Liang, and Yang Wang. Improving
generalization of dynamic graph learning via environment prompt. Advances in Neural Informa-
tion Processing Systems, 37:70048–70075, 2024.

Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King. Discrete-time tem-
poral network embedding via implicit hierarchical learning in hyperbolic space. In Proceedings
of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp. 1975–1985,
2021.

Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian, Long-
bing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time series
forecasting. In NeurIPS, 2023.

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining,
pp. 2358–2366, 2022.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
architecture and unified library. Advances in Neural Information Processing Systems, 36:67686–
67700, 2023.

Haonan Yuan, Qingyun Sun, Xingcheng Fu, Ziwei Zhang, Cheng Ji, Hao Peng, and Jianxin Li.
Environment-aware dynamic graph learning for out-of-distribution generalization. Advances in
Neural Information Processing Systems, 36, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Association for the Advancement of Artificial Intelligence, pp. 11121–11128.
AAAI Press, 2023.

Siwei Zhang, Yun Xiong, Yao Zhang, Xixi Wu, Yiheng Sun, and Jiawei Zhang. ilore: Dynamic
graph representation with instant long-term modeling and re-occurrence preservation. In Proceed-
ings of the 32nd ACM International Conference on Information and Knowledge Management, pp.
3216–3225, 2023.

Siwei Zhang, Xi Chen, Yun Xiong, Xixi Wu, Yao Zhang, Yongrui Fu, Yinglong Zhao, and Jiawei
Zhang. Towards adaptive neighborhood for advancing temporal interaction graph modeling. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 4290–4301, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations.
OpenReview.net, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Association
for the Advancement of Artificial Intelligence, pp. 11106–11115. AAAI Press, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

Tao Zou, Yuhao Mao, Junchen Ye, and Bowen Du. Repeat-aware neighbor sampling for dynamic
graph learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 4722–4733, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 7: Link prediction performance of our proposed TSDyG model with varying sequence
lengths in the inductive setting. The evaluation is performed on tgbl-uci, tgbl-enron and tgbl-wiki.

(a) inductive (b) inductive

Figure 8: Link prediction performance of our proposed TSDyG model with and without the time
embedding (TE).

A APPENDIX

A.1 EXPERIMENTAL SETTINGS

The details of the Temporal Graph Benchmark (TGB) Huang et al. (2023) are summarized in Table 4.
Among these datasets, tgbl-wiki and tgbl-subreddit include attributed edge features, while the others
do not. For our TSDyG model and the time series baselines, we use a sequence length of 512 for
tgbl-enron and tgbl-subreddit, and 256 for the remaining datasets. For dynamic graph baselines,
we follow the model configurations specified in their original papers. All models are trained for 60
epochs, and the best checkpoint is adopted for evaluation.

A.2 MAIN RESULTS

Table 3 presents the link prediction performance of our proposed TSDyG model compared to dy-
namic graph and time series baselines in the inductive setting across five datasets from the Temporal
Graph Benchmark. Notably, TSDyG shows substantial gains on datasets like tgbl-enron, tgbl-wiki
and tgbl-lastfm, highlighting its strength in capturing long-range temporal dependencies and recur-
ring patterns. These findings demonstrate the effectiveness of our approach in enhancing temporal
modeling of dynamic graphs in the inductive setting.

A.3 ABLATION STUDY

We investigate the impact of sequence length on our model’s performance in the inductive setting by
varying it from 16 to 256 on tgbl-uci, tgbl-enron, and tgbl-wiki. As shown in Figure 7, performance

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) inductive (b) inductive

Figure 9: Link prediction performance of our proposed TSDyG model with the codebook and Mlp.

(a) inductive (b) inductive

Figure 10: Link prediction performance of our proposed TSDyG model with and without the edge
embedding (EE).

consistently improves with longer sequences, mirroring the trend observed in the transductive set-
ting. This highlights the importance of capturing longer temporal histories for accurate prediction.

We further assess the impact of time embedding on model performance in the inductive setting
by comparing results with and without it, using a fixed sequence length. Experiments on tgbl-
uci, tgbl-enron, and tgbl-subreddit (Figure 8) reveal a noticeable performance drop when the time
embedding is removed, particularly on tgbl-uci. This underscores the critical role of time embedding
in capturing the temporal context of interactions across both inductive and transductive settings.

We also investigate the effectiveness of the codebook component in our model by replacing it with
a standard Mlp in the inductive setting. Experiments on tgbl-enron and tgbl-wiki (Figure 9) show
a slight performance drop when using the MLP, indicating that the codebook is better suited for
modeling binary time series data in our approach.

Finally, we evaluate the impact of edge features on our model’s performance in attributed dynamic
graphs under the inductive setting. Experiments on tgbl-wiki and tgbl-subreddit (Figure 10) show a
clear performance drop when edge features are removed. This underscores the importance of edge
features in enriching node representations and helping the model better capture temporal dependen-
cies across diverse node pairs.

A.4 LIMITATION

Our proposed model relies on the historical recurring interactions of node pairs to capture temporal
dependencies. However, its effectiveness may be limited in dynamic graphs with the low repeat
ratio, as such settings do not provide sufficient information from individual node pair interactions
alone. In these cases, incorporating information from neighboring nodes becomes necessary to better
model the temporal dynamics. We leave this direction for future work.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Comparison of link prediction performance between our proposed method and baselines in
the inductive setting. Each experiment is repeated 5 times. Bold values indicate the best results.

Category Methods tgbl-uci tgbl-enron tgbl-wiki tgbl-subreddit tgbl-lastfm

MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50 MRR@20 MRR@50

Dynamic graph JODIE 58.83± 0.13 42.44± 0.22 36.45± 0.41 25.66± 0.30 75.45± 0.93 63.99± 1.52 82.35± 1.31 78.12± 1.20 36.58± 1.46 25.89± 1.58

Dynamic graph TGN 59.37± 0.81 42.36± 1.07 25.05± 1.02 13.55± 1.25 87.88± 0.34 82.70± 0.32 81.68± 0.21 83.68± 0.11 44.66± 1.14 31.23± 1.44

Dynamic graph TGAT 65.20± 1.20 49.95± 1.64 30.85± 0.26 12.82± 0.31 80.06± 0.64 73.78± 0.49 84.68± 1.32 75.47± 1.77 38.19± 0.45 29.03± 0.09

Dynamic graph GraphMixer 71.38± 0.35 59.37± 0.52 51.12± 0.18 29.05± 0.09 81.17± 0.05 74.89± 0.18 83.08± 0.09 76.95± 0.27 43.59± 0.07 32.27± 0.18

Dynamic graph TCL 57.90± 0.44 44.35± 0.02 36.48± 0.50 20.03± 0.17 85.55± 0.08 82.17± 0.23 86.25± 1.59 78.23± 1.13 47.02± 0.44 38.33± 0.54

Dynamic graph DyGFormer 75.20± 0.06 68.53± 0.17 75.96± 0.09 67.84± 0.20 90.96± 0.07 87.29± 0.17 91.10± 0.30 89.71± 0.10 63.90± 0.11 53.49± 0.29

Dynamic graph FreeDyG 77.19± 0.11 68.56± 0.74 61.83± 1.22 52.62± 2.81 92.96± 0.23 89.57± 0.46 83.95± 2.65 78.85± 2.43 61.80± 0.60 50.13± 0.75

Dynamic graph RepeatMixer 78.80± 0.37 71.60± 0.02 71.23± 0.51 68.89± 0.35 92.33± 0.27 89.93± 0.16 92.00± 0.18 90.74± 0.51 68.49± 0.18 55.88± 0.09

Time Series BiLSTM 67.90± 0.98 64.97± 0.90 76.35± 1.02 63.92± 1.24 86.76± 0.21 84.92± 0.26 80.38± 1.24 77.45± 1.08 68.37± 0.85 59.42± 0.64

Time Series iTransformer 76.91± 0.08 70.92± 0.08 74.84± 1.07 63.54± 0.11 90.98± 0.53 87.61± 0.38 88.51± 0.05 83.58± 0.11 70.39± 0.28 60.28± 0.33

Time Series CATS, 70.18± 0.24 63.16± 0.27 78.07± 0.56 65.48± 0.64 88.11± 1.21 84.41± 1.22 77.67± 0.11 73.70± 0.25 71.88± 0.37 60.81± 0.91

Joint TSDyG (Ours) 79.83± 0.08 74.08± 0.13 80.83± 0.22 73.23± 0.82 98.80± 0.06 97.55± 0.02 91.26± 0.02 89.22± 0.04 75.64± 0.05 68.95± 0.43

Table 4: The details of benchmarks.

Dataset Domain #Nodes #Edges #Steps Attributed

tgbl-uci social 3,212 59,835 58,911 No
tgbl-enron social 365 125,235 22,632 No
tgbl-wiki rating 9,227 157,474 152,757 Yes

tgbl-subreddit rating 10,984 672,447 588,915 Yes
tgbl-lastfm recommendation 1,980 1,293,103 1,283,614 No

A.5 USE OF LARGE LANGUAGE MODELS

In our work, we solely employ LLMs to check grammatical errors and refine sentence structures.

16

	Introduction
	Related Work
	Preliminary
	Methodology
	Experiments
	Experimental Settings
	Main Results and Discussions
	Ablation Study
	Running Time Analysis

	Conclusion
	Appendix
	Experimental Settings
	Main Results
	Ablation Study
	Limitation
	Use of Large Language Models

