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Abstract

In this paper, we propose randomized smoothing methods that aim to enhance the
robustness of the linear inverse problems against adversarial attacks, in particular
guaranteeing an upper bound on a suitably-defined notion of sensitivity to pertur-
bations. In addition, we propose two novel algorithms that incorporate randomized
smoothing into training, where one algorithm injects random perturbations to the
input data directly, and the other algorithm adds random perturbations to the gradi-
ents during backpropagation. We conduct numerical evaluations on two of the most
prominent inverse problems — denoising and compressed sensing — utilizing
a variety of neural network estimators and datasets. In broad scenarios, these
results demonstrate a strong potential of randomized smoothing for enhancing the
robustness of linear inverse problems.

1 Introduction

Linear inverse problems are fundamental in machine learning, signal processing, and statistics,
with the objective of recovering an unknown vector from an (often underdetermined) set of linear
measurements. Over the years, the incorporation of low-dimensional structures such as sparsity has
dominated the extensive research [12, 15, 11]. More recently, advances in deep learning have led to
their widespread adoption in inverse problems, including for signal modeling, decoder design, and
measurement design [33, 36]. We will specifically be interested in the decoder design aspect.

Following these advances, a number of recent works have identified limitations of deep learning
methods in terms of robustness, e.g., with [3, 20, 16] studying their vulnerability to adversarial attacks
with small ℓ2 norm., which have a minimal effect on the input but significantly worsen the accuracy
of the output. The study in [18] further indicates that deep learning for inverse problems can come at
the cost of instabilities, and current training approaches cannot guarantee stable methods. Similar
sensitivities of deep neural networks have been well-studied in classification problems, where initial
defense approaches were soon broken [5, 30]. This led to the development of certified defenses such
as reluplex [23], provable defenses [39], and randomized smoothing [7] have emerged, providing
rigorous guarantees of robustness against norm-bounded attacks in classification. However, there is
much less work on the adversarial robustness of inverse problems, which has fundamental differences
from classification and even regression, notably including the fact that the output is high-dimensional.

In this work, we propose a novel method to certify the robustness of linear inverse problems against
adversarial attacks using a suitably-adapted form of randomized smoothing [7]. Our approach is able
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to provide certified upper bounds on a suitably-defined notion of sensitivity to perturbations. To our
knowledge, such results have not been explored previously in the context of inverse problems.

In addition, inspired by analogies with classification and regression, we incorporate the concept of
randomized smoothing into the estimator’s training. We propose two versatile training algorithms
that can be applied to a variety of network architectures, at least up to a moderate size. Through
numerical experiments, we demonstrate that smoothing can provide significant robustness certificates
against adversarial attacks, as well as being practically beneficial in both denoising and compressed
sensing tasks.

1.1 Setup

A linear inverse problem consists of recovering a target signal1 x ∈ Rn from linear measurements
y = Ax + b, where A ∈ Rm×n and b ∈ Rm are the measurement matrix and additive noise,
respectively. Given A and y, we employ a trainable estimator fθ : Rm → Rn to approximate x as
fθ(y), and assess correctness using the normalized mean squared error (MSE) criterion:

ℓ(fθ(y),x) =
1

n
∥fθ(y)− x∥2. (1)

Parts of our paper are applicable to an arbitrary estimator fθ, but at times we will also specifically
consider training its parameters θ given access to a data set D consisting of (x,y) pairs, with each y
being a measurement of the form y = Ax+ b as above.

We study the adversarial robustness of fθ by assuming the existence of an unknown adversarial
attack ξ on the target signal x at test time, such that the perturbed measurement vector is given by
y = A(x+ ξ) + b. To limit the power of the adversary, we adopt the standard assumption that ξ is
ϵ-bounded in a ℓ2 ball (i.e., ||ξ|| ≤ ϵ), and in the worst-case may be chosen to maximize the error
ℓ(fθ(A(x+ ξ) + b),x). To streamline our notation, in the rest of this paper, we will represent the
clean measurement Ax+ b as yx and represent the perturbed measurement A(x+ ξ) + b as yx+ξ,
which can be generalized to yx+ξ+δ in the case of multiple perturbations ξ and δ.

2 Related Work

Adversarial training is a commonly used training strategy (primarily used for classification problems
[26, 31, 34]) to improve the robustness of perturbations through training with adversarial examples
[17]. It follows the framework of empirical risk minimization (ERM) but replaces the input data with
some ℓ2-bounded adversarial perturbations. Several methods have been proposed in prior work [26] to
generate these perturbations, with the multi-step iterative method Projected Gradient Descent (PGD)
being particularly effective. [22] studied the tradeoff between robustness and standard accuracy using
adversarial training in linear regression problems, whereas [18] suggested that adversarial training
alone may be insufficient for addressing instabilities in linear inverse problems. Nonetheless, we
include adversarial training equipped with the PGD method as one of the baselines in our experiments
and provide the ERM formulation as

min
θ

E(x,y)∈D
[
ℓ(fθ(yx+ξ∗),x)

]
,

where ξ∗ = argmax
ξ:∥ξ∥2≤ϵ

l(fθ(yx+ξ)),x).
(2)

Jacobian regularization is a technique to improve robustness against adversarial attacks by penaliz-
ing large derivatives with respect to input data, specifically the norm of the input-output Jacobian
matrix. The idea was first proposed by [19] but only implemented as a layer-wise regularization
due to computational constraints. Later it was implemented at full scale in [37] and was made more
efficient in [38, 40]. [21, 2] showed that both the Frobenius and spectral norms of the Jacobian matrix
are experimentally effective in improving the robustness of neural networks in regression problems.

For linear inverse problems, we can motivate the use of the Jacobian by considering the Taylor
expansion of fθ(yx+ξ) with respect to ξ:

fθ(yx+ξ) = fθ(yx +Aξ)

= fθ(yx) + J(yx)Aξ +O(∥ξ∥2),
(3)

1For image data, we think of x as being its vectorized version, with n being the total number of pixels.
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where J(yx) ∈ Rn×m is the input-output Jacobian matrix. When the ℓ2-radius of the adversarial
perturbation ξ is small enough, the higher-order terms can be ignored, and the stability of the
estimation is mainly determined by J(yx)A. Therefore, we can use Jacobian regularization by
penalizing the spectral norm max(x,y)∈D∥J(y)A∥, as proposed by [2], and control the strength of
regularization using a hyperparameter β. The ERM formulation for training is

min
θ

E(x,y)∈D

[
ℓ(fθ(y),x)

]
+ β max

(x,y)∈D
∥J(y)A∥. (4)

Randomized smoothing is a technique that was first introduced for certifying a classifier against
ℓ2-bounded noise, potentially on large neural networks and on large images [27, 7, 29]. It works
by adding random noise to input data and then classifying the noisy input to obtain a probability
distribution over possible labels. Several works have shown that randomized smoothing guarantees
that no possible attacks under a particular constraint could succeed in classification problems. [28]
presented certified robustness against Wasserstein adversarial attacks. [13] covered parameterized
transformations and certified robustness in the parameter space. [14] developed a certification method
for image and point cloud segmentation. Furthermore, [35] embedded randomized smoothing into the
classifier’s adversarial training framework, which inspired us to propose Algorithm 3 in this paper.

Randomized smoothing has also been extended to certain tasks beyond classification. [6] used it
to certify the regression of the object detector’s bounding-box coordinates. [4] applied it to certify
the accuracy score in watermarking problems and proposed a training framework from which we
are inspired to propose Algorithm 4. These two works are the closest to ours, but there are some
significant differences. In particular, in our case, the measurements are mapped to a high-dimensional
signal manifold, whereas the prior works consider outputting a single real number or only a few real
numbers. In our setting, a naive strategy of summarizing the output via its loss (a single real number)
is infeasible due to the loss being unknown at the decoder, as we discuss below.

3 Proposed Methods

3.1 Preliminaries

We first review the necessary background of randomized smoothing for estimation in a generic
scalar-valued output setting. Given an ordinary real-valued estimator F : Rn → R, randomized
smoothing is a method that constructs a new, smoothed estimator G from the base estimator F at
testing time. Under mean smoothing, the smoothed estimator G takes as input x ∈ Rn and returns
the expectation of F under isotropic Gaussian noise perturbation δ on x, i.e.,

G(x) = Eδ∼N (0,σ2I)

[
F (x+ δ)

]
, (5)

where the noise level σ controls the tradeoff between robustness and accuracy.

While (5) is the go-to approach for classification, its direct use for estimating continuous-valued
quantities may result in skewed results and location-dependent bounds, as detailed in [6]. To
overcome this limitation, they proposed a more suitable “percentile smoothing” (see (6) below) for
one-dimensional regression tasks. In high-dimensional inverse problems, although incorporating
randomized smoothing may seem feasible by regressing over the scalar estimation loss ℓ(fθ(yx),x),
we cannot access the original signal x and only have the measurement yx at hand (or more generally
yx+ξ). Hence, instead of considering the loss to x itself, we consider the discrepancy between two
different reconstructions with different perturbations as follows.
Definition 3.1. Given an estimator fθ : Rm → Rn, an adversarially perturbed measurement
yx+ξ, and a Gaussian noise vector δ ∼ N (0, σ2I), we use δ to perturb x further and obtain the
measurement yx+ξ+δ = yx+ξ +Aδ. We refer to ℓ(fθ(yx+ξ+δ), fθ(yx+ξ)) as the discrepancy, and
consider the percentile smoothing of the discrepancy as a function of x and ξ:

Dp(x, ξ) = inf
{
t ∈ R : P

[
ℓ(fθ(yx+ξ+δ), fθ(yx+ξ)) ≤ t

]
≥ p

}
, (6)

where p is the quantile value.

The idea behind the discrepancy is that a small Dp(x, ξ) indicates that the estimation retains con-
sistency despite the presence of Gaussian noise δ. This consistency is advantageous for adversarial
robustness, allowing the addition of Gaussian noise to “drown out” an adversarial perturbation without
impacting the reconstruction too much. A more detailed discussion on the proposed discrepancy
measure is presented in Appendix A.
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3.2 Discrepancy certification

We follow Lemma 1 from [6] and propose the following corollary to bound the worst-case smoothed
discrepancy (proved in Appendix B).

Corollary 3.2. The median smoothed discrepancy with adversarial noise can be bounded by the
smoothed discrepancy in the absence of adversarial noise as

D0.5(x, ξ) ≤ DΦ( ϵ
σ )(x,0) ∀ ξ s.t. ∥ξ∥ ≤ ϵ, (7)

where Φ is the cumulative distribution function of unit normal distribution, and 0 is a zero vector.

Equation (7) states that a worst-case upper bound on the median smoothed discrepancy D0.5(x, ξ) is
the Φ( ϵ

σ )-th percentile smoothed discrepancy DΦ( ϵ
σ )(x,0), for arbitrary ξ′ within an ϵ-ball around

zero. This corollary guarantees that the sensitivity of x (as measured by the discrepancy) is minimally
affected by arbitrary shifts up to radius ϵ. We focus on the median for simplicity, but the proof reveals
a more general form for any specified quantile value in (0, 1).

It is worth noting that x and ξ in Corollary 3.2 represent generic vectors whose assignments may
vary depending on how the corollary is applied. In particular, suppose that we are in a scenario
where the true signal is x∗, and the true adversarial noise is ξ∗, so the measurement vector is yx∗+ξ∗ .
Then we may apply Corollary 3.2 with x = x∗ + ξ∗, meaning that we are giving a guarantee on the
discrepancy for all signals sufficiently close to x∗ + ξ∗ (rather than sufficiently close to x∗ itself; we
cannot use x∗ directly since yx∗ is not known to the algorithm).

We also emphasize that our approach does not directly ensure “good” or “bad” estimation but rather
provides a guarantee on the discrepancy. This is analogous to classification, where a certificate may
show that the decision is unaffected within a certain radius, without claiming it to be the correct
decision in the first place. While this is a standard limitation of smoothing methods, we still consider
using discrepancy calculations, Peak Signal-to-Noise Ratio (PSNR) values (a standard measure
of accuracy with the definition provided in Section 4), and Structural Similarity (SSIM) values (a
commonly used measure of perceived similarity) for experimental evaluations.

3.3 Randomized smoothing for inverse problems at test time

Our method for randomized smoothing at test time is directly based on discrepancy introduced in
Definition 3.1, which is a new concept to the best of our knowledge. For concreteness, we often focus
on p = 0.5, i.e., the median. Although Dp(x, ξ) will generally not admit a closed form, we can still
approximate it by applying a Monte Carlo approach with a suitably-chosen confidence level (see
Algorithm 1 in Appendix C).

The preceding ideas give rise to two estimators of x that we will consider throughout the paper:

• For certified estimation, the Monte Carlo procedure with S samples gives an appropriate
quantile value q ∈ (0, 1); we compute the relevant S values of ℓ(fθ(yx+ξ+δ), fθ(yx+ξ))
with randomly sampled δ, sort them, and take the one at position q ·S (with integer rounding).

• We also consider median-based estimation, with the same procedure but simply q = 1
2 .

We emphasize that the Gaussian noise δ for smoothing is intentionally introduced by the algorithm,
whereas ξ is unknown and possibly adversarial. We henceforth refer to them as the smoothing noise
δ and the adversarial noise ξ.

3.4 Embedding randomized smoothing into training

The previous subsection covers the use of randomized smoothing during testing, and applies to
arbitrary fθ (e.g., pre-trained). We provide two algorithms (specified in Appendix D) that use
randomized smoothing during training, i.e., selecting the parameters θ of fθ based on training data.

The first algorithm, termed “Smoothed Adversarial Training” (Smt-Adv) and building on [35], is an
approach that roughly follows adversarial training (as discussed in Section 2) but uses randomized
smoothing when generating the ℓ2-bounded adversarial perturbation. Specifically, such adversarial
training is performed using the perturbation noise ξ∗ obtained as the expected value under the
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smoothing noise δ. Formally, the ERM with smoothing is performed as

min
θ

E(x,y)∈D
[
ℓ(fθ(yx+ξ∗),x)

]
,where

ξ∗ = argmax
ξ:∥ξ∥2≤ϵ

ℓ
(
Eδ∼N (0,σ2I)

[
fθ(yx+ξ+δ)

]
,x

)
.

(8)

The algorithm computes ξ∗ using a first-order method similar to PGD, but with the difference that the
perturbed measurement yx+ξ is further smoothed in the neighborhood around yx+ξ+δ before being
used in the loss function. It is difficult to evaluate ξ∗ exactly, so we use Monte Carlo sampling with
S i.i.d. smoothing noise samples, δ1, . . . , δS ∼ N (0, σ2I), and compute the estimated f̂θ(yx+ξ+δ)
using the sample mean

f̂θ(yx+ξ+δ) =
1

S

S∑
k=1

fθ(yx+ξ+δk
). (9)

See Algorithm 3 for a complete description. Although adversarial training is an empirical defense tech-
nique that generally lacks provable guarantees, we will observe promising results in our experiments.
The same goes for our second algorithm introduced below.

The second algorithm (see Algorithm 4), termed “Smoothed Gradient Training” (Smt-Grad) and built
on [4], is a regular ERM training framework without the regularization term. To embed randomized
smoothing, we augment the clean measurements with smoothing noise δ and compute the estimator’s
gradients using an expectation with respect to δ. Specifically, for a given training pair (x,y), the
gradient gθ with respect to the estimator’s parameter θ is computed as

gθ = Eδ∼N (0,σ2I)

[
∇θℓ(fθ(yx+δ),x)

]
. (10)

To approximate the expectation of the gradients in the equation, we use the Monte Carlo method
drawing i.i.d. smoothing noise samples δ in each iteration of stochastic gradient descent. As
employing strong smoothing noise at the beginning of the training can be unstable, we adopt the
approach proposed by [4] and incrementally increase the noise levels within each epoch. This is
achieved by introducing a step count Tstep and injecting smoothing noise incrementally with standard
deviation σ ranging from 1

Tstep
σmax to σmax, where σmax is the maximum noise level.

We also make further observations regarding the two proposed algorithms and briefly mention a
concurrent work [24] in Appendix D.

4 Experiments

We conduct experiments in two different tasks: denoising, where A = I and b is Gaussian noise with
level σb; and compressed sensing, where A is a random Gaussian matrix with compression ratio
m/n, and the additive noise b is set to zero. We consider training and testing sets from both the same
data domain and different data domains (i.e., transfer learning), as is common in this line of works.
Specifically, for denoising, we use the network DPDNN [9] as the estimator trained on the (grayscale
converted) DIV2K dataset [1] and tested on the DIV2K validation set and BSD68 dataset [32], while
for compressed sensing, we use the estimator ISTA-Net++ [41] trained on the Train400 dataset [25]
and tested on the Set11 [25] and a subset of the (grayscale converted) ImageNet [8] datasets.

To assess the impact of randomized smoothing during training, we compare three baselines with our
proposed training algorithms: Ordinary Training (Ord): the standard training algorithm that does
not incorporate any perturbation defense mechanisms, with the ERM formulation simply presented
as minθ E(x,y)∈D

[
ℓ(fθ(y),x)

]
; Adversarial Training (Adv): the adversarial training algorithm

equipped with PGD method as introduced in (2); Jacobian Regularization (Jcb): the Jacobian
regularization training algorithm using the spectral norm for penalization as detailed in (4), where
we determine the value of hyperparameter β using Algorithm 4 from [2]; Smoothed Adversarial
Training (Smt-Adv) from Algorithm 3; Smoothed Gradient Training (Smt-Grad) from Algorithm
4.

To evaluate the effectiveness of randomized smoothing at test time, we explore different choices of
adversarial attack radii and various smoothing noise levels. More training and testing details are
presented in Appendix E.
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4.1 Certificate evaluation

We first examine the certificates of all types of trained estimators under varying ℓ2 radii of the
adversarial noise. Afterwards, we will investigate how adjusting the smoothing noise used in training
can impact the certificate.

Figure 1 (see Appendix F) presents a comparison of the certified results for both tasks. We display
the results as the average over the corresponding dataset and include error bars representing half a
standard deviation. We first observe that the certified upper bound of smoothed discrepancy increases
with the smoothing level, which is expected as higher smoothing levels amount to more deviations
from the original signal, as seen in (6). Regarding the PSNR of the reconstructions when smoothing
is used, we consistently observe an “arc” shape in which the performance first improves with σ
but then worsens, with the peak representing an ideal trade-off between σ being large enough to
improve robustness, but not so large as to over-smooth. Naturally, the trend is that the best choice
of σ increases with ϵ, with the two generally being comparable. However, ϵ is not the only factor at
play; when the estimation problem is made “more difficult” via increased σb (denoising) or fewer
measurements (compressed sensing), the best choice of σ also tends to increase.

In comparing the five training algorithms, we find that, at the optimal smoothing noise level, Smt-
Grad consistently produces the lowest certified discrepancy and the highest corresponding estimation
accuracy across all datasets and tasks. This suggests that Smt-Grad-trained estimators are the least
susceptible to perturbations, at least for the attacks we consider. Moreover, when little or no test-time
smoothing is applied (small σ, seen in the left parts of the plots in Figure 1), Smt-Adv is generally
seen to achieve the highest PSNR. On the other hand, when significant smoothing is applied, Smt-
Grad can be preferable, particularly in the case of compressed sensing, with lower discrepancy and
higher PSNR. Overall, we see that both of our proposed training algorithms can effectively improve
the robustness of the estimator against adversarial attacks.

We now explore how different levels of smoothing noise σ used for training can affect performances.
Table 2 (see Appendix F) provides a comparison of the performance of algorithms trained with
different smoothing noise levels (shown as σtr to distinguish from the test-time smoothing noise σ)
in terms of their performance metrics. These metrics include the PSNR of the clean estimate fθ(yx),
the PSNR of the perturbed estimate fθ(yx+ξ), and the PSNR of the smoothed estimate fθ(yx+ξ+δ)
that provides the certified smoothed discrepancy. For each ℓ2-radius ϵ of the perturbation ξ, we use a
zero test-time smoothing noise level to obtain the PSNR of the perturbed estimate and an empirically
optimal test-time σ to obtain the smoothed PSNR. For comparison, we also include a baseline vanilla
scenario that showcases the performance of the algorithm without any robustness considerations,
i.e., Ord. The results demonstrate that a significant level of σtr (e.g., σtr = 10, which we use as
the default training setting) can, in most cases, result in improved test-time robustness, indicated by
higher PSNR values. However, as the estimator is trained more robustly against stronger adversarial
attacks (when ϵ > 0), the accuracy of the estimator’s clean estimation drops, as shown in the second
column. An analogous trade-off between robustness and accuracy has also been observed in the
adversarial robustness literature, e.g., [31] and, [4].

4.2 Empirical smoothed median estimate

In practice, one may not specifically require certificates, and accordingly, it is of interest to study
the performance when one instead adopts the simpler approach of using the median, as described
in Section 3.3. To address this, we present Table 1 (see Appendix F) demonstrating the similarity
between the experimental median and its corresponding certificate across various scenarios. These
scenarios encompass different tasks and datasets, and we note that the rows of the table are not meant
to be directly compared with one another. Overall, our results reveal that under the ideal test-time
smoothing level, the evaluated discrepancy and PSNR values of the smoothed median estimate are
not substantially different from those with certification.

We visually compare the smoothed estimate fθ(yx+ξ+δ) corresponding to the smoothed median
discrepancy with the perturbed estimate fθ(yx+ξ) in Figure 2 (see Appendix F). We also show the
vanilla scenario where Ord is utilized and neither perturbation nor test-time smoothing is incorporated.
Notably, we observe significant improvements in estimation accuracy and feature clarity in both
denoising and compressed sensing tasks when smoothing is applied. Even without test-time smoothing
(σ = 0), estimators trained with Smt-Adv or Smt-Grad consistently outperform all baselines.
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The Dropbox link to the source code for experiments results reproducing.
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Appendix

A Justifications for smoothed discrepancy

In principle, this consistency could be achieved when both reconstructions fθ(yx+ξ+δ) and fθ(yx+ξ)
are poor while those for fθ(yx+δ) and fθ(yx) are good. However, intuitively speaking, if δ is large
enough to “drown out” ξ, this should not be the case – the relevant Gaussians centered at x (i.e.,
N (x, σ2I)) vs. x+ ξ (i.e., N (x+ ξ, σ2I)) should have significant overlap in their high-probability
region, thus avoiding the above undesirable situation. In other words, if (i) the reconstruction for
fθ(yx) is good, (ii) δ is comparable in magnitude to ξ, and (iii) the discrepancy is low, then the
smoothed reconstruction for fθ(yx+ξ+δ) should also be good. To make this intuition more precise,
we first note the following formula for the Kullback–Leibler (KL) divergence between two Gaussians
with differing means and the same scaled identity covariance matrix.
Proposition A.1. The KL divergence between N (x, σ2I) and N (x+ ξ, σ2I) is given by

KL(N (x, σ2I),N (x+ ξ, σ2I)) =
1

2

( ||ξ||
σ

)2

. (11)

We explain in Appendix B how this follows easily from a more general formula for the KL divergence
between multivariate Gaussians. As σ increases, this value diminishes as the two distributions exhibit
greater “similarity”, approaching a KL divergence of zero. It is also convenient to convert the above
finding to an upper bound on the Total Variation (TV) distance, defined as

dTV(P,Q) = sup
A
|P (A)−Q(A)|, (12)

where the supremum is over all events A. Using Pinsker’s inequality (i.e., dTV(P,Q) ≤√
KL(P,Q)/2), we arrive at the following.

Corollary A.2. The total variation distance betweenN (x, σ2I) andN (x+ξ, σ2I) is upper bounded
as follows:

dTV

(
N (x, σ2I), N (x+ ξ, σ2I)

)
≤ 1

2
· ||ξ||

σ
. (13)

From the definition of TV distance in (12), this result implies that if some “bad event” (e.g., recon-
struction accuracy falling below a certain threshold) occurs with probability at most ρ under the
non-perturbed signal x, then under the perturbed version x+ ξ, it holds with probability at most

ρ+
1

2
· ∥ξ∥

σ
. (14)

Thus, at least when σ is large enough relative to ξ, the behavior is guaranteed to be similar in the two
cases. We will explore the relationship between ∥ξ∥ and σ experimentally in Section 4.
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B Proof of proposition A.1 and corollary 3.2

Proposition A.1. (Restated.) The KL divergence betweenN (x, σ2I) andN (x+ ξ, σ2I) is given by

KL(N (x, σ2I),N (x+ ξ, σ2I)) =
1

2

( ||ξ||
σ

)2

. (15)

Proof. In general, for two multivariate normal distributions, N0 and N1 sharing the same dimension
k, with means µ0 and µ1 and covariance matrices Σ0 and Σ1, the KL divergence between them can
be expressed as follows [10]:

KL(N0,N1)

=
1

2

(
Tr(Σ−1

1 Σ0)− k + (µ1 − µ0)
TΣ−1

1 (µ1 − µ0) + ln
det(Σ1)

det(Σ0)

)
.

(16)

In our context, where k = n, µ0 = x, µ1 = x+ ξ, and Σ0 = Σ1 = σ2I, the divergence is computed
as follows:

KL(N (x, σ2I),N (x+ ξ, σ2I))

=
1

2

(
Tr((σ2I)−1σ2I)− n+ (x+ ξ − x)T (σ2I)−1(x+ ξ − x) + ln

det(σ2I)

det(σ2I)

)
=
1

2

(
Tr(I)− n+ σ−2ξT I−1ξ + ln 1

)
=
1

2

(
n− n+ σ−2ξT ξ

)
=
1

2

( ||ξ||
σ

)2

.

(17)

Corollary 3.2. (Restated.) The median smoothed discrepancy with adversarial noise can be bounded
by the smoothed discrepancy in the absence of adversarial noise as

D0.5(x, ξ) ≤ DΦ( ϵ
σ )(x,0) ∀ ξ s.t. ∥ξ∥ ≤ ϵ, (18)

where Φ is the cumulative distribution function of unit normal distribution, and 0 is a zero vector.

Proof. According to Lemma 2.2 in [6], given a real-valued function f : Rm → R, its percentile
smoothing function is defined as

hp(x) = inf{t ∈ R | P
[
f(x+ δ) ≤ t

]
≥ p}, (19)

and it is guaranteed that
hp(x+ ξ) ≤ hp(x) ∀ ∥ξ∥2 ≤ ϵ, (20)

where p = Φ(Φ−1(p) + ϵ
σ ).

Applying this result to our setting with any given estimator fθ : Rm → Rn, given our definition of
the smoothed discrepancy

Dp(x, ξ) = inf
{
t ∈ R | P

[
ℓ(fθ(yx+ξ+δ), fθ(yx+ξ)) ≤ t

]
≥ p

}
, (21)

we also have the guarantee

Dp(x, ξ) ≤ Dp(x,0) ∀ξ s.t. ∥ξ∥2 ≤ ϵ. (22)

Then, by the definition of p, we have

Dp(x, ξ) ≤ DΦ(Φ−1(p)+ ϵ
σ )(x,0) ∀ξ s.t. ∥ξ∥2 ≤ ϵ. (23)

In particular, substituting 0.5 for p, we obtain

D0.5(x, ξ) ≤ DΦ(Φ−1(0.5)+ ϵ
σ )(x,0)

= DΦ( ϵ
σ )(x,0)

(24)

whenever ∥ξ∥2 ≤ ϵ.
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C Details of algorithms for randomized smoothing at test time

Similar to [4], Algorithm 1 below samples S random realizations of δ ∼ N (0, σ2I) and computes
the corresponding S discrepancies ℓ(fθ(yx+ξ∗+δ), fθ(yx+ξ∗)). Note that these can be computed
because yx+ξ∗ is given as an input and yx+ξ∗+δ = yx+ξ∗ + Aδ (with known A and δ). The
sequence of discrepancies is sorted, with the ⌊S2 ⌋-th item being used to approximate the median
smoothed discrepancy D0.5(x, ξ) and the ⌊EMPIRICAL(c, σ, S, ϵ)⌋-th item to approximate its
certified upper bound DΦ( ϵ

σ )(x,0).

Algorithm 1 Find median and certified discrepancy values and corresponding estimates
input Perturbed testing pair (x,yx+ξ∗), where ξ∗ is the adversarial noise produced by PGD
method (but unknown to the algorithm); Estimator fθ and measurement matrix A; Smoothing
noise level σ and noise sample count S; Confidence level c; Adversarial noise ℓ2 radius ϵ; Function
EMPIRICAL(·) from Algorithm 2;
initiate Sorting function sort(); Empty set discrepancy_set = {};

for 1 ≤ k ≤ S do
δk ∼ N (0, σ2I)

discrepancy_set add←−− ℓ(fθ(yx+ξ∗+δk
), fθ(yx+ξ∗))

end for
discrepancy_set_sorted = sort(discrepancy_set)
Set D̂0.5(x, ξ) = discrepancy_set_sorted⌊0.5S⌋
if EMPIRICAL(c, σ, S, ϵ) returns non-null then

Set D̂Φ( ϵ
σ )(x,0) = discrepancy_set_sorted⌊EMPIRICAL(c,σ,S,ϵ)⌋ (Algorithm 2)

return the estimated median discrepancy D̂0.5(x, ξ
∗), the estimated certificate discrepancy

D̂Φ( ϵ
σ )(x,0), and the two corresponding estimates x̂ = fθ(yx+ξ∗+δk

), where k = ⌊0.5S⌋ and
k = ⌊EMPIRICAL(c, σ, S, ϵ)⌋
else

return median discrepancy and corresponding estimate as above (certified result is unavailable
due to overly large ratio ϵ

σ )
end if
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The functionality of EMPIRICAL is described in Algorithm 2. This algorithm is essentially taken
from [6], and despite its rather technical description, is conceptually simple: Given a confidence level
c, perform a binary search to find a value K such that the probability of the event Binomial(S, p) ≤ K
is roughly c. Here p is set to Φ( ϵ

σ ) in accordance with Corollary 3.2. The idea is then that if we sort
S binomial samples and take the K-th one, we can be confident (up to the confidence level c) that it
is bounded by the actual p-quantile we are interested in. When performing smoothing, we are not
directly using binomial samples, but the indicator variable of whether ℓ(fθ(yx+ξ+δ), fθ(yx+ξ)) is
below a fixed value (see (6)) indeed follows a binomial distribution. It is worth noting that when
the ratio ϵ

σ is large (e.g., greater than 2), the value of p approaches 1, causing the EMPIRICAL
function to return null. To ensure reliable results, in this paper, we carefully choose ϵ and σ values
that maintain a sufficiently small ϵ

σ ratio to avoid this. Additionally, we adopt the choice of the Monte
Carlo sample size S = 1000 and confidence level c = 0.99 through out the paper.

Algorithm 2 Empirical order statistics generation
input Confidence level c; Attack radius ϵ; Smoothing noise level σ; noise sample count S;
define Cumulative distribution function of binomial, F (S,K, p) =

∑K
i=1

(
S
i

)
pi(1− p)S−i;

function EMPIRICAL(c, σ, S, ϵ)
p = Φ( ϵ

σ )

K̂, K̂ = ⌈S · p⌉, S
while K̂ − K̂ > 1 do

K̇ = ⌊ (K̂−K̂)
2 ⌋

if F (S, K̇, p) > c then
K̂ = K̇

else
K̂ = K̇

end if
end while
if K̂ < S then

return K̂
else

return null
end if

end function
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D Proposed algorithms embedding randomized smoothing into training and
note on concurrent work

Algorithm 3 Smoothed Adversarial Training
input Training set D; Learning rate α; Estima-
tor fθ and measurement matrix A; Adversarial
noise bound ϵ, iteration count Titr, and step
size r; Smoothing noise level σ and noise sam-
ple count S;
for 1 ≤ i ≤ |D| do

ξ0 = 0
for 1 ≤ j ≤ Titr do

∆ = ∇xℓ(f̂θ(yx+ξj−1+δ),x)|x=xi

(where f̂θ(yx+ξj−1+δ) is from (9))
ξ′j = ξj−1 + r ∗∆
ξj = argminξ:∥ξ∥≤ϵ ∥ξ − ξ′j∥

end for
ξ∗ = ξTitr

θ = θ − α ∗ ∇θℓ(fθ(yxi+ξ∗),xi)
end for
return fθ

Algorithm 4 Smoothed Gradient Training
input: Training set D; Learning rate α; Esti-
mator fθ and measurement matrix A; Smooth-
ing noise level σmax, step count Tstep, and
noise sample count S;

for 1 ≤ i ≤ |D| do
for 1 ≤ j ≤ Tstep do

gθ = 0
σ = j

Tstep
σmax

for 1 ≤ k ≤ S do
δ ∼ N (0, σ2I)
∆ = 1

(STstep)
∇θℓ(fθ(yxi+δ),xi)

gθ = gθ +∆
end for
θ = θ − α ∗ gθ

end for
end for
return fθ

We make several observations both training algorithms described above. Firstly, the underlying
idea behind our training methods shares a resemblance with their counterparts in classification:
By incorporating randomized smoothing during test time, the neural network is guided to main-
tain stable behavior, generating similar reconstructions even in the presence of input perturba-
tions. Secondly, for Smoothed Adversarial Training, the perturbed measurement is the one being
smoothed, while for Smoothed Gradient Training, the gradients themselves are being smoothed.
Thirdly, these algorithms are generally adaptable to any differentiable neural network estimator fθ,
allowing for a diverse range of choices in the numerical experiments. Fourthly, a possible alter-
native approach is to smooth the estimation loss instead. For example, in (8), ξ∗ is obtained as
argmaxξ:∥ξ∥2≤ϵ Eδ∼N (0,σ2I)

[
ℓ
(
fθ(yx+ξ+δ),x

)]
; and in (10), the gradient is computed not before

but after the expectation, i.e.,∇θEδ∼N (0,σ2I)

[
ℓ(fθ(yx+δ),x)

]
. However, loss smoothing appears

to be less effective, because it takes the expected value in a one-dimensional manifold space and as a
result, diminishes the “diversity” of the randomness.

In addition, a concurrent study by [24] introduces a training algorithm similar to Algorithm 4, aimed
at minimizing the Jittering-risk:

Jσw(θ) = Ew∼N (0,σ2
wI)

[
ℓ(fθ(y +w),x)

]
, (25)

where w ∼ N (0, σ2
wI) represents the (Gaussian) jittering noise and the jittering noise level σw is a

hyperparameter optimized using the validation dataset. This approach is shown to be theoretically
justified in [24], particularly in denoising scenarios involving low-dimensional signal subspaces. We
note that (10) corresponds to a gradient direction associated with the training objective (25). In our
work, we also consider the noise level δmax as a hyperparameter, comparing different selections
in Table 2, which will be discussed in subsequent sections. A notable difference between the two
approaches is the step-wise increment of the noise level, which we adopted based on [4] as mentioned
above.
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E Details on the experiments for training and testing

We perform the experimental evaluation on both denoising and compressed sensing tasks. For each
task, we use a suitably-chosen neural network estimator equipped with one training set and two
testing sets.

At training time, we consider using all five algorithms discussed in the main body.

At testing time, we apply the PGD method to produce adversarial attacks using a step size and
the number of iterations matching those used in the Adv and Smt-Adv algorithms during training.
Specifically, at test time, we apply the PGD method to produce adversarial attacks using a step size
and number of iterations matching those used in the Adv and Smt-Adv algorithms during training.
These hyperparameters (specified below) are selected to ensure that the adversarial noise reaches
the boundary of its ℓ2-radius ball. For the denoising task, we consider ℓ2 radii ϵ < 15, while for
the compressed sensing task, we consider ϵ < 7, avoiding using extreme values and preventing the
estimates from being excessively poor. For smoothing, we examine noise levels ranging from 0 to
45 and use Monte Carlo approximation with 50 samples (see Appendix E for a discussion on other
choices and the sensitivity to varying S) and confidence level c = 0.99. Additionally, since our
training process involves an additive noise level of σb ≤ 15 and a compression ratio of m/n ≤ 0.5,
we restrict testing to additive noise levels and compression ratios in these ranges.

We follow a common practice of rescaling images to have pixel values in [0, 1]. We then compute and
analyze both the discrepancy (introduced in Section 3.3), PSNR, and SSIM. The general definition
of PSNR depends on the maximum possible pixel value, but our [0, 1]-normalization simplifies this
to PSNR = 10 log10

1
MSE , where the MSE is as defined in (1). The definition of SSIM is more

complicated to state but is well-known, so is omitted here.

In addition, we select the training and testing parameters with minimal manual tuning, noting that
further fine-tuning may improve the performance. The details are given as follows:

• DPDNN & DIV2K, BSD68 (denoising). We use the DPDNN model proposed in [9] as
the estimator fθ. For training, we use the (grayscale converted) DIV2K dataset [1], which
consists of 1000 images of size 256× 256, and is further cropped to generate 32000 patches
of size 40× 40. For testing, we use the (grayscale converted) DIV2K validation set, which
contains 100 images cropped to a size of 384 × 384, as well as the BSD68 dataset [32],
which consists of 68 images cropped to the 256× 256 pixels in the center.

– Training parameters:
* (Shared across all algorithms) We follow the settings in [9] and set the number of

training epochs as 100, batch size as 32, learning rate α = 0.0005, measurement
matrix A = I, and additive noise level σb = 15.

* (For Adv and Smt-Adv only) We set the iteration count Titr = 100, step size
r = 0.4, and adversarial noise ℓ2 radius ϵ = 5.

* (For Smt-Adv and Smt-Grad only) We set the step count Tstep = 6, sample count
S = 15, and the smoothing noise level σ in Smt-Adv to be equal to the maximum
smoothing noise level σmax in Smt-Grad. Specifically, σ = σmax = 10 (in Table 2
we also use 1 and 5 for comparison).

– Testing parameters:
* (For measurement) A = I, and σb ranges from 0 to 15.
* (For PGD attack) We set the attack iteration count Titr = 100, step size r = 0.4,

and consider multiple adversarial noise ℓ2 radii with ϵ ranging from 0 to 15.
* (For smoothing) We set the smoothing sample count S = 50 and consider multiple

smoothing noise levels with σ ranging from 0 to 19.
• ISTA-Net++ & Train400, Set11, ImageNet (compressed sensing). The ISTA-Net++

model [41] is used as the estimator fθ. We use the Train400 dataset [25], consisting of
400 natural photos of size 180 × 180 for training, and the Set11 dataset [25] consisting
of 11 grayscale images of size 256× 256 for testing. Additionally, we use 300 randomly
selected images sampled from the “tall building”, “open country”, and “street” categories
from ImageNet [8] for testing. For each of these 300 images, the Y-channel luminance is
extracted from the RGB color to form a greyscale-intensity image, and each is cropped to
the central 256× 256 pixels.
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– Training parameters:

* (Shared across all algorithms) We follow the settings in [41] and set the number
of training epoch as 100, batch size as 64, learning rate α = 0.0001, additive
noise level σb = 0, and Gaussian measurement matrices A used in each batch
with a randomly selected compression ratio from the set {0.1, 0.2, 0.3, 0.4, 0.5}.
This randomization is done so that the neural network can learn to reconstruct at a
variety of compression ratios.

* (For Adv and Smt-Adv only) We set the iteration count Titr = 150, step size
r = 0.2, and adversarial noise ℓ2 radius ϵ = 1.

* (For Smt-Adv and Smt-Grad only) We set the step count Tstep = 6, step size
S = 15, and the smoothing noise level σ in Smt-Adv to be equal to the maximum
smoothing noise level σmax in Smt-Grad. Specifically, σ = σmax = 10 (in Table 2
we also use 5 for comparison).

– Testing parameters:

* (For measurement) We use a Gaussian matrix A with compression ratio ranging
from 0.1 to 0.4 and no noise, i.e., b = 0.

* (For PGD attack) We set the iteration count Titr = 150, step size r = 0.2, and
consider multiple adversarial noise ℓ2 radii with ϵ ranging from 0 to 7.

* (For smoothing) We set the smoothing sample count S = 50 and consider multiple
smoothing noise levels with σ ranging from 0 to 45.

All timings are for a single Nvidia GeForce RTX 3090. The code for all these experiments has been
uploaded as a supplementary file.
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F Plots and tables for experiments

Table 1: Samples of the evaluated PSNR (and discrepancy in brackets) when using the smoothed
median estimate vs. the smoothed estimate with certificate, for various tasks.

algorithm task details (dataset) smoothed median smoothed certificate
Ord σb = 10, ϵ = 10, σ = 13 (BSD68) 25.523 (4.165×1e-4) 25.515 (4.174×1e-4)
Jcb m/n = 0.1, ϵ = 5, σ = 17 (Set11) 19.424 (3.295×1e-3) 19.410 (3.303×1e-3)
Adv σb = 5, ϵ = 15, σ = 15 (DIV2K) 25.514 (5.402×1e-4) 25.516 (5.410×1e-4)

Smt-Adv m/n = 0.1, ϵ = 7, σ = 25 (ImageNet) 18.116 (6.135×1e-3) 18.011 (6.138×1e-3)
smt-Grad σb = 2, ϵ = 10, σ = 15 (BSD68) 25.759 (4.812×1e-4) 25.716 (4.821×1e-4)

σb = 2, ϵ = 10 σb = 10, ϵ = 10 σb = 5, ϵ = 5 σb = 5, ϵ = 15

(a) BSD68 (denoising) (b) DIV2K (denoising)

m/n = 0.1, ϵ = 5 m/n = 0.3, ϵ = 5 m/n = 0.1, ϵ = 3 m/n = 0.1, ϵ = 7

(c) Set11 (compressed sensing) (d) ImageNet (compressed sensing)

Figure 1: Certified smoothed discrepancy and its corresponding smoothed PSNR. The experimental
settings for each pair of resulted discrepancy (top) and PSNR (bottom) are displayed in the footer.
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Ground Truth

σ
=

0

Ord

24.04/0.528

Jcb

24.06/0.536

Adv

24.34/0.551

Smt-Adv

24.47/0.561

Smt-Grad

24.22/0.559Vanilla

29.74/0.852

σ
=

14

24.89/0.642 24.88/0.644 25.13/0.664 25.24/0.672 25.12/0.667
(b) σb = 5, ϵ = 9 on DIV2K (denoising)

Ground Truth

σ
=

0

Ord

19.80/0.590

Jcb

19.85/0.586

Adv

20.65/0.609

Smt-Adv

20.43/0.610

Smt-Grad

20.10/0.628Vanilla

34.78/0.899

σ
=

17

21.61/0.654 21.31/0.643 21.87/0.662 22.50/0.677 22.28/0.672
(c) m/n = 0.1, ϵ = 5 on Set 11 (compressed sensing)

Figure 2: Estimations (with the performance shown in the form of PSNR/SSIM) from the perturbed
measurements in denoising and compressed sensing tasks. Vanilla represents the baseline unperturbed
scenario where ϵ = 0, σ = 0, and Ord is employed.

Table 2: Trade-off between smoothing noise used during training and the resulting certificates during
testing. The second column corresponds to the PSNR of the clean estimate, while the remaining cells
indicate the PSNR of the perturbed estimate and the smoothed PSNR of the smoothed estimate.

ℓ2 radius ϵ at test time
algorithm trained with σtr ϵ=0 ϵ=5 ϵ=11 ϵ=15

σ = 0 σ = 10 σ = 0 σ = 14 σ = 0 σ = 18
Ord 32.71 27.48 28.15 24.27 24.90 22.71 23.18

Smt-Adv, σtr = 10 31.87 27.85 28.44 24.56 25.13 22.97 23.36
Smt-Adv, σtr = 5 32.21 27.69 28.39 24.43 25.07 22.84 23.30
Smt-Adv, σtr = 1 32.40 27.48 28.27 24.26 24.97 22.71 23.23

Smt-Grad, σtr = 10 31.74 27.61 28.49 24.48 25.18 22.91 23.40
Smt-Grad, σtr = 5 31.87 27.61 28.39 24.43 25.11 22.86 23.36
Smt-Grad, σtr = 1 31.92 27.54 28.07 24.43 24.87 22.85 23.16

(a) σb = 2 on BSD68 (denoising)
ℓ2 radius ϵ at test time

algorithm trained with σtr ϵ=0 ϵ=1 ϵ=5 ϵ=9
σ = 0 σ = 3 σ = 0 σ = 21 σ = 0 σ = 35

Ord 27.79 24.64 24.72 18.52 19.28 15.56 16.79
Smt-Adv, σtr = 10 26.91 24.63 24.69 18.98 20.04 16.33 17.83
Smt-Adv, σtr = 5 27.16 24.41 24.52 18.62 19.70 15.67 17.11

Smt-Grad, σtr = 10 27.30 24.85 24.90 18.79 19.99 15.78 17.15
Smt-Grad, σtr = 5 27.48 24.77 24.83 18.65 19.31 15.56 16.51

(b) m/n = 0.1 on Set11 (compressed sensing)
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We also provide two additional sets of visual comparisons below, Figures 3 and 4, and once again
observe that applying randomized smoothing at test time leads to visible visual enhancements in both
denoising and compressed sensing tasks across a variety of datasets.

Ground Truth

σ
=

0

Ord

19.75 / 0.503

Jcb

19.79 / 0.509

Adv

20.06 / 0.507

Smt-Adv

20.00 / 0.523

Smt-Grad

19.87 / 0.517Vanilla

24.49 / 0.722

σ
=

9

20.23 / 0.533 20.34 / 0.533 20.49 / 0.520 20.79 / 0.550 20.60 / 0.531
(a) m/n = 0.1, ϵ = 3 on Set11 (compressed sensing)

Ground Truth

σ
=

0

Ord

18.23 / 0.584

Jcb

18.16 / 0.596

Adv

18.67 / 0.581

Smt-Adv

18.64 / 0.608

Smt-Grad

18.26 / 0.599Vanilla

26.86 / 0.822

σ
=

15

21.58 / 0.630 21.07 / 0.652 21.58 / 0.658 21.91 / 0.663 21.91 / 0.660
(b) m/n = 0.2, ϵ = 4 on ImageNet (compressed sensing)

Figure 3: Additional estimations (with the performance shown in the form of PSNR / SSIM) from the perturbed
measurements on Set11 and ImageNet in compressed sensing task.
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Ground Truth

σ
=

0

Ord

23.40 / 0.653

Jcb

23.39 / 0.653

Adv

23.65 / 0.669

Smt-Adv

23.78 / 0.673

Smt-Grad

23.47 / 0.665Vanilla

30.33 / 0.851

σ
=

14

23.89 / 0.722 23.86 / 0.725 24.16 / 0.738 24.23 / 0.739 24.10 / 0.738
(a) σb = 2, ϵ = 11 on BSD68 (denoising)

Ground Truth

σ
=

0

Ord

24.13 / 0.636

Jcb

24.16 / 0.641

Adv

24.50 / 0.660

Smt-Adv

24.61 / 0.668

Smt-Grad

24.37 / 0.661Vanilla

30.79 / 0.901

σ
=

13

24.70 / 0.707 24.74 / 0.710 24.97 / 0.721 25.03 / 0.728 24.86 / 0.733
(b) σb = 8, ϵ = 10 on BSD68 (denoising)

Ground Truth

σ
=

0

Ord

24.60 / 0.689

Jcb

24.61 / 0.688

Adv

24.91 / 0.702

Smt-Adv

25.08 / 0.715

Smt-Grad

24.57 / 0.695Vanilla

31.61 / 0.852

σ
=

14

24.97 / 0.735 24.96 / 0.733 25.15 / 0.742 25.20 / 0.749 25.13 / 0.750
(c) σb = 5, ϵ = 11 on DIV2K (denoising)

Figure 4: Additional estimations (with the performance shown in the form of PSNR / SSIM) from the perturbed
measurements on BSD68 and DIV2K in denoising task.
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G Discussion of computation

Our experiments have shown that the utilization of randomized smoothing during both training
and testing phases of linear inverse problems effectively improves the robustness of the estimator
against adversarial attacks. A slight caveat is that the incorporation of smoothing can increase the
computation time, as is also the case with smoothing in other contexts. For training, we found that
Smt-Grad was not too much slower than its unsmoothed counterpart, in part due to performing will
with relatively few smoothing samples. On the other hand, the smoothing operation made Smt-Adv
noticeably slower than Adv. Regarding test-time performance, determining the empirically ideal
smoothing noise level, as depicted in Figure 1, can also be a time-consuming process.

To support the above discussion, we present the training time per batch across all five algorithms
in two tasks in Table 3 below, where we observe that the training time required for Smt-Adv and
Smt-Grad is higher than the baselines but still reasonable.

Table 3: Training time per batch in denoising (top, batch size 32) and compressed sensing (bottom,
batch size 64), where sample count of S = 15 for Smt-Adv and Smt-Grad is utilized in both tasks.

Estimator & Training Set Ord Jcb Adv Smt-Adv Smt-Grad
DPDNN & DIV2K 0.49s 0.83s 3.53s 46.81s 45.48s

ISTA-Net++ & Train400 0.08s 0.15s 0.27s 2.49s 5.41s

We also provide Table 4 below showcasing the testing time per data sample, where we observe that
reducing smoothing samples from 1000 to 50 leads to a significant speedup of around 15×, while
maintaining comparable performance.

Specifically, regarding the choice of the number of Monte Carlo samples (S) during testing, Table
4 showcases the certified discrepancy and corresponding PSNR with S ranging from 50 to 1000 in
chosen tasks. The results reveal that PSNR, in fact, shows very little degradation between smaller
vs. higher values of S. For certified discrepancy, a downward trend is observed as expected (i.e.,
decreasing S gives a worse guarantee), yet not a particularly drastic one. Notably, lower S values
significantly reduce the computation time as we see that reducing S from 1000 to 50 can give a
roughly 15× speedup. Consequently, we opt for S = 50 in all experiments due to its consistent
effectiveness, particularly with respect to PSNR (higher S may still be preferred if one specifically
needs a strong certified guarantee).

Table 4: Estimated certified discrepancy and PSNR (± std.) with different testing samples (S) and the corresponding testing
time per data sample (t) in two selected scenarios (a) and (b), where the corresponding best choices of σ (12 and 19) are used.

S=50 (t=2.20s) S=500 (t=16.93s) S=1000 (t=33.52s)
discrepancy PSNR discrepancy PSNR discrepancy PSNR

Ord 5.085(±0.948) 25.549(±1.039) 5.083(±0.945) 25.552(±1.032) 5.072(±0.923) 25.552(±1.036)
Jcb 4.961(±0.822) 25.574(±1.045) 4.958(±0.812) 25.572(±1.045) 4.955(±0.812) 25.573(±1.044)
Adv 4.626(±0.770) 25.671(±0.980) 4.611(±0.766) 25.679(±0.971) 4.613(±0.766) 25.678(±0.972)

Smt-Adv 4.191(±0.585) 25.724(±0.987) 4.179(±0.581) 25.727(±0.981) 4.180(±0.567) 25.727(±0.982)
Smt-Grad 4.184(±0.595) 25.783(±1.052) 4.183(±0.592) 25.781(±1.047) 4.166(±0.593) 25.781(±1.050)

(a) discrepancy (1e-4) and PSNR with σb = 10, ϵ = 10, σ = 12 on BSD68 (denoising)

Ord 4.328(±0.463) 19.334(±1.017) 4.299(±0.465) 19.343(±0.940) 4.289(±0.461) 19.341(±0.955)
Jcb 4.039(±0.440) 19.462(±1.068) 4.022(±0.379) 19.472(±1.029) 4.017(±0.387) 19.478(±0.986)
Adv 3.614(±0.317) 19.561(±1.102) 3.590(±0.312) 19.593(±1.089) 3.589(±0.320) 19.598(±1.082)

Smt-Adv 4.030(±0.560) 20.081(±1.279) 3.995(±0.589) 20.163(±1.233) 3.988(±0.563) 20.161(±1.223)
Smt-Grad 2.929(±0.404) 19.904(±1.114) 2.917(±0.407) 19.911(±1.105) 2.910(±0.356) 19.943(±1.110)

(b) discrepancy (1e-3) and PSNR with m/n = 0.1, ϵ = 5, σ = 19 on Set11 (compressed sensing)
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