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ABSTRACT

Transformer models have originally been designed for text generation, classifica-
tion, and sequence labelling, and they have achieved new state-of-the-art results
in those areas. Recent deep clustering methods learn cluster-friendly spaces for
complex data and thereby outperform traditional clustering algorithms, especially
on images and graphs. We propose ClusterBERT, an unsupervised algorithm that
combines the strengths of both approaches. By tightly integrating transformer-
based sentence representation learning with clustering, our method discovers a
cluster-friendly representation of text data that retains useful semantic informa-
tion. ClusterBERT is a multi-stage procedure that consists of domain adaptation,
clustering, and hardening of the clusters. Starting from an initial representation
obtained by transformer models, ClusterBERT learns a cluster-friendly space for
text data by jointly optimizing the reconstruction loss and a clustering loss. Our
experiments demonstrate that ClusterBERT outperforms state-of-the-art text clus-
tering methods.

1 INTRODUCTION

Clustering is one of the key strategies to analyze, categorize and make sense of unstructured data
in an unsupervised fashion. To achieve good clustering results, it is vital to provide the algorithms
with a useful representation of the data. This is especially challenging for abstract data types like
texts. Traditional approaches utilize text statistics to vectorize texts (e.g. Bag of Words (BoW)
and weighting schemes such as term-frequency inverse-document-frequency (TF-IDF)). As these
methods solely rely on word frequencies, they cannot capture structural compositionality or lexi-
cal variability and therefore cannot capture certain types of semantic similarity between instances.
Neural network-based approaches (Mikolov et al., 2013; Le & Mikolov, 2014) use context, i.e.,
the surrounding words or documents, to learn a semantically dense representations, or embeddings.
Transformer-based language models, e.g., BERT (Devlin et al., 2019), capture word interactions
and vastly outperform other model types on many natural language processing tasks, such as natural
language inferenceg (NLI), machine translation or question answering.

The breadth of tasks solvable by these large language models hints at the fact that a lot of useful in-
formation is stored within their representations. However, these models are not optimized to perform
text clustering tasks. To improve upon this issue, a more cluster-friendly sentence representation is
crucial.

To this end, we make use of the transformer fine-tuning paradigm and integrate it with a multi-stage
deep clustering setting. We propose ClusterBERT, an unsupervised framework that aims to enforce
a cluster separation in the embedded space into semantic categories while keeping the semantic
information contained in the sentence embedding. Figure 1 depicts how our approach optimizes the
sentence representation to achieve a good cluster separation. ClusterBERT extends a transformer-
based encoder-decoder architecture with a deep clustering objective. First, in the domain adaptation
stage, the base transformer model is pre-trained with an autoencoder (AE) objective function on the
dataset to be clustered in order to adapt the model to the target domain. Second, in the clustering
stage, we cluster the latent embedding using a traditional clustering method and combine the AE
reconstruction loss with a classification loss.
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Figure 1: t-SNE embeddings of the sentence representations of the BBC-News dataset, colored by
ground truth labels. Representations generated by ClusterBERT at the end of the domain adaptation
stage (Stage 1), clustering (Stage 2) and hardening stage (Stage 3).

Last, in the hardening stage, we further improve the cluster purity by optimizing for an objective
that sharpens the representations w.r.t. their cluster assignments. Throughout all stages, the same
deep architecture is used. Only the training objective (the weighting of loss terms) is different in
each step.

ClusterBERT outperforms traditional and state-of-the-art methods on clustering tasks. By addi-
tionally evaluating an unsupervised retrieval task, our ablations suggest a good trade-off between
clustering efficacy and semantic information present in the learned representation. The contribution
in this work can be summarized as follows:

1. We propose a multi-stage method that combines fine-tuning (an idea crucial for transform-
ers in natural language processing (NLP)) with the reconstruction and clustering paradigm
typical in deep clustering,

2. we evaluate several sentence embedding and clustering combinations in order to show-
case how our algorithm produces improved cluster separation over several state-of-the-art
methods,

3. we provide an analysis of model performance throughout the training stages, as well as
ablations and qualitative analysis and

4. we make the code, data and resulting models publicly available. 1

2 RELATED WORK

The analysis of related work is separated into two parts. First, an overview of deep clustering meth-
ods is provided. Secondly, we give some background on text clustering and sentence embeddings.
As the text clustering literature is heavily dependent on the progress in the text representation mod-
els, we will review the most important milestones in this section as well.

2.1 DEEP CLUSTERING

The success of deep neural networks has enabled the development of deep clustering. The general
idea is to enforce an improved cluster separation on the latent layer to enhance the performance of
clustering algorithms. To solve this objective, Xie et al. (2016) propose DEC, which imposes a stu-
dent’s t-distribution with k-means centroids upon the output layer of a neural network architecture.

Guo et al. (2017) extend this idea by using an AE, such that a reconstruction loss can be utilized
to prevent degenerate solutions (IDEC). Adapting this framework, Dizaji et al. (2017) propose DE-
PICT, an algorithm that simultaneously denoises and clusters the input data. DEPICT minimizes the
reconstruction between distorted and original samples along with a clustering loss. Jabi et al. (2019)
derive a theoretical relationship between k-means clustering and the transformation performed by
deep clustering using discriminative objectives. They show that predictions based on the softmax

1https://www.dropbox.com/sh/fxpjxzu18jindt2/AABCKSDashG0zXq6R08u7vA4a?d
l=0
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activation function are equivalent to assigning transformed data points to the closest centroid. Thus,
forcing the linear layer with softmax activation to output a k-means-like label distribution improves
the cluster separation in the hidden layer. Aside from deep clustering based on k-means centroids,
VaDE (Jiang et al., 2017) combines a Gaussian mixture model prior with a variational autoencoder
(VAE) (Kingma & Welling, 2014) to learn a deep generative clustering and DeepECT (Mautz et al.,
2019) introduces a deep embedded cluster tree.

Most deep clustering algorithms, however, are tailored to the computer vision domain. There are a
few approaches using sentence embeddings as input for deep clustering algorithms (Hadifar et al.,
2019; Yin et al., 2021), i.e., an additional AE architecture is stacked on top of the encoder language
model. For an overview of other deep clustering approaches see Aljalbout et al. (2018).

2.2 TEXT CLUSTERING

Early approaches (Zhang et al., 2011; Zhao & Mao, 2017) used BoW and TF-IDF as representations
of texts due to their good performance and efficiency and combine these with a clustering algorithm,
such as k-means. However, as those methods solely utilize the frequency of words in a corpus, they
are not capable of detecting certain types of semantic similarity between instances.

In the last decade, the NLP community switched their focus to dense neural network-based repre-
sentations to find better semantic representations of texts. After Mikolov et al. (2013) introduced
the Word2Vec algorithm, a plethora of neural word and document embedding models were proposed
(Wang et al., 2020; Arora et al., 2017). Based on that, Zhang et al. (2021c) use an attention module to
learn a relation between word embeddings and cluster representations. Various publications show-
case how clustering algorithms combined with those models outperform prior statistical approaches
(Xu et al., 2015; Hadifar et al., 2019).

Arguably, the biggest milestone in NLP over the last years is the introduction of transformer models
(Vaswani et al., 2017), notably the encoder transformer architecture BERT (Devlin et al., 2019).
Subakti et al. (2022) combine extracted BERT embeddings with various clustering algorithms,
showcasing how these models outperform the previous state of the art over several datasets. Ait-
Saada et al. (2021) propose a clustering ensemble approach which shows that it is beneficial to
use all BERT-layers for clustering. Sentence-BERT (SBERT) (Reimers & Gurevych, 2019a) uses a
siamese network architecture to fine-tune BERT with supervised datasets, e.g., the human-labelled
NLI dataset, to learn sentence embeddings. These datasets explicitly reflect similarity and dissimi-
larity. Limited labelled datasets also motivate recent work (Gao et al., 2021; Yan et al., 2021) to build
unsupervised learning frameworks. Wang et al. (2021) propose the transformer-based autoencoder
(TSDAE) which is explained in detail in Section 3. Yin et al. (2021); Pugachev & Burtsev (2021)
demonstrate that clustering algorithms based on transformer representations have the potential to
outperform traditional text clustering methods.

Finally, there is work to use contrastive learning for the purpose of text clustering. Zhang et al.
(2021a) propose SCCL to further improve upon those models by jointly optimizing a contrastive
loss and a clustering loss. Similarly, VaSCL (Zhang et al., 2021b) also uses a constrastive loss but
introduces a virtual augmentation method which constructs the top-K nearest neighbors of each
training instance to generate data augmentations.

In contrast, we do not use contrastive learning but an AE to retain semantic information which is
common and effective in image clustering (Guo et al., 2017; Dizaji et al., 2017). Furthermore, we
implement a clustering loss that does not require cluster representatives, i.e. cluster-centers.

3 METHODOLOGY

The objective is to combine the clustering performance of deep clustering methods with the rep-
resentational power of the transformer encoder. To this end, we implemented an encoder-decoder
framework that simultaneously improves the semantic information in the sentence representations
while enforcing a cluster-friendly embedding. A decoder transformer learns to reconstruct texts
using the sentence embedding of the encoder. In order to optimize the sentence embedding for clus-
tering, we employ a classification head on top of the embedding layer which is interpretable as a soft
cluster prediction. We also refer to this layer as the clustering head.

3



Under review as a conference paper at ICLR 2023

Figure 2: Training stages of ClusterBERT. The domain adaptation stage only optimizes reconstruc-
tion. The clustering stage optimizes the prediction with k-means labels as targets (jointly with the
reconstruction loss). The hardening stage calibrates the confidence of cluster predictions.

3.1 OVERVIEW

The outlined idea is split into three dedicated stages which are shown in Figure 2. The corresponding
pseudo-code is in Algorithm 1. First, a domain adaptation stage fine-tunes the used AE on the
specific dataset. The second stage performs clustering on the sentence embeddings (with the added
clustering head). The last stage, hardening, adapts the target of the clustering objective and aims to
learn more robust representations with respect to cluster assignment.

Before diving into details, we introduce some notations. Whenever a sentence embedding is men-
tioned, it is obtained from the classifier (CLS) token embedding (Reimers & Gurevych, 2019a) of
the transformer encoder. It contains information about the entire input sequence and is typically
used for downstream tasks. Let x be an input sentence drawn from the text corpus X. We want to
optimize the sentence embedding z = enc(x) ∈ Rd such that (1) a decoder xrec = dec(z) is able
to reconstruct the entire sentence using solely the sentence embedding and (2) instances of the same
cluster are separated from instances of different clusters. i.e., the inter-cluster distance is maximized
while the intra-cluster distance is minimized. A linear layer with a softmax activation (clustering
head/cl-head) produces predictions P = cl-head(enc(X)) ∈ [0, 1]m×k. The clustering head is opti-
mized to learn a target cluster distribution denoted by Q ∈ [0, 1]m×k. Here m denotes the number
of samples and k the number of clusters.

3.2 DOMAIN ADAPTATION STAGE

In the first stage, the model is trained on the dataset in order to prevent out-of-domain problems in the
clustering phase. For this, we implemented the framework proposed by Wang et al. (2021), which
is a novel autoencoder based on pre-trained transformer models to make the semantic information
contained in the sentence embedding accessible.

The main idea is to learn sentence embeddings using the objective of reconstructing distorted input
into the original input. An input sample from the corpus x ∈ X is transformed into a corresponding
distorted sample x̃ by adding noise, e.g., word deletion. In the following, we use tildes (e.g., x̃i, p̃i)
whenever we refer to the models output produced with the perturbed input. During training, x̃ is fed
as input to the AE which generates the reconstruction x̃rec = dec(enc(x̃)). The training objective
minimizes the difference between probability distributions of X and X̃rec using the standard cross
entropy (CE) loss.
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This can be summarized as the following objective function:

Lrec =
1

m

m∑
i=1

CE(xi, x̃i,rec)) (1)

where CE(xi, x̃i,rec)) is the (categorical) cross-entropy between the one-hot-encoded unperturbed
sentence xi and the probability distribution over reconstructions x̃i,rec. BERT-based models are used
as the backbone for both encoder and decoder. In comparison to other transformer-based encoder-
decoder models (e.g., Vaswani et al. (2017)), that take outputs of all word tokens from the encoder
into account, we only use the CLS token embedding z of the encoder as the key and value for the
attention mechanism in the decoder. Since all the information goes through z, it is usable as the
embedding for the input sentence.

3.3 CLUSTERING STAGE

The second stage introduces a cluster structure to the representations. First, a standard clustering
algorithm, e.g., k-means, is applied to the latent space representations {zi}i to generate an initial
target clustering Q. We interpret these cluster predictions as pseudo-labels, that are now utilized to
update our model. Next, the predictions pij are produced by the clustering head, which is a linear
layer h followed by a softmax activation, i.e.,

pij = P (xi ∈ Cj |zi) =
exp(h(zi)j)∑
k exp(h(zi)k)

, (2)

where Cj is the j-th cluster.

The clustering loss aims to minimize the cross entropy between the cluster predictions P̃ and cluster
targets Q by employing a standard clustering head:

Lcl = CE
(
P̃,Q

)
= − 1

N

∑
i

∑
j

qij log p̃ij (3)

The cluster prediction of the distorted input sample p̃i are used in the clustering loss function. The
perturbations can be viewed as adversarial noise that is inserted in order to improve the robustness
of the learned predictions (see also Dizaji et al. (2017)). The cluster loss is interpolated with the
reconstruction loss and both are jointly optimized (controlled by a hyperparameter λ ∈ [0, 1]):

Lfull = λ · Lcl + (1− λ) · Lrec. (4)
In summary, Equation 4 optimizes for a cluster-friendly representation (Equation 3) while simul-
taneously keeping a semantically meaningful sentence embedding space (Equation 1). Using the
cluster predictions as labels for optimization runs the risk of a bad initial clustering to influence the
results. To alleviate this, we run this stage multiple times, i.e., re-cluster to update Q.

Algorithm 1 ClusterBERT
Require: BERT-based encoder and decoder, loss parameter λ

# Domain Adaptation Stage
for i = 1, . . . , num epochs 1 do

Train autoencoder by minimizing Lrec (Section 3.2)
end for
# Clustering Stage
for i = 1, . . . , num epochs 2 do

Create cluster labeling Q using k-means
Train Lfull (Equation 4) using Q and λ

end for
# Hardening Stage
for i = 1, . . . , num epochs 3 do

Update targets Q using Equation 5
Train Lfull (Equation 4) using Q and λ

end for
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Dataset # of classes # of instances avg. length
StackOverflow 20 15.9k 50 CHAR
Biomedical 20 41.7k 88 CHAR
SearchSnippets 20 25.7k 87 CHAR
GoogleNews 152 32.5k 38 CHAR
BBC 5 22k 122 CHAR
AgNews 4 36k 194 CHAR

Table 1: Summary of data statistics.

3.4 HARDENING STAGE

The goal of the third and final stage of the training is to improve the cluster purity, i.e., to decrease the
uncertainty of the cluster predictions. Thus, instead of re-clustering the hidden layer, the predictions
of the clustering head are utilized to update the targets Q.

We compute the targets Q as follows (see also Xie et al. (2016))

qij =
p2ij/fj∑
k(p

2
ik/fk)

, (5)

where fj =
∑

i pij denotes the cluster frequency of cluster Cj . This updating step aims to push the
algorithm toward a balanced label distribution and to harden the predictions P, i.e., it ensures that
the points are assigned with high confidence. In other words, this increased confidence enforces a
stricter cluster separation in the embedding space. The predictions P, produced by the unperturbed
sentences, are used in order to update the targets Q (Equation 5). Using these targets, the predictions
P̃ from the perturbed sentences are optimized as in the previous stage following Equation 3.

4 EXPERIMENTS

The experiments are separated into multiple parts. First, we have a general evaluation relating
ClusterBERT to the baselines. Next, an in-depth cluster analysis is given with a special focus on the
evolution over the stages. Then, ablation analyses are performed in order to understand the different
elements of the model. To further demonstrate how our algorithm updates the sentence embeddings,
a qualitative analysis looks at interesting samples and their embedding behavior from the initial to
the final stage. This qualitative analysis can be found in the Appendix.

4.1 EXPERIMENTAL SETUP

First, we want to describe which datasets we evaluate our model and which baselines we choose
for comparison. We use six commonly used text categorization datasets (used by, e.g., Shi & Wang
(2021); Hadifar et al. (2019); Belford & Greene (2020). Namely, we evaluated the StackOverflow,
Biomedical, SearchSnippets, AgNews, BBC, and GoogleNews datasets. For all datasets the ground
truth labels are available. Table 1 depicts the data statistics.

We use three types of baselines. Where-ever not stated explicitly, k-means is applied to the ob-
tained embedding. First, the statistical word-count based method TF-IDF, term frequency-inverse
document frequency, is used to transform the text into vectors. This traditional baseline is still com-
petitive. Secondly, we compare to word embedding-based methods. To generate Smooth Inverse
Frequency (SIF) embeddings (Arora et al., 2017) a weighted average of pre-trained word embed-
dings is computed. We include a model based on SIF embeddings with k-means and with IDEC
(Hadifar et al., 2019). The final category are transformer-based baselines. Without fine-tuning, we
use the classifier token embedding of RoBERTa (Liu et al., 2019) and SentenceBERT (SBERT)
(Reimers & Gurevych, 2019b) which was trained on a natural language inference dataset. The
next three baselines are fine-tuned on the specific dataset. The autoencoder TSDAE (Wang et al.,
2021) is described in section 3.2. SCCL (Zhang et al., 2021a) combines contrastive learning with a
clustering head. Lastly, VaSCL (Zhang et al., 2021b) combines contrastive learning with a virtual
neighborhood augmentation.
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StackOverflow Biomedical SearchSnippets BBC-News GoogleNews AGNews
Model NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC
TF-IDF 67.8 65.4 30.0 27.2 44.9 51.8 4.2 27.2 45.3 60.5 2.0 29.5
SIF 22.0 24.4 20.0 24.0 38.0 37.7 7.8 32.8 66.1 39.8 19.7 45.6
SIF+idec 31.9 29.7 20.7 22.5 35.8 35.0 13.1 34.0 50.7 24.7 41.5 72.6
RoBerta 9.5 15.3 16.0 18.9 23.4 27.7 29.6 49.5 52.8 30.2 19.7 47.7
SBERT 12.8 19.7 5.0 34.7 16.8 22.2 5.0 34.7 37.7 23.1 8.7 41.3
TSDAE 49.2 56.3 27.9 29.4 39.9 42.7 44.8 66.7 64.4 43.8 62.9 86.2
SCCL 69.3 70.0 33.7 30.3 56.3 51.1 37.8 59.4 72.2 58.1 59.9 83.1
VaSCL 59.6 68.7 30.4 30.1 46.2 45.5 26.1 52.3 64.8 39.7 23.7 49.3
ClusterBERT 75.6 79.9 43.4 38.2 65.5 57.6 67.9 87.8 76.9 63.2 67.2 87.1

Table 2: Clustering NMI and ACC reported for six text datasets (using the k-means algorithm on
the sentence embeddings). The best-achieved result is highlighted in bold and the second-best is
underlined. Both Metrics multiplied by 100

Following previous work, we evaluate the clustering performance utilizing the two well-known met-
rics normalized mutual information (NMI) and cluster accuracy (ACC). More information about the
implementation of the baselines, metrics, datasets and training details for our algorithm can be found
in the Appendix.

4.2 MAIN RESULTS

The outcome of the main experiments is summarized in Table 2. Here, we present the results
achieved with the k-means algorithm on the generated embeddings (except for SIF+IDEC, which is
the baseline proposed by Hadifar et al. (2019)), without any dimensionality reduction.

For an extended table (including various dimensionality reduction/clustering algorithm combina-
tions) see Appendix. The results suggest that the clustering results based on the embeddings created
using ClusterBERT outperform other baselines. The fact that the Roberta-, SBERT- and TSDAE-
based clusterings are outperformed by most other baselines, even by the traditional TF-IDF method,
confirms our initial intuition that transformer-based models need to be fine-tuned for the clustering
task.

The main objective of our framework is to fine-tune a transformer model to improve the cluster
separation in the embedding. This is the case for all the datasets we evaluated. We can see, that
the base model (RoBerta) did not provide satisfying results. Comparing this model with the final
model, one can observe that the NMI increases up to 65 points. Averaged over all datasets, our
model improves the NMI by 39.2 points compared to the base model and by 16.3 points compared
to the TSDAE model.
Looking at the extended results in Table 3, we observe that an additional dimensionality reduction,
and/or IDEC instead of k-means, improves clustering results for most methods. However, the results
of ClusterBERT are rather stable for all methods. We argue, that this stems from an improved cluster
separation of the sentence embeddings.

We realized that the numbers reported in the text clustering literature often vary a lot. As our setup
and our reproduced results also vary from the original publications, Table 4 provided in the Ap-
pendix contains reported numbers and a comparison to ClusterBERT’s results. It is not guaranteed,
that every publication utilizes the same datasets; therefore, different experimental results are to be
expected.

4.3 CLUSTER ANALYSIS

Furthermore, an analysis of the cluster separation throughout the training process is given. Therefore
the two established cluster validation metrics Silhouette Index (Rousseeuw, 1987) S and Dunn Index
(Dunn, 1973) D are computed. Intuitively, the Silhouette Index computes how similar an object is to
its own cluster compared to other clusters. Therefore it uses the mean intra-cluster distance (distance
between instances of the same cluster) and the mean nearest-cluster distance of each sample. A
Silhouette Index close to 1 indicates that the resulting clusters are compact.

The Dunn index describes the minimum closest distance between any two clusters (inter-cluster
distance) divided by the maximum distance between the two farthest points in the cluster. This
index indicates the separation of the resulting clusters.
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Figure 3: NMI and ACC, Silhouette Index, Dunn Index on four text datasets plotted against the
Stages. Stage 0 uses embeddings by a pre-trained RoBERTa model, followed by the stages of
ClusterBERT.

Again, higher values correspond to compact and well-separated clusters. A detailed explanation is
presented in Bolshakova & Azuaje (2003).

The analysis is shown in Figure 3. Interestingly, we observe that the domain adaptation stage gen-
erates slightly worse clusters with respect to the Silhouette Index, which we think is due to the fact
that no explicit clustering optimization is performed.

As expected, Stage 1 and 2 improve the NMI and ACC by a wide margin. In the hardening stage,
those two metrics are not improved anymore, however, the silhouette index sharply increases. This
indicates, that the cluster separation further improves in this last stage. Similarly, the hardening
stage appears to increase the Dunn index (however not for the Biomedical dataset). Overall, the
cluster validity indices are aligned with the visualization shown in Figure 1.

4.4 RECONSTRUCTION ABLATION

The model is based on a trade-off between clustering and reconstruction. Thus, an ablation is pro-
vided which leaves out the reconstruction term. The goal is to understand 1) how does reconstruction
effect clustering performance and 2) how much semantic information is kept.

The results are shown in Figure 4.4. All lines represent the average across all six datasets with
respect to the corresponding metrics. The left side analysis the cluster performance 1) using NMI
and ACC. Wang et al. (2021) argue that standard sentence similarity tasks are not enough as real-
world scenarios such as web search usually only aim to retrieve a few related items. To answer 2)
we also use the information retrieval task askUbuntu (Lei et al., 2016). For a given input, a post, the
models are supposed to rank candidate questions according to their similarity.

This task is evaluated using the information retrieval metrics mean reciprocal rank (MRR) and mean
average precision (MAP). Intuitively, they indicate how well the highest ranked item matches and
how well all correct items are ranked, respectively. On the clustering performance 1), full Clus-
terBERT outperforms the ablated model which only uses a clustering loss by about 2 points. To
answer 2) we observe that the MAP and MRR values decrease up to 5 points more than the full
model. This leads us to the conclusion that the reconstruction is needed to uphold the performance
of ClusterBERT,
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Figure 4: Ablation comparing ClusterBERT with (solid lines) and without (dotted lines) reconstruc-
tion loss. The left side shows clustering metrics, and the right side information retrieval metrics
throughout the stages. All lines represent the metrics averaged over all datasets.

5 CONCLUSIONS

Fine-tuning is crucial for transformer-based language models to achieve top performance (as they
have on many tasks). In clustering, there is no obvious target to fine-tune to, and transformers
previously had difficulty performing on par with traditional, often much simpler methods.

In this work, we present ClusterBERT, a method for fine-tuning transformer-based language models
specifically for clustering in three stages: Domain adaptation, clustering with cluster prediction,
and hardening. ClusterBERT fine-tunes the transformer towards two objectives, reconstruction from
perturbed inputs, and prediction of auxiliary cluster labels, that are jointly optimized, and slightly
differently instantiated in each stage.

ClusterBERT outperforms previously proposed traditional and recent methods and establishes a new
state-of-the-art for six standard text clustering datasets. We showcase, that, without our fine-tuning,
transformer-based language models are not able to produce good clustering results. Our analysis
shows the importance of each stage with respect to clustering performance and cluster separation.
An ablation analysis on an additional information retrieval task shows that the reconstruction loss
helps to retain semantic information in the fine-tuned representations.
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Derek Greene and Pádraig Cunningham. Practical solutions to the problem of diagonal dominance
in kernel document clustering. In Proc. 23rd International Conference on Machine learning
(ICML’06), pp. 377–384. ACM Press, 2006.

Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved Deep Embedded Clustering with
Local Structure Preservation. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization,
2017.

Amir Hadifar, Lucas Sterckx, Thomas Demeester, and Chris Develder. A Self-Training Approach
for Short Text Clustering. Association for Computational Linguistics, 2019.

Mohammed Jabi, Marco Pedersoli, Amar Mitiche, and Ismail Ben Ayed. Deep clustering: On the
link between discriminative models and k-means. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2019.

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep
embedding: An unsupervised and generative approach to clustering. In IJCAI, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015. URL http://arxiv.org/abs/1412.6980.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. 31st Inter-
national Conference on Machine Learning, ICML 2014, 4, 2014.

10

http://arxiv.org/abs/1412.6980


Under review as a conference paper at ICLR 2023

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi Jaakkola, Kateryna Tymoshenko, Alessandro
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A APPENDIX

1.1 EXPERIMENTAL SETUP

1.2 BASELINES

TF-IDF The text samples are lower-cased, a selection of english stopwords is removed and subse-
quently transformed into vectors by using Tf-Idf with a maximum amount of 2000 features.
SIF (Arora et al., 2017) embeddings are weighted averages or pre-trained word vectors. Hadifar
et al. (2019) proposed a model that combines SIF and IDEC (Guo et al., 2017). As the authors
did not specify which word-embedding model they used, we used Glove Common Crawl (840B)
(Pennington et al., 2014)2 word vectors as described by Arora et al. (2017).

RoBERTa/ Sentence-BERT(Liu et al., 2019; Reimers & Gurevych, 2019b) In order to directly
evaluate clustering on embeddings of BERT-based models, we use the classifier token embedding
of a pretrained RoBERTa, namely ”roberta-base” and the sentence transformer model ”sentence-
transformers/nli-roberta-base”. Both are hosted on the huggingface (Wolf et al., 2020) page.
TSDAE (Wang et al., 2021). Details about TSDAE are given in Section 3.2. As it is used as base
model, we give more information in Training Details.
SCCL (Zhang et al., 2021a). As suggested by the authors, we use distilbert-base-nli-stsb-mean-
token as a backbone, the learning rate is set to 1e− 5 and learning scale to 100 and 1000 iterations.
Dropout values for the data augmentation are taken from the official repository 3.
VaSCL (Zhang et al., 2021b) Pre-trained models are available on huggingface, for our experiments
”vascl-roberta-large” is used to generate the embeddings.

1.2.1 DATASETS

The first three datasets, where the preprocessed version by Xu et al. (2017)4 is taken, exhibit rather
similar characteristics. Additionally, we evaluate three news datasets exhibiting more diverse sen-
tence lengths and number of classes.

StackOverflow is created as a subset of a Kaggle challenge, having 20k question titles associated
with 20 categories from the StackOverflow website.

Biomedical is a dataset created from PubMed by randomly selecting 40k titles belonging to 20
different groups.

SearchSnippets was created from web search snippets (Phan et al., 2008) and categorized into 8
classes.

AgNews is a subset of AG’s large corpus of news articles. In Zhang & LeCun (2015) the authors
extracted the 4 largest classes to derive a classification dataset. It has been used for clustering before.
Unfortunately, these versions include preprocessing steps such as stop word removal which are not
ideal for BERT-based models. Thus, we create a new dataset and randomly sampled 8000 samples
for each of the 4 classes.

BBC was created in Greene & Cunningham (2006) for the purpose of news topic classification.
We split the articles into sentences and assigned the label of its corresponding document to each
sentence.

GoogleNews was compiled by Qiang et al. (2019) and is publicly available5. The authors down-
loaded titles and snippets belonging to 152 clusters from the Google News site in 2013.

2publicly available at https://nlp.stanford.edu/projects/glove/
3https://github.com/amazon-research/sccl
4https://github.com/jacoxu/STC2
5https://github.com/qiang2100/STTM
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1.2.2 METRICS AND EVALUATION

As stated in Section 4.1 we utilized the metrics NMI and ACC to evaluate our experiments. For
ground-truth cluster assignments C and cluster predictions P , the NMI is defined by

NMI(C,P ) =
I(C,P )√
H(C)H(P )

(6)

where I denotes the mutual information and H the entropy. Additionally, we use the cluster accu-
racy, which is defined by

ACC =

∑N
i=1 δ (ci = map(pi))

N
(7)

where ci is the ground truth label, pi the cluster prediction of sample i, δ the Kronecker-delta func-
tion and map a function that uses the Hungarian algorithm (Kuhn, 1955) to find the best assignment
between clusters and classes.

To evaluate the clustering capabilities of text representations, standard clustering algorithms are
applied to the generated embeddings. The k-means algorithm (Lloyd, 1982) is used with k set to the
number of ground truth labels (see Table 1). For IDEC (Guo et al., 2017) we use 150 epochs, the
Adam optimizer (Kingma & Ba, 2015) with learning rate 1e− 4 and a hidden dimension of ground
truth clusters ” + 1”. When the UMAP (McInnes et al., 2020) dimension reduction technique is
applied, the dimension is again set to the number of ground truth clusters ” + 1” and the number of
neighbors to 15.

1.2.3 TRAINING DETAILS

For training ClusterBERT we used ”roberta-base” as a backbone, fine-tuned with the Transformers
and Sequential Denoising Autoencoder (TSDAE) objective on 106 randomly sampled sentences
from English Wikipedia which were collected in Gao et al. (2021). The models are trained using
grid search on the following hyperparameters. A batch size of 8 and the Adam optimizer (Kingma
& Ba, 2015) with learning rate 2e − 5 is used. Stage 1 is trained for 2 epochs. In the clustering
stage, the number of re-clusterings is in {1, 2} with the number of epochs in {2, 4} and λ = 0.8. In
the hardening stage we run 2 epochs with a value of λ = 0.75. The best result on the train set is
reported.

1.3 SUPPLEMENTARY RESULTS

1.3.1 FULL EVALUATION

In Table 3 we show all models with multiple dimension reduction and clustering variants.

1.3.2 COMPARISON TO REPORTED RESULTS

As we realized that the reproduced results of our experiments often vary compared to the original
publications, they are summarized in Table 4. For example, the original SIF+IDEC (Hadifar et al.,
2019) and our results vary by a large margin. There are many potential reasons for this gap. One
might be that the authors utilized different word embeddings. Given that embeddings were often
not available, we decided to use the same backbone as in the SIF paper (Arora et al., 2017). Apart
from that, various text preprocessing steps or different subsets of the data might influence the results.
A good indicator is the results using the simple model TF-IDF combined with k-means clustering,
where our results (Table 2) are significantly higher (up to 52 higher NMI score) compared to other
studies. However, our model is still able to be on par with the state-of-the-art. For the StackOverflow
dataset we achieve the highest results for both metrics compared to the baselines and with the NMI
score for Biomedical we rank second highest.

1.3.3 QUALITATIVE ANALYSIS

The goal of this analysis is to investigate qualitatively how the representation space changes over
the training. Therefore, we look at sentence pairs from the BBC-News dataset and inspect changes
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StackOverflow Biomedical SearchSnippets BBC-News GoogleNews AGNews
Model NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC
TF-IDF+kmeans 67.8 65.4 30.0 27.2 44.9 51.8 4.2 27.2 45.3 60.5 2.0 29.5
SIF+kmeans 22.0 24.4 20.0 24.0 38.0 37.7 7.8 32.8 66.1 39.8 19.7 45.6
SIF+idec 31.9 29.7 20.7 22.5 35.8 35.0 13.1 34.0 50.7 24.7 41.5 72.6
SIF+umap+kmeans 49.2 52.0 31.0 30.9 47.9 44.6 28.6 54.5 73.6 53.8 55.6 81.0
SIF+umap+idec 44.7 43.1 22.7 22.3 41.1 37.6 26.9 53.5 68.0 43.5 54.0 81.2
RoBerta+kmeans 9.5 15.3 16.0 18.9 23.4 27.7 29.6 49.5 52.8 30.2 19.7 47.7
RoBerta+idec 2.1 8.1 8.6 11.9 14.8 15.4 52.7 76.9 17.6 4.5 54.3 80.7
RoBerta+umap+kmeans 22.7 26.6 24.1 25.2 30.2 35.6 33.9 48.4 62.1 40.2 47.0 64.5
RoBerta+umap+idec 21.6 27.6 17.6 18.5 25.3 23.0 33.6 49.7 44.0 19.5 47.7 64.6
SBERT+kmeans 12.8 19.7 5.0 34.7 16.8 22.2 5.0 34.7 37.7 23.1 8.7 41.3
SBERT+idec 17.8 22.9 2.6 31.1 25.1 31.4 2.6 31.1 25.4 12.3 16.2 48.5
SBERT+umap+kmeans 19.1 25.2 5.7 32.2 29.7 35.5 5.7 32.2 44.4 30.4 29.7 50.2
SBERT+umap+idec 19.5 25.2 6.0 31.7 19.9 23.5 6.0 31.7 37.3 20.5 30.4 62.2
TSDAE+kmeans 49.2 56.3 27.9 29.4 39.9 42.7 44.8 66.7 64.4 43.8 62.9 86.2
TSDAE+idec 32.4 31.9 18.3 17.8 40.6 36.7 44.1 71.3 29.2 8.4 57.5 80.4
TSDAE+umap+kmeans 52.4 60.3 37.6 36.3 50.4 51.3 50.6 60.2 67.9 52.8 66.2 87.0
TSDAE+umap+idec 45.2 47.9 29.2 26.4 33.4 27.8 55.4 80.0 56.4 30.4 65.7 87.3
SCCL+kmeans 69.3 70.0 33.7 30.3 56.3 51.1 37.8 59.4 72.2 58.1 59.9 83.1
SCCL+idec 66.0 67.1 33.3 33.5 56.0 47.1 39.3 67.1 75.6 62.0 53.9 80.2
SCCL+umap+kmeans 66.5 71.5 35.5 31.8 56.3 51.7 66.5 71.5 72.7 57.3 44.8 63.0
SCCL+umap+idec 63.3 69.0 35.0 31.7 57.3 53.7 43.1 62.3 67.1 46.5 39.1 54.3
VaSCL+kmeans 59.6 68.7 30.4 30.1 46.2 45.5 26.1 52.3 64.8 39.7 23.7 49.3
VASCL+idec 71.8 79.5 25.1 24.5 47.4 44.4 28.0 56.4 34.3 15.0 33.4 66.6
VASCL+umap+kmeans 72.2 82.3 38.9 34.2 58.6 55.2 72.2 82.3 76.0 60.0 55.8 79.3
VASCL+umap+idec 70.9 78.2 32.6 27.9 56.2 47.8 49.1 76.2 69.1 43.7 53.3 79.5
CBERTdec+kmeans 75.6 79.9 43.4 38.2 65.5 57.6 67.9 87.8 76.9 63.2 67.2 87.1
CBERTdec+idec 75.1 76.6 43.4 38.2 64.8 55.7 67.9 87.8 78.9 68.9 67.3 87.3
CBERTdec+umap+kmeans 75.7 80.0 43.4 38.2 65.6 57.6 68.0 87.8 75.4 48.5 67.2 87.1
CBERTdec+umap+idec 74.9 78.6 43.4 38.2 65.6 57.6 66.5 87.2 74.3 48.7 62.4 85.3

Table 3: Results Text Clustering, both Metrics multiplied by 100

from the initial to the final model with respect to their cosine similarity. More specifically, the base
TSDAE model (see Section 4.1) and the trained ClusterBERT model are compared. We formalize
five types of pairs based on their properties of ground-truth labels and similarity changes:

• = pairs that have the same ground-truth label and are close in the beginning and in the end
of the training.

• ⇒⇔ pairs which have the same ground-truth label and the largest increase in similarity,
i.e., pairs that should be moved together and are actually moved closer.

• ⇆⇄ pairs which have different ground-truth labels and the largest increase in similarity,
i.e., pairs that should be moved apart and are actually moved closer.

• ⇔⇒ pairs which have different ground-truth labels and the largest decrease in similarity,
i.e., pairs that should be moved apart and are actually moved further.

• ⇄⇆ pairs which have the same ground-truth label and the largest decrease in similarity,
i.e., pairs that should be moved together and are actually moved further.

For each type, a selected subsample of the top 10 largest changes in similarity of each category is
chosen and shown in Table 5. Note that the models are called init and final.

StackOverflow Biomedical SearchSnippets
Model NMI ACC NMI ACC NMI ACC
TF-IDF1 15.6 20.3 25.4 27.5 21.4 33.8
SIF1 28.9 30.5 30.1 33.7 36.9 53.4
SIF+IDEC1 54.8 59.8 47.1 54.8 56.7 77.1
SCCL2 74.5 75.5 41.5 46.2 71.1 85.2
VaSCL 3 - 76.2 - 42.6 - 50.1
ClusterBERT 75.6 79.9 43.4 38.2 65.5 57.6

reported in 1 Hadifar et al. (2019) 2 Zhang et al. (2021a) 3 Zhang et al. (2021b)

Table 4: Reported Results STC, both Metrics multiplied by 100
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type Label Sentence pair init final

=
business The UK economy could suffer a backlash from the slowdown in

the housing market, triggering a fall in consumer spending and
a rise in unemployment.

0.999 0.997

business The fall reflects weak exports and a slowdown in consumer
spending, and follows similar falls in GDP in the two previ-
ous quarters.

=
business Another investor in Deutsche Boerse has supported the view

that a payout to shareholders would be preferable to Deutsche
Boerse overpaying for the LSE, Reuters news agency reported.

0.999 0.991

business The Deutsche Boerse was prepared to pay for the LSE ”exceeds
the potential benefits of this acquisition”, said TCI.

⇒⇔
business It had been one of the quickest to deal with difficulties faced by

the aviation industry after the 9/11 attacks in 2001. 0.333 0.998

business Continuing demand for Inbev’s products in the South American
markets where its Brazilian arm is most popular means it ex-
pects to keep boosting its turnover.

⇆⇄
politics But she said they were treated more sceptically than non-Roma

passengers by immigration officers ”acting on racial grounds”. 0.351 0.997

entertainment The Big Issue magazine, which supports homelessness chari-
ties, prints the last known picture of Edwards in a fresh plea for
information.

⇔⇒
business The parent or guardian will be responsible for the Bonds and

will receive notification of the purchase. 0.499 0.392

entertainment They teamed up again for a concert to mark their induction into
the UK Music Hall of Fame, and were joined by Taylor.

⇔⇒
business Mr Ebbers has pleaded not guilty to charges of fraud and con-

spiracy. 0.522 0.387

entertainment At the time of her death she was working on a film about the last
two men pulled from the rubble of the Twin Towers following
the 11 September terror attacks in 2001.

⇄⇆
politics Tony Blair is pressing the US to cut greenhouse gases despite its

unwillingness to sign the Kyoto Protocol, Downing Street has
indicated.

0.776 0.374

politics The prime minister is said to believe the United States’ refusal
to sign the Kyoto Protocol on emissions is undermining other
countries’ resolve to cut carbon dioxide production.

Table 5: Cosine similarity between sentence pairs with the same and with different ground truth
labels, for the initial TSDAE embeddings and the final ClusterBERT embeddings. Samples are
taken from the BBC-News dataset

It is clearly observable from the results of the ⇒⇔ pairs that the algorithm has a strong capability
to move sentences toward each other. For example, the third ⇒⇔ pair in Table 5 can not be easily
found by human judgment.

Furthermore, the algorithm correctly pushes the last ⇔⇒ pair in the Table apart, even though, when
solely analyzing the words, one might assume that a sentence containing guilty and conspiracy might
be similar to a sentence with 11 September and attack.

The ⇆⇄ pairs and ⇄⇆ pairs are examples that our algorithm falsely pushed together and falsely
pushed apart respectively. We observe how sentences from these types are sometimes ambiguous.
The reason is that one sentence is often not enough for reliable categorization if it is taken from a
newspaper article. Additionally, some of the categories appearing in the BBC dataset, e.g., politics
and business, might have a large overlap of articles.

16


	Introduction
	Related Work
	Deep Clustering
	Text Clustering

	Methodology
	Overview
	Domain Adaptation Stage
	Clustering Stage
	Hardening Stage

	Experiments
	Experimental Setup
	Main Results
	Cluster Analysis
	Reconstruction Ablation

	Conclusions
	Appendix
	Experimental setup
	Baselines
	Datasets
	Metrics and Evaluation
	Training Details

	Supplementary Results
	Full Evaluation
	Comparison to Reported Results
	Qualitative analysis



