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ABSTRACT

Hierarchical Federated Learning (HFL) addresses critical scalability limitations
in conventional federated learning by incorporating intermediate aggregation lay-
ers, yet optimal topology selection across varying data heterogeneity conditions
and network conditions remains an open challenge. This paper establishes the
first unified convergence framework for all four HFL topologies (Star-Star, Star-
Ring, Ring-Star, and Ring-Ring) with full/partial client participation under non-
convex objectives and different intra/inter-group data heterogeneity. Our theo-
retical analysis reveals three fundamental principles for topology selection: (1)
The top-tier aggregation topology exerts greater influence on convergence than
the intra-group topology, with ring-based top-tier configurations generally outper-
forming star-based alternatives; (2) Optimal topology strongly depends on client
grouping characteristics, where Ring-Star excels with numerous small groups
while Star-Ring is superior for large, client-dense clusters; and (3) Inter-group
heterogeneity dominates convergence dynamics across all topologies, necessitat-
ing clustering strategies that minimize inter-group divergence. Extensive exper-
iments on CIFAR-10/CINIC-10//Fashion-MNIST/SST-2 with ResNet-18/VGG-
9/ResNet-10/MLP validate these insights, and provide practitioners with theoreti-
cally grounded guidance for HFL system design in real-world deployments.

1 INTRODUCTION

Federated Learning (FL)(McMahan et al., 2017) has revolutionized collaborative machine learning
by enabling distributed model training across decentralized devices while preserving data privacy.
However, conventional single-tier FL faces critical scalability challenges in large-scale deployments,
including communication bottlenecks, synchronization latency, and vulnerability to single-point
failures. Hierarchical Federated Learning (HFL)(Liu et al., 2020; Deng et al., 2021) has emerged as
a promising paradigm, introducing intermediate aggregation layers (such as edge servers or cluster
heads) to form a two/multi-tier architecture that distributes the coordination burden for massive de-
ployment. Despite its promise, the theoretical understanding of HFL remains nascent, particularly
under realistic conditions of data heterogeneity and diverse hierarchical topologies.

In two-tier HFL frameworks, each level of aggregation can adopt either star (parallel) or ring (se-
quential) topology, yielding four distinct configurations: Star-Star, Star-Ring, Ring-Star, and Ring-
Ring (see Figure 1). These topological choices fundamentally influence the convergence dynamics,
robustness to data heterogeneity, and communication efficiency. For instance, star aggregation en-
ables parallel client updates but may suffer from abrupt synchronization of divergent models, while
ring aggregation propagates updates sequentially, potentially mitigating client drift in non-IID set-
tings through incremental alignment (Li & Lyu, 2023; 2025).

Literature Review. Existing theoretical analyses of HFL have largely focused on the Star-Star
topology on non-convex functions (Zhou & Cong, 2019; Castiglia et al., 2021; Wang et al., 2022),
data heterogeneity(Wang et al., 2022), partial client participation (Jiang & Zhu, 2024), and other
variants (Liu et al., 2022; Yang et al., 2023). Some recent works explore Star-Ring topology (Chen
et al., 2020; Lee et al., 2020; Fang et al., 2022; Ding et al., 2024) and the Ring-Star topology
(Chaoyang et al., 2020; Huang et al., 2024; Yan et al., 2025). However, a unified convergence
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analysis that compares all four topologies is still lacking. This theoretical gap impedes informed
topology selection in practical deployments, where system performance is highly sensitive to data
distribution and network conditions.

(a) Star-Star HFL (b) Star-Ring HFL (c) Ring-Star HFL (d) Ring-Ring HFL

Figure 1: Different topology configurations of HFL

Research Question. The central research problem is:

How should practitioners select the optimal HFL topology configuration when facing varying de-
grees of intra-group and inter-group data heterogeneity, diverse client grouping characteristics, and
constrained network conditions?

This research problem is of practical importance for system convergence. For example, in systems
with high inter-group heterogeneity (such as clients clustered by geographic region with distinct data
distributions), selecting star topology at the top tier may amplify inter-group divergence through
abrupt parallel synchronization. Conversely, ring aggregation at the top tier enables gradual, se-
quential alignment that may better accommodate distributional differences. This topology selection
problem is further complicated when considering diverse client grouping characteristics in HFL.

Analytical Challenges. Establishing a comprehensive convergence framework for HFL that encom-
passes all four topology configurations presents three critical challenges:

(1) Hierarchical Heterogeneity Interdependence. Unlike single-tier FL, HFL exhibits a cascading
heterogeneity relationship where intra-group and inter-group data distributions interact in non-trivial
ways. This creates a feedback loop where local model divergence within groups directly exacerbates
global model inconsistency. The convergence bounds must account for the multiplicative interaction
between intra/inter-group divergence.

(2) Cross-Tier Dynamic Coupling. The two-tier aggregation architecture creates a bidirectional de-
pendency where updates at one tier directly influence the error propagation at the other tier. The
effective learning rate at one tier depends on accumulated errors from the other tier, invalidating
sequential single-tier analysis approaches.

(3) Compounded Topology-Specific Biases. Different topologies introduce distinct statistical prop-
erties that compound across hierarchical layers in topology-dependent ways. Star and ring topolo-
gies introduce fundamentally different statistical properties (unbiased high-variance updates versus
biased low-variance sequential updates) that compound across hierarchical layers. Such topology-
specific error propagation patterns require sophisticated cross-client error term analysis that explic-
itly tracks how topology choices modulate bias-variance tradeoffs across hierarchical layers.

Contributions. This paper establishes a unified theoretical framework for analyzing and comparing
all four HFL topology configurations (Star-Star, Star-Ring, Ring-Star, and Ring-Ring) under non-
convex optimization and varying data heterogeneity conditions (see Theorem 1 and Table 1). Our
convergence bounds explicitly quantify the effects of key system parameters, including number of
groups (G), clients per group (M ), local steps (K), and group rounds (P ), and reveal how topology
choices interact with intra/inter-group heterogeneity to shape convergence behavior. The frame-
work extends to partial client participation settings with corresponding convergence guarantees (see
Theorem 2). Our analysis yields three insights for HFL system design:

(1) HFL prioritizes scalability over convergence acceleration. Counterintuitively, HFL is primarily
valuable for enabling large-scale deployments where single-tier FL becomes impractical, rather than
inherently accelerating convergence. Crucially, HFL with ring aggregation at the top tier (Ring-Star,
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Table 1: Comparison of convergence rates under full participation.

Topology Convergence Rate1

FedAvg (Koloskova et al., 2020)3 σ√
MKR

+ L1/3σ2/3

(KR2)
1
3
+ L1/3ζ2/3

(R2)
1
3

Star-Star Theorem 1 σ√
GPMKR

+ L1/3σ2/3

(P 2KR2)
1
3
+ L1/3σ2/3

(PMKR2)
1
3
+ L1/3ζ̂2/3

(P 2R2)
1
3
+ L1/3ζ2/3

(R2)
1
3

(Wang et al., 2022) σ√
GPMKR

+ L1/3σ2/3

(P 2KR2)
1
3
+ L1/3σ2/3

(PMKR2)
1
3
+ L1/3ζ̂2/3

(P 2R2)
1
3
+ L1/3ζ2/3

(R2)
1
3

(Jiang & Zhu, 2024) σ√
GPMKR

+ L1/3σ2/3

(P 2KR2)
1
3
+ L1/3σ2/3

(PMKR2)
1
3
+ L1/3ζ̂2/3

(P 2R2)
1
3
+ L1/3ζ2/3

(R2)
1
3

Star-Ring2 Theorem 1 σ√
GPMKR

+ L1/3σ2/3

(PMKR2)
1
3
+ L1/3ζ̂2/3

(P 2R2)
1
3
+ L1/3ζ2/3

(R2)
1
3

Ring-Star2 Theorem 1 σ√
GPMKR

+ L1/3σ2/3

(G2P 2KR2)
1
3
+ L1/3σ2/3

(GPMKR2)
1
3
+ L1/3ζ̂2/3

(G2P 2R2)
1
3
+L1/3ζ2/3

(R2)
1
3

Ring-Ring Theorem 1 σ√
GPMKR

+ L1/3σ2/3

(GPMKR2)
1
3
+ L1/3ζ̂2/3

(G2P 2R2)
1
3
+ L1/3ζ2/3

(R2)
1
3

1 We omit constants and polylogarithmic factors. Some terms are re-organized for comparison. Terms high-
lighted in color, e.g., G and G2, indicate additional factors introduced by the ring-based top-tier topologies
compared with the star-based ones. Notation: R (global rounds); G (groups); P (group rounds); M (clients/-
group); K (local steps); σ (variance); ζ, ζ̂ (inter/intra-heterogeneity); L (smoothness); A (F (x(0))− F ∗).
2 Even though similar algorithms and some preliminary convergence analyses have been studied, the advanced
convergence analyses are still missing for Star-Ring and Ring-Star. For example, Chen et al. (2020) and Yan
et al. (2025) used the bounded gradient assumptions.
3 FedAvg, non-IID, non-convex. If there is only one client in each group (i.e., P = 1, M = 1 and ζ̂ = 0),
Star-Star reduces to FedAvg. In this case, our rate becomes O

(
σ√

MKR
+ L1/3σ2/3

(KR2)1/3
+ L1/3ζ2/3

(R2)1/3

)
which matches

that of FedAvg.

Ring-Ring) consistently outperforms star-based counterparts under data heterogeneity. This reveals
that carefully selected single-tier FL configurations may actually converge faster than two-tier HFL,
positioning HFL as a solution for scalability constraints rather than a convergence accelerator.

(2) Inter-group heterogeneity dominates convergence dynamics. We establish that inter-group data
divergence (ζ) exerts a more significant impact on convergence than intra-group heterogeneity (ζ̂)
across all four topologies. This finding fundamentally reshapes client clustering strategies, indicat-
ing that minimizing inter-group distributional differences should take precedence over optimizing
intra-group homogeneity. Effective grouping, such as forming clusters with approximately IID inter-
group distributions, would converge faster than fine-tuning intra-group training dynamics.

(3) Optimal topology selection depends critically on group structure. Our analysis reveals that the
optimal topology selection depends critically on group structural characteristics. Ring-Star excels
when numerous small groups exist, as sequential inter-group updates benefit from increased par-
allelism at the lower tier and fine-grained global alignment. Star-Ring is preferable for few large,
client-dense clusters, where intra-group ring aggregation enables deep local refinement before global
synchronization.

We validate these theoretical insights through extensive experiments on CIFAR-10, CINIC-10,
Fashion-MNIST and SST-2 using ResNet-18, VGG-9, ResNet-10 and MLP under four distinct het-
erogeneity scenarios. The results consistently demonstrate accuracy gains from informed topology
selection, with ring-based top-tier configurations showing particular advantages in heterogeneous
environments. Beyond establishing the first convergence analysis for the previously unstudied Ring-
Ring topology, our framework overcomes critical limitations of prior work by: (i) adopting con-
sistent, general non-convex assumptions across all topologies, whereas previous studies relied on
heterogeneous assumptions that prevented direct comparison; and (ii) deriving tighter convergence
bounds of O(1/

√
GPMKR) for Star-Ring and Ring-Star topologies (versus O(1/

√
R) in prior

3
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literature(Lee et al., 2020; Yan et al., 2025)). These contributions provide system designers with
theoretically grounded principles for topology selection based on specific deployment constraints.

2 CONVERGENCE THEORY

This section presents a unified convergence analysis of HFL under non-convex optimization objec-
tives. In the following, we formalize the setup of HFL with four different topologies, introduce
general assumptions, derive the convergence bounds, and extract actionable insights for topology
selection in practical deployments.

2.1 SETUP

We begin by formalizing the HFL framework and the update mechanisms for each topology config-
uration. In two-tier HFL, the global objective is to minimize:

min
x∈Rd

{
F (x) =

1

G

G∑
g=1

Fg(x) =
1

G

G∑
g=1

1

M

M∑
m=1

Fg,m(x)

}
(1)

where Fg represents the average local objective function over all clients in group g (g ∈ [G]), and
Fg,m denotes the local objective function of client m (m ∈ [M ]) in group g, defined as Fg,m(x) =
Eξ∼Dm

[fm(x; ξ)], where Dm is the local dataset of client m.

In the full participation setting, the HFL process with four topology configurations operates accord-
ing to distinct update rules. Crucially, for ring-based topologies, the execution order of clients or
groups is fixed (see detailed algorithms in Appendix A.1):

(1) Star-Star. Each group g initializes its model as x(r)
g,0 = x(r). Within each group, clients initialize

their models as x
(r)
g,p,m,0 = x

(r)
g,p, perform K parallel local updates, and send updates to the group

server for aggregation. After P group updates, the global server aggregates group parameters to
generate the next global parameters x(r+1).

(2) Star-Ring. Each group g initializes its model as x(r)
g,0 = x(r). Within each group, clients initialize

their models from the previous client in sequence and perform K local updates. The group server
aggregates the latest parameters from the last client. After P group updates, group servers send their
updated parameters to the global server for aggregation.

(3) Ring-Star. Each group g initializes its model with the latest parameters from the previous group.
Within each group, clients initialize their models as x

(r)
g,p,m,0 = x

(r)
g,p, perform K parallel local

updates, and send updates to the group server for aggregation. After P group updates, group servers
send their updated parameters to the next group in sequence.

(4) Ring-Ring. Each group g initializes its model with the latest parameters from the previous group.
Within each group, clients initialize their models from the previous client and perform K local
updates. The group server aggregates the latest parameters from the last client. After P group
updates, group servers send their updated parameters to the next group in sequence.

In the partial participation setting, before training starts, a subset of S1 groups is selected, and within
each selected group, a subset of S2 clients acts as active participants. The sequential execution order
for ring-based topologies in this case is random.

2.2 ASSUMPTIONS

Assumption 1. (L-Smoothness). Each local objective function Fg,m is L-smooth, g ∈ {1, 2, ..., G},
m ∈ {1, 2, ...,M}, i.e., there exists one constant L such that

∥∇Fg,m(x)−∇Fg,m(y)∥ ≤ L∥x− y∥ for all x,y ∈ Rd. (2)

Assumption 2. (Bounded variance). For the local objective function Fg,m in any client, the local
stochastic gradient ∇Fg,m(x, ξm) computed using a mini-batch ξm, sampled uniformly at random
from local dataset, has bounded variance, that is ∥∇Fg,m(x, ξm) −∇Fg,m(x′, ξm)∥ ≤ σ2, for all
clients.

4
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Assumption 3. (Bounded Inter-Group Heterogeneity). There exists one constant ζ2 such that for
all g ∈ {1, 2, . . . , G},

1
G

∑G
g=1 ∥∇F (x)−∇Fg(x)∥2 ≤ ζ2. (3)

Assumption 4. (Bounded Intra-Group Heterogeneity). For all g ∈ {1, 2, . . . , G}, there exists con-
stants ζ2g such that for all m ∈ {1, 2, . . . ,M},

1
M

∑M
m=1 ∥∇Fg,m(x)−∇Fg(x)∥2 ≤ ζ2g . (4)

Furthermore, we define the average intra-group heterogeneity as ζ̂2 := 1
G

∑G
g=1 ζ

2
g .

The first two assumptions are standard in non-convex optimization(Ghadimi & Lan, 2013; Bottou
et al., 2018). Assumptions 3 and 4 extend standard FL analysis to the hierarchical setting, explicitly
modeling both inter/intra-group data heterogeneity (Wang & Ji, 2022). In particular, Assumption 3
(bounded inter-group heterogeneity) and Assumption 4 (bounded intra-group heterogeneity) mea-
sures the data heterogeneity across or within client groups, respectively. For example, ζ2 = 0 when
the data is IID across all groups.

2.3 CONVERGENCE ANALYSIS

Theorem 1. (Convergence with Full Participation). Under Assumptions 2– 4, the following conver-
gence bounds hold for each HFL topology, where A = F (x(0))−F ∗ represents the initial optimality
gap.

Star-Star: There exists η̃ = PKη, and η̃ ≤ 1√
30L

, such that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≲

A

η̃R
+

Lη̃σ2

GPMK
+

L2η̃2σ2

P 2K
+

L2η̃2σ2

PMK
+

L2η̃2ζ̂2

P 2
+ L2η̃2ζ2. (5)

Star-Ring: There exists η̃ = PMKη, and η̃ ≤ 1√
60L

, such that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≲

A

η̃R
+

Lη̃σ2

GPMK
+

L2η̃2σ2

PMK
+

L2η̃2ζ̂2

P 2
+ L2η̃2ζ2. (6)

Ring-Star: There exists η̃ = GPKη, and η̃ ≤ 1√
60L

, such that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≲

A

η̃R
+

Lη̃σ2

GPMK
+

L2η̃2σ2

G2P 2K
+

L2η̃2σ2

GPMK
+

L2η̃2ζ̂2

G2P 2
+ L2η̃2ζ2.

(7)

Ring-Ring: There exists η̃ = GPMKη, and η̃ ≤ 1
10L , such that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≲

A

η̃R
+

Lη̃σ2

GPMK
+

L2η̃2σ2

GPMK
+

L2η̃2ζ̂2

G2P 2
+ L2η̃2ζ2. (8)

Theorem 2. (Convergence with Partial Participation). Under Assumptions 2– 4, considering in
each global round, a subset of S1 groups are sampled uniformly at random from the G total groups,
and within each selected group, a subset of S2 clients are sampled uniformly at random from the M
total clients, the following convergence bounds hold for each HFL topology, where A = F (x(0))−
F ∗ represents the initial optimality gap.

Star-Star: There exists η̃ = PKη, and η̃ ≤ 1
10L , such that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≲

A

η̃R
+

Lη̃σ2

S1PS2K
+

Lη̃ζ̂2

S2
+

Lη̃ζ2

S1
(9)

+
L2η̃2σ2

P 2K
+

L2η̃2σ2

PS2K
+

L2η̃2ζ̂2

P 2
+

L2η̃2ζ̂2

S2
+ L2η̃2ζ2. (10)

Star-Ring: There exists η̃ = PMKη, and η̃ ≤ 1
15L , such that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≲

A

η̃R
+

Lη̃σ2

S1PS2K
+

Lη̃ζ̂2

S2
+

Lη̃ζ2

S1
+

L2η̃2σ2

PS2K
+

L2η̃2ζ̂2

S2
+ L2η̃2ζ2.

(11)

5
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Ring-Star: There exists η̃ = GPKη, and η̃ ≤ 1
15L , such that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≲

A

η̃R
+

Lη̃σ2

S1PS2K
+

Lη̃ζ̂2

S2
+

Lη̃ζ2

S1
(12)

+
L2η̃2σ2

S1
2P 2K

+
L2η̃2σ2

S1PS2K
+

L2η̃2ζ̂2

S1
2P 2

+
L2η̃2ζ̂2

S2
+

L2η̃2ζ2

S1
. (13)

Ring-Ring: There exists η̃ = GPMKη, and η̃ ≤ 1
20L , such that

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≲

A

η̃R
+

Lη̃σ2

S1PS2K
+

Lη̃ζ̂2

S2
+

Lη̃ζ2

S1
+

L2η̃2σ2

S1PS2K
+

L2η̃2ζ̂2

S2
+

L2η̃2ζ2

S1
.

(14)

Effective Learning Rate. Theorem 1 and Theorem 2 introduce a topology-dependent effective
learning rate, denoted by η̃, which incorporates key architectural parameters: the number of groups
G, group rounds P , clients per group M , local update steps K, and global rounds R. This effective
learning rate captures how hierarchical updates affect convergence. The derived bounds comprise an
optimization term that decreases with R, and error terms from stochastic noise and data heterogene-
ity. A larger η̃ accelerates optimization but amplifies errors. Corollary 1 and Corollary 2 specify an
optimal η̃ that minimizes the overall bound.
Corollary 1. (Convergence with full participation under effective learning rate). By choosing learn-
ing rate η̃, the convergence rate satisfies the following, where O(·) hides absolute constants:

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
= O

(
LA

R
+

(Lσ2A)1/2√
GPMKR

+ T
)
, (15)

and T denotes the topology-dependent terms defined as follows:

Star-Star:

T =
(L2A2σ2)1/3

(P 2KR2)
1/3

+
(L2A2σ2)1/3

(PMKR2)
1/3

+
(L2A2ζ̂2)1/3

(P 2R2)
1/3

+
(L2A2ζ2)1/3

(R2)
1/3

. (16)

Star-Ring:

T =
(L2A2σ2)1/3

(PMKR2)
1/3

+
(L2A2ζ̂2)1/3

(P 2R2)
1/3

+
(L2A2ζ2)1/3

(R2)
1/3

. (17)

Ring-Star:

T =
(L2A2σ2)1/3

(G2P 2KR2)
1/3

+
(L2A2σ2)1/3

(GPMKR2)
1/3

+
(L2A2ζ̂2)1/3

(G2P 2R2)
1/3

+
(L2A2ζ2)1/3

(R2)
1/3

. (18)

Ring-Ring:

T =
(L2A2σ2)1/3

(GPMKR2)
1/3

+
(L2A2ζ̂2)1/3

(G2P 2R2)
1/3

+
(L2A2ζ2)1/3

(R2)
1/3

. (19)

Corollary 2. (Convergence with partial participation under effective learning rate). By choosing
learning rate η̃, the convergence rate satisfies the following, where O(·) hides absolute constants:

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
= O

(
LA

R
+

(LAσ2)1/2√
S1PS2KR

+
(LAζ̂2)1/2√

S2R
+

(LAζ2)1/2√
S1R

+ T

)
, (20)

and T denotes the topology-dependent terms defined as follows:

Star-Star:

T =
(L2A2σ2)1/3

(P 2KR2)1/3
+

(L2A2σ2)1/3

(PS2KR2)1/3
+

(L2A2ζ̂2)1/3

(P 2R2)1/3
+

(L2A2ζ̂2)1/3

(S2R2)1/3
+

(L2A2ζ2)1/3

(R2)1/3
. (21)
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Star-Ring:

T =
(L2A2σ2)1/3

(PS2KR2)1/3
+

(L2A2ζ̂2)1/3

(S2R2)1/3
+

(L2A2ζ2)1/3

(R2)1/3
. (22)

Ring-Star:

T =
(L2A2σ2)1/3

(S2
1P

2KR2)1/3
+

(L2A2σ2)1/3

(S1PS2KR2)1/3
+

(L2A2ζ̂2)1/3

(S2
1P

2R2)1/3
+

(L2A2ζ̂2)1/3

(S2R2)1/3
+

(L2A2ζ2)1/3

(S1R2)1/3
.

(23)

Ring-Ring:

T =
(L2A2σ2)1/3

(S1PS2KR2)1/3
+

(L2A2ζ̂2)1/3

(S2R2)1/3
+

(L2A2ζ2)1/3

(S1R2)1/3
. (24)

2.4 KEY IMPLICATIONS

The Top-Tier Dominance Principle. Contrary to intuitive expectations, the aggregation mecha-
nism at the global tier exerts a significantly stronger influence on convergence than the intra-group
topology. This principle is quantitatively demonstrated in Corollary 1 and 2. Specifically, for
ring-based top-tier topologies, the error terms include an additional scaling factor of G in the de-
nominators of the SGD variance and intra-group heterogeneity terms under full participation. In the
case of partial participation, this scaling factor becomes S1 for the SGD variance and inter-group
heterogeneity terms. Furthermore, random shuffling introduces additional factors S1 and S2 to the
heterogeneity terms. This means that ring-based global aggregation is inherently more robust to
both stochastic noise and data heterogeneity. This manifests in two crucial ways: (i) Ring-based
top-tier configurations (Ring-Star, Ring-Ring) consistently outperform star-based alternatives under
data heterogeneity, with the gap widening as inter-group divergence increases. (ii) The performance
difference between top-tier topologies exceeds that between lower-tier configurations. For example,
Ring-Star typically outperforms Star-Star by a larger margin than Star-Ring outperforms Star-Star,
despite both differing only in the lower tier.

Inter-Group Heterogeneity as the Fundamental Bottleneck. Our analysis quantitatively estab-
lishes that inter-group heterogeneity (ζ) is the primary convergence bottleneck across all topolo-
gies. For instance, under full participation, while all topologies share the same asymptotic con-
vergence rate of O(1/

√
GPMKR), the practical convergence speed is dominated by inter-group

divergence, which decays slowly at O( (L
2A2ζ2)1/3

R2/3 ) regardless of topology choice. Intra-group
heterogeneity (ζ̂) decays significantly faster—particularly in ring-based top-tier configurations
O( (L2A2ζ̂2)1/3

R2/3G2/3P 2/3 )—making it a secondary concern compared to inter-group divergence. This insight
provides a principled foundation for system design: to accelerate convergence in heterogeneous
environments, minimizing inter-group divergence should should be prioritized. Practical strategies
such as intelligent client clustering, e.g., grouping clients with statistically similar data distributions
(Zeng et al., 2022), are more impactful than optimizing local training dynamics within groups.

Topology-Structure Compatibility Principle. The optimal topology selection depends critically
on the underlying client grouping structure, creating a fundamental design trade-off. Ring-Star
excels with numerous small groups. When clients naturally form many small clusters (e.g., IoT
devices, retail outlets), Ring-Star leverages parallelism at the lower tier while benefiting from the
smoothing effect of sequential global updates. Its convergence rate improves dramatically with
increasing G, making it ideal for deployments with abundant but sparse client clusters. Star-Ring
dominates with few large clusters. In settings with limited but data-rich clusters, Star-Ring’s intra-
group ring aggregation enables deeper local refinement before global synchronization, producing
higher-quality group models. This topology shows diminishing returns as G increases beyond a
certain point. Star-Star consistently underperforms. Despite its conceptual simplicity, the double
averaging in Star-Star significantly dampens the effective learning rate, making it the least efficient
configuration across all heterogeneity scenarios.

Wall-Clock Time Considerations in Practical Deployments. While convergence properties guide
theoretical topology selection, real-world deployments must account for wall-clock execution time
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under bandwidth constraints. Our analysis in Appendix A.2 reveals that star topologies don’t al-
ways achieve ideal O(1) parallelism in practice due to straggler effects and diluted bandwidth re-
sources. The total wall-clock time follows Eq. (25), where communication overheads scale with
group and client counts. In bandwidth-constrained edge environments, ring-based topologies of-
ten demonstrate competitive performance despite sequential updates, as they avoid synchroniza-
tion bottlenecks and uplink transmission constraints. This insight suggests that in networks with
heterogeneous bandwidth capabilities or significant straggler effects, ring-based top-tier configura-
tions (Ring-Star, Ring-Ring) may offer better practical performance than theoretically optimal but
communication-intensive star-based alternatives, especially when inter-group heterogeneity is high.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

We employ ResNet-18 (Lin et al., 2020) and VGG-9 (Acar et al., 2021) for CIFAR-10 (Krizhevsky
et al., 2009), ResNet-18 for CINIC-10 (Darlow et al., 2018), ResNet-10 for Fashion-MNIST (Xiao
et al., 2017), and MLP for SST-2 (Socher et al., 2013). We simulate a hierarchical setup with
N = 100 clients distributed across G = 10 groups under four data partitioning schemes: (1) IID-
IID, (2) Non-IID-IID, (3) IID-Non-IID, and (4) Non-IID-Non-IID. To ensure fair comparison, the
learning rate (η) was tuned individually for each topology. We consistently observed that to maintain
comparable convergence, the required raw learning rates follow the pattern: ηStar-Star > ηStar-Ring ≈
ηRing-Star > ηRing-Ring. This empirical observation aligns perfectly with our theoretical findings.
Detailed descriptions of the hyperparameters (e.g., batch size, momentum), specific definitions of
the data partitioning schemes, and the complete search space for learning rates are provided in
Appendix B.1.

3.2 EFFECT OF TOPOLOGY

Figure 2 presents the test accuracy curves for the four HFL topologies under the four heterogeneity
settings. The results consistently show that topologies with a ring-based top-tier aggregation (i.e.,
Ring-Star and Ring-Ring) achieve superior convergence speed and higher final accuracy compared
to their star-based counterparts. Notably, the classical Star-Star configuration (equivalent to standard
HFedAvg) performs the worst across all settings. This is attributed to its conservative update mech-
anism, i.e., the double averaging at both group and global levels dampens the effective learning rate,
slowing convergence. In contrast, ring-based top-tier updates propagate changes sequentially, en-
abling more aggressive and continuous model refinement. This allows the global model to traverse
the loss landscape more rapidly, especially in heterogeneous environments. However, this perfor-
mance advantage comes with operational considerations: ring topologies exhibit greater sensitivity
to outlier clients and require careful hyperparameter tuning. A single client with highly skewed
data distribution can significantly influence the entire update chain, potentially degrading overall
performance if learning rates are not properly calibrated.
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Figure 2: Comparison of the four HFL topologies on CIFAR-10 Dataset
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Table 2: Test accuracy (%) on CIFAR-10, CINIC-10, Fashion-MNIST, and SST-2 under various
HFL topologies and data partitioning approaches. The non-IID partitions are generated using a
Dirichlet distribution.

Dataset Model Heterogeneity Topology

Inter Intra Star-Star Star-Ring Ring-Star Ring-Ring

CIFAR-10

ResNet-18
IID IID 88.48 90.30 90.40 91.53

Non-IID 87.01 89.55 89.75 91.10

Non-IID IID 87.03 88.22 89.15 90.94
Non-IID 86.78 87.40 90.01 90.33

VGG-9
IID IID 84.83 87.30 87.77 89.10

Non-IID 84.21 85.33 87.81 88.17

Non-IID IID 85.00 85.42 86.16 88.12
Non-IID 83.80 85.04 87.05 87.63

CINIC-10 ResNet-18
IID IID 76.88 78.59 78.70 79.56

Non-IID 74.25 76.09 78.23 78.35

Non-IID IID 74.20 72.53 75.83 76.23
Non-IID 73.63 74.21 77.11 76.78

Fashion-
MNIST ResNet-10

IID IID 89.70 92.59 92.67 93.01
Non-IID 87.45 92.33 92.76 93.07

Non-IID IID 88.21 89.41 91.40 91.33
Non-IID 88.04 92.18 92.27 93.33

SST-2 MLP
IID IID 69.61 72.36 80.50 81.42

Non-IID 69.95 73.17 79.59 80.50

Non-IID IID 68.12 73.85 79.13 81.08
Non-IID 68.12 73.97 78.44 81.65

3.3 EFFECT OF DATA HETEROGENEITY

Table 2 reports the final test accuracy for all topology and data partition combinations. A key
observation is that inter-group heterogeneity has a more detrimental effect on model performance
than intra-group heterogeneity. For instance, on CIFAR-10 with ResNet-18 under the Star-Ring
topology, shifting to Non-IID group distributions causes a 2.08% accuracy drop (from 90.30% to
88.22%), whereas Non-IID client distributions lead to a smaller drop of only 0.75% (to 89.55%). The
effect is even more pronounced on CINIC-10, where in the same setup, inter-group heterogeneity
results in a substantial 6.06% performance degradation (from 78.59% to 72.53%), compared to a
2.50% drop for intra-group heterogeneity. This trend also holds for Fashion-MNIST with ResNet-
10, where inter-group heterogeneity causes a significant 3.18% accuracy drop (from 92.59% to
89.41%), while the impact of intra-group heterogeneity is a negligible 0.26% decrease.

This empirical finding strongly supports our theoretical conclusion that inter-group divergence (ζ)
is the dominant bottleneck in HFL convergence. It suggests that system designers should prioritize
clustering strategies that minimize distributional differences between groups even at the expense of
increased intra-group heterogeneity. For example, grouping clients by semantic similarity of data
(e.g., geographic region, user demographics) rather than arbitrary network proximity can signifi-
cantly improve convergence.

3.4 EFFECT OF GROUPS

We further investigate how the number of groups G influences performance, focusing on the hybrid
topologies (i.e., Star-Ring and Ring-Star) as they offer a practical balance between convergence ef-
ficiency and stability. With the total number of clients N = 100, we vary the number of groups
G ∈ {1, 5, 10, 20, 100} and tune the learning rate for each configuration to ensure optimal perfor-
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mance. Figure 3 illustrate the convergence of Star-Ring and Ring-Star under both IID and Non-IID
settings. We can find two distinct patterns in Figure 3:

(1) Star-Ring performs best with fewer, larger groups, i.e., small values of G. This is because intra-
group ring aggregation benefits from longer update chains: sequential updates allow for deeper local
refinement before global synchronization, producing higher-quality group models.

(2) Ring-Star, in contrast, excels with more, smaller groups, i.e., large values of G. Here, parallel
intra-group aggregation (star) is less effective in large groups due to the averaging of divergent local
updates, which can dilute valuable gradients. Smaller groups reduce this averaging effect, and the
sequential inter-group updates in Ring-Star enable fine-grained global alignment.

It is worth noting that our conclusion continues to hold even in the extreme cases—Ring-Star with
G = N and Star-Ring with G = 1, both degenerating to a pure ring topology. This does not
conflict with the notion of “catastrophic forgetting” in sequential federated learning, because the
step size is not fixed. We scale it with the number of groups to keep the effective learning rate
constant. Under the same effective learning rate, selecting an appropriate G therefore yields optimal
performance. These results highlight a critical design principle: optimal topology selection depends
on the underlying group structure. In applications with a few large, data-rich clusters (e.g., hospital
networks), Star-Ring is preferable. In contrast, systems with many small or independent units (e.g.,
IoT devices, retail outlets) benefit more from the Ring-Star topology.
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Figure 3: Comparsion of Star-Ring and Ring-Star topologies with different numbers of groups on
CIFAR10 Dataset

4 CONCLUSION

This paper presents the first unified convergence analysis for all four HFL topologies under non-
convex objectives and intra/inter-group data heterogeneity. Our results reveal that: (1) top-tier
topology dictates convergence behavior, and ring-based top-tier aggregation generally converges
faster than star-based methods; (2) inter-group heterogeneity is the dominant bottleneck, outweigh-
ing intra-group effects; and (3) optimal topology depends on group structure, where Ring-Star suits
many small groups, while Star-Ring excels with few large clusters. These findings enable sys-
tem designers to move beyond heuristic topology choices and instead make informed, theoretically
grounded decisions based on deployment-specific constraints such as network scale, client distribu-
tion, and data heterogeneity profiles.
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A DISCUSSION

A.1 ALGORITHM DETAILS

For clarity and completeness, this appendix provides the detailed pseudocode for the four HFL
topologies mentioned in the main body of our paper. Each algorithm outlines a different communi-
cation pattern for both inter-group and intra-group model aggregation.

The Star-Star topology (Algorithm 1) represents a fully parallel framework. Both the groups at
the server level and the clients within each group perform their training and updates in parallel,
synchronizing with their respective servers before aggregation.

Algorithm 1 Star-Star Hierarchical FL

1: for global rounds r = 0, 1, . . . , R− 1 do
2: for groups g = 1, 2, . . . , G in parallel do
3: Initialize group model: x(r)

g,0 = x(r)

4: for group rounds p = 0, 1, . . . , P − 1 do
5: for clients m = 1, 2, . . . ,M in parallel do
6: Initialize local model: x(r)

g,p,m,0 = x
(r)
g,p

7: for local steps k = 0, 1, . . . ,K − 1 do
8: x

(r)
g,p,m,k+1 = x

(r)
g,p,m,k − ηg

(r)
g,p,m,k

9: end for
10: end for
11: Group aggregation: x(r)

g,p+1 = 1
M

∑M
m=1 x

(r)
g,p,m,K

12: end for
13: end for
14: Global aggregation: x(r+1) = 1

G

∑G
g=1 x

(r)
g,P

15: end for

The Star-Ring topology (Algorithm 2) combines parallel inter-group communication with sequential
intra-group updates. While groups update in parallel with the global server, clients within each group
form a ring, passing the model sequentially from one client to the next.

Algorithm 2 Star-Ring Hierarchical FL

1: for global rounds r = 0, 1, . . . , R− 1 do
2: for groups g = 1, 2, . . . , G in parallel do
3: Initialize group model: x(r)

g,0 = x(r)

4: for group rounds p = 0, 1, . . . , P − 1 do
5: for clients m = 1, 2, . . . ,M in sequence do

6: Initialize local model: x(r)
g,p,m,0 =

{
x
(r)
g,p if m = 1

x
(r)
g,p,m−1,K if m > 1

7: for local steps k = 0, 1, . . . ,K − 1 do
8: x

(r)
g,p,m,k+1 = x

(r)
g,p,m,k − ηg

(r)
g,p,m,k

9: end for
10: end for
11: Group model: x(r)

g,p+1 = x
(r)
g,p,M,K

12: end for
13: end for
14: Global aggregation: x(r+1) = 1

G

∑G
g=1 x

(r)
g,P

15: end for

Conversely, the Ring-Star topology (Algorithm 3) employs sequential communication among groups
and parallel updates within them. The groups form a ring at the global level, while clients inside
each group operate in a standard star configuration.
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Algorithm 3 Ring-Star Hierarchical FL

1: for global rounds r = 0, 1, . . . , R− 1 do
2: for groups g = 1, 2, . . . , G in sequence do

3: Initialize group model: x(r)
g,0 =

{
x(r) if g = 1

x
(r)
g−1,P if g > 1

4: for group rounds p = 0, 1, . . . , P − 1 do
5: for clients m = 1, 2, . . . ,M in parallel do
6: Initialize local model: x(r)

g,p,m,0 = x
(r)
g,p

7: for local steps k = 0, 1, . . . ,K − 1 do
8: x

(r)
g,p,m,k+1 = x

(r)
g,p,m,k − ηg

(r)
g,p,m,k

9: end for
10: end for
11: Group aggregation: x(r)

g,p+1 = 1
M

∑M
m=1 x

(r)
g,p,m,K

12: end for
13: end for
14: Global model: x(r+1) = x

(r)
G,P

15: end for

The Ring-Ring topology (Algorithm 4) implements a fully sequential communication protocol. Both
the groups at the global level and the clients within each group update their models in a sequential,
ring-based manner.

Algorithm 4 Ring-Ring Hierarchical FL

1: for global rounds r = 0, 1, . . . , R− 1 do
2: for groups g = 1, 2, . . . , G in sequence do

3: Initialize group model: x(r)
g,0 =

{
x(r) if g = 1

x
(r)
g−1,P if g > 1

4: for group rounds p = 0, 1, . . . , P − 1 do
5: for clients m = 1, 2, . . . ,M in sequence do

6: Initialize local model: x(r)
g,p,m,0 =

{
x
(r)
g,p if m = 1

x
(r)
g,p,m−1,K if m > 1

7: for local steps k = 0, 1, . . . ,K − 1 do
8: x

(r)
g,p,m,k+1 = x

(r)
g,p,m,k − ηg

(r)
g,p,m,k

9: end for
10: end for
11: Group model: x(r)

g,p+1 = x
(r)
g,p,M,K

12: end for
13: end for
14: Global model: x(r+1) = x

(r)
G,P

15: end for

A.2 WALL-CLOCK TIME ANALYSIS

To bridge the gap between convergence rounds and real-world training latency, we analyze the total
wall-clock time T . This is defined as the sum of computation and communication overheads: T =
TComp + TComm. Let S denote the model size, τx the computation time for a node x, and rA→B the
transmission rate from node A to B.

Single-Layer Analysis. In a single-layer setting with M clients, the Star topology is limited by the
straggler, i.e., T Star = maxm{ S

rGA→m
+ τm + S

rm→GA
}, where GA denotes the aggregation server.

Conversely, the Ring topology operates sequentially, accumulating latencies: TRing = S
rGA→1

+

14
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∑
m τm +

∑M
m=2

S
rm−1→m

+ S
rM→GA

. While T Star theoretically offers O(1) communication scaling
versus TRing’s O(M), this assumes unlimited bandwidth, which rarely holds in edge scenarios.

HFL Topology Analysis. The total wall-clock time for HFL over R global rounds, with P group
rounds, can be unified as:

Ttotal = R · (Tinter + P · Tintra) , (25)

where Tinter represents the wall-clock time for inter-group updates, and Tintra represents the wall-
clock time for intra-group updates. Table 3 details these components for four topologies.

Table 3: Wall-clock Time Components for HFL Topologies. Here G denotes the Intra-group Aggre-
gation Server (Group Server).

Topology Inter-Group Time (Tinter) Intra-Group Time (Tintra)

Star-Star
G

max
g=1

{
S

rGA→g
+ τg +

S
rg→GA

}
G

max
g=1

{
M

max
m=1

{
S

rG→m,g
+ τg,m + S

rm→G,g

}}
Star-Ring

G
max
g=1

{
S

rGA→g
+ τg +

S
rg→GA

}
G

max
g=1

{
S

rG→1,g
+

M∑
m=1

τg,m +
M∑

m=2

S
rm−1→m,g

+ S
rM→G,g

}
Ring-Star S

rGA→1
+

G∑
g=1

τg +
G∑

g=2

S
rg−1→g

+ S
rG→GA

G∑
g=1

{
M

max
m=1

{
S

rG→m,g
+ τg,m + S

rm→G,g

}}
Ring-Ring S

rGA→1
+

G∑
g=1

τg +
G∑

g=2

S
rg−1→g

+ S
rG→GA

G∑
g=1

{
S

rG→1,g
+

M∑
m=1

τg,m +
M∑

m=2

S
rm−1→m,g

+ S
rM→G,g

}

Bandwidth Constraints and Practical Latency. Theoretically, the star topology offers advan-
tages in parallel computation; however, in real-world scenarios, it often fails to achieve the
idea O(1) level of parallelism. In HFL, the total wall-clock time faces challenges similar to
those in single-layer FL. Many studies (Lim et al., 2021; Liu et al., 2025) on HFL communi-
cation optimization highlight that bandwidth resources are diluted as the number of users in-
creases, e.g., rm−1→m,g ∼ Rg

M , where Rg represents the total bandwidth resources of the
group server and M denotes the total number of clients connected to that server. Substituting
this relationship into the total wall-clock time for the Star-Star topology yields TStar−Star

total =

R
(
maxGg=1

{
2SG
R + τg

}
+ P ·maxGg=1

{
maxMm=1

{
2SM
Rg

+ τg,m

}})
, where the communication

latency in the upper layer approaches O(G), while the communication overhead in the lower layer
approaches O(M). In particular, the uplink transmission rate of workers is a major bottleneck in the
training process that can lead to the straggler’s effect (Lim et al., 2020). Therefore, in bandwidth-
constrained real-world scenarios, the ring topology remains a competitive option.

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

B.1 DETAILED EXPERIMENTAL SETTINGS

All batch normalization layers in the models (ResNet-18, VGG-9, ResNet-10) are removed to ensure
cleaner validation of our convergence bounds. We use SGD with a constant learning rate, zero
momentum, mini-batch size of 20, and gradient clipping. The global model is updated over R =
5000 rounds (R = 1000 for SST-2), with each group performing P = 1 group-level updates and
each client conducting K = 2 local steps.

Data Partitioning Schemes. We simulate a hierarchical setup with N = 100 clients evenly dis-
tributed across G = 10 groups, unless otherwise specified, and examine four data partitioning
schemes (Fang et al., 2024): (1) IID within groups & IID between groups, where data is uniformly
and randomly partitioned at both group and client levels; (2) Non-IID within groups & IID between
groups, where groups receive statistically similar data distributions, but clients within each group
are assigned non-IID partitions via a Dirichlet distribution with parameter α = 0.1 (α = 0.3 for
SST-2); (3) IID within groups & Non-IID between groups, where clients within a group share IID
data, but group-level distributions differ significantly, again using a Dirichlet split across groups;
and (4) Non-IID within groups & Non-IID between groups, where the entire dataset is partitioned
using a Dirichlet distribution, resulting in heterogeneous data at both intra- and inter-group levels.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Learning Rate Tuning. The learning rate (η) was tuned individually for each of the four topologies
to ensure they all operate near their optimal convergence speed. Taking CIFAR-10 as an example,
we explored a search space of {2, 1, 0.5, 0.2, 0.05, 0.01} to identify the optimal η. We found the
optimal learning rates to be 1.0 for Star-Star, 0.2 for both Star-Ring and Ring-Star, and 0.05 for
Ring-Ring.

B.2 COMPARISON WITH SINGLE-TIER FL

To evaluate the performance of HFL against traditional single-tier architectures, we conducted com-
parative experiments using the CIFAR-10 dataset with a ResNet-18 model. The total number of
clients was set to N = 100. We compared our Star-Star and Ring-Ring HFL against standard
single-tier FedAvg (denoted as Parallel FL, PFL) and single-tier Sequential FL (Li & Lyu, 2023)
(denoted as SFL).

The models were trained for 5,000 global rounds. The experimental results reveal distinct conver-
gence correlations: (i) PFL demonstrates a convergence speed and final accuracy highly similar to
that of the Star-Star HFL topology across both partitions; (ii) SFL exhibits performance characteris-
tics comparable to that of the Ring-Ring HFL topology.

The convergence curves for the IID and Non-IID settings are visualized in Figure 4. These compar-
isons empirically validate that the hierarchical structure itself does not inherently accelerate conver-
gence speed. Instead, the convergence characteristics of HFL topologies strongly correlate with the
aggregation mechanism (parallel vs. sequential) of their single-tier analogues. Consequently, the
primary advantage of HFL lies in mitigating communication bottlenecks at the central server rather
than improving convergence rates.

(a) IID (b) Non-IID

Figure 4: Comparison with Single-Tier FL on CIFAR-10 Dataset

B.3 EFFECT OF GROUP ROUNDS P AND LOCAL STEPS K

To investigate the impact of computation and communication frequencies on convergence dynamics,
we evaluated all four HFL topologies on the CIFAR-10 dataset (Non-IID) under varying numbers
of local steps (K ∈ {2, 5, 10}) and group rounds (P ∈ {1, 2, 5}). The convergence curves over the
first 3,000 global rounds are presented in Figure 5 below.

Effect of Local Steps. Comparing the curves with fixed P = 1 (Green: K = 2, Blue: K = 5, Or-
ange: K = 10), we observe that increasing K consistently accelerates the initial convergence speed
across all topologies. Increasing K increases the computational density per communication round,
allowing the model to traverse the loss landscape further before aggregation. This confirms that
greater local computation can effectively trade off communication rounds for faster convergence,
particularly in the initial phase.

Effect of Group Rounds. Comparing the curves with fixed K = 2 (Green: P = 1, Red: P = 2,
Purple: P = 5), increasing the number of group-level updates yields a substantial improvement in
convergence efficiency. Increasing P allows for more thorough intra-group refinement before global
synchronization. For Ring-Star, a larger P means the model circulates among groups more times
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(or effectively allows more groups to participate sequentially if viewed as virtual steps), drastically
reducing inter-group heterogeneity impact per global round.

While both increasing P and K improve convergence speed, increasing group rounds (P ) generally
provides a stronger acceleration effect than increasing local steps (K) in our experiments. This
suggests that for HFL, promoting consensus at the group level (via larger P ) is a highly effective
strategy for combating heterogeneity, especially for architectures with a Ring-based top tier.

(a) Star-Star (b) Star-Ring (c) Star-Ring (d) Ring-Ring

Figure 5: Impact of P and K on Convergence of Four HFL Topologies

C NOTATIONS

Table 4 summarizes the notations appearing in this paper.

Table 4: Key notations for HFL algorithm.

Symbol Description
R, r number, index of training rounds

G, g number, index of groups

M,m number, index of clients in each group

K, k number, index of local update steps

η learning rate (or stepsize)

η̃ effective learning rate

L L-smoothness constant (Assumption 1)

σ upper bound on variance of stochastic gradients at each client (Assumption 2)

ζ constants in Assumption 3 to bound inter-group heterogeneity

ζg constants in Assumption 4 to bound intra-group heterogeneity

F/Fg/Fg,m global objective/group p objective/local objective of client m in group p

x(r) global model parameters in the r-th round

x
(r)
g,p,m,k local model parameters of the m-th client after k local steps in the g-th group

after p group steps
in the r-th round

g
(r)
g,p,m,k g

(r)
g,p,m,k := ∇fg,m(x

(r)
g,p,m,k; ξ) denotes the stochastic gradients of Fg,m

regarding x
(r)
g,p,m,k
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D PROOF OF THEOREM1

In the following proof, we consider the full participation setting with a fixed execution order. Specif-
ically, all G groups and all M clients participate in every training round. We assume the execution
follows a deterministic sequence, corresponding to the natural indices {1, 2, . . . , G} for groups and
{1, 2, . . . ,M} for clients, without random permutation.

D.1 FIND THE PER-ROUND RECURSION

Lemma 1. Let Assumptions 1, 2 hold. If the learning rate satisfies η ≤ 1
2Lc0GPMK , then

E
[
F (x(r+1))− F (x(r))

]
≤ −1

2
ηc0GMPKE[∥∇F (x(r))∥2] + η2Lc0

2GMPKσ2

+
1

2
ηL2c0

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

E
[∥∥∥x(r)

g,p,m,k − x(r)
∥∥∥2] ,

where c0 is a topology-dependent coefficient that takes values of 1/(GM), 1/G, 1/M , and 1 for the
Star-Star, Star-Ring, Ring-Star, and Ring-Ring topologies, respectively.

Proof. In the following, we focus on a single training round, and hence we drop the superscripts r
for a while, e.g., writing xg,p,m,k to replace x(r)

g,p,m,k. Specifically, we would like to use x to replace

x
(r)
1,0,1,0. Unless otherwise stated, the expectation is conditioned on x(r).

Starting from the smoothness of F (applying Assumption 1, ∥∇F (x)−∇F (y)∥ ≤ L∥x−y∥), we
have

E [F (x+∆x)− F (x)] ≤ E ⟨∇F (x) ,∆x⟩︸ ︷︷ ︸
A1

+
L

2
E∥∆x∥2︸ ︷︷ ︸

A2

The model updates within a single global round for the four topologies can be represented by a
unified format,

∆x = x(R+1) − x(R) = −c0η
∑

g,p,m,k

gg,p,m,k,

where c0 denotes the topology-dependent coefficient as defined in Lemma 1.

After substituting the overall updates ∆x, we can get A1

E
[
⟨∇F (x(r)),∆x(r)⟩

]
= E

[〈
∇F (x(r)),−ηc0

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

g
(r)
g,p,m,k

〉]

= E

[〈
∇F (x(r)),−ηc0

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

∇Fg,m(x
(r)
g,p,m,k)

〉]

= E

[〈
∇F (x(r)),−ηc0

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

(
∇Fg,m(x

(r)
g,p,m,k)−∇F (x(r))

)〉]

+ E

[〈
∇F (x(r)),−ηc0

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

∇F (x(r))

〉]
= −ηc0GMPKE[∥∇F (x(r))∥2] + ηc0GMPKE

[〈
∇F (x(r)),

c0

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

(
∇Fg,m(x

(r)
g,p,m,k)−∇Fg,m(x(r))

)〉]
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≤ −ηc0GMPKE[∥∇F (x(r))∥2] + 1

2
ηc0GMPKE[∥∇F (x(r))∥2]

− 1

2
ηc0

1

GPMK
E

∥∥∥∥∥
G∑

g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

(
∇Fg,m(x

(r)
g,p,m,k)

)∥∥∥∥∥
2

+
1

2
ηc0GMPKE

∥∥∥∥∥c0
G∑

g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

(
∇Fg,m(x

(r)
g,p,m,k)−∇Fg,m(x(r))

)∥∥∥∥∥
2


= −1

2
ηc0GMPKE[∥∇F (x(r))∥2]

+
1

2
ηc0GMPKE

∥∥∥∥∥c0
G∑

g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

(
∇Fg,m(x

(r)
g,p,m,k)−∇Fg,m(x(r))

)∥∥∥∥∥
2

− 1

2
ηc0

1

GPMK
E

∥∥∥∥∥
G∑

g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

(
∇Fg,m(x

(r)
g,p,m,k)

)∥∥∥∥∥
2

≤ −1

2
ηc0GMPKE[∥∇F (x(r))∥2] + 1

2
ηL2c0

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

E
[∥∥∥x(r)

g,p,m,k − x(r)
∥∥∥2]

− 1

2
ηc0

1

GPMK
E

∥∥∥∥∥
G∑

g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

(
∇Fg,m(x

(r)
g,p,m,k)

)∥∥∥∥∥
2

where we use ⟨a, b⟩ = 1
2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
for the first inequality and use Jensen’s inequal-

ity, ∥
∑n

i=1 ai∥2 ≤ n
∑n

i=1 ∥ai∥2, for the last inequality.

Next, we bound the term A2,

1

2
LE[∥∆x∥2] = 1

2
LE

∥∥∥∥∥ηc0
G∑

g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

g
(r)
g,p,m,k

∥∥∥∥∥
2


≤ η2LE

∥∥∥∥∥c0
G∑

g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

(
g
(r)
g,p,m,k −∇Fg,m(x

(r)
g,p,m,k)

)∥∥∥∥∥
2


+ η2LE

∥∥∥∥∥c0
G∑

g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

∇Fg,m(x
(r)
g,p,m,k)

∥∥∥∥∥
2
 .

Let η ≤ 1
2Lc0GMPK , we have

E
[
F (x(r+1))− F (x(r))

]
≤ E

[
⟨∇F (x(r)),∆x(r)⟩

]
+

1

2
LE[∥∆x(r)∥2]

= −1

2
ηc0GMPKE[∥∇F (x(r))∥2] + η2Lc0

2GMPKσ2

+
1

2
ηL2c0

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

E
[∥∥∥x(r)

g,p,m,k − x(r)
∥∥∥2]

−
(
1
2 − Lc0GPMKη

)
c0η

GPMK
E

∥∥∥∥∥
G∑

g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

∇Fg,m(x
(r)
g,p,m,k)

∥∥∥∥∥
2

≤ −1

2
ηc0GMPKE[∥∇F (x(r))∥2] + η2Lc0

2GMPKσ2
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+
1

2
ηL2c0

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

E
[∥∥∥x(r)

g,p,m,k − x(r)
∥∥∥2] .

We define the client drift in HFL:

Er :=

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

E∥x(r)
g,p,m,k − x(r)∥

2
.

D.2 PROOF OF THEOREM 1 FOR THE STAR-STAR CASE

For Star-Star,

xg,p,m,k − x =

k−1∑
k′=0

gg,p,m,k′ +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

gg,p′,m′,k′ .

To bound Er, we first bound E∥xg,p,m,k − x∥.

E∥xg,p,m,k − x∥2

= η2E∥
k−1∑
k′=0

gg,p,m,k′ +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

gg,p′,m′,k′∥2

≤ 5η2E∥
k−1∑
k′=0

gg,p,m,k′ +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

gg,p′,m′,k′ −
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)

−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′) ∥2

+5η2E∥
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)+

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′)−
k−1∑
k′=0

∇Fg,m (x)

−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x) ∥2

+ 5η2E∥
k−1∑
k′=0

∇Fg,m (x) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)−
k−1∑
k′=0

∇Fg (x)

−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg (x) ∥2

+ 5η2E∥
k−1∑
k′=0

∇Fg (x)+

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg (x)−
k−1∑
k′=0

∇F (x)−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇F (x) ∥2

+ 5η2E∥
k−1∑
k′=0

∇F (x) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇F (x)∥2,

where we apply the Jensen’s Inequality for the first inequality. The term E∥xg,p,m,k − x∥2 is de-
composed into 5 components (e.g., local SGD noise, intra-group drift, inter-group drift, and global
model discrepancy).

Bounding the first term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

gg,p,m,k′ +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

gg,p′,m′,k′ −
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)

−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′) ∥2
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≤ 10η2
k−1∑
k′=0

E∥gg,p,m,k′ −∇Fg,m (xg,p,m,k′)∥2

+ 10η2
p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥gg,p′,m′,k′ −∇Fg,m′ (xg,p′,m′,k′) ∥2

≤ 10η2kσ2 + 10η2
pK

M
σ2

Bounding the second term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg,m (xg,p,m,k′) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′)

−
k−1∑
k′=0

∇Fg,m (x)−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x) ∥2

≤ 10η2k

k−1∑
k′=0

E∥∇Fg,m (xg,p,m,k′)−∇Fg,m (x)∥2

+ 10η2pMK

p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (xg,p′,m′,k′)−∇Fg,m′ (x) ∥2

≤ 10L2η2k

k−1∑
k′=0

E∥xg,p,m,k′ − x∥2 + 10L2η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

Bounding the third term in the left-hand inequality,

5η2E∥
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg (x)

+

k−1∑
k′=0

∇Fg,m (x)−
k−1∑
k′=0

∇Fg (x) ∥2 ≤ 10η2k

k−1∑
k′=0

E∥∇Fg,m (x)−∇Fg (x)∥2

The group objective function is defined as the aggregation of local functions, i.e., Fg =
1
M

∑M
m′=1 Fg,m′ . Consequently, the summation of the deviations of local gradients from the group

gradient vanishes.

Bounding the fourth term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg (x) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg (x)−
k−1∑
k′=0

∇F (x)−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇F (x) ∥2

≤ 10η2k

k−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2 + 10η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2

Bounding the fifth term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇F (x) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇F (x)∥2

≤ 10η2k

k−1∑
k′=0

E∥∇F (x)∥2 + 10η2pMK

p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2
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Substitute these terms into Er,

Er ≤ 10η2
∑

g,p,m,k

(
kσ2 +

pK

M
σ2 + L2k

k−1∑
k′=0

E∥xg,p,m,k′− x∥2

+ L2 pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′− x∥2 + k

k−1∑
k′=0

E∥∇Fg,m (x)−∇Fg (x)∥2

k

k−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2 + pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2

k

k−1∑
k′=0

E∥∇F (x)∥2 + pMK

p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2
)

Let c1 = 1
1−10L2P 2K2η2 , we have

Er ≤ c110η
2GPMK2σ2 + c110η

2GP 2K2σ2 + c110η
2GPMK3ζ̂2

+ c110η
2GPMK3ζ2 + c110η

2GP 3MK3ζ2

+ c110η
2GPMK3∥∇F (x)∥2 + c110η

2GP 3MK3∥∇F (x)∥2

≤ 10c1η
2GPMK2σ2 + 10c1η

2GP 2K2σ2 + 10c1η
2GPMK3ζ̂2 + 20c1η

2GP 3MK3ζ2

+ 20c1η
2GP 3MK3∥∇F (x)∥2

After substituting Er into E[F (x(r+1))− F (x(r))], we can obtain

E[F (x(r+1))− F (x(r))]

≤ −ηPK(
1

2
− 10c1η

2L2P 2K2)E[∥∇F (x(r))∥2] + η2L
PK

GM
σ2

+ 5c1η
3L2PK2σ2 + 5c1η

3L2P
2K2

M
σ2 + 5c1η

3L2PK3ζ̂2 + 10c1η
3L2P 3K3ζ2.

Let c2 = 1
1
2−10c1η2L2P 2K2 , then

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≤
c2
(
F (x(0))− F (x(R))

)
ηRPK

+ c2ηL
1

GM
σ2 + 5c1c2η

2L2Kσ2

+ 5c1c2η
2L2PK

M
σ2 + 5c1c2η

2L2K2ζ̂2 + 10c1c2η
2L2P 2K2ζ2.

Let η̃ = ηPK, and η̃ ≤ 1√
30L

, we have

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≲ A

η̃R
+

Lη̃σ2

GPMK
+

L2η̃2σ2

P 2K
+

L2η̃2σ2

PMK
+

L2η̃2ζ̂2

P 2
+ L2η̃2ζ2.

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] = O
(
LA

R
+

(Lσ2A)1/2√
GPMKR

+
(L2A2σ2)1/3

(P 2KR2)
1/3

+
(L2A2σ2)1/3

(PMKR2)
1/3

+
(L2A2ζ̂2)1/3

(P 2R2)
1/3

+
(L2A2ζ2)1/3

(R2)
1/3

)
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D.3 PROOF OF THEOREM 1 FOR THE STAR-RING CASE

For Star-Ring,

xg,p,m,k − x =

k−1∑
k′=0

gg,p,m,k′ +

m−1∑
m′=1

K−1∑
k′=0

gg,p,m′,k′ +

p−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg,p′,m′,k′ .

To bound Er, we first bound E∥xg,p,m,k − x∥.

E∥xg,p,m,k − x∥2

= η2E∥
k−1∑
k′=0

gg,p,m,k′ +

m−1∑
m′=1

K−1∑
k′=0

gg,p,m′,k′ +

p−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg,p′,m′,k′∥2

≤ 5η2E∥
k−1∑
k′=0

gg,p,m,k′+

m−1∑
m′=1

K−1∑
k′=0

gg,p,m′,k′+

p−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg,p′,m′,k′−
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)

−
m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p,m′,k′)−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′) ∥2

+5η2E∥
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)−
k−1∑
k′=0

∇Fg,m (x) +

m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p,m′,k′)

−
m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x) +

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′)−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x) ∥2

+5η2E∥
k−1∑
k′=0

∇Fg,m (x)+

m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)+

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)−
k−1∑
k′=0

∇Fg (x)

−
m−1∑
m′=1

K−1∑
k′=0

∇Fg (x)−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg (x) ∥2

+ 5η2E∥
k−1∑
k′=0

∇Fg (x) +

m−1∑
m′=1

K−1∑
k′=0

∇Fg (x) +

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg (x)−
k−1∑
k′=0

∇F (x)

−
m−1∑
m′=1

K−1∑
k′=0

∇F (x)−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x) ∥2

+ 5η2E∥
k−1∑
k′=0

∇F (x) +

m−1∑
m′=1

K−1∑
k′=0

∇F (x) +

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x)∥2

Bounding the first term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

gg,p,m,k′+

m−1∑
m′=1

K−1∑
k′=0

gg,p,m′,k′+

p−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg,p′,m′,k′−
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)

−
m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p,m′,k′)−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′) ∥2

≤ 15η2
k−1∑
k′=0

E∥gg,p,m,k′ −∇Fg,m (xg,p,m,k′)∥2

+ 15η2
m−1∑
m′=1

K−1∑
k′=0

E∥gg,p,m′,k′ −∇Fg,m′ (xg,p,m′,k′) ∥2
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+ 15η2
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥gg,p′,m′,k′ −∇Fg,m′ (xg,p′,m′,k′) ∥2

≤ 15η2kσ2 + 15η2mKσ2 + 15η2pMKσ2

Bounding the second term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)−
k−1∑
k′=0

∇Fg,m (x) +

m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p,m′,k′)

−
m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x) +

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′)−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x) ∥2

≤ 15η2k

k−1∑
k′=0

E∥∇Fg,m (xg,p,m,k′)−∇Fg,m (x)∥2

+ 15η2mK
m−1∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (xg,p,m′,k′)−∇Fg,m′ (x) ∥2

+ 15η2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (xg,p′,m′,k′)−∇Fg,m′ (x) ∥2

≤ 15L2η2k

k−1∑
k′=0

E∥xg,p,m,k′ − x∥2 + 15L2η2mK

m−1∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

+ 15L2η2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

Bounding the third term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg,m (x)+

m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)+

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)−
k−1∑
k′=0

∇Fg (x)

−
m−1∑
m′=1

K−1∑
k′=0

∇Fg (x)−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg (x) ∥2

≤ 15η2k

k−1∑
k′=0

E∥∇Fg,m (x)−∇Fg (x)∥2 + 15η2mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (x)−∇Fg (x)∥2

+ 15η2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (x)−∇Fg (x)∥2

Bounding the fourth term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg (x) +

m−1∑
m′=1

K−1∑
k′=0

∇Fg (x) +

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg (x)

−
k−1∑
k′=0

∇F (x)−
m−1∑
m′=1

K−1∑
k′=0

∇F (x)−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x) ∥2

≤ 15η2k

k−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2 + 15η2mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2
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+ 15η2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2

Bounding the fifth term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇F (x) +

m−1∑
m′=1

K−1∑
k′=0

∇F (x) +

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x)∥2

≤ 15η2k

k−1∑
k′=0

E∥∇F (x)∥2 + 15η2mK

p−1∑
p′=0

m−1∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2

+ 15η2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2

Substitute these terms into Er,

Er ≤ 15η2
∑

g,p,m,k

(
kσ2 +mKσ2 + pMKσ2 + L2k

k−1∑
k′=0

E∥xg,p,m,k′ − x∥2

+ L2mK

m−1∑
m′=1

K−1∑
k′=0

E∥xg,p,m′,k′ − x∥2 + L2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

+ k

k−1∑
k′=0

E∥∇Fg,m(x)−∇Fg(x)∥2 +mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′(x)−∇Fg(x)∥2

+ k

k−1∑
k′=0

E∥∇Fg(x)−∇F (x)∥2 +mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇Fg(x)−∇F (x)∥2

+ pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg(x)−∇F (x)∥2

+ k

k−1∑
k′=0

E∥∇F (x)∥2 +mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2 + pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2
)

≤ 15η2GPMK2σ2 + 15η2GPM2K2σ2 + 15η2GP 2M2K2σ2

+ 15η2GPMK3ζ̂2 + 15η2GPM3K3ζ̂2 + 15η2GPMK3ζ2

+ 15η2GPM3K3ζ2 + 15η2GP 3M3K3ζ2 + 15η2GPMK3∥∇F (x)∥2

+ 15η2GPM3K3∥∇F (x)∥2 + 15η2P 2M2K2∥∇F (x)∥2 + 15L2P 2M2K2η2Er

Let c1 = 1
1−15L2P 2M2K2η2 , we have

Er ≤ 45c1η
2GP 2M2K2σ2 + 30c1η

2GPM3K3ζ̂2 + 45c1η
2GP 3M3K3ζ2

+ 45c1η
2GP 3M3K3∥∇F (x)∥2

After substituting Er into E[F (x(r+1))− F (x(r))], we can obtain

E[F (x(r+1))− F (x(r))]

≤ −ηMPK(
1

2
− 45

2
c1η

2L2P 2M2K2)E[∥∇F (x(r))∥2] + η2L
PMK

G
σ2

+
45

2
c1η

3L2P 2M2K2σ2 + 15c1η
3L2PM3K3ζ̂2 +

45

2
c1η

3L2P 3M3K3ζ2.
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Let c2 = 1
1
2−

45
2 c1η2L2P 2M2K2 , then

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≤
c2
(
F (x(0))− F (x(R))

)
ηRPMK

+ c2ηL
1

G
σ2 +

45

2
c1c2η

2L2PMKσ2

+ 15c1c2η
2L2M2K2ζ̂2 +

45

2
c1c2η

2L2P 2M2K2ζ2.

Let η̃ = ηPMK, and η̃ ≤ 1√
60L

, we have

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≲ A

η̃R
+

Lη̃σ2

GPMK
+

L2η̃2σ2

PMK
+

L2η̃2ζ̂2

P 2
+ L2η̃2ζ2.

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] = O
(
LA

R
+

(Lσ2A)1/2√
GPMKR

+
(L2A2σ2)1/3

(PMKR2)
1/3

+
(L2A2ζ̂2)1/3

(P 2R2)
1/3

+
(L2A2ζ2)1/3

(R2)
1/3

)

D.4 PROOF OF THEOREM 1 FOR THE RING-STAR CASE

For Ring-Star,

xg,p,m,k − x =

k−1∑
k′=0

gg,p,m,k′+

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg,p′,m′,k′+

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg′,p′,m′,k′ .

To bound Er, we first bound E∥xg,p,m,k − x∥.

E∥xg,p,m,k − x∥2

= η2E∥
k−1∑
k′=0

gg,p,m,k′ +

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg,p′,m′,k′ +

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg′,p′,m′,k′∥2

≤ 5η2E∥
k−1∑
k′=0

gg,p,m,k′ +

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg,p′,m′,k′ +

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg′,p′,m′,k′

−
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)−
p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg,m′ (xg,p′,m′,k′)

−
g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′,m′ (xg′,p′,m′,k′) ∥2

+5η2E∥
k−1∑
k′=0

∇Fg,m (xg,p,m,k′) +

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg,m′ (xg,p′,m′,k′)

+

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′,m′ (xg′,p′,m′,k′)−
k−1∑
k′=0

∇Fg,m (x)

−
p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg,m′ (x)−
g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′,m′ (x) ∥2

+5η2E∥
k−1∑
k′=0

∇Fg,m (x)+

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg,m′ (x)+

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′,m′ (x)

−
k−1∑
k′=0

∇Fg (x)−
p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg (x)−
g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′ (x) ∥2
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+ 5η2E∥
k−1∑
k′=0

∇Fg (x) +

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg (x) +

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′ (x)

−
k−1∑
k′=0

∇F (x)−
p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇F (x)−
g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇F (x) ∥2

+ 5η2E∥
k−1∑
k′=0

∇F (x) +

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇F (x) +

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇F (x)∥2

Bounding the first term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

gg,p,m,k′ +

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg,p′,m′,k′ +

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg′,p′,m′,k′

−
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)−
p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg,m′ (xg,p′,m′,k′)

−
g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′,m′ (xg′,p′,m′,k′) ∥2

≤ 15η2
k−1∑
k′=0

E∥gg,p,m,k′ −∇Fg,m (xg,p,m,k′)∥2

+ 15η2
p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥gg,p′,m′,k′ −∇Fg,m′ (xg,p′,m′,k′) ∥2

+ 15η2
g−1∑
g′=1

P−1∑
p′=0

1

M2

M∑
m=1

K−1∑
k=0

E∥gg′,p′,m′,k′ −∇Fg′,m′ (xg′,p′,m′,k′) ∥2

≤ 15η2kσ2 + 15η2
pK

M
σ2 + 15η2

gPK

M
σ2

Bounding the second term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg,m (xg,p,m,k′) +

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg,m′ (xg,p′,m′,k′)

+

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′,m′ (xg′,p′,m′,k′)−
k−1∑
k′=0

∇Fg,m (x)

−
p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg,m′ (x)−
g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′,m′ (x) ∥2

≤ 15η2k

k−1∑
k′=0

E∥∇Fg,m (xg,p,m,k′)−∇Fg,m (x)∥2

+ 15η2pMK

p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (xg,p′,m′,k′)−∇Fg,m′ (x) ∥2

+ 15η2gPMK

g−1∑
g′=1

P−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (xg,p′,m′,k′)−∇Fg,m′ (x) ∥2
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≤ 15L2η2k

k−1∑
k′=0

E∥xg,p,m,k′ − x∥2 + 15L2η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

+ 15L2η2
gPK

M

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

Bounding the third term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg,m (x)+

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg,m′ (x)+

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′,m′ (x)

−
k−1∑
k′=0

∇Fg (x)−
p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg (x)−
g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′ (x) ∥2

≤ 15η2k

k−1∑
k′=0

E∥∇Fg,m (x)−∇Fg (x)∥2

+ 15η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (x)−∇Fg (x)∥2

+ 15η2
gPK

M

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg′,m′ (x)−∇Fg′ (x)∥2

Bounding the fourth term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg (x) +

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg (x) +

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇Fg′ (x)

−
k−1∑
k′=0

∇F (x)−
p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇F (x)−
g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇F (x) ∥2

≤ 15η2k

k−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2 + 15η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2

+ 15η2
gPK

M

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg′ (x)−∇F (x)∥2

Bounding the fifth term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇F (x) +

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇F (x) +

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

∇F (x)∥2

≤ 15η2k

k−1∑
k′=0

E∥∇F (x)∥2 + 15η2pMK

p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2

+ 15η2gPMK

g−1∑
g′=1

P−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2

Substitute these terms into Er,

Er ≤ 15η2
∑

g,p,m,k

(
kσ2 +

pK

M
σ2 +

gPK

M
σ2
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+ L2k

k−1∑
k′=0

E∥xg,p,m,k′ − x∥2 + L2 pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

+ L2 gPK

M

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2 + k

k−1∑
k′=0

E∥∇Fg,m(x)−∇Fg(x)∥2

+ k

k−1∑
k′=0

E∥∇Fg(x)−∇F (x)∥2 + pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg(x)−∇F (x)∥2

+
gPK

M

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg(x)−∇F (x)∥2 + k

k−1∑
k′=0

E∥∇F (x)∥2

+ pMK

p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2 + gPMK

g−1∑
g′=1

P−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2
)

≤ 15η2GPMK2σ2 + 15η2GP 2K2σ2 + 15η2G2P 2K2σ2

+ 15η2GPMK3ζ̂2 + 15η2GPMK3ζ2 + 15η2GP 3MK3ζ2 + 15η2G3P 3MK3ζ2

+ 15η2GPMK3∥∇F (x)∥2 + 15η2GP 3MK3∥∇F (x)∥2 + 15η2G3P 3MK3∥∇F (x)∥2

+ 15L2G2P 2K2η2Er

Let c1 = 1
1−15L2G2P 2K2η2 , we have

Er ≤ 15c1η
2GPMK2σ2 + 30c1η

2G2P 2K2σ2 + 15c1η
2GPMK3ζ̂2 + 45c1η

2G3P 3MK3ζ2

+ 45c1η
2G3P 3MK3∥∇F (x)∥2

After substituting Er into E[F (x(r+1))− F (x(r))], we can obtain

E[F (x(r+1))− F (x(r))]

≤ −ηGPK(
1

2
− 45

2
c1η

2L2G2P 2K2)E[∥∇F (x(r))∥2] + η2L
GPK

M
σ2

+
15

2
c1η

3L2GPK2σ2+15c1η
3L2G

2P 2K2

M
σ2+

15

2
c1η

3L2GPK3ζ̂2+
45

2
c1η

3L2G3P 3K3ζ2.

Let c2 = 1
1
2−

45
2 c1η2L2G2P 2K2 , then

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≤
c2
(
F (x(0))− F (x(R))

)
ηRGPK

+ c2ηL
1

M
σ2 +

15

2
c1c2η

2L2Kσ2

+15c1c2η
2L2GPK

M
σ2+

15

2
c1c2η

2L2K2ζ̂2+
45

2
c1c2η

2L2G2P 2K2ζ2.

Let η̃ = ηGPK, and η̃ ≤ 1√
60L

, we have

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≲ A

η̃R
+

Lη̃σ2

GPMK
+

L2η̃2σ2

G2P 2K
+

L2η̃2σ2

GPMK
+

L2η̃2ζ̂2

G2P 2
+ L2η̃2ζ2.

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] = O
(
LA

R
+

(Lσ2A)1/2√
GPMKR

+
(L2A2σ2)1/3

(G2P 2KR2)
1/3

+
(L2A2σ2)1/3

(GPMKR2)
1/3

+
(L2A2ζ̂2)1/3

(G2P 2R2)
1/3

+
(L2A2ζ2)1/3

(R2)
1/3

)
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D.5 PROOF OF THEOREM 1 FOR THE RING-RING CASE

For Ring-Ring,

xg,p,m,k − x =

k−1∑
k′=0

gg,p,m,k′ +

m−1∑
m′=1

K−1∑
k′=0

gg,p,m′,k′ +

p−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg,p′,m′,k′

+

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg′,p′,m′,k′ .

To bound Er, we first bound E∥xg,p,m,k − x∥.

E∥xg,p,m,k − x∥2

= η2E∥
k−1∑
k′=0

gg,p,m,k′ +

m−1∑
m′=1

K−1∑
k′=0

gg,p,m′,k′ +

p−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg,p′,m′,k′

+

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg′,p′,m′,k′∥2

≤ 5η2E∥
k−1∑
k′=0

gg,p,m,k′ +

m−1∑
m′=1

K−1∑
k′=0

gg,p,m′,k′ +

p−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg,p′,m′,k′

+

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg′,p′,m′,k′ −
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)−
m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p,m′,k′)

−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′)−
g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg′,p′,m′,k′) ∥2

+5η2E∥
k−1∑
k′=0

∇Fg,m (xg,p,m,k′) +

m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p,m′,k′)

+

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′) +

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg′,p′,m′,k′)

−
k−1∑
k′=0

∇Fg,m (x)−
m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)

−
g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg′,m′ (x) ∥2

+5η2E∥
k−1∑
k′=0

∇Fg,m (x)+

m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)+

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)

+

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg′,m′ (x)−
k−1∑
k′=0

∇Fg (x)−
m−1∑
m′=1

K−1∑
k′=0

∇Fg (x)

−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg (x)−
g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg′ (x) ∥2

+ 5η2E∥
k−1∑
k′=0

∇Fg (x) +

m−1∑
m′=1

K−1∑
k′=0

∇Fg (x) +

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg (x)

+

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg′ (x)−
k−1∑
k′=0

∇F (x)−
m−1∑
m′=1

K−1∑
k′=0

∇F (x)
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−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x)−
g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x) ∥2

+5η2E∥
k−1∑
k′=0

∇F (x)+

m−1∑
m′=1

K−1∑
k′=0

∇F (x)+

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x)+

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x)∥2

Bounding the first term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

gg,p,m,k′ +

m−1∑
m′=1

K−1∑
k′=0

gg,p,m′,k′ +

p−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg,p′,m′,k′

+

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k=0

gg′,p′,m′,k′ −
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)−
m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p,m′,k′)

−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′)−
g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg′,p′,m′,k′) ∥2

≤ 20η2
k−1∑
k′=0

E∥gg,p,m,k′ −∇Fg,m (xg,p,m,k′)∥2

+ 20η2
m−1∑
m′=1

K−1∑
k′=0

E∥gg,p,m′,k′ −∇Fg,m′ (xg,p,m′,k′) ∥2

+ 20η2
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥gg,p′,m′,k′ −∇Fg,m′ (xg,p′,m′,k′) ∥2

+ 20η2
g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥gg′,p′,m′,k′ −∇Fg,m′ (xg′,p′,m′,k′) ∥2

≤ 20η2kσ2 + 20η2mKσ2 + 20η2pMKσ2 + 20η2gPMKσ2

Bounding the second term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg,m (xg,p,m,k′) +

m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p,m′,k′)

+

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′) +

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg′,p′,m′,k′)

−
k−1∑
k′=0

∇Fg,m (x)−
m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)

−
g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg′,m′ (x) ∥2

≤ 20η2k

k−1∑
k′=0

E∥∇Fg,m (xg,p,m,k′)−∇Fg,m (x)∥2

+ 20η2mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (xg,p,m′,k′)−∇Fg,m′ (x) ∥2

+ 20η2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (xg,p′,m′,k′)−∇Fg,m′ (x) ∥2
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+ 20η2gPMK

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg′,m′ (xg′,p′,m′,k′)−∇Fg′,m′ (x) ∥2

≤ 20L2η2k

k−1∑
k′=0

E∥xg,p,m,k′ − x∥2 + 20L2η2mK

m−1∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

+ 20L2η2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

+ 20L2η2gPMK

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg′,p′,m′,k′ − x∥2

Bounding the third term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg,m (x)+

m−1∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)+

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)

+

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg′,m′ (x)−
k−1∑
k′=0

∇Fg (x)−
m−1∑
m′=1

K−1∑
k′=0

∇Fg (x)

−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg (x)−
g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg′ (x) ∥2

≤ 20η2k

k−1∑
k′=0

E∥∇Fg,m (x)−∇Fg (x)∥2 + 20η2mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (x)−∇Fg (x)∥2

+ 20η2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (x)−∇Fg (x)∥2

+ 20η2gPMK

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg′,m′ (x)−∇Fg′ (x)∥2

Bounding the fourth term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg (x) +

m−1∑
m′=1

K−1∑
k′=0

∇Fg (x) +

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg (x)

+

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇Fg′ (x)−
k−1∑
k′=0

∇F (x)−
m−1∑
m′=1

K−1∑
k′=0

∇F (x)

−
p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x)−
g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x) ∥2

≤ 20η2k

k−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2 + 20η2mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2

+ 20η2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2

+ 20η2gPMK

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg′ (x)−∇F (x)∥2
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Bounding the fifth term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇F (x)+

m−1∑
m′=1

K−1∑
k′=0

∇F (x)+

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x)+

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

∇F (x)∥2

≤ 20η2k

k−1∑
k′=0

E∥∇F (x)∥2 + 20η2mK

p−1∑
p′=0

m−1∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2

+ 20η2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2 + 20η2gPMK

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2

Substitute these terms into Er,

Er ≤ 20η2
∑

g,p,m,k

(
kσ2 +mKσ2 + pMKσ2 + gPMKσ2 + L2k

k−1∑
k′=0

E∥xg,p,m,k′ − x∥2

+ L2mK

m−1∑
m′=1

K−1∑
k′=0

E∥xg,p,m′,k′ − x∥2 + L2pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

+ L2gPMK

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg′,p′,m′,k′ − x∥2 + k

k−1∑
k′=0

E∥∇Fg,m(x)−∇Fg(x)∥2

+mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′(x)−∇Fg(x)∥2 + k

k−1∑
k′=0

E∥∇Fg(x)−∇F (x)∥2

+mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇Fg(x)−∇F (x)∥2 + pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg(x)−∇F (x)∥2

+ gPMK

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg′(x)−∇F (x)∥2 + k

k−1∑
k′=0

E∥∇F (x)∥2

+mK

m−1∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2 + pMK

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2

+ gpMK

g−1∑
g′=1

P−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2
)

≤ 20η2GPMK2σ2 + 20η2GPM2K2σ2 + 20η2GP 2M2K2σ2 + 20η2G2P 2M2K2σ2

+ 20η2GPMK3ζ̂2 + 20η2GPM3K3ζ̂2 + 20η2GPMK3ζ2

+ 20η2GPM3K3ζ2 + 20η2GP 3M3K3ζ2 + 20η2G3P 3M3K3ζ2

+ 20η2GPMK3∥∇F (x)∥2 + 20η2GPM3K3∥∇F (x)∥2 + 20η2GP 3M3K3∥∇F (x)∥2

+ 20η2G3P 3M3K3∥∇F (x)∥2 + 20L2G2P 2M2K2η2Er

Let c1 = 1
1−20L2G2P 2M2K2η2 , we have

Er ≤ 80c1η
2G2P 2M2K2σ2 + 40c1η

2GPM3K3ζ̂2 + 80c1η
2G3P 3M3K3ζ2

+ 80c1η
2G3P 3M3K3∥∇F (x)∥2

After substituting Er into E[F (x(r+1))− F (x(r))], we can obtain

E[F (x(r+1))− F (x(r))]
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≤ −ηGPMK(
1

2
− 40c1η

2L2G2P 2M2K2)E[∥∇F (x(r))∥2] + η2LGPMKσ2

+ 40c1η
3L2GP 2M2K2σ2 + 20c1η

3L2GPM3K3ζ̂2 + 40c1η
3L2G3P 3M3K3ζ2.

Let c2 = 1
1
2−40c1η2L2G2P 2M2K2 , then

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≤
c2
(
F (x(0))− F (x(R))

)
ηRGPMK

+ c2ηLσ
2 + 40c1c2η

2L2GPMKσ2

+ 20c1c2η
2L2M2K2ζ̂2 + 40c1c2η

2L2G2P 2M2K2ζ2.

Let η̃ = ηGPMK, and η̃ ≤ 1
10L , we have

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≲ A

η̃R
+

Lη̃σ2

GPMK
+

L2η̃2σ2

GPMK
+

L2η̃2ζ̂2

G2P 2
+ L2η̃2ζ2.

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] = O
(
LA

R
+

(Lσ2A)1/2√
GPMKR

+
(L2A2σ2)1/3

(GPMKR2)
1/3

+
(L2A2ζ̂2)1/3

(G2P 2R2)
1/3

+
(L2A2ζ2)1/3

(R2)
1/3

)

E PROOF OF THEOREM 2

In the following proof, we consider the partial client participation setting, specifically, selecting
partial clients without replacement. So we assume that π1 = {π1(1), π1(2), . . . , π1(G)} is a per-
mutation of {1, 2, . . . , G}, π2 = {π2(1), π2(2), . . . , π2(M)} is a permutation of {1, 2, . . . ,M} in
a certain training round. And only the first S2 selected clients π2 = {π2(1), π2(2), . . . , π2(S2)}
within the first S1 selected groups {π1(1), π1(2), . . . , π1(S1)} will participate in this round. Unless
otherwise stated, we use E[·] to represent the expectation with respect to both types of randomness
(i.e., sampling data samples ξ and sampling clients π2).

E.1 FIND THE PER-ROUND RECURSION

Lemma 2. Let Assumptions 1, 2 hold. If the learning rate satisfies η ≤ 1
5Lc0S1S2PK , then

E
[
F (x(r+1))− F (x(r))

]
≤ −ηc0S1S2PK

(
1

2
− 5

2
ηLc0S1S2PK

)
E[∥∇F (x(r))∥2]

+
5

2
η2Lc0

2S1S2PKσ2 +
5

2
η2Lc0

2S1P
2S2

2K2ζ̂2 +
5

2
η2Lc0

2S1
2P 2S2K

2ζ2

+ηL2c0

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

−x(r)∥2].

where c0 is a topology-dependent coefficient that takes values of 1/(S1S2), 1/S1, 1/S2, and 1 for
the Star-Star, Star-Ring, Ring-Star, and Ring-Ring topologies, respectively.

Proof.

E [F (x+∆x)− F (x)] ≤ E [⟨∇F (x),∆x⟩] + 1

2
LE[∥∆x∥2].

∆x(r) = x(r+1) − x(r) = −η
1

S1

S1∑
s1=1

P−1∑
p=0

1

S2

S2∑
s2=1

K−1∑
k=0

g
(r)
π1(s1),p,π2(s2),k

.
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E
[
⟨∇F (x(r)),∆x(r)⟩

]
= E

[〈
∇F (x(r)),−ηc0

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

gπ1(s1),p,π2(s2),k

〉]

= E

[〈
∇F (x(r)),−ηc0

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

∇Fπ1(s1),π2(s2)(x
(r)
s1,p,s2,k

)

〉]

= E

[〈
∇F (x(r)),−ηc0

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

(
∇Fπ1(s1),π2(s2)(x

(r)
s1,p,s2,k

)−∇F (x(r))
)〉]

+ E

[〈
∇F (x(r)),−ηc0

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

∇F (x(r))

〉]
= −ηc0S1S2PKE[∥∇F (x(r))∥2] + ηc0S1S2PKE

[〈
∇F (x(r)),

c0

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

(
∇Fπ1(s1),π2(s2)(x

(r)
s1,p,s2,k

)−∇Fπ1(s1),π2(s2)(x
(r))
)〉]

≤ −ηc0S1S2PKE[∥∇F (x(r))∥2] + 1

2
ηc0S1S2PKE[∥∇F (x(r))∥2]

+
1

2
ηc0S1S2PKE

[∥∥∥∥∥c0
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

(
∇Fπ1(s1),p,π2(s2),k(x

(r)
s1,p,s2,k

)

−∇Fπ1(s1),p,π2(s2),k(x
(r))
)∥∥∥2]

= −1

2
ηc0S1S2PKE[∥∇F (x(r))∥2]

+
1

2
ηc0S1S2PKE

∥∥∥∥∥c0
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

(
∇Fπ1(s1),π2(s2)(x

(r)
s1,p,s2,k

)−∇Fπ1(s1),π2(s2)(x
(r))
)∥∥∥∥∥

2

≤ −1

2
ηc0S1S2PKE[∥∇F (x(r))∥2] + 1

2
ηL2c0

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E
[∥∥∥x(r)

s1,p,s2,k
− x(r)

∥∥∥2]

1

2
LE[∥∆x∥2]

=
1

2
LE

∥∥∥∥∥ηc0
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

g
(r)
π1(s1),p,π2(s2),k

∥∥∥∥∥
2


≤ 5

2
η2LE

∥∥∥∥∥c0
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

(
g
(r)
π1(s1),p,π2(s2),k

−∇Fπ1(s1),π2(s2)(x
(r)
s1,p,s2,k

)
)∥∥∥∥∥

2


+
5

2
LE

∥∥∥∥∥c0
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

(
∇Fπ1(s1),π2(s2)(x

(r)
s1,p,s2,k

)−∇Fπ1(s1),π2(s2)(x
(r))
)∥∥∥∥∥

2


+
5

2
η2LE

∥∥∥∥∥c0
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

(
∇Fπ1(s1),π2(s2)(x

(r))−∇Fπ1(s1),π2(s2)(x
(r))
)∥∥∥∥∥

2

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+
5

2
η2LE

∥∥∥∥∥c0
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

(
∇Fπ1(s1),π2(s2)(x

(r))−∇F (x(r))
)∥∥∥∥∥

2


+
5

2
η2LE

∥∥∥∥∥c0
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

∇F (x(r))

∥∥∥∥∥
2


≤ 5

2
η2Lc0

2S1S2PKσ2

+
5

2
η2L3c0S1S2PK

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

+
5

2
η2Lc0

2S1P
2S2

2K2ζ̂2

+
5

2
η2Lc0

2S1
2P 2S2K

2ζ2

+
5

2
η2Lc0

2S1
2S2

2P 2K2E[∥∇F (x(r))∥2].

Let η ≤ 1
5Lc0S1S2PK , we have

E
[
F (x(r+1))− F (x(r))

]
≤ E

[
⟨∇F (x(r)),∆x(r)⟩

]
+

1

2
LE[∥∆x(r)∥2]

= −ηc0S1S2PK

(
1

2
− 5

2
ηLc0S1S2PK

)
E[∥∇F (x(r))∥2]

+
5

2
η2Lc0

2S1S2PKσ2 +
5

2
η2Lc0

2S1P
2S2

2K2ζ̂2 +
5

2
η2Lc0

2S1
2P 2S2K

2ζ2

+ηL2c0

(
1

2
+
5

2
ηLc0S1S2PK

) S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

−x(r)∥2]

≤ −ηc0S1S2PK

(
1

2
− 5

2
ηLc0S1S2PK

)
E[∥∇F (x(r))∥2]

+
5

2
η2Lc0

2S1S2PKσ2 +
5

2
η2Lc0

2S1P
2S2

2K2ζ̂2 +
5

2
η2Lc0

2S1
2P 2S2K

2ζ2

+ηL2c0

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

−x(r)∥2].

E.2 PROOF OF THEOREM 2 FOR THE STAR-STAR CASE

x
(r)
s1,p,s2,k

− x(r) = −η

k−1∑
k′=0

gπ1(s1),p,π2(s2),k′ − η

p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

gπ1(s1),p′,π2(s′2),k
′ .

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

= E


∥∥∥∥∥∥η

k−1∑
k′=0

gπ1(s1),p,π2(s2),k′ + η

p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

gπ1(s1),p′,π2(s′2),k
′

∥∥∥∥∥∥
2


≤ 10η2E

∥∥∥∥∥
k−1∑
k′=0

(
gπ1(s1),p,π2(s2),k′ −∇Fπ1(s1),π2(s2)(x

(r)
s1,p′,s2,k′)

)∥∥∥∥∥
2

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+ 10η2E


∥∥∥∥∥∥
p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

(
gπ1(s1),p′,π2(s′2),k

′ −∇Fπ1(s1),π2(s′2)
(x

(r)
s1,p′,s′2,k

′)
)∥∥∥∥∥∥

2


+ 10η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1),π2(s2)(x

(r)
s1,p′,s2,k′)−∇Fπ1(s1),π2(s2)(x

(r))
)∥∥∥∥∥

2


+ 10η2E


∥∥∥∥∥∥
p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s2)(x

(r)
s1,p′,s2,k′)−∇Fπ1(s1),π2(s2)(x

(r))
)∥∥∥∥∥∥

2


+ 10η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1),π2(s2)(x

(r))−∇Fπ1(s1)(x
(r))
)∥∥∥∥∥

2


+ 10η2E


∥∥∥∥∥∥
p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s2)(x

(r))−∇Fπ1(s1)(x
(r))
)∥∥∥∥∥∥

2


+ 10η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1)(x

(r))−∇F (x(r))
)∥∥∥∥∥

2


+ 10η2E


∥∥∥∥∥∥
p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1)(x

(r))−∇F (x(r))
)∥∥∥∥∥∥

2


+ 10η2E

∥∥∥∥∥
k−1∑
k′=0

∇F (x(r))

∥∥∥∥∥
2


+ 10η2E


∥∥∥∥∥∥
p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

∇F (x(r))

∥∥∥∥∥∥
2


≤ 10η2kσ2 + 10η2p
1

S2
Kσ2

+ 10η2k

k−1∑
k′=0

L2E[∥x(r)
s1,p,s2,k′ − x(r)∥2]+10η2pK

p−1∑
p′=0

1

S2

S2∑
s′2=1

k−1∑
k′=0

L2E[∥x(r)
s1,p′,s′2,k

′ − x(r)∥2]

+ 10η2k2ζ̂2 + 10η2p2
1

S2
K2ζ̂2

+ 10η2k2ζ2 + 10η2p2K2ζ2

+ 10η2k2E[∥∇F (x(r))∥2] + 10η2p2K2E[∥∇F (x(r))∥2].

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

≤ 10η2S1PS2K
2σ2+10η2S1P

2K2σ2

+ 20η2L2P 2K2
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

+ 10η2S1PS2K
3ζ̂2 + 10η2S1P

3K3ζ̂2

+ 20η2S1P
3S2K

3ζ2
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+ 20η2S1P
3S2K

3E[∥∇F (x(r))∥2].

Let c1 = 1
1−20η2L2P 2K2 ,

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

≤ 10c1η
2S1PS2K

2σ2 + 10c1η
2S1P

2K2σ2

+ 10c1η
2S1PS2K

3ζ̂2 + 10c1η
2S1P

3K3ζ̂2 + 20c1η
2S1P

3S2K
3ζ2

+ 20c1η
2S1P

3S2K
3E[∥∇F (x(r))∥2]

E
[
F (x(r+1))− F (x(r))

]
≤ −ηPK

(
1

2
− 1

2
ηLPK − 20c1η

2L2P 2K2

)
E[∥∇F (x(r))∥2]

+
5

2
η2L

1

S1
P

1

S2
Kσ2 + 10c1η

3L2PK2σ2 + 10c1η
3L2P 2 1

S2
K2σ2

+
5

2
η2LP 2 1

S2
K2ζ̂2 + 10c1η

3L2PK3ζ̂2 + 10c1η
3L2P 3 1

S2
K3ζ̂2

+
5

2
η2L

1

S1
P 2K2ζ2 + 20c1η

3L2P 3K3ζ2

Let c2 = 1
1
2−

5
2ηLPK−20c1η2L2P 2K2 ,

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≲ c2(F (x(0))− F (x(R)))

ηRPK
+ c2ηL

1

S1

1

S2
σ2 + c1c2η

2L2Kσ2

+ c2ηLP
1

S2
Kζ̂2 + c1c2η

2L2P
1

S2
Kσ2 + c1c2η

2L2K2ζ̂2

+ c2ηL
1

S1
PKζ2 + c1c2η

2L2P 2 1

S2
K2ζ̂2 + c1c2η

2L2P 2K2ζ2.

Let η̃ = ηPK and η̃ ≤ 1
10L ,

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≲F (x(0))− F (x(R))

η̃R
+

Lη̃σ2

S1PS2K
+

Lη̃ζ̂2

S2
+

Lη̃ζ2

S1

+
L2η̃2σ2

P 2K
+

L2η̃2σ2

PS2K
+

L2η̃2ζ̂2

P 2
+

L2η̃2ζ̂2

S2
+ L2η̃2ζ2.

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] = O
(
LA

R
+

(LAσ2)1/2√
S1PS2KR

+
(LAζ̂2)1/2√

S2R
+

(LAζ2)1/2√
S1R

+
(L2A2σ2)1/3

(P 2KR2)1/3
+

(L2A2σ2)1/3

(PS2KR2)1/3
+

(L2A2ζ̂2)1/3

(P 2R2)1/3

+
(L2A2ζ̂2)1/3

(S2R2)1/3
+

(L2A2ζ2)1/3

(R2)1/3

)
E.3 PROOF OF THEOREM 2 FOR THE STAR-RING CASE

x
(r)
s1,p,s2,k

− x(r) = −η

k−1∑
k′=0

gπ1(s1),p,π2(s2),k′ − η

p−1∑
p′=0

1

S2

S2∑
s2=1

K−1∑
k′=0

gπ1(s1),p′,π2(s′2),k
′
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− η

p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

gπ1(s1),p′,π2(s′2),k
′ .

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

≤ 15η2E

∥∥∥∥∥
k−1∑
k′=0

(
gπ1(s1),p,π2(s2),k′ −∇Fπ1(s1),π2(s2)(x

(r)
s1,p,s2,k′)

)∥∥∥∥∥
2


+ 15η2E


∥∥∥∥∥∥

s2∑
s′2=1

K−1∑
k′=0

(
gπ1(s1),p,π2(s′2),k

′ −∇Fπ1(s1),π2(s′2)
(x

(r)
s1,p,s′2,k

′)
)∥∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥
p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
gπ1(s1),p′,π2(s′2),k

′ −∇Fπ1(s1),π2(s′2)
(x

(r)
s1,p′,s′2,k

′)
)∥∥∥∥∥∥

2


+ 15η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1),π2(s2)(x

(r)
s1,p,s2,k′)−∇Fπ1(s1),π2(s2)(x

(r))
)∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥

s2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s′2)

(x
(r)
s1,p,s′2,k

′)−∇Fπ1(s1),π2(s′2)
(x(r))

)∥∥∥∥∥∥
2


+ 15η2E


∥∥∥∥∥∥
p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s′2)

(x
(r)
s1,p′,s′2,k

′)−∇Fπ1(s1),π2(s′2)
(x(r))

)∥∥∥∥∥∥
2


+ 15η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1),π2(s2)(x

(r))−∇Fπ1(s1)(x
(r))
)∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥

s2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s′2)

(x(r))−∇Fπ1(s1)(x
(r))
)∥∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥
p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s′2)

(x(r))−∇Fπ1(s1)(x
(r))
)∥∥∥∥∥∥

2


+ 15η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1)(x

(r))−∇F (x(r))
)∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥

s2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1)(x

(r))−∇F (x(r))
)∥∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥
p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1)(x

(r))−∇F (x(r))
)∥∥∥∥∥∥

2


+ 15η2E

∥∥∥∥∥
k−1∑
k′=0

∇F (x(r))

∥∥∥∥∥
2

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+ 15η2E


∥∥∥∥∥∥

s2∑
s′2=1

K−1∑
k′=0

∇F (x(r))

∥∥∥∥∥∥
2


+ 15η2E


∥∥∥∥∥∥
p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

∇F (x(r))

∥∥∥∥∥∥
2


≤ 15η2kσ2 + 15η2s2Kσ2 + 15η2pS2Kσ2

+ 15η2L2k

k−1∑
k′=0

E[∥x(r)
s1,p,s2,k′ − x(r)∥2]

+ 15η2L2s2K

s2∑
s′2=1

k−1∑
k′=0

E[∥x(r)
s1,p,s′2,k

′ − x(r)∥2]

+ 15η2L2ps2K

p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

E[∥x(r)
s1,p′,s′2,k

′ − x(r)∥2]

+ 15η2k2ζ̂2 + 15η2s2K
2ζ̂2 + 15η2p2S2K

2ζ̂2

+ 15η2k2ζ22 + 15η2s22K
2ζ2 + 15η2p2s22K

2ζ2

+ 15η2K2E[∥∇F (x(r))∥2] + 15η2s22K
2E[∥∇F (x(r))∥2] + 15η2p2S2

2K
2E[∥∇F (x(r))∥2].

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

≤ 45η2S1P
2S2

2K
2σ2

+ 45η2L2P 2S2
2K

2
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

+ 45η2S1P
3S2

2K
3ζ̂2

+ 45η2S1P
3S3

2K
3ζ2

+ 45η2S1P
3S3

2K
3E[∥∇F (x(r))∥2].

Let c1 = 1
1−45η2L2P 2S2

2K
2 ,

S1∑
s1=1

P1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

≤ 45c1η
2S1P

2S2
2K

2σ2 + 45c1η
2S1P

3S2
2K

3ζ̂2 + 45c1η
2S1P

3S3
2K

3ζ2

+ 45c1η
2S1P

3S3
2K

3E[∥∇F (x(r))∥2].

Let c2 = 1
1
2−

5
2ηLPS2K−45c1η2L2P 2S2

2K
2 ,

1

R

R−1∑
k=0

E[∥∇F (x(r))∥2] ≤ c2
F (x(0))− F (x(R))

ηRPS2K

+
5

2
c2ηL

1

S1
σ2 + 45c1c2η

2L2PS2Kσ2

+
5

2
c2ηLPKζ̂2 + 45c1c2η

2L2P 2S2K
2ζ̂2

+
5

2
c2ηL

1

S1
PS2Kζ2 + 45c1c2η

2L2P 2S2
2K

2ζ2.
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Let η̃ = ηPS2K and η̃ ≤ 1
45L ,

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≲F (x(0))− F (x(R))

η̃R
+

Lη̃σ2

S1PS2K
+

Lη̃ζ̂2

S2
+

Lη̃ζ2

S1

+
L2η̃2σ2

PS2K
+

L2η̃2ζ̂2

S2
+ L2η̃2ζ2.

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] = O
(
LA

R
+

(LAσ2)1/2√
S1PS2KR

+
(LAζ̂2)1/2√

S2R
+

(LAζ2)1/2√
S1R

+
(L2A2σ2)1/3

(PS2KR2)1/3
+

(L2A2ζ̂2)1/3

(S2R2)1/3
+

(L2A2ζ2)1/3

(R2)1/3

)
E.4 PROOF OF THEOREM 2 FOR THE RING-STAR CASE

x
(r)
s1,p,s2,k

− x(r) = −η

k−1∑
k′=0

g
(r)
s1,p,s2,k′ − η

p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

g
(r)
s1,p′,s′2,k

′

− η

s1∑
s′1=1

P−1∑
p′=0

1

S2

S2∑
s′2=1

k−1∑
k′=0

g
(r)
s′1,p

′,s2,k′ .

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

≤ 15η2E

∥∥∥∥∥
k−1∑
k′=0

(
g
(r)
s1,p,s2,k′ −∇Fπ1(s1),π2(s2)(x

(r)
s1,p,s2,k′)

)∥∥∥∥∥
2


+ 15η2E


∥∥∥∥∥∥
p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

(
g
(r)
s1,p′,s′2,k

′ −∇Fπ1(s1),π2(s′2)
(x

(r)
s1,p′,s′2,k

′)
)∥∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥

s1∑
s′1=1

P−1∑
p′=0

1

S2

S2∑
s′2=1

k−1∑
k′=0

(
g
(r)
s′1,p

′,s2,k′ −∇Fπ1(s′1),π2(s′2)
(x

(r)
s′1,p

′,s′2,k
′)
)∥∥∥∥∥∥

2


+ 15η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1),π2(s2)(x

(r)
s1,p,s2,k′)−∇Fπ1(s1),π2(s2)(x

(r))
)∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥
p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s′2)

(x
(r)
s1,p′,s′2,k

′)−∇Fπ1(s1),π2(s′2)
(x(r))

)∥∥∥∥∥∥
2


+ 15η2E


∥∥∥∥∥∥

s1∑
s′1=1

P−1∑
p′=0

1

S2

S2∑
s′2=1

k−1∑
k′=0

(
∇Fπ1(s′1),π2(s′2)

(x
(r)
s′1,p

′,s′2,k
′)−∇Fπ1(s′1),π2(s′2)

(x(r))
)∥∥∥∥∥∥

2


+ 15η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1),π2(s2)(x

(r))−∇Fπ1(s1)(x
(r))
)∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥
p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s′2)

(x(r))−∇Fπ1(s1)(x
(r))
)∥∥∥∥∥∥

2

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+ 15η2E


∥∥∥∥∥∥

s1∑
s′1=1

P−1∑
p′=0

1

S2

S2∑
s′2=1

k−1∑
k′=0

(
∇Fπ1(s′1),π2(s′2)

(x(r))−∇Fπ1(s′1)
(x(r))

)∥∥∥∥∥∥
2


+ 15η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1)(x

(r))−∇F (x(r))
)∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥
p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1)(x

(r))−∇F (x(r))
)∥∥∥∥∥∥

2


+ 15η2E


∥∥∥∥∥∥

s1∑
s′1=1

P−1∑
p′=0

1

S2

S2∑
s′2=1

k−1∑
k′=0

(
∇Fπ1(s′1)

(x(r))−∇F (x(r))
)∥∥∥∥∥∥

2


+ 15η2E

∥∥∥∥∥
k−1∑
k′=0

∇F (x(r))

∥∥∥∥∥
2


+ 15η2E


∥∥∥∥∥∥
p−1∑
p′=0

1

S2

S2∑
s′2=1

K−1∑
k′=0

∇F (x(r))

∥∥∥∥∥∥
2


+ 15η2E


∥∥∥∥∥∥

s1∑
s′1=1

P−1∑
p′=0

1

S2

S2∑
s′2=1

k−1∑
k′=0

∇F (x(r))

∥∥∥∥∥∥
2


≤ 15η2Kσ2 + 15η2p
1

S2
Kσ2 + 15η2s1P

1

S2
Kσ2

+ 15η2L2k

k−1∑
k′=0

E[∥x(r)
s1,p,s2,k′ − x(r)∥2]

+ 15η2L2p

p−1∑
p′=0

1

S2

S2∑
s′2=1

K

K−1∑
k′=0

E[∥x(r)
s1,p′,s′2,k

′ − x(r)∥2]

+ 15η2L2s1

s1∑
s′1=1

P

P−1∑
p′=0

1

S2

S2∑
s′2=1

K

K−1∑
k′=0

E[∥x(r)
s′1,p

′,s′2,k
′ − x(r)∥2]

+ 15η2k2ζ̂2 + 15η2p2
1

s2
K2ζ̂2 + 15η2s21p

2 1

s2
K2ζ̂2

+ 15η2K2s22 + 15η2p2K2s22 + 15η2s21p
2K2s22

+ 15η2K2E[∥∇F (x(r))∥2] + 15η2p2K2E[∥∇F (x(r))∥2] + 15η2s21p
2K2E[∥∇F (x(r))∥2].

S1∑
s1=1

P1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

≤ 15η2S1PS2K
2σ2 + 30η2S2

1P
2K2σ2

+ 45η2S2
1P

2K2
S1∑

s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

+ 15η2S1PS2K
3ζ̂2 + 30η2S3

1P
3K3ζ̂2

+ 45η2S2
1P

3S2K
3ζ2
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+ 45η2S3
1P

3S2K
3E[∥∇F (x(r))∥2].

Let c1 = 1
1−45η2L2S2

1P
2K2 ,

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

≤ 15c1η
2S1PS2K

2σ2 + 30c1η
2S2

1P
2K2σ2

+ 15c1η
2S1PS2K

3ζ̂2 + 30c1η
2S3

1P
3K3ζ̂2

+ 45c1η
2S2

1P
3S2K

3ζ2 + 45c1η
2S3

1P
3S2K

3E[∥∇F (x(r))∥2].

E[F (x(r+1))− F (x(r))]

≤ −ηS1PK

(
1

2
− 5

2
ηLS1PK − 45c1η

2L2S2
1P

2K2

)
E[∥∇F (x(r))∥2]

+
5

2
η2LS1P

1

S2
Kσ2 + 15c1η

3L2S1PK2σ2 + 30c1η
3L2S2

1P
2 1

S2
K2σ2

+
5

2
η2LS2

1P
2 1

S2
K2ζ̂2 + 15c1η

3L2S1PK3ζ̂2 + 30c1η
3L2S3

1P
3 1

S2
K3ζ̂2

+
5

2
η2LS1P

2K2ζ2 + 45c1η
3L2S2

1P
3K3ζ2.

Let c2 = 1
1
2−

5
2ηLS1pK−45c1c2η2L2S2

1P
2K2 ,

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2]

≤ c2E[F (x(0))− F (x(R))]

ηRS1PK

+
5

2
c2ηL

1

S2
σ2 + 15c1c2η

2L2Kσ2 + 30c1c2η
2L2S1P

1

S2
Kσ2

+
5

2
c2ηLS1P

1

S2
Kζ̂2 + 15c1c2η

2L2K2ζ̂2 + 30c1c2η
2L2S2

1P
2 1

S2
K2ζ̂2

+
5

2
c2ηLPKζ2 + 45c1c2η

2L2S1P
2K2ζ2.

Let η̃ = ηS1PK and η̃ ≤ 1
15L ,

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≲F (x(0))− F (x(R))

η̃R
+

Lη̃σ2

S1PS2K
+

Lη̃ζ̂2

S2
+

Lη̃ζ2

S1

+
L2η̃2σ2

S1
2P 2K

+
L2η̃2σ2

S1PS2K
+

L2η̃2ζ̂2

S1
2P 2

+
L2η̃2ζ̂2

S2
+

L2η̃2ζ2

S1
.

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] = O
(
LA

R
+

(LAσ2)1/2√
S1PS2KR

+
(LAζ̂2)1/2√

S2R
+

(LAζ2)1/2√
S1R

+
(L2A2σ2)1/3

(S2
1P

2KR2)1/3
+

(L2A2σ2)1/3

(S1PS2KR2)1/3
+

(L2A2ζ̂2)1/3

(S2
1P

2R2)1/3

+
(L2A2ζ̂2)1/3

(S2R2)1/3
+

(L2A2ζ2)1/3

(S1R2)1/3

)
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E.5 PROOF OF THEOREM 2 FOR THE RING-RING CASE

x
(r)
s1,p,s2,k

− x(r) = −η

k−1∑
k′=0

g
(r)
s1,p,s2,k′ − η

s2∑
s′2=1

K−1∑
k′=0

g
(r)
s1,p,s′2,k

′

− η

p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

g
(r)
s1,p′,s′2,k

′ − η

s1∑
s′1=1

P−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

g
(r)
s′1,p

′,s′2,k
′ .

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

≤ 20η2E

∥∥∥∥∥
k−1∑
k′=0

(
g
(r)
s1,p,s2,k′ −∇Fπ1(s1),π2(s2)(x

(r)
s1,p,s2,k′)

)∥∥∥∥∥
2


+ 20η2E


∥∥∥∥∥∥

s2∑
s′2=1

K−1∑
k′=0

(
g
(r)
s1,p,s′2,k

′ −∇Fπ1(s1),π2(s′2)
(x

(r)
s1,p,s′2,k

′)
)∥∥∥∥∥∥

2


+ 20η2E


∥∥∥∥∥∥
p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
g
(r)
s1,p′,s′2,k

′ −∇Fπ1(s1),π2(s′2)
(x

(r)
s1,p′,s′2,k

′)
)∥∥∥∥∥∥

2


+ 20η2E


∥∥∥∥∥∥

s1∑
s′1=1

P−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
g
(r)
s′1,p

′,s′2,k
′ −∇Fπ1(s′1),π2(s′2)

(x
(r)
s′1,p

′,s′2,k
′)
)∥∥∥∥∥∥

2


≤ 20η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1),π2(s2)(x

(r)
s1,p,s2,k′)−∇Fπ1(s1),π2(s2)(x

(r))
)∥∥∥∥∥

2


+ 20η2E


∥∥∥∥∥∥

s2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s′2)

(x
(r)
s1,p,s′2,k

′)−∇Fπ1(s1),π2(s′2)
(x(r))

)∥∥∥∥∥∥
2


+ 20η2E


∥∥∥∥∥∥
p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s′2)

(x
(r)
s1,p′,s′2,k

′)−∇Fπ1(s1),π2(s′2)
(x(r))

)∥∥∥∥∥∥
2


+ 20η2E


∥∥∥∥∥∥

s1∑
s′1=1

P−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s′1),π2(s′2)

(x
(r)
s′1,p

′,s′2,k
′)−∇Fπ1(s′1),π2(s′2)

(x(r))
)∥∥∥∥∥∥

2


≤ 20η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1),π2(s2)(x

(r))−∇Fπ1(s1)(x
(r))
)∥∥∥∥∥

2


+ 20η2E


∥∥∥∥∥∥

s2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s′2)

(x(r))−∇Fπ1(s1)(x
(r))
)∥∥∥∥∥∥

2


+ 20η2E


∥∥∥∥∥∥
p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1),π2(s′2)

(x(r))−∇Fπ1(s1)(x
(r))
)∥∥∥∥∥∥

2


+ 20η2E


∥∥∥∥∥∥

s1∑
s′1=1

P−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s′1),π2(s′2)

(x(r))−∇Fπ1(s′1)
(x(r))

)∥∥∥∥∥∥
2

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≤ 20η2E

∥∥∥∥∥
k−1∑
k′=0

(
∇Fπ1(s1)(x

(r))−∇F (x(r))
)∥∥∥∥∥

2


+ 20η2E


∥∥∥∥∥∥

s2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1)(x

(r))−∇F (x(r))
)∥∥∥∥∥∥

2


+ 20η2E


∥∥∥∥∥∥
p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s1)(x

(r))−∇F (x(r))
)∥∥∥∥∥∥

2


+ 20η2E


∥∥∥∥∥∥

s1∑
s′1=1

P−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

(
∇Fπ1(s′1)

(x(r))−∇F (x(r))
)∥∥∥∥∥∥

2


≤ 20η2E

∥∥∥∥∥
k−1∑
k′=0

∇F (x(r))

∥∥∥∥∥
2


+ 20η2E


∥∥∥∥∥∥

s2∑
s′2=1

K−1∑
k′=0

∇F (x(r))

∥∥∥∥∥∥
2


+ 20η2E


∥∥∥∥∥∥
p−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

∇F (x(r))

∥∥∥∥∥∥
2


+ 20η2E


∥∥∥∥∥∥

s1∑
s′1=1

P−1∑
p′=0

S2∑
s′2=1

K−1∑
k′=0

∇F (x(r))

∥∥∥∥∥∥
2


≤ 20η2kσ2 + 20η2s2Kσ2 + 20η2pS2Kσ2 + 20η2s1PS2Kσ2

+ 20η2L2k

k−1∑
k′=0

E[∥x(r)
s1,p,s2,k′ − x(r)∥2]

+ 20η2L2(s2 − 1)K

s2−1∑
s′2=1

K−1∑
k′=0

E[∥x(r)
s1,p,s′2,k

′ − x(r)∥2]

+ 20η2L2p

p−1∑
p′=0

S2

S2∑
s′2=1

K

K−1∑
k′=0

E[∥x(r)
s1,p′,s′2,k

′ − x(r)∥2]

+ 20η2L2(s1 − 1)

s1−1∑
s′1=1

P

P−1∑
p′=0

S2

S2∑
s′2=1

K

K−1∑
k=0

E[∥x(r)
s′1,p

′,s′2,k
′ − x(r)∥2]

+ 20η2k2ζ̂2 + 20η2(s2 − 1)K2ζ̂2 + 20η2p2S2K
2ζ̂2 + 20η2(s1 − 1)P 2S2K

2ζ̂2

+ 20η2k2ζ2 + 20η2(s2 − 1)K2ζ2 + 20η2p2S2
2K

2ζ2 + 20η2(s1 − 1)P 2S2
2K

2ζ2

+ 20η2k2E[∥∇F (x(r))∥2] + 20η2(s2 − 1)K2E[∥∇F (x(r))∥2]
+ 20η̃2p2S2

2K
2E[∥∇F (x(r))∥2] + 20η̃2(s1 − 1)2P 2S2

2K
2E[∥∇F (x(r))∥2].

Let c1 = 1
1−80η2S2

1P
2S2

2K
2 ,

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]
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≤ 80c1η
2S2

1P
2S2

2K
2σ2

+ 80c1η
2S2

1P
2S2

2K
2

S1∑
s1=1

P−1∑
p=0

S2∑
s2=1

K−1∑
k=0

E[∥x(r)
s1,p,s2,k

− x(r)∥2]

+ 80c1η
2S3

1P
3S2

2K
3ζ̂2

+ 80c1η
2S2

1P
3S3

2K
3ζ2

+ 80c1η
2S3

1P
3S3

2K
3E[∥∇F (x(r))∥2].

E[F (x(r+1))− F (x(r))]

≤ −ηS1PS2K

(
1

2
− 5

2
ηLS1PS2K − 80c1c2η

2L2S2
1P

2S2
2K

2

)
E[∥∇F (x(r))∥2]

+
5

2
η2LS1PS2Kσ2 + 80c1η

3L2S2
1P

2S2
2K

2σ2

+
5

2
η2LS2

1P
2S2K

2ζ̂2 + 80c1η
3L2S3

1P
3S2

2K
3ζ̂2

+
5

2
η2LS1P

2S2
2K

2ζ2 + 80c1η
3L2S2

1P
3S3

2K
3ζ2.

Let c2 = 1
1
2−

5
2ηLS1PS2K−80c1c2η3L2S2

1P
2S2

2K
2 ,

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≤
c2
(
F (x(0))− F (x(R))

)
ηRS1PS2K

+
5

2
c2ηLσ

2 + 80c1c2η
2L2S1PS2Kσ2

+
5

2
c2ηLS1PKζ̂2 + 80c1c2η

2L2S2
1P

2S2K
2ζ̂2

+
5

2
c2ηLPS2Kζ2 + 80c1c2η

2L2S1P
2S2

2K
2ζ2.

Let η̃ = ηS1PS2K and η̃ ≤ 1
20L ,

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] ≲F (x(0))− F (x(R))

η̃R
+

Lη̃σ2

S1PS2K
+

Lη̃ζ̂2

S2
+

Lη̃ζ2

S1

+
L2η̃2σ2

S1PS2K
+

L2η̃2ζ̂2

S2
+

L2η̃2ζ2

S1
.

1

R

R−1∑
r=0

E[∥∇F (x(r))∥2] = O
(
LA

R
+

(LAσ2)1/2√
S1PS2KR

+
(LAζ̂2)1/2√

S2R
+

(LAζ2)1/2√
S1R

+
(L2A2σ2)1/3

(S1PS2KR2)1/3
+

(L2A2ζ̂2)1/3

(S2R2)1/3
+

(L2A2ζ2)1/3

(S1R2)1/3

)
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