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ABSTRACT

Hierarchical Federated Learning (HFL) addresses critical scalability limitations in
conventional federated learning by incorporating intermediate aggregation layers,
yet optimal topology selection across varying data heterogeneity conditions and
network conditions remains an open challenge. This paper establishes the first
unified convergence framework for all four HFL topologies (Star-Star, Star-Ring,
Ring-Star, and Ring-Ring) under non-convex objectives and different intra/inter-
group data heterogeneity. Our theoretical analysis reveals three fundamental
principles for topology selection: (1) The top-tier aggregation topology exerts
greater influence on convergence than the intra-group topology, with ring-based
top-tier configurations generally outperforming star-based alternatives; (2) Opti-
mal topology strongly depends on client grouping characteristics, where Ring-
Star excels with numerous small groups while Star-Ring is superior for large,
client-dense clusters; and (3) Inter-group heterogeneity dominates convergence
dynamics across all topologies, necessitating clustering strategies that minimize
inter-group divergence. Extensive experiments on CIFAR-10/CINIC-10/Fashion-
MNIST with ResNet-18/VGG-9/ResNet-10 validate these insights, and provide
practitioners with theoretically grounded guidance for HFL system design in real-
world deployments.

1 INTRODUCTION

Federated Learning (FL)(McMahan et al., 2017) has revolutionized collaborative machine learning
by enabling distributed model training across decentralized devices while preserving data privacy.
However, conventional single-tier FL faces critical scalability challenges in large-scale deployments,
including communication bottlenecks, synchronization latency, and vulnerability to single-point
failures. Hierarchical Federated Learning (HFL)(Liu et al., 2020; Deng et al., 2021) has emerged as
a promising paradigm, introducing intermediate aggregation layers (such as edge servers or cluster
heads) to form a two/multi-tier architecture that distributes the coordination burden for massive de-
ployment. Despite its promise, the theoretical understanding of HFL remains nascent, particularly
under realistic conditions of data heterogeneity and diverse hierarchical topologies.

In two-tier HFL frameworks, each level of aggregation can adopt either star (parallel) or ring (se-
quential) topology, yielding four distinct configurations: Star-Star, Star-Ring, Ring-Star, and Ring-
Ring (see Figure 1). These topological choices fundamentally influence the convergence dynamics,
robustness to data heterogeneity, and communication efficiency. For instance, star aggregation en-
ables parallel client updates but may suffer from abrupt synchronization of divergent models, while
ring aggregation propagates updates sequentially, potentially mitigating client drift in non-IID set-
tings through incremental alignment (Li & Lyu, 2023; 2025).

Literature Review. Existing theoretical analyses of HFL have largely focused on the Star-Star
topology on non-convex functions (Zhou & Cong, 2019; Wang et al., 2022; Castiglia et al., 2021),
data heterogeneity(Wang et al., 2022), partial client participation (Jiang & Zhu, 2024), and other
variants (Liu et al., 2022; Yang et al., 2023). Some recent works explore Star-Ring topology (Lee
et al., 2020; Ding et al., 2024; Fang et al., 2022) and the Ring-Star topology (Chaoyang et al., 2020;
Huang et al., 2024). However, a unified convergence analysis that compares all four topologies is
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still lacking. This theoretical gap impedes informed topology selection in practical deployments,
where system performance is highly sensitive to data distribution and network conditions.

(a) Star-Star HFL (b) Star-Ring HFL (c) Ring-Star HFL (d) Ring-Ring HFL

Figure 1: Different topology configurations of HFL

Research Question. The central research problem is:

How should practitioners select the optimal HFL topology configuration when facing varying de-
grees of intra-group and inter-group data heterogeneity, diverse client grouping characteristics, and
constrained network conditions?

This research problem is of practical importance for system convergence. For example, in systems
with high inter-group heterogeneity (such as clients clustered by geographic region with distinct
data distributions), selecting star topology at the top tier may amplify inter-group divergence through
abrupt parallel synchronization. Conversely, ring aggregation at the top tier enables gradual, sequen-
tial alignment that may better accommodate distributional differences. This topology selection prob-
lem is further complicated when considering diverse client grouping characteristics in HFL. With-
out principled guidance for this selection, system designers face a critical “topology lottery”, where
deployment success depends on unguided architectural choices rather than theoretically-grounded
decisions.

Analytical Challenges. Establishing a comprehensive convergence framework for HFL that en-
compasses all four topology configurations presents three critical challenges, stemming from the
intricate hierarchical structure of HFL and the complex interactions between topology choices and
data heterogeneity:

(1) Hierarchical Heterogeneity Interdependence. Unlike single-tier FL, HFL exhibits a cascading
heterogeneity relationship where intra-group and inter-group data distributions interact in non-trivial
ways. Specifically, intra-group client drift destabilizes lower-tier aggregations, which then amplifies
inter-group divergence during upper-tier synchronization. This creates a feedback loop where local
model divergence within groups directly exacerbates global model inconsistency. The mathematical
consequence is that heterogeneity cannot be decomposed into independent terms; rather, conver-
gence bounds must account for the multiplicative interaction between intra/inter-group divergence,
requiring novel analytical techniques beyond conventional FL frameworks.

(2) Cross-Tier Dynamic Coupling. The two-tier aggregation architecture creates a bidirectional de-
pendency where updates at one tier directly influence the error propagation at the other tier. This
coupling means that convergence behavior emerges from the interaction of hierarchical layers rather
than from the sum of individual tier performances. For example, the effective learning rate at the
global tier depends on the accumulated error from lower-tier aggregations, while the stability of
lower-tier updates is conditioned on the quality of the global model. This interdependence invali-
dates standard approaches that analyze hierarchical systems through sequential single-tier approxi-
mations.

(3) Compounded Topology-Specific Biases. Different topologies introduce distinct statistical prop-
erties that compound across hierarchical layers in topology-dependent ways. Star topology pro-
vides unbiased parallel updates but suffers from high variance, while ring topology reduces variance
through sequential updates but introduces temporal bias that accumulates along the update chain.
Critically, in HFL these effects compound across tiers: ring-based lower tiers accumulate inter-
client gradient biases, while upper-tier ring aggregation propagates outdated global estimates. Such
topology-specific error propagation patterns require sophisticated cross-client error term analysis

2
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Table 1: Convergence Rates for Different Hierarchical Topologies

Topology Convergence Rate(4)

Star-Star

O
(
LA
R + (Lσ2A)1/2√

PMKR
+ (Lσ2A)1/2

√
P 2K2R

+ (L2A2ζ̂2)1/3

P 2/3R2/3 + (L2A2ζ2)1/3

R2/3

)
O
(
LA
R +

(
LAσ2

KPMGR

)1/2
+
(

LAσ
R

√
M
KP

)1/2
+
(

LAζ
R

)2/3
+
(

LAζ̂
PR

)2/3)
(1)

O
(

LA√
PKR

+ σ2

MR + σ2

PR + 1√
PKR

σ2

GM

)
(2)

O
(

LA√
GPMKR

+ Lσ2
√
GPMKR

+ ζ̂2

K2R + ζ2

K2R + ζ2

R

)
(3)

Star-Ring O
(
LA
R + (Lσ2A)1/2√

PMKR
+ (L2A2ζ̂2)1/3

P 2/3R2/3 + (L2A2ζ2)1/3

R2/3

)
Ring-Star O

(
LA
R + (Lσ2A)1/2√

GPMKR
+ (Lσ2A)1/2

√
G2P 2K2R

+ (L2A2ζ̂2)1/3

G2/3P 2/3R2/3 + (L2A2ζ2)1/3

R2/3

)
Ring-Ring O

(
LA
R + (Lσ2A)1/2√

GPMKR
+ (L2A2ζ̂2)1/3

G2/3P 2/3R2/3 + (L2A2ζ2)1/3

R2/3

)
(1)

HSGD under Non-IID data on non-convex case Wang et al. (2022).
(2)

Hier-Local-QSGD under IID data on non-convex case Liu et al. (2022).
(3)

HFL with a partial client participation under Non-IID data on non-convex case Jiang & Zhu
(2024).

(4)
We omit absolute constants and polylogarithmic factors. R denotes the number of global rounds.
G denotes the number of groups. P denotes the number of group update steps. M denotes the
number of clients in a group. K denotes the number of local steps. σ denotes SGD variance. ζ
denotes inter-group heterogeneity. ζ̂ denotes intra-group heterogeneity. L denotes L-smoothness
constant. A := F (x(0))− F ∗.

that explicitly tracks how topology choices modulate bias-variance tradeoffs across hierarchical lay-
ers.

Contributions. This paper establishes the first unified theoretical framework that analyzes and com-
pares all four HFL topology configurations under non-convex optimization objective and different
intra/inter-group data heterogeneity (see Table 1). Our convergence bounds explicitly quantify the
effects of key system parameters, including number of groups G , clients per group M , local steps
K, and group rounds P , and reveal how topology choices interact with intra/inter-group data het-
erogeneity to shape convergence behavior. Our theoretical analysis formalizes the tradeoff between
ring and star aggregation mechanisms across hierarchical tiers and provides principled guidance for
topology selection in practical deployments.

(1) HFL prioritizes scalability over convergence acceleration. Counterintuitively, HFL is primarily
valuable for enabling large-scale deployments where single-tier FL becomes impractical, rather than
inherently accelerating convergence. Crucially, HFL with ring aggregation at the top tier (Ring-Star,
Ring-Ring) consistently outperforms star-based counterparts under data heterogeneity. This reveals
that carefully selected single-tier FL configurations may actually converge faster than two-tier HFL,
positioning HFL as a solution for scalability constraints rather than a convergence accelerator.

(2) Inter-group heterogeneity dominates convergence dynamics. We establish that inter-group data
divergence (ζ) exerts a more significant impact on convergence than intra-group heterogeneity (ζ̂)
across all four topologies. This finding fundamentally reshapes client clustering strategies, indicat-
ing that minimizing inter-group distributional differences should take precedence over optimizing
intra-group homogeneity. Effective grouping, such as forming clusters with approximately IID inter-
group distributions, would converge faster than fine-tuning intra-group training dynamics.

(3) Optimal topology selection depends critically on group structure. Our analysis reveals that the
optimal topology selection depends critically on group structural characteristics. Ring-Star excels
when numerous small groups exist, as sequential inter-group updates benefit from increased par-
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allelism at the lower tier and fine-grained global alignment. Star-Ring is preferable for few large,
client-dense clusters, where intra-group ring aggregation enables deep local refinement before global
synchronization.

We validate these theoretical insights through extensive experiments on CIFAR-10, CINIC-10, and
Fashion-MNIST using ResNet-18, VGG-9, and ResNet-10 under four distinct heterogeneity scenar-
ios. The results consistently demonstrate accuracy gains from informed topology selection, with
ring-based top-tier configurations showing particular advantages in heterogeneous environments.
By establishing this unified analytical framework, our work bridges a critical gap in HFL theory and
provides actionable, theoretically grounded guidance for system design.

2 CONVERGENCE THEORY

This section presents a unified convergence analysis of HFL under non-convex optimization objec-
tives. In the following, we formalize the setup of HFL with four different topologies, introduce
general assumptions, derive the convergence bounds, and extract actionable insights for topology
selection in practical deployments.

2.1 SETUP

We begin by formalizing the HFL framework and the update mechanisms for each topology config-
uration. In two-tier HFL, the global objective is to minimize:

min
x∈Rd

{
F (x) =

1

G

G∑
g=1

Fg(x) =
1

G

G∑
g=1

1

M

M∑
m=1

Fg,m(x)

}
(1)

where Fg represents the average local objective function over all clients in group g (g ∈ [G]), and
Fg,m denotes the local objective function of client m (m ∈ [M ]) in group g, defined as Fg,m(x) =
Eξ∼Dm [fm(x; ξ)], where Dm is the local dataset of client m.

The process of HFL with four topology configurations operate according to distinct update rules
(see detailed algorithms in the Appendix):

(1) Star-Star. Each group g initializes its model as x(r)
g,0 = x(r). Within each group, clients initialize

their models as x
(r)
g,p,m,0 = x

(r)
g,p, perform K parallel local updates, and send updates to the group

server for aggregation. After P group updates, the global server aggregates group parameters to
generate the next global parameters x(r+1).

(2) Star-Ring. Each group g initializes its model as x(r)
g,0 = x(r). Within each group, clients initialize

their models from the previous client in sequence and perform K local updates. The group server
aggregates the latest parameters from the last client. After P group updates, group servers send their
updated parameters to the global server for aggregation.

(3) Ring-Star. Each group g initializes its model with the latest parameters from the previous group.
Within each group, clients initialize their models as x

(r)
g,p,m,0 = x

(r)
g,p, perform K parallel local

updates, and send updates to the group server for aggregation. After P group updates, group servers
send their updated parameters to the next group in sequence.

(4) Ring-Ring. Each group g initializes its model with the latest parameters from the previous group.
Within each group, clients initialize their models from the previous client and perform K local
updates. The group server aggregates the latest parameters from the last client. After P group
updates, group servers send their updated parameters to the next group in sequence.

2.2 ASSUMPTIONS

Assumption 1. (L-Smoothness). Each local objective function Fg,m is L-smooth, g ∈ {1, 2, ..., G},
m ∈ {1, 2, ...,M}, i.e., there exists one constant L such that

∥∇Fg,m(x)−∇Fg,m(y)∥ ≤ L∥x− y∥ for all x,y ∈ Rd. (2)

4
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Assumption 2. (Bounded variance). For the local objective function Fg,m in any client, the local
stochastic gradient ∇Fg,m(s, ξm) computed using a mini-batch ξm, sampled uniformly at random
from local dataset, has bounded variance, that is ∥∇Fg,m(x, ξm) −∇Fg,m(x′, ξm)∥ ≤ σ2, for all
clients.

Assumption 3. (Bounded Inter-Group Heterogeneity). There exists one constant ζ2 , g ∈
{1, 2, ..., G}, such that

1
G

∑G
g=1 ∥∇F (x)−∇Fg(x)∥2 ≤ ζ2 (3)

Assumption 4. (Bounded Intra-Group Heterogeneity). There exists one constant ζ2g , g ∈
{1, 2, ..., G}, m ∈ {1, 2, ...,M}, such that

1
M

∑M
m=1 ∥∇Fg,m(x)−∇Fg(x)∥2 ≤ ζ2g (4)

Furthermore, we define the average intra-group heterogeneity as ζ̂2 := 1
G

∑G
g=1 ζ

2
g .

The first two assumptions are standard in non-convex optimization(Ghadimi & Lan, 2013; Bottou
et al., 2018). Assumptions 3 and 4 extend standard FL analysis to the hierarchical setting, explicitly
modeling both inter/intra-group data heterogeneity (Wang & Ji, 2022). In particular, Assumption 3
(bounded inter-group heterogeneity) and Assumption 4 (bounded intra-group heterogeneity) mea-
sures the data heterogeneity across or within client groups, respectively. For example, ζ2 = 0 when
the data is IID across all groups. This means that the statistical distributions of data across different
groups are identical. As a result, the average gradients of the groups do not deviate from the global
gradient, eliminating inter-group divergence.

2.3 CONVERGENCE ANALYSIS

Theorem 1. Under Assumptions 2– 4, the following convergence bounds hold for each HFL
topology, where A = F (x(0))− F ∗ represents the initial optimality gap.

Star-Star: There exists η̃ = PKη, and η̃ ≤ 1
12L , such that

E[∥∇F (x̄(R))∥2] ≲ A

η̃R
+

Lη̃σ2

PMK
+

Lη̃σ2

P 2K2
+

L2η̃2ζ̂2

P 2
+ L2η̃2ζ2. (5)

Star-Ring: There exists η̃ = PMKη, and η̃ ≤ 1
12L , such that

E[∥∇F (x̄(R))∥2] ≲ A

η̃R
+

Lη̃σ2

PMK
+

L2η̃2ζ̂2

P 2
+ L2η̃2ζ2. (6)

Ring-Star: There exists η̃ = GPKη, and η̃ ≤ 1
12L , such that

E[∥∇F (x̄(R))∥2] ≲ A

η̃R
+

Lη̃σ2

GPMK
+

L2η̃2σ2

G2P 2K2
+

L2η̃2ζ̂2

G2P 2
+ L2η̃2ζ2. (7)

Ring-Ring: There exists η̃ = GPMKη, and η̃ ≤ 1
12L , such that

E[∥∇F (x̄(R))∥2] ≲ A

η̃R
+

Lη̃σ2

GPMK
+

L2η̃2ζ̂2

G2P 2
+ L2η̃2ζ2. (8)

Effective Learning Rate. Theorem 1 introduces a topology-dependent effective learning rate, de-
noted by η̃, which incorporates key architectural parameters: the number of groups G, group rounds
P , clients per group M , local update steps K, and global rounds R. This effective learning rate
captures the cumulative impact of the hierarchical update structure on convergence dynamics. The
derived bounds in Theorem consist of two components: an optimization term that decreases with
R, and error terms arising from stochastic noise and data heterogeneity. While a larger η̃ acceler-
ates optimization (i.e., reducing optimization term), it also magnifies the error term. To balance the
tradeoff, Corollary 1 prescribes an appropriate η̃ that minimizes the overall convergence bound.
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Corollary 1. (Convergence under effective learning rate). By choosing learning rate η̃ ≤ 1/(12L),
the convergence rate satisfies the following, where O(·) hides absolute constants:

Star-Star:

E[∥∇F (x̄(R))∥2] = O
(LA
R

+
(Lσ2A)1/2√
PMKR

+
(Lσ2A)1/2√
P 2K2R

+
(L2A2ζ̂2)1/3

P 2/3R2/3
+

(L2A2ζ2)1/3

R2/3

)
.

(9)
Star-Ring:

E[∥∇F (x̄(R))∥2] = O
(LA
R

+
(Lσ2A)1/2√
PMKR

+
(L2A2ζ̂2)1/3

P 2/3R2/3
+

(L2A2ζ2)1/3

R2/3

)
. (10)

Ring-Star:

E[∥∇F (x̄(R))∥2] = O
(LA
R

+
(Lσ2A)1/2√
GPMKR

+
(Lσ2A)1/2√
G2P 2K2R

+
(L2A2ζ̂2)1/3

G2/3P 2/3R2/3
+
(L2A2ζ2)1/3

R2/3

)
.

(11)
Ring-Ring:

E[∥∇F (x̄(R))∥2] = O
(LA
R

+
(Lσ2A)1/2√
GPMKR

+
(L2A2ζ̂2)1/3

G2/3P 2/3R2/3
+

(L2A2ζ2)1/3

R2/3

)
. (12)

2.4 KEY IMPLICATIONS

The Top-Tier Dominance Principle. Contrary to intuitive expectations, the aggregation mecha-
nism at the global tier exerts a significantly stronger influence on convergence than the intra-group
topology. This principle is quantitatively demonstrated in Corollary 1. The error terms for ring-
based top-tier topologies contain additional scaling factors of G in their denominators for both the
SGD variance and intra-group heterogeneity terms. This means that ring-based global aggregation
is inherently more robust to both stochastic noise and data heterogeneity. This manifests in two
crucial ways: (i) Ring-based top-tier configurations (Ring-Star, Ring-Ring) consistently outperform
star-based alternatives under data heterogeneity, with the gap widening as inter-group divergence
increases. (ii) The performance difference between top-tier topologies exceeds that between lower-
tier configurations. For example, Ring-Star typically outperforms Star-Star by a larger margin than
Star-Ring outperforms Star-Star, despite both differing only in the lower tier.

Inter-Group Heterogeneity as the Fundamental Bottleneck. Our analysis quantitatively estab-
lishes that inter-group heterogeneity (ζ) is the primary convergence bottleneck across all topologies.
While all topologies share the same asymptotic convergence rate of O(1/

√
R), the practical conver-

gence speed is dominated by inter-group divergence, which decays slowly at O (L2A2)1/3

R2/3 regardless
of topology choice. Intra-group heterogeneity (ζ̂) decays significantly faster—particularly in ring-
based top-tier configurations (O (L2A2)1/3

R2/3G2/3P 2/3 )—making it a secondary concern compared to inter-
group divergence. This insight provides a principled foundation for system design: to accelerate
convergence in heterogeneous environments, minimizing inter-group divergence should should be
prioritized. Practical strategies such as intelligent client clustering, e.g., grouping clients with sta-
tistically similar data distributions (Zeng et al., 2022), are therefore more impactful than optimizing
local training dynamics within groups.

Topology-Structure Compatibility Principle. The optimal topology selection depends critically
on the underlying client grouping structure, creating a fundamental design trade-off. Ring-Star
excels with numerous small groups. When clients naturally form many small clusters (e.g., IoT
devices, retail outlets), Ring-Star leverages parallelism at the lower tier while benefiting from the
smoothing effect of sequential global updates. Its convergence rate improves dramatically with
increasing G, making it ideal for deployments with abundant but sparse client clusters. Star-Ring
dominates with few large clusters. In settings with limited but data-rich clusters, Star-Ring’s intra-
group ring aggregation enables deeper local refinement before global synchronization, producing
higher-quality group models. This topology shows diminishing returns as G increases beyond a
certain point. Star-Star consistently underperforms. Despite its conceptual simplicity, the double
averaging in Star-Star significantly dampens the effective learning rate, making it the least efficient
configuration across all heterogeneity scenarios.
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3 EXPERIMENTS

To validate the theoretical insights derived from our convergence analysis, this section conducts a
comprehensive set of experiments on three benchmark datasets: CIFAR-10, CINIC-10, and Fashion-
MNIST. We utilize several widely adopted neural network architectures, including ResNet-18,
VGG-9, and ResNet-10, to assess performance.

3.1 EXPERIMENTAL SETTINGS

Our evaluation spans three distinct datasets to ensure a comprehensive analysis. We use CIFAR-
10 (Krizhevsky et al., 2009), a primary benchmark in federated learning; CINIC-10 (Darlow et al.,
2018), which serves as a more challenging natural image dataset; and Fashion-MNIST (Xiao et al.,
2017), a common grayscale image classification task. To isolate the effects of aggregation topol-
ogy and data heterogeneity without interference from normalization dynamics, we remove all batch
normalization layers from the network architectures applied to each dataset: ResNet-18 (Lin et al.,
2020) and VGG-9 (Acar et al., 2021) for CIFAR-10, ResNet-18 for CINIC-10, and ResNet-10 for
Fashion-MNIST. This adjustment ensures a cleaner validation of our convergence bounds, as batch
normalization can introduce non-linear and data-dependent behavior that complicates gradient anal-
ysis. We fix the mini-batch size to 20 and employ SGD as the local optimizer, with a constant
learning rate, zero momentum, and gradient clipping applied to stabilize training. The global model
is updated over R communication rounds, with each group performing P group-level updates and
each client conducting K local steps per update.

We simulate a hierarchical setup with N = 100 clients evenly distributed across G = 10 groups,
unless otherwise specified, and examine four data partitioning schemes (Fang et al., 2024): (1) IID
within groups & IID between groups, where data is uniformly and randomly partitioned at both
group and client levels; (2) Non-IID within groups & IID between groups, where groups receive sta-
tistically similar data distributions, but clients within each group are assigned non-IID partitions via
a Dirichlet distribution with parameter α = 0.1; (3) IID within groups & Non-IID between groups,
where clients within a group share IID data, but group-level distributions differ significantly, again
using a Dirichlet split across groups; and (4) Non-IID within groups & Non-IID between groups,
where the entire dataset is partitioned using a Dirichlet distribution, resulting in heterogeneous data
at both intra- and inter-group levels.

3.2 EFFECT OF TOPOLOGY

Figure 2 presents the test accuracy curves for the four HFL topologies (Star-Star, Star-Ring, Ring-
Star, and Ring-Ring) under the four heterogeneity settings. The results consistently show that topolo-
gies with a ring-based top-tier aggregation (i.e., Ring-Star and Ring-Ring) achieve superior conver-
gence speed and higher final accuracy compared to their star-based counterparts. Notably, the classi-
cal Star-Star configuration (equivalent to standard HFedAvg) performs the worst across all settings.
This is attributed to its conservative update mechanism, i.e., the double averaging at both group
and global levels dampens the effective learning rate, slowing convergence. In contrast, ring-based
top-tier updates propagate changes sequentially, enabling more aggressive and continuous model
refinement. This allows the global model to traverse the loss landscape more rapidly, especially
in heterogeneous environments. However, the aggressive nature of ring topologies also introduces
sensitivity to biased clients and hyperparameter choices. A single client with a skewed data distribu-
tion can steer the entire chain, potentially degrading performance. Therefore, careful tuning of the
learning rate and other hyperparameters is essential when deploying ring-based topologies to avoid
instability.

3.3 EFFECT OF DATA HETEROGENEITY

Table 2 reports the final test accuracy for all topology and data partition combinations. A key
observation is that inter-group heterogeneity has a more detrimental effect on model performance
than intra-group heterogeneity. For instance, on CIFAR-10 with ResNet-18 under the Star-Ring
topology, shifting to Non-IID group distributions causes a 2.08% accuracy drop (from 90.30% to
88.22%), whereas Non-IID client distributions lead to a smaller drop of only 0.75% (to 89.55%). The
effect is even more pronounced on CINIC-10, where in the same setup, inter-group heterogeneity

7
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(a) Groups IID and Clients
IID

(b) Groups IID and Clients
Non-IID

(c) Groups Non-IID and
Clients IID

(d) Groups Non-IID and
Clients Non-IID

Figure 2: Comparison of the four HFL topologies on CIFAR-10 Dataset

Table 2: Test accuracy (%) on CIFAR-10, CINIC-10 and Fashion-MNIST under various HFL
topologies and data partitioning approaches. The non-IID partitions are generated using a Dirichlet
distribution with α = 0.1.

Dataset Model Heterogeneity Topology

Inter Intra Star-Star Star-Ring Ring-Star Ring-Ring

CIFAR-10

ResNet-18
IID IID 88.48 90.30 90.40 91.53

Non-IID 87.01 89.55 89.75 91.10

Non-IID IID 87.03 88.22 89.15 90.94
Non-IID 86.78 87.40 90.01 90.33

VGG-9
IID IID 84.83 87.30 87.77 89.10

Non-IID 84.21 85.33 87.81 88.17

Non-IID IID 85.00 85.42 86.16 88.12
Non-IID 83.80 85.04 87.05 87.63

CINIC-10 ResNet-18
IID IID 76.88 78.59 78.70 79.56

Non-IID 74.25 76.09 78.23 78.35

Non-IID IID 74.20 72.53 75.83 76.23
Non-IID 73.63 74.21 77.11 76.78

Fashion-
MNIST ResNet-10

IID IID 89.70 92.59 92.67 93.01
Non-IID 87.45 92.33 92.76 93.07

Non-IID IID 88.21 89.41 91.40 91.33
Non-IID 88.04 92.18 92.27 93.33

results in a substantial 6.06% performance degradation (from 78.59% to 72.53%), compared to a
2.50% drop for intra-group heterogeneity. This trend also holds for Fashion-MNIST with ResNet-
10, where inter-group heterogeneity causes a significant 3.18% accuracy drop (from 92.59% to
89.41%), while the impact of intra-group heterogeneity is a negligible 0.26% decrease.

This empirical finding strongly supports our theoretical conclusion that inter-group divergence (ζ)
is the dominant bottleneck in HFL convergence. It suggests that system designers should prioritize
clustering strategies that minimize distributional differences between groups even at the expense of
increased intra-group heterogeneity. For example, grouping clients by semantic similarity of data
(e.g., geographic region, user demographics) rather than arbitrary network proximity can signifi-
cantly improve convergence.

3.4 EFFECT OF GROUPS

We further investigate how the number of groups G influences performance, focusing on the hybrid
topologies (i.e., Star-Ring and Ring-Star) as they offer a practical balance between convergence ef-
ficiency and stability. With the total number of clients N = 100, we vary the number of groups
G ∈ {1, 5, 10, 20, 100} and tune the learning rate for each configuration to ensure optimal perfor-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

mance. Figure 3 illustrate the convergence of Star-Ring and Ring-Star under both IID and Non-IID
settings. We can find two distinct patterns in Figure 3:

(1) Star-Ring performs best with fewer, larger groups, i.e., small values of G. This is because intra-
group ring aggregation benefits from longer update chains: within a large group, sequential updates
allow for deeper local refinement before global synchronization, producing higher-quality group
models.

(2) Ring-Star, in contrast, excels with more, smaller groups, i.e., large values of G. Here, parallel
intra-group aggregation (star) is less effective in large groups due to the averaging of divergent local
updates, which can dilute valuable gradients. Smaller groups reduce this averaging effect, and the
sequential inter-group updates in Ring-Star enable fine-grained global alignment.

It is worth noting that our conclusion continues to hold even in the extreme cases—Ring-Star with
G = N and Star-Ring with G = 1, both degenerating to a pure ring topology. This does not
conflict with the notion of “catastrophic forgetting” in sequential federated learning, because the
step size is not fixed. We scale it with the number of groups to keep the effective learning rate
constant. Under the same effective learning rate, selecting an appropriate G therefore yields optimal
performance. These results highlight a critical design principle: optimal topology selection depends
on the underlying group structure. In applications with a few large, data-rich clusters (e.g., hospital
networks), Star-Ring is preferable. In contrast, systems with many small or independent units (e.g.,
IoT devices, retail outlets) benefit more from the Ring-Star topology.

(a) Star-Ring (IID) (b) Star-Ring (Non-IID) (c) Ring-Star (IID) (d) Ring-Star (Non-IID)

Figure 3: Comparsion of Star-Ring and Ring-Star topologies with different numbers of groups on
CIFAR10 Dataset

4 CONCLUSION

This paper presents the first unified convergence analysis for all four HFL topologies under non-
convex objectives and intra/inter-group data heterogeneity. Our results reveal that: (1) top-tier
topology dictates convergence behavior, and ring-based top-tier aggregation generally converges
faster than star-based methods; (2) inter-group heterogeneity is the dominant bottleneck, outweigh-
ing intra-group effects; and (3) optimal topology depends on group structure, where Ring-Star suits
many small groups, while Star-Ring excels with few large clusters. These findings enable sys-
tem designers to move beyond heuristic topology choices and instead make informed, theoretically
grounded decisions based on deployment-specific constraints such as network scale, client distribu-
tion, and data heterogeneity profiles.
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A ALGORITHM DETAILS

For clarity and completeness, this appendix provides the detailed pseudocode for the four HFL
topologies mentioned in the main body of our paper. Each algorithm outlines a different communi-
cation pattern for both inter-group and intra-group model aggregation.

The Star-Star topology (Algorithm 1) represents a fully parallel framework. Both the groups at
the server level and the clients within each group perform their training and updates in parallel,
synchronizing with their respective servers before aggregation.

Algorithm 1 Star-Star Hierarchical FL

1: for global rounds r = 0, 1, . . . , R− 1 do
2: for groups g = 1, 2, . . . , G in parallel do
3: Initialize group model: x(r)

g,0 = x(r)

4: for group rounds p = 0, 1, . . . , P − 1 do
5: for clients m = 1, 2, . . . ,M in parallel do
6: Initialize local model: x(r)

g,p,m,0 = x
(r)
g,p

7: for local steps k = 0, 1, . . . ,K − 1 do
8: x

(r)
g,p,m,k+1 = x

(r)
g,p,m,k − ηg

(r)
g,p,m,k

9: end for
10: end for
11: Group aggregation: x(r)

g,p+1 = 1
M

∑M
m=1 x

(r)
g,p,m,K

12: end for
13: end for
14: Global aggregation: x(r+1) = 1

G

∑G
g=1 x

(r)
g,P

15: end for

The Star-Ring topology (Algorithm 2) combines parallel inter-group communication with sequential
intra-group updates. While groups update in parallel with the global server, clients within each group
form a ring, passing the model sequentially from one client to the next.

Conversely, the Ring-Star topology (Algorithm 3) employs sequential communication among groups
and parallel updates within them. The groups form a ring at the global level, while clients inside
each group operate in a standard star configuration.

The Ring-Ring topology (Algorithm 4) implements a fully sequential communication protocol. Both
the groups at the global level and the clients within each group update their models in a sequential,
ring-based manner.
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Algorithm 2 Star-Ring Hierarchical FL

1: for global rounds r = 0, 1, . . . , R− 1 do
2: for groups g = 1, 2, . . . , G in parallel do
3: Initialize group model: x(r)

g,0 = x(r)

4: for group rounds p = 0, 1, . . . , P − 1 do
5: for clients m = 1, 2, . . . ,M in sequence do

6: Initialize local model: x(r)
g,p,m,0 =

{
x
(r)
g,p if m = 1

x
(r)
g,p,m−1,K if m > 1

7: for local steps k = 0, 1, . . . ,K − 1 do
8: x

(r)
g,p,m,k+1 = x

(r)
g,p,m,k − ηg

(r)
g,p,m,k

9: end for
10: end for
11: Group model: x(r)

g,p+1 = x
(r)
g,p,M,K

12: end for
13: end for
14: Global aggregation: x(r+1) = 1

G

∑G
g=1 x

(r)
g,P

15: end for

Algorithm 3 Ring-Star Hierarchical FL

1: for global rounds r = 0, 1, . . . , R− 1 do
2: for groups g = 1, 2, . . . , G in sequence do

3: Initialize group model: x(r)
g,0 =

{
x(r) if g = 1

x
(r)
g−1,P if g > 1

4: for group rounds p = 0, 1, . . . , P − 1 do
5: for clients m = 1, 2, . . . ,M in parallel do
6: Initialize local model: x(r)

g,p,m,0 = x
(r)
g,p

7: for local steps k = 0, 1, . . . ,K − 1 do
8: x

(r)
g,p,m,k+1 = x

(r)
g,p,m,k − ηg

(r)
g,p,m,k

9: end for
10: end for
11: Group aggregation: x(r)

g,p+1 = 1
M

∑M
m=1 x

(r)
g,p,m,K

12: end for
13: end for
14: Global model: x(r+1) = x

(r)
G,P

15: end for
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Algorithm 4 Ring-Ring Hierarchical FL

1: for global rounds r = 0, 1, . . . , R− 1 do
2: for groups g = 1, 2, . . . , G in sequence do

3: Initialize group model: x(r)
g,0 =

{
x(r) if g = 1

x
(r)
g−1,P if g > 1

4: for group rounds p = 0, 1, . . . , P − 1 do
5: for clients m = 1, 2, . . . ,M in sequence do

6: Initialize local model: x(r)
g,p,m,0 =

{
x
(r)
g,p if m = 1

x
(r)
g,p,m−1,K if m > 1

7: for local steps k = 0, 1, . . . ,K − 1 do
8: x

(r)
g,p,m,k+1 = x

(r)
g,p,m,k − ηg

(r)
g,p,m,k

9: end for
10: end for
11: Group model: x(r)

g,p+1 = x
(r)
g,p,M,K

12: end for
13: end for
14: Global model: x(r+1) = x

(r)
G,P

15: end for

B NOTATIONS

Table 3 summarizes the notations appearing in this paper.

Table 3: Key notations for HFL algorithm.

Symbol Description
R, r number, index of training rounds

G, g number, index of groups

M,m number, index of clients in each group

K, k number, index of local update steps

η learning rate (or stepsize)

η̃ effective learning rate

L L-smoothness constant (Assumption 1)

σ upper bound on variance of stochastic gradients at each client (Assumption 2)

ζ constants in Assumption 3 to bound inter-group heterogeneity

ζg constants in Assumption 4 to bound intra-group heterogeneity

F/Fg/Fg,m global objective/group p objective/local objective of client m in group p

x(r) global model parameters in the r-th round

x
(r)
g,p,m,k local model parameters of the m-th client after k local steps in the g-th group

after p group steps
in the r-th round

g
(r)
g,p,m,k g

(r)
g,p,m,k := ∇fg,m(x

(r)
g,p,m,k; ξ) denotes the stochastic gradients of Fg,m

regarding x
(r)
g,p,m,k
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C PROOF OF THEMERM1

Lemma 1. Let Assumptions 2, 1 hold. If the learning rate satisfies η ≤ 1
2LKGPMK , then

E [F (x+∆x)− F (x)] ≤ −1

2
KGPMKη∥∇F (x) ∥2 + LK2GPMKη2σ2

+
1

2
L2Kη

∑
g,p,m,k

E∥xg,p,m,k − x∥2

where
∑

g,p,m,k is a shorthand for the quadruple summation
∑G

g=1

∑P−1
p=0

∑M
m=1

∑K−1
k=0 .

Proof. In the following, we focus on a single training round, and hence we drop the superscripts r
for a while, e.g., writing xg,p,m,k to replace x

(r)
g,p,m,k. Specially, we would like to use x to replace

x
(r)
1,0,1,0. Unless otherwise stated, the expectation is conditioned on x(r).

Starting from the smoothness of F (applying Assumption 1, ∥∇F (x)−∇F (y)∥ ≤ L∥x−y∥), we
have

E [F (x+∆x)− F (x)] ≤ E ⟨∇F (x) ,∆x⟩︸ ︷︷ ︸
A1

+
L

2
E∥∆x∥2︸ ︷︷ ︸

A2

For the four topologies of HFL, the model udpates of one global round is shown as Table 4.

Table 4: The model udpates of one global round for the four topologies of HFL.

∆x

Star-Star −η
1

G

G∑
g=1

P−1∑
p=0

1

M

M∑
m=1

K−1∑
k=0

gg,p,m,k

Star-Ring −η
1

G

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

gg,p,m,k

Ring-Star −η

G∑
g=1

P−1∑
p=0

1

M

M∑
m=1

K−1∑
k=0

gg,p,m,k

Ring-Ring −η

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

gg,p,m,k

Consequently, the model updates within a single global round for the four topologies can be repre-
sented by a unified format,

∆x = x(R+1) − x(R) = −Kη
∑

g,p,m,k

gg,p,m,k,

where K =


1/(GM) for Star-Star topology,
1/G for Star-Ring topology,
1/M for Ring-Star topology,
1 for Ring-Ring topology.

After substituting the overall updates ∆x, we can get A1

E ⟨∇F (x) ,∆x⟩ = −KGPMKηE

〈
∇F (x) ,

1

GPMK

∑
g,p,m,k

∇Fg,m (xg,p,m,k)

〉
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= −1

2
KGPMKηE

∥∇F (x) ∥2 + ∥ 1

GPMK

∑
g,p,m,k

∇Fg,m (xg,p,m,k)∥
2

−∥ 1

GPMK

∑
g,p,m,k

∇Fg,m (xg,p,m,k)−∇F (x)∥
2


= −1

2
KGPMKηE∥∇F (x)∥2 − 1

2
K 1

GPMK
ηE∥

∑
g,p,m,k

∇Fg,m (xg,p,m,k)∥
2

+
1

2
K 1

GPMK
ηE∥

∑
g,p,m,k

∇Fg,m (xg,p,m,k)−
∑

g,p,m,k

∇Fg,m (x) ∥2

≤ −1

2
KGPMKηE∥∇F (x)∥2 − 1

2
K 1

GPMK
ηE∥

∑
g,p,m,k

∇Fg,m (xg,p,m,k)∥
2

+
1

2
Kη

∑
g,p,m,k

E∥∇Fg,m (xg,p,m,k)−∇Fg,m (x)∥2

≤ −1

2
KGPMKηE∥∇F (x)∥2 − 1

2
K 1

GPMK
ηE∥

∑
g,p,m,k

∇Fg,m (xg,p,m,k) ∥
2

+
1

2
L2Kη

∑
g,p,m,k

E∥xg,p,m,k − x∥2

Bounding the term A2,

L

2
E

∥∥∥∥∥∥−Kη
∑

g,p,m,k

gg,p,m,k

∥∥∥∥∥∥
2

≤ LK2η2E∥
∑

g,p,m,k

(gg,p,m,k −∇Fg,m (xg,p,m,k))∥
2

+ Lη2E∥K
∑

g,p,m,k

∇Fg,m (xg,p,m,k) ∥
2

≤ LK2η2
∑

g,p,m,k

E∥gg,p,m,k −∇Fg,m (xg,p,m,k) ∥2

+ LKη2E∥
∑

g,p,m,k

∇Fg,m (xg,p,m,k) ∥
2

≤ LK2GPMKη2σ2 + LK2η2E∥
∑

g,p,m,k

∇Fg,m (xg,p,m,k) ∥
2

Substitute A1 and A2 to E [F (x+∆x)− F (x)], we have

E [F (x+∆x)− F (x)] ≤ −1

2
KGPMKηE∥∇F (x)∥2 + LK2GPMKη2σ2

+
1

2
L2Kη

∑
g,p,m,k

E∥xg,p,m,k − x∥2

−
1
2 − LKGPMKη)Kη

GPMK
E∥

∑
g,p,m,k

∇Fg,m (xg,p,m,k) ∥
2

We have ( 1
2−LKGPMKη)Kη

GPMK E∥
∑

g,p,m,k ∇Fg,m (xg,p,m,k) ∥2 ≥ 0, when 1
2 − LKGPMKη ≥ 0,

thus

E [F (x+∆x)− F (x)] ≤ −1

2
KGPMKηE∥∇F (x)∥2 + LK2GPMKη2σ2
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+
1

2
L2Kη

∑
g,p,m,k

E∥xg,p,m,k − x∥2︸ ︷︷ ︸
client drift

C.1 BOUNDING THE CLIENT DRIFT WITH ASSUMPTIONS 3 AND 4

We define the client drift in HFL:

Er :=

G∑
g=1

P−1∑
p=0

M∑
m=1

K−1∑
k=0

E∥x(r)
g,p,m,k − x(r)∥

2
.

Lemma 2. Let Assumptions 2, 1 hold. If the learning rate satisfies η ≤ 1
12LKGPMK , then the

client drift is bounded
Star-Star:

Er ≤ 11η2GPMK2σ2 + 11η2GP 2K2σ2 + 11η2GPMK3ζ̂2 + 11η2GPMK3ζ2

+ 11η2GP 3K3ζ2 + 11η2GP 3K3E∥∇F (x)∥2

Star-Ring:

Er ≤ 16η2GPMK2σ2 + 16η2GPM2K2σ2 + 16η2GP 2M2K2σ2 + 16η2GPMK3ζ̂2

+ 16η2GPM3K3ζ̂2 + 16η2GPMK3ζ2 + 16η2GPM3K3ζ2 + 16η2GP 3M3K3ζ2

+ 16η2GP 3M3K3E∥∇F (x)∥2

Ring-Star:

Er ≤ 16η2GPMK2σ2 + 16η2GP 2K2σ2 + 16η2G2P 2K2σ2 + 16η2GPMK3ζ̂2

+16η2GPMK3ζ2+16η2GP 3MK3ζ2+16η2G3P 3MK3ζ2+16η2G3P 3MK3E∥∇F (x)∥2

Ring-Ring:

Er ≤ 21η2GPMK2σ2 + 21η2GPM2K2σ2 + 21η2GP 2M2K2σ2 + 21η2G2P 2M2K2σ2

+ 21η2GPMK3ζ̂2 + 21η2GPM3K3ζ̂2 + 21η2GPMK3ζ2 + 21η2GPM3K3ζ2

+ 21η2GP 3M3K3ζ2 + 21η2G3P 3M3K3ζ2 + 21η2G3P 3M3K3E∥∇F (x)∥2

Proof. The overall updates of HFL from x(r) to x
(r)
g,p,m,k are shown in the following table.

Table 5: The factor “−η” is omitted for all cells.

xg,p,m,k − x xg,p,m,k − xg,p,m,0 xg,p,m,0 − xg,p,1,0 xg,p,1,0 − xg,0,1,0 xg,0,1,0 − x1,0,1,0

Star-Star
k−1∑
k′=0

gg,p,m,k′

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg,p′,m,k

Star-Ring
k−1∑
k′=0

gg,p,m,k′

m−1∑
m′=1

K−1∑
k′=0

gg,p,m′,k

p−1∑
p′=0

M∑
m=1

K−1∑
k=0

gg,p′,m,k

Ring-Star
k−1∑
k′=0

gg,p,m,k′

p−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg,p′,m,k

g−1∑
g′=1

P−1∑
p′=0

1

M

M∑
m=1

K−1∑
k=0

gg,p,m,k

Ring-Ring
k−1∑
k′=0

gg,p,m,k′

m−1∑
m′=1

K−1∑
k′=0

gg,p,m′,k

p−1∑
p′=0

M∑
m=1

K−1∑
k=0

gg,p′,m,k

g−1∑
g′=1

P−1∑
p′=0

M∑
m=1

K−1∑
k=0

gg,p,m,k

To bound Er, we first bound E∥xg,p,m,k − x∥. The derivation processes for the four topologies are
similar. Here, we take the star-star topology as an illustrative example.
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E∥xg,p,m,k − x∥2 = η2E∥
k−1∑
k′=0

gg,p,m,k′ +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

gg,p′,m′,k′∥2

≤ 5η2E∥
k−1∑
k′=0

gg,p,m,k′ +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

gg,p′,m′,k′

−
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′) ∥2

+5η2E∥
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)+

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′)

−
k−1∑
k′=0

∇Fg,m (x)−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x) ∥2

+ 5η2E∥
k−1∑
k′=0

∇Fg,m (x) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)

−
k−1∑
k′=0

∇Fg (x)−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg (x) ∥2

+ 5η2E∥
k−1∑
k′=0

∇Fg (x) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg (x)

−
k−1∑
k′=0

∇F (x)−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇F (x) ∥2

+ 5η2E∥
k−1∑
k′=0

∇F (x) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇F (x)∥2

Bounding the first term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

gg,p,m,k′ +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

gg,p′,m′,k′ −
k−1∑
k′=0

∇Fg,m (xg,p,m,k′)

−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′) ∥2

≤ 10η2
k−1∑
k′=0

E∥gg,p,m,k′ −∇Fg,m (xg,p,m,k′)∥2

+ 10η2
p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥gg,p′,m′,k′ −∇Fg,m′ (xg,p′,m′,k′) ∥2

≤ 10η2kσ2 + 10η2
pK

M
σ2

Bounding the second term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg,m (xg,p,m,k′) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (xg,p′,m′,k′)
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−
k−1∑
k′=0

∇Fg,m (x)−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x) ∥2

≤ 10η2k

k−1∑
k′=0

E∥∇Fg,m (xg,p,m,k′)−∇Fg,m (x)∥2

+ 10η2pMK

p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (xg,p′,m′,k′)−∇Fg,m′ (x) ∥2

≤ 10L2η2k

k−1∑
k′=0

E∥xg,p,m,k′ − x∥2 + 10L2η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′ − x∥2

Bounding the third term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg,m (x) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg,m′ (x)−
k−1∑
k′=0

∇Fg (x)

−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg (x) ∥2

≤ 10η2k

k−1∑
k′=0

E∥∇Fg,m (x)−∇Fg (x)∥2

+ 10η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (x)−∇Fg (x)∥2

Bounding the fourth term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇Fg (x) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇Fg (x)−
k−1∑
k′=0

∇F (x)−
p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇F (x) ∥2

≤ 10η2k

k−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2 + 10η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2

Bounding the fifth term in the left-hand inequality,

5η2E∥
k−1∑
k′=0

∇F (x) +

p−1∑
p′=0

1

M

M∑
m′=1

K−1∑
k′=0

∇F (x)∥2

≤ 10η2k

k−1∑
k′=0

E∥∇F (x)∥2 + pMK

p−1∑
p′=0

1

M2

M∑
m′=1

K−1∑
k′=0

E∥∇F (x)∥2

Substitute these terms into Er,

Er ≤
∑

g,p,m,k

(
10η2kσ2 + 10η2

pK

M
σ2

)

+
∑

g,p,m,k

10L2η2k

k−1∑
k′=0

E∥xg,p,m,k′− x∥2+10L2η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥xg,p′,m′,k′− x∥2


18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: The client drift for the four topologies of HFL.

Φ1 Φ2

Star-Star 11η2GP 3K3 11η2GPMK2σ2 + 11η2GP 2K2σ2 + 11η2GPMK3ζ̂2 + 11η2GPMK3ζ2

+ 11η2GP 3K3ζ2

Star-Ring 16η2GP 3M3K3 16η2GPMK2σ2 + 16η2GPM2K2σ2 + 16η2GP 2M2K2σ2 + 16η2GPMK3ζ̂2

+ 16η2GPM3K3ζ̂2 + 16η2GPMK3ζ2 + 16η2GPM3K3ζ2 + 16η2GP 3M3K3ζ2

Ring-Star 16η2G3P 3MK3 16η2GPMK2σ2 + 16η2GP 2K2σ2 + 16η2G2P 2K2σ2 + 15η2GPMK3ζ̂2

+ 16η2GPMK3ζ2 + 16η2GP 3MK3ζ2 + 16η2G3P 3MK3ζ2

Ring-Ring 21η2G3P 3M3K3 21η2GPMK2σ2 + 21η2GPM2K2σ2 + 21η2GP 2M2K2σ2 + 21η2G2P 2M2K2σ2

+ 21η2GPMK3ζ̂2 + 21η2GPM3K3ζ̂2 + 21η2GPMK3ζ2 + 21η2GPM3K3ζ2

+ 21η2GP 3M3K3ζ2 + 21η2G3P 3M3K3ζ2

+
∑

g,p,m,k

(
10η2k

k−1∑
k′=0

E∥∇Fg,m (x)−∇Fg (x)∥2

+10η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg,m′ (x)−∇Fg (x)∥2


+
∑

g,p,m,k

(
10η2k

k−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2

+10η2
pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

E∥∇Fg (x)−∇F (x)∥2


+
∑

g,p,m,k

10η2(k

k−1∑
k′=0

E∥∇F (x)∥2 + pK

M

p−1∑
p′=0

M∑
m′=1

K−1∑
k′=0

)E∥∇F (x)∥2


≤ 10η2GPMK2σ2 + 10η2GP 2K2σ2

+ 10η2GPMK3ζ̂2 + 10η2GPMK3ζ2

+ 10η2GP 3K3ζ2 + 10η2GPMK3∥∇F (x)∥2

+ 10η2GP 3K3∥∇F (x)∥2 + 10L2P 2K2η2Er

(1− 10L2P 2K2η2)Er ≤ 10η2GPMK2σ2 + 10η2GP 2K2σ2 + 10η2GPMK3ζ̂2

+ 10η2GPMK3ζ2 + 10η2GP 3K3ζ2

+ 10η2GPMK3∥∇F (x)∥2 + 10η2GP 3K3∥∇F (x)∥2

With η ≤ 1
12LPK , 1− 10L2P 2K2η2 ≥ 10

11 , we have

Er ≤ 11η2GPMK2σ2 + 11η2GP 2K2σ2 + 11η2GPMK3ζ̂2

+ 11η2GPMK3ζ2 + 11η2GP 3K3ζ2

+ 11η2GPMK3∥∇F (x)∥2 + 11η2GP 3K3∥∇F (x)∥2

Er can be unified into a common format for the four topologies

Er ≤ Φ1E∥∇F (x)∥2 +Φ2.
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C.2 PROOF OF THEOREM1

Proof. Substitute Er into E [F (x+∆x)− F (x)], we can simplify the recursion as follows:

E [F (x+∆x)− F (x)] ≤ −(
1

2
KGPMKη − 1

2
L2KηΦ1)E∥∇F (x)∥2

+ LK2GPMKη2σ2 +
1

2
L2KηΦ2

Letting η̃ := KGPMKη, subtracting F ∗ from both sides and then rearranging the terms, we have

E [F (x+∆x)− F ∗] ≤ E [F (x)− F ∗]− η̃(
1

2
− L2Φ1

2GPMK
)E∥∇F (x)∥2

+
Lη̃2

GPMK
σ2 +

L2η̃Φ2

2GPMK

Then applying Lemma 2, we have

min
0≤r≤R

E∥∇F (x(r))∥2 ≤
F
(
x0
)
− F ∗

( 12 − L2Φ1

2GPMK )η̃R
+

Lη̃

GPMK( 12 − L2Φ1

2GPMK )
σ2

+
L2Φ2

2GPMK( 12 − L2Φ1

2GPMK )

where we use

min
0≤r≤R

E∥∇F (x(r))∥2 ≤ 1

R+ 1

R∑
r=0

E∥∇F (x(r))∥2.

With η̃ ≤ 1
12L , 1

2 − L2Φ1

2GPMK ≥ 5
12 , min0≤r≤R E∥∇F (x(r))∥2satisfies the following upper bounds:

Star-Star:

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≤ 12Lη̃σ2

5GPMK
+

12L2η̃2σ2

P 2K2
+

12L2η̃2σ2

PMK
+

12L2η̃2ζ̂2

P 2

+
12L2η̃2ζ2

P 2
+ 12L2η̃2ζ2 +

12A

5η̃R
.

Star-Ring:

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≤ 18Lη̃σ2

5GPMK
+

18L2η̃2σ2

P 2M2K
+

18L2η̃2σ2

P 2MK
+

18L2η̃2σ2

PMK

+
18L2η̃2ζ̂2

P 2M2
+

18L2η̃2ζ̂2

P 2
+

18L2η̃2ζ2

P 2M2
+

18L2η̃2ζ2

P 2

+ 18L2η̃2ζ2 +
18A

5η̃R
.

Ring-Star:

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≤ 18Lη̃σ2

5GPMK
+

18L2η̃2σ2

G2P 2K2
+

18L2η̃2σ2

G2PMK
+

18L2η̃2σ2

GPMK

+
18L2η̃2ζ̂2

G2P 2
+

18L2η̃2ζ2

G2P 2
+

18L2η̃2ζ2

G2
+ 18L2η̃2ζ2

+
18A

5η̃R
.
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Ring-Ring:

min
0≤r≤R

E
[
∥∇F (x(r))∥2

]
≤ 24Lη̃σ2

5GPMK
+

24L2η̃2σ2

G2P 2M2K
+

24L2η̃2σ2

G2P 2MK
+

24L2η̃2σ2

G2PMK

+
24L2η̃2σ2

GPMK
+

24L2η̃2ζ̂2

G2P 2M2
+

24L2η̃2ζ̂2

G2P 2
+

24L2η̃2ζ2

G2P 2M2

+
24L2η̃2ζ2

G2P 2
+

24L2η̃2ζ2

G2
+ 24L2η̃2ζ2 +

24A

5η̃R
.

Here A := F (x(0))− F ∗.
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