
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NODE2NET:NODE-SPECIFIC PARAMETERIZATION FOR
EXPRESSIVE GRAPH REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have emerged as powerful tools for graph learn-
ing. Classical message-passing GNNs enforce permutation equivariance at the
node level and permutation invariance at the graph level, but these symmetries
constrain expressiveness, limiting them to the discriminative power of the 1-WL
test. Recent advances such as Graph Transformers extend GNNs with global atten-
tion and positional encodings, yet still rely on shared graph-level parameters. In
this work, we revisit the symmetry–expressiveness trade-off through node-specific
parameterization, where each node contains a small trainable neural network-an
approach we term Node2Net. Unlike existing methods that represent each node
with a static embedding vector, Node2Net represents each node with a parametric
function capable of modeling nonlinear feature interactions and adaptive trans-
formations. Node2Net breaks 1-WL indistinguishability and can act as universal
approximators capable of representing arbitrarily complex node-level transforma-
tions. Its computational and memory costs scale linearly with the number of nodes
and remain practical on standard benchmarks. As a fundamental node represen-
tation method, Node2Net is model- and task-agnostic and does not change the
transductive or inductive generalization properties of GNN backbones. Extensive
experiments on multiple benchmarks demonstrate that Node2Net consistently im-
proves over node feature learning methods, traditional message-passing GNNs,
and recent Graph Transformers.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become a cornerstone of modern machine learning on rela-
tional and structured data, enabling many applications in a wide range of domains including social
networks (Hamilton et al., 2017), recommendation systems (Ying et al., 2018), knowledge graphs
(Schlichtkrull et al., 2018), and molecular property prediction (Gilmer et al., 2017; Rong et al.,
2020). At the core of GNN research lies the topic of node representation that bounds the expres-
siveness of a graph learning technique. Existing work usually represents a node with an embedding
vector, which can be directly from original data features, or generated from graph structural infor-
mation (e.g., substructures (Bouritsas et al., 2023), subgraphs(Bar-Shalom et al., 2024)) and spectral
information (e.g., positional encoding (Rampášek et al., 2022)). Node embeddings can be learned
with either unsupervised (Grover & Leskovec, 2016) or supervised approaches (Kipf & Welling,
2017; Veličković et al., 2018; Xu et al., 2019).

Despite their architectural diversity, most existing GNN models can be characterized by a shared
parameterization scheme: a small number of global weight matrices shared across all nodes and
layers govern how information is aggregated and transformed throughout the model. Consequently,
nodes in different structural or semantic contexts are processed with identical transformation func-
tions, which may hinder expressivity and adaptability in heterogeneous or complex graphs (Alon &
Yahav, 2021; Oono & Suzuki, 2020). Theoretically such shared-parameter GNNs are limited to the
discriminative power of the 1-Weisfeiler–Lehman (1-WL) test, so they cannot distinguish graphs that
are 1-WL-indistinguishable (Xu et al., 2019; Morris et al., 2019). As illustrated in Figure 1, to break
the expressiveness barrier of 1-WL, several directions have been explored: high-order GNNs incor-
porating higher-order neighborhoods or higher-dimensional structures (Morris et al., 2019), MPNNs
with node IDs, substructure/subgraph-aware GNNs (Bouritsas et al., 2023; Bevilacqua et al., 2022;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

You et al., 2021), Graph transformers with global attention and positional encodings(Dwivedi &
Bresson, 2021; Ying et al., 2021; Rampášek et al., 2022; Kreuzer et al., 2021).

Figure 1: Nodes in existing GNNs (e.g., node feature learning methods, Message passing neural
networks, higher-order GNNs, graph transformers) are represented with static embeddings from
data or graph structural information. Our approach of node-specific parameterization (Node2Net)
represents a node with an expressive function (e.g., MLP) that generates dynamic embeddings.

Among these directions of improving GNN expressiveness, we focus on a fundamental building
block for graph modeling: node representation learning. Although adding node IDs (usually random
embedding vectors) to GNNs breaks symmetry and provides discriminative power above 1-WL, it
faces challenges such as initialization, inductive generalization etc. In this paper we propose Node-
specific Parameterized GNNs (abbreviated as Node2Net) to augment existing GNNs with trainable
node-specific functions. Each node consists of a small neural network (e.g., a two-layer MLP)
whose weights are updated during training alongside global GNN parameters. Intuitively, while
shared global parameters enforce inductive bias and generalization, introducing a lightweight local
parameter module per node can increase a model’s capacity to capture fine-grained, node-specific
patterns that are otherwise washed out in homogeneous aggregations. Unlike static node embeddings
(Grover & Leskovec, 2016; Perozzi et al., 2014; Bevilacqua et al., 2025), Node2Net can model
nonlinear feature interactions (e.g., feature interaction in an XOR function), allow identical features
at different nodes to map to different outputs, and in principle act as universal approximators capable
of representing arbitrarily complex node-level transformations. Node2Net is architecture-agnostic
and can be applied to node feature learning methods (Grover & Leskovec, 2016; Bevilacqua et al.,
2025), traditional GNN models such as GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2018), and recent Graph Transformers (Ying et al., 2021; Rampášek
et al., 2022). While this parameterization sacrifices strict permutation invariance, in many practical
domains node identity is semantically meaningful and invariance is not required.

In summery, Node2Net introduces a fundamental architectural principle for GNNs, whose applica-
bility extends beyond node classification to encompass link prediction and graph-level learning. Al-
though this paper focuses on parameterizing nodes in a graph, the general idea of component-specific
parameterization can be readily extended to edge-centric representations (e.g., in our extension on
Graph-GPS in Section 4.3) or tuple-centric representations for k-GNNs discussed in Appendix A.
This work thereby delineates a new architectural design space for GNNs and underscores the im-
portance of systematically investigating the interaction between global structural characteristics and
localized computations. Our main contributions are:

• A Novel Node-specific Parameterization Paradigm called Node2Net. Node2Net intro-
duces node-specific trainable functions for GNNs. Node2Net is versatile, flexible, and
model- and task-agnostic, and can be integrated with most GNN models including node
representation methods, MPNNs, and graph transformers.

• Theoretical Insights. We show that Node2Net is strictly more expressive than static node
embeddings, capable of breaking 1-WL indistinguishability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Empirical Validation. We rigorously evaluate Node2Net by comparing with node repre-
sentation methods, traditional GNNs, and recent graph transformers using multiple bench-
mark datasets and demonstrate consistent gains.

2 RELATED WORK

Graph learning is a large and active field. Here we focus on work related to node representation and
GNN expressiveness. Node representation learns a static embedding vector for each node, e.g., by
maximizing the likelihood of random-walk–based neighborhoods (Grover & Leskovec, 2016). More
recent holographic node representation targets on generalist node representations capable of solving
tasks of any order (Bevilacqua et al., 2025). Spectral methods further advanced this direction (Bruna
et al., 2014; Defferrard et al., 2016), culminating in the influential Graph Convolutional Network
(GCN) of Kipf & Welling (2017). The message-passing framework was formalized in the Message
Passing Neural Network (MPNN) model by Gilmer et al. (2017), encompassing numerous GNN
variants. Among these, GraphSAGE (Hamilton et al., 2017) introduced neighborhood sampling to
improve scalability, while Graph Attention Networks (GAT) (Veličković et al., 2018) leveraged self-
attention for adaptive aggregation. In terms of expressivity, several directions have been explored.

1. High-order GNNs are graph neural architectures that extend beyond standard 1-hop mes-
sage passing by incorporating information from higher-order neighborhoods or higher-
dimensional structures (e.g., k-tuples of nodes, subgraphs, or simplicial complexes) to
match or exceed the power of k-WL tests, enabling them to capture richer structural pat-
terns, higher-order interactions, and role-based equivalences (Morris et al., 2019). Xu
et al. (2019) proposed the Graph Isomorphism Network (GIN), aligning MPNNs with
the Weisfeiler-Lehman test. Morris et al. (2019; 2020) extended it with k-GNNs. How-
ever, high-order GNNs are often intractable with polynomial complexity. Herbst & Jegelka
(2025) extends Invariant Graph Networks to graphons, and shows Invariant Graphon Net-
works of order k are at least as powerful as the k-WL test.

2. MPNNs with node IDs initialize each node with its attributes and a unique identifier em-
bedding, and usually show linear complexity. However, unique node IDs break permutation
invariance, and these models are often hard to train, tune, and generalize in practice. Sato
et al. (2020) shows nodes assigned with random features can maintain permutation invari-
ance in expectation, but will lose rich feature information.

3. Substructure/subgraph-aware Substructure-aware GNNs incorporate graph substruc-
ture information (e.g., motifs, walks, paths, or induced subgraphs) into the message-passing
process (Bouritsas et al., 2023; Bevilacqua et al., 2022; You et al., 2021). By encoding local
or higher-order structural patterns, these methods go beyond standard neighborhood aggre-
gation and achieve greater expressivity than 1-WL, enabling them to capture role similarity,
structural equivalence, and higher-order dependencies in graphs.

4. Graph transformers extend the Transformer framework by replacing or augmenting the
local message-passing mechanism of GNNs with global attention (Dwivedi & Bresson,
2021; Ying et al., 2021; Rampášek et al., 2022; Kreuzer et al., 2021). Unlike traditional
MPNNs, which aggregate information only from neighbors, Graph Transformers allow
each node to attend to all other nodes (often modulated by positional encodings, struc-
tural biases, or sparsity constraints). This enables long-range dependency modeling, higher
expressivity beyond 1-WL, and scalability to heterogeneous and large graphs.

Theoretical studies such as Alon & Yahav (2021); Oono & Suzuki (2020); Garg et al. (2020) dis-
cusses into expressivity, oversquashing, and generalization bounds, while Du et al. (2019); Poli et al.
(2019) explore links between GNNs and spectral or dynamical systems. More recent work studies
generalization to arbitary graphs and features with graph foundation models (Finkelshtein et al.,
2025), and finer measures of GNN expressiveness (Zhang et al., 2024a; Jin et al., 2024)

3 NODE2NET: NODE-SPECIFIC PARAMETERIZED GNNS

GNNs traditionally operate under a paradigm of parameter sharing, where a single set of parameters
is globally applied across all nodes and edges in the graph. While this approach offers computa-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

tional efficiency and generalizability, it inherently limits the expressiveness of the network, particu-
larly when need to model graphs with node-specific behaviors or heterogeneous structural roles. As
shown in Figure 2, Node2Net can be flexibly integrated into a GNN model as long as the model uses
an embedding vector to represent a node. Node2Net can take various types of features (e.g., original
features from datasets, graph structural features, position encodings, random features) in the input
layers, perform complex transformations with the neural network inside a node, and output a new
embedding vector of the same size at the output layer. One common issue with node representation
methods is that nodes only appearing in testsets are not trained. While we can not solve this issue
faced by all node representation methods, we will perform a pre-training step after initializing pa-
rameters of all nodes, so the output from each node equals to the input vector before any actual graph
learning is conducted. In this way, Node2Net will not affect the transductive or inductive nature of
a backbone GNN model, and applies to both types of GNNs.

Figure 2: Node2Net can be flexibly integrated into a GNN model’s computational graph.

We present how to integrate our Node2Net approach into three popular categories of graph represen-
tation models: node representation learning, message passing neural networks (MPNNs), and graph
transformers respectively. The case of k-GNNs is discussed in Appendix A.

3.1 NODE2NET FOR NODE REPRESENTATION LEARNING

We will use the well-known Node2Vec as a representative of node representation learning methods
to show how it can be transformed to Node2Net. Let G = (V,E) be a graph with node features
{xv ∈ Rdin : v ∈ V }. While Node2Vec generates a static embedding vector for each node,
Node2Net parameterizes each node with its own lightweight neural function:

Φv(·; θv) : Rdin → Rd,

where θv denotes the trainable parameters of a lightweight nerual network (e.g., a two-layer MLP).
The node representation is then

hv = Φv(xv; θv),

with xv as the input node features (e.g., original attributes, structural features, random features
(Abboud et al., 2020), one-hot vector). During training, we generate random-walk contexts NRW (v)
for each node v, and maximize the likelihood of context nodes conditioned on hv:

max
{θv}v∈V

∑
v∈V

∑
u∈NRW (v)

log Pr
(
u | hv

)
,

where the conditional probability is defined as a softmax

Pr(u | hv) =
exp(hu · hv)∑

w∈V exp(hw · hv)
.

Remark: Node2Net generalizes Node2Vec if each Φv degenerates to a trainable lookup vec-
tor (i.e., Φv(xv) = ev), the formulation reduces to Node2Vec. By using parametric functions,
Node2Net can model nonlinear feature transformations, adapt node representations based on input
features, and achieve higher representational capacity than static embeddings. Computationally, the
number of parameters scales linearly with |V |, but Φv can be kept lightweight (e.g., shallow MLPs).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 NODE-SPECIFIC PARAMETERIZED MESSAGE PASSING NEURAL NETWORKS

We extend the standard MPNN framework by assigning each node v ∈ V its own parameterized
local function as follows. Let θ(t)v denote the trainable parameters of node v at layer t. At iteration
t, the hidden state update is defined as:

m(t)
v = AGG

(
{M (t)

v (h(t−1)
v , h(t−1)

u , euv; θ
(t)
v) : u ∈ N (v)}

)
,

h(t)
v = U (t)

v

(
h(t−1)
v ,m(t)

v ; θ(t)v

)
,

where M (t)
v : Rd ×Rd ×Rde → Rd is a message passing function parameterized by θ

(t)
v , AGG is a

permutation-invariant aggregation (e.g., sum, mean, max), U (t)
v is a update function for node v.

After T layers, each node is representated by {h(T)
v : v ∈ V }, and each node’s evolution depends on

its own dedicated parameters. Graph-level outputs can be obtained by applying a readout function:
hG = R

(
{h(T)

v : v ∈ V }
)
.

This formulation strictly subsumes the standard MPNN: if parameters are tied across all nodes, i.e.,
θ
(t)
v = θ(t), we recover the classical shared-parameter MPNN (Gilmer et al., 2017).

3.3 NODE-SPECIFIC PARAMETERIZED GRAPH TRANSFORMERS

With the idea of Node2Net, we extend a graph transformer–style GNN by equipping each node
v ∈ V with its own trainable parameter set θv , which defines a lightweight neural network

fθv : Rd → Rd,

where fθv is the node-specific function whose parameters θv are unique to node v. Let h(0)
v = xv

and h
(t)
v ∈ Rd denote the representation of node v at layer t, where xv is the input feature vector.

The attention-based aggregation remains

z(t)v =
∑

u∈N (v)∪{v}

α(t)
vu W

(t)
V h(t−1)

u ,

where z
(t)
v denotes aggregated neighborhood message for node v at layer t, N (v) are neighbors of

node v, h(t−1)
u is the representation of neighbor u from the previous layer, W (t)

V is the global value
projection matrix at layer t, α(t)

vu is attention weight between node v and neighbor u.

The attention weights are defined as

α(t)
vu =

exp
(
(W

(t)
Q h

(t−1)
v)⊤(W

(t)
K h

(t−1)
u) /

√
d
)

∑
u′∈N (v)∪{v} exp

(
(W

(t)
Q h

(t−1)
v)⊤(W

(t)
K h

(t−1)
u′) /

√
d
) ,

The update rule now integrates node-specific transformations:
h(t)
v = fθv

(
U (t)(h(t−1)

v , z(t)v)
)
,

where U (t) is the global feed-forward module (e.g., an MLP with residual and normalization layers)
shared across all nodes, fθv is node-specific neural network, unique to node v, parameterized by
θv , h(t)

v is the updated representation of node v at layer t. Thus, each node learns an individualized
parametric mapping that modulates its representation after global self-attention, enabling feature-
dependent, node-specific expressiveness beyond uniform parameter sharing.

3.4 THEORETICAL ANALYSIS

A standard shared-parameter MPNN computes node states {h(t)
v } via globally shared message and

update functions. A Node2Net model instead associates to each node v ∈ V a local parametric
function Φv(·; θv), such as a small MLP, so that the update rule becomes

h(t)
v = Φv

(
U (t)(h(t−1)

v ,m(t)
v)

)
,

where m
(t)
v denotes the aggregated messages from neighbors and U (t) is a global feed-forward

module with residual connections.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Expressivity beyond 1-WL. It is well known that shared-parameter MPNNs are upper bounded
by the 1-Weisfeiler–Lehman (1-WL) test in distinguishing non-isomorphic graphs (Xu et al., 2019;
Morris et al., 2019). Node2Net relaxes this limitation by allowing node-specific mappings.

Theorem 1 (Node2Net breaks 1-WL indistinguishability). There exist two non-isomorphic graphs
G,H such that (1) G and H are 1-WL indistinguishable, but (2) Node2Net produces distinct node
outputs on G and H for some choice of node-local parameters {θv}.

Proof sketch. Classical counterexamples (e.g., certain regular graphs) are not separated by 1-WL,
hence not by MPNNs. In Node2Net, even if nodes receive identical aggregated inputs, distinct local
functions Φv can map these inputs to different outputs, breaking the symmetry. Thus, a parameteri-
zation exists that separates G and H . □

Modeling Feature interactions. Because Φv can be nonlinear (e.g., an MLP with ReLU),
Node2Net models higher-order feature interactions. Concretely, for two nodes u, v with identical
feature multisets and neighborhoods, a shared-parameter MPNN yields h(t)

u = h
(t)
v , while Node2Net

can produce h
(t)
u ̸= h

(t)
v by using different Φu,Φv . This enables the model to distinguish nodes in

symmetric roles, which is impossible for 1-WL.

3.5 RELATION TO NODE-ID METHODS

A common way to increase GNN expressivity beyond 1-WL is to augment nodes with unique identi-
fiers or random features (Node-ID methods) (Abboud et al., 2020; Sato, 2020; Loukas, 2020). Each
node is assigned v an identifier vector ev (often sampled from a random distribution) and feeds ev
as part of the input feature. This breaks 1-WL indistinguishability, since nodes with identical local
neighborhoods can now be separated by their IDs. However, ID-based approaches face two key dif-
ficulties (1) randomness and instability: Random ID features introduce variance across runs and
may require multiple restarts to stabilize performance, and (2) limited functional role: IDs act as
static tags; they do not provide feature-dependent transformations or model nonlinear interactions
between a node’s attributes and its structural context. In contrast, Node2Net assigns each node a
parametric function Φv(·; θv) instead of a fixed ID vector, which has several advantages:

• Learnable parameters: node-local parameters are optimized during training, removing
the need for careful stochastic initialization and aligning with the training objective.

• Beyond tagging: Whereas node IDs only differentiate nodes by identity, Node2Net enables
each node to transform its input features and aggregated messages in a node-specific man-
ner. That is, even if two nodes share identical features and neighborhoods, their different
Φv mappings can produce distinct outputs.

• Modeling feature interactions: Since Φv can be an MLP or other nonlinear module,
Node2Net captures nonlinear interactions between input features, node identity, and local
context—a capacity entirely absent from pure ID methods.

Expressivity consequence. Formally, node-ID augmentation can be seen as the special case of
Node2Net where each Φv ignores its input and directly outputs a learnable embedding vector. Thus,
Node2Net strictly subsumes node-ID methods in representational power: it retains the ability to
differentiate nodes by identity while also providing flexible, data-dependent transformations. This
additional functional capacity explains why Node2Net can overcome the instability and limited ex-
pressivity of random-feature ID methods.

4 EXPERIMENTS

We conducted extensive experiments to validate our Node2Net approach by comparing with three
categories of GNN methods (node representation methods, traditional GNNs, graph transformers)
using 5 graph learning benchmarks (details are given in Appendix B) and two graph tasks (node
classification and graph regression).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 EXPERIMENT WITH NODE REPRESENTATION METHOD NODE2VEC

For node representation methods, we chose to compare with the classic Node2Vec (Grover &
Leskovec, 2016) approach with a 2-phase implementation of Node2Net. In Phase 1, we train
Node2Vec to obtain base embeddings. In Phase 2, we insert a lightweight MLP into each node
and pretrain this MLP to input and output the same Phase 1 embedding using an L2 reconstruction
loss (MSE). We then continue training with skip-gram objective, replacing the embedding lookup
with MLP outputs. For each random walk, a positive sample is defined as a center node v paired
with its context node u from the walk, while negative samples are nodes ni randomly drawn from a
noise distribution Pn. Following standard setting in Node2Vec, the noise distribution is defined as

Pn(v) ∝ d3/4v ,

where dv denotes the degree of node v. The objective encourages large inner products for positive
pairs and small inner products for negative pairs:

L = −
[
log σ(hu · hv) +

K∑
i=1

Eni∼Pn log σ(−hni · hv)
]
,

where σ(·) is the sigmoid function.

For evaluation, we follow standard practice in node classification: the learned embeddings are fed
into a logistic regression classifier, trained on the training split and evaluated on the test split. We
report accuracy (and F1 score for PPI) averaged over 100 random seeds. Table 1 summarizes the per-
formance of two methods. Node2Net consistently outperforms the baseline across datasets, achiev-
ing the highest accuracy on Cora and PubMed, and strong improvements in F1 score on PPI.

It is worth noting that we cannot directly use node2vec.loss() function provided in PyTorch
Geometric, because it only computes losses over an internal embedding lookup table. In our two-
phase procedure, embeddings are generated dynamically by node-specific MLPs instead of static
lookup vectors. Therefore, we explicitly compute the skip-gram loss with MLP outputs so gradients
correctly flow into the MLP parameters. Hence, Node2Net loss values are not directly comparable
to Node2Vec losses, but embeddings dynamically generated by Node2Net exhibit improved linear
separability, leading to higher downstream classification accuracy as shown in Table 1.

Table 1: Experiment results with node representation method. Reported values are accuracy (%) for
Cora, CiteSeer, and PubMed, and Micro-F1 for PPI. More detailed results are in Appendix C.1.

Method Cora CiteSeer PubMed PPI (Micro-F1)
Node2Vec 68.75 ± 1.18 48.63 ± 1.67 69.95 ± 0.85 0.1911 ± 0.0040
Node2Net 73.24 ± 0.95 51.58 ± 1.15 71.97 ± 1.31 0.1930 ± 0.0055

4.2 EXPERIMENTS WITH TRADITIONAL GNN MODELS

We chose three widely used traditional GNN models for comparison: GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017), and GATv2 (Veličković et al., 2018). For each model, we
construct an enhanced variant by inserting a pretrained MLP (pretrained so initial output equals to
input) into each node:

X ′
i =

{
ϕi(Xi), if i ∈ Vtrain,then i’s MLP is activated,
Xi, otherwise.

where Vtrain is the set of nodes included in the training set, each training node i has its own MLP ϕi.
The GNN fθ then operates on X ′:

Z = fθ(X
′, Â), Ŷ = softmax(Z).

By construction, validation/test nodes never pass through any Node-MLP, preventing information
leakage and keeping inference cost identical to the baseline models.

We adopt a two-phase training procedure to integrate node-specific MLPs into each backbone:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Phase 1 (Node MLP pretraining). Each ϕi is trained independently on nodes in Vcovered =
train nodes ∪ their 1-hop neighbors, with reconstruction objective ϕi(Xi) ≈ Xi (MSE).
This initializes Node-MLPs to behave like identity mappings.

• Phase 2 (Joint model training). The pre-trained Node-MLPs are activated inside the GNN
backbone. We then train the full model end-to-end for 200 epochs, allowing node features
to evolve dynamically through both message passing and per-node refinement. Unless oth-
erwise specified, backbone parameters remain trainable during this phase. Hyperparame-
ters and detailed experiment settings can be found in Appendix C.5.

As shown in Table 2 and Table 3, Node2Net consistently improves or matches baseline performance:

• Local parameterization: Node-specific parameterization improves both message-passing
(GCN, GraphSAGE) and attention-based (GATv2) backbones.

• Robustness: Gains are stable across citation networks (Cora, CiteSeer, PubMed) and PPI,
demonstrating generality. Improvements on loss are often significant.

• Flexibility: In featureless graphs (PPI), integrating Node2Net embeddings enables strong
performance in both GraphSAGE and GATv2 backbones.

Table 2: Experiment results on (Accuracy / Micro-F1). More detailed results are in Appendix C.2.

Method Cora CiteSeer PubMed PPI (Micro-F1)
GCN 83.07 ± 0.79 67.89 ± 0.81 78.51 ± 0.57 0.1749 ± 0.0043
Node2Net-GCN 83.30 ± 0.73 67.95 ± 0.71 78.59 ± 0.54 0.1770 ± 0.0056
GATv2 81.23 ± 1.60 69.02 ± 2.00 76.91 ± 1.06 0.1020 ± 0.0206
Node2Net-GATv2 81.01 ± 1.28 69.21 ± 1.68 77.29 ± 0.71 0.1006 ± 0.0201

GraphSAGE 79.54 ± 0.77 70.19 ± 0.55 76.61 ± 0.47 0.1839 ± 0.0035
Node2Net-GraphSAGE 79.61 ± 0.85 70.48 ± 0.63 77.31 ± 0.34 0.1848 ± 0.0043

Table 3: Experiment results on loss. More detailed results can be found in Appendix C.2.

Method Cora CiteSeer PubMed PPI (Loss)
GCN 60.96 ± 2.00 116.68 ± 3.70 57.63 ± 0.81 1.0324 ± 0.0020
Node2Net-GCN 60.85 ± 2.19 116.09 ± 3.28 57.57 ± 0.75 0.8145 ± 0.0022
GATv2 103.88 ± 3.66 129.10 ± 1.92 61.10 ± 1.76 1.2585 ± 0.0289
Node2Net-GATv2 87.49 ± 3.24 102.86 ± 2.14 58.08 ± 1.50 1.2592 ± 0.0301

GraphSAGE 64.87 ± 1.77 92.42 ± 0.89 62.87 ± 1.05 0.6507 ± 0.0038
Node2Net-GraphSAGE 65.92 ± 2.13 92.58 ± 1.23 60.66 ± 0.75 0.5721 ± 0.0045

4.3 EXPERIMENT WITH GRAPH TRANSFORMER METHOD GRAPHGPS

For graph transformers, we chose GraphGPS (Rampášek et al., 2022) due to its incorporation of rich
graph information. We extend GraphGPS by introducing NodeEdgeMLP (NE-MLP) (Appendix
§D) to replace static embeddings with categorical MLPs operating on one-hot identifiers for both
nodes and edges. This design enhances structural expressivity, incorporates positional encodings,
and introduces gradient scheduling to decouple the dynamics of edge and node optimization.

Baseline GraphGPS initialization: node and edge features are initialized by embedding lookups:

h
(0)
i =

[
Embednode(ti) ∥ WPE PEi

]
, e

(0)
ij = Embededge(rij),

where ti is the node type, rij the edge type, and PEi the positional encoding.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

NE-MLP initialization (ours). We replace static embeddings with categorical MLPs:

h
(0)
i =

[
ϕnode

(
onehot(ti)

)
∥ ϕPE(PEi)

]
, e

(0)
ij = ϕedge

(
onehot(rij)

)
,

where
ϕnode : R|T | → Rdh−dPE , ϕedge : R|R| → Rdh , ϕPE : RdPE,in → RdPE ,

with |T | and |R| denoting the number of node and edge types, and dh the hidden channel size.

Gradient scheduling. To reduce optimization noise, we introduce an update mask:

∇ϕnode ̸= 0 ∀ steps, ∇ϕedge =

{
∇ϕedge, if s ≡ 0 (mod n),

0, otherwise,

where s is the training step index and n is the update period (default n = 5).

Discussion and summary of results.

• Enhanced structural bias. NE-MLP maps node types, edge types, and positional encod-
ings into unified channel-aligned features, yielding richer structural encodings compared
to fixed embeddings and clear performance improvement as shown in Table 4.

• Controlled gradient scheduling. Node MLPs update every iteration while edge MLPs
update periodically (n = 5 by default), providing smoother training for edge embeddings.

• Inductive generalization. No pretraining or auxiliary supervision is applied. Both GPS
and Node2Net-GPS are trained from scratch, showing that NE-MLP generalizes without
external knowledge transfer.

Table 4: Experiment results on ZINC. More detailed results can be found in Appendix C.3.

Model Test mean loss ± standard deviation
GPS 0.08708± 0.006
Node2Net-GPS (NE-MLP) 0.08621± 0.004

Recent trends in graph learning increasingly emphasize the integration of richer structural, topo-
logical, and semantic information from graphs (Hussain et al., 2024; Gao et al., 2024; Zhao et al.,
2025), and integration of specially designed architectural component such as Node2Net is often not
straightforward and deserves more study. Specifically with graph transformers, their performance
is significantly impacted by tokenization (Zhang et al., 2024b; Müller & Morris, 2024), which is
central to our Node2Net approach and will be explored in future work.

5 CONCLUSION

In this work, we introduced a novel node-specific parameterization method called Node2Net as a
principled approach to enhance the expressiveness of GNNs by equipping each node with a learn-
able function capable of modeling nonlinear feature interactions and feature-dependent variability.
This mechanism strictly extends the representational power beyond traditional node embeddings
and shared-parameter GNNs, allowing the model to break 1-WL indistinguishability while main-
taining linear computational and memory scaling. Importantly, Node2Net does not alter the inherent
transductive or inductive generalization properties of the backbone, ensuring applicability to both
settings. We demonstrated how this concept can be seamlessly integrated into many widely-used
GNN architectures. Empirical results on multiple node classification benchmarks confirm consis-
tent performance gains over node representation methods, classical GNNs, and graph transform-
ers. Node2Net constitutes a fundamental design principle with potential applications beyond node
classification, including link prediction and graph-level tasks. Additionally, the idea of component-
specific parameterization can also be applied to more graph components, which will be explored
in future work. We believe this work opens a new avenue for GNN design and encourages further
exploration into the interplay between global structure and local computation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility statement We are committed to ensuring the reproducibility of our results. To this
end, upon acceptance we will provide:

1. Code and Implementation Details: Our full implementation, including training and evalua-
tion scripts, is available in an open-source repository (link to be released upon acceptance).
The code specifies all model architectures, hyperparameters, and random seeds.

2. Datasets: All datasets used in this work (Cora, Citeseer, Pubmed, and others) are publicly
available. We include preprocessing scripts to reproduce the exact input data splits used in
our experiments.

3. Experimental Setup: We document the computing environment (hardware, software ver-
sions, GPU/CPU specifications) and report training times and memory usage.

4. Hyperparameters: All hyperparameters are reported in the Appendix, including learning
rates, batch sizes, optimizer settings, regularization coefficients, and early stopping criteria.

5. Statistical Rigor: For each benchmark, results are averaged across multiple runs with differ-
ent random seeds, and we report both mean and standard deviation. Statistical significance
is assessed using paired tests where appropriate.

6. Limitations: While our experiments cover widely used benchmarks, large-scale industrial
graphs and certain application domains (e.g., temporal or dynamic graphs) are beyond the
scope of this study. Future work will address scalability and broader applicability.

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. Surprising power
of graph neural networks with random node initialization. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In ICLR, 2021.

Guy Bar-Shalom, Yam Eitan, Fabrizio Frasca, and Haggai Maron. A flexible, equivariant frame-
work for subgraph GNNs via graph products and graph coarsening. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=9cFyqhjEHC.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. In International Conference on Learning Representations (ICLR), 2022.

Beatrice Bevilacqua, Joshua Robinson, Jure Leskovec, and Bruno Ribeiro. Holographic node repre-
sentations: Pre-training task-agnostic node embeddings. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
tGYFikNONB.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):657–668, 2023. doi: 10.1109/TPAMI.2022.3154319.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In ICLR, 2014.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NeurIPS, 2016.

Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In NeurIPS,
2019.

Vikas P Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. AAAI
Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

10

https://openreview.net/forum?id=9cFyqhjEHC
https://openreview.net/forum?id=9cFyqhjEHC
https://openreview.net/forum?id=tGYFikNONB
https://openreview.net/forum?id=tGYFikNONB

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ben Finkelshtein, İsmail İlkan Ceylan, Michael Bronstein, and Ron Levie. Equivariance everywhere
all at once: A recipe for graph foundation models, 2025. URL https://arxiv.org/abs/
2506.14291.

Zhangyang Gao, Daize Dong, Cheng Tan, Jun Xia, Bozhen Hu, and Stan Z. Li. A graph is worth
k words: euclideanizing graph using pure transformer. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Vikas Garg, Stefanie Jegelka, and Jaakkola Tommi. Generalization and representational limits of
graph neural networks. In ICML, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pp. 855–864. ACM, 2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Daniel Herbst and Stefanie Jegelka. Higher-order graphon neural networks: Approximation and cut
distance. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=SjufxrSOYd.

Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Triplet interaction
improves graph transformers: accurate molecular graph learning with triplet graph transformers.
In Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

Emily Jin, Michael Bronstein, undefinedsmail undefinedlkan Ceylan, and Matthias Lanzinger. Ho-
momorphism counts for graph neural networks: all about that basis. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021.

Andreas Loukas. What graph neural networks cannot learn: Depth vs width. In International
Conference on Learning Representations (ICLR), 2020.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI, 2019.

Christopher Morris, Nils M Kriege, Kristian Kersting, Petra Mutzel, and Marion Neumann. Tu-
dataset: A collection of benchmark datasets for learning with graphs. In ICML Workshop on
Graph Representation Learning, 2020.

Luis Müller and Christopher Morris. Aligning transformers with weisfeiler-leman. In Proceedings
of the 41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. ICLR, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 701–710. ACM, 2014.

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park. Graph
neural ordinary differential equations. In ICML, 2019.

11

https://arxiv.org/abs/2506.14291
https://arxiv.org/abs/2506.14291
https://openreview.net/forum?id=SjufxrSOYd

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In Proceedings of the
36th International Conference on Neural Information Processing Systems, NIPS ’22, Red Hook,
NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, and Junzhou Huang. Self-supervised
graph transformer on large-scale molecular data. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. CoRR, abs/2002.03155, 2020. URL https://arxiv.org/abs/2002.03155.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2018.

Rex Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yelong Shen, and Tie-Yan
Liu. Do transformers really perform badly for graph representation? In NeurIPS, 2021.

Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
networks. In AAAI Conference on Artificial Intelligence (AAAI), 2021.

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
lehman: A quantitative framework for GNN expressiveness. In The Twelfth International Confer-
ence on Learning Representations, 2024a. URL https://openreview.net/forum?id=
HSKaGOi7Ar.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via
graph biconnectivity, 2024b. URL https://arxiv.org/abs/2301.09505.

Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael M. Bronstein, and Jian
Tang. Fully-inductive node classification on arbitrary graphs. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=1Qpt43cqhg.

12

https://arxiv.org/abs/2002.03155
https://openreview.net/forum?id=HSKaGOi7Ar
https://openreview.net/forum?id=HSKaGOi7Ar
https://arxiv.org/abs/2301.09505
https://openreview.net/forum?id=1Qpt43cqhg
https://openreview.net/forum?id=1Qpt43cqhg

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A NODE2NET FOR HIGHER ORDER K-GNNS

Let G = (V,E) be a graph. For a positive integer k, denote by Tk = {S = (v1, . . . , vk) : vi ∈ V }
the set of ordered or unordered k-tuples (we use ordered tuples for notational simplicity). Let xv ∈
Rdx be the input feature of node v. For a tuple S = (v1, . . . , vk) ∈ Tk we write xS for a tuple-level
feature (e.g., concatenation or a structural feature):

xS = concat(xv1 , . . . , xvk
) ∈ Rkdx .

Here xS is the input to the k-tuple representation function.

A.1 DIRECT PER-k-TUPLE NODE2NET

Assign each k-tuple S ∈ Tk its own lightweight parametric function fθS : RD → RD (where D

is the tuple representation dimension). Let h(t)
S ∈ RD denote the representation of tuple S at layer

t. The high-order attention aggregation and update follow the same pattern as node-level, but over
tuple neighborhoods Nk(S) (tuples adjacent to S under the chosen k-GNN adjacency relation).

z
(t)
S =

∑
T∈Nk(S)∪{S}

α
(t)
S,T W

(t)
V h

(t−1)
T ,

α
(t)
S,T =

exp
(
(W

(t)
Q h

(t−1)
S)⊤(W

(t)
K h

(t−1)
T)/

√
D
)∑

T ′∈Nk(S)∪{S} exp
(
(W

(t)
Q h

(t−1)
S)⊤(W

(t)
K h

(t−1)
T ′)/

√
D
) ,

h
(t)
S = fθS

(
U (t)(h

(t−1)
S , z

(t)
S)

)
,

This is a direct extension: each k-tuple has a unique parametric mapping fθS . It is expressive but
scales as |Tk|, which is typically intractable for moderate-sized graphs.

A.2 PRACTICAL, PARAMETER-EFFICIENT IMPLEMENTATIONS

Below are two parameter-efficient ways to capture tuple-specific adaptation while avoiding an ex-
plosion in parameters.

A.2.1 HYPERNETWORK (GENERATE TUPLE PARAMETERS FROM NODE-LEVEL CODES)

Equip each node v with a small code cv ∈ Rp (or node-specific parameters θv). Form a tuple code
cS by pooling the node codes:

cS = Pool
(
cv1 , . . . , cvk

)
,

and use a hypernetwork Gϕ to generate lightweight parameters for tuple S:

θ̃S = Gϕ(cS).

The tuple update becomes
h
(t)
S = fθ̃S

(
U (t)(h

(t−1)
S , z

(t)
S)

)
,

where fθ̃S is a small MLP whose parameters are the output θ̃S of the hypernetwork. Only {cv}v∈V

and ϕ are learned (plus global projection matrices), keeping parameter count manageable. The
hypernetwork compresses per-tuple variation into a function of node-level codes. Complexity scales
with |V | rather than |Tk|.

A.2.2 COMPOSITIONAL PER-NODE FUNCTIONS + FUSION (ELEMENTWISE COMPOSITION)

Instead of generating tuple parameters, apply node-specific transformations to each element in the
tuple and then fuse the transformed element representations.

Assign each node v a node-specific function gθv : Rdx → Rd′
. Compute elementwise transformed

features and combine:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

u
(t)
i = gθvi

(
πi

(
U (t)(h

(t−1)
S , z

(t)
S)

))
, i = 1, . . . , k,

h
(t)
S = F

(
u
(t)
1 , . . . , u

(t)
k

)
,

Alternatively, one can use multi-head cross-attention among the transformed elements:

h
(t)
S = CrossAtt

(
[u

(t)
1 , . . . , u

(t)
k]

)
,

This scheme only stores per-node parameters θv (as in Node2Net) and a small global fusion network;
it is computationally efficient and naturally generalizes standard k-GNN architectures.

A.3 CHOICE OF TUPLE NEIGHBORHOOD AND COMPLEXITY

Tuple neighborhood Nk(S). A standard choice: Nk(S) contains tuples obtained from S by re-
placing one element vi with a neighbor u ∈ N (vi). Formally, for ordered tuples:

Nk(S) =
{
(v1, . . . , vi−1, u, vi+1, . . . , vk) : i ∈ [k], u ∈ N (vi)

}
.

Complexity observations.

• Direct per-tuple parameters: memory O(|Tk| · P) for param size P — infeasible for large
graphs.

• Hypernetwork: memory O(|V | · p+ |ϕ|) — scalable when p ≪ P .
• Compositional scheme: memory O(|V | · Pv + Pfusion) where Pv is per-node MLP size —

typically feasible.

B DATASETS DESCRIPTION

• Cora: A citation network with 2,708 nodes and 5,429 edges, where each node corresponds
to a scientific publication and edges represent citation links. Each node is assigned to one
of 7 classes. Following the GCN paper, we use 20 nodes per class for training (140 in total),
500 nodes for validation, and 1,000 nodes for testing.

• CiteSeer: A citation network containing 3,327 nodes and 4,732 edges, categorized into 6
classes. The split uses 20 nodes per class for training (120 in total), 500 nodes for valida-
tion, and 1,000 nodes for testing.

• PubMed: A large-scale biomedical citation network with 19,717 nodes and 44,338 edges,
divided into 3 classes. The split uses 20 nodes per class for training (60 in total), 500 nodes
for validation, and 1,000 nodes for testing.

• PPI: A subgraph of the Protein–Protein Interaction (PPI) network for Homo Sapiens. This
subgraph is induced by proteins for which labels are available from hallmark gene sets,
representing different biological states. It contains 3,890 nodes, 76,584 edges, and 50
distinct labels, and is evaluated as a multi-label node classification task.

• ZINC: A molecular graph regression dataset widely used for benchmarking graph trans-
formers. Each molecule is represented as a graph with atoms as nodes and bonds as edges,
and the task is to predict constrained solubility values. We follow example setting in PyG
GraphGPS to adopt the standard ZINC subset.

Dataset Splits For the citation networks (Cora, CiteSeer, and PubMed), we follow the standard
fixed splits introduced in the GCN paper Kipf & Welling (2017), using 20 nodes per class for training
(e.g., 140 for Cora, 120 for CiteSeer, and 60 for PubMed), 500 nodes for validation, and 1,000 nodes
for testing.

For the PPI dataset, we follow the inductive setting introduced by the GCN paper Kipf & Welling
(2017), which uses the Homo sapiens protein–protein interaction (PPI) subgraph with approximately
3,890 nodes and 50 labels, split into 20 graphs for training, 2 graphs for validation, and 2 graphs for
testing.

For the ZINC dataset, we use the standard subset split provided by PyG: 12,000 molecules split into
10,000/1,000/1,000 for train/validation/test. We apply random walk positional encodings of length
20 as a pre-transform step, consistent with prior work.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

C.1 DETAILED RESULTS FOR NODE REPRESENTATION METHODS

Figure 3: Accuracy distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the Cora
dataset. Node2Net shows a tighter and higher performance distribution.

Figure 4: Accuracy distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the
PubMed dataset. Node2Net shows a tighter and higher performance distribution.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Accuracy distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the
CiteSeer dataset. Node2Net shows a tighter and higher performance distribution.

Figure 6: F1 distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the PPI dataset.
Node2Net shows a tighter and higher performance distribution.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 DETAILED RESULTS FOR TRADITIONAL GNNS

Figure 7: Accuracy distribution over 100 runs on the Cora dataset, using the test results from the
last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN
showing a tighter and higher performance distribution.

Figure 8: Accuracy distribution over 100 runs on the PubMed dataset, using the test results from
the last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN
showing a tighter and higher performance distribution.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: Accuracy distribution over 100 runs on the CiteSeer dataset, using the test results from
the last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN
showing a tighter and higher performance distribution.

Figure 10: Loss distribution over 100 runs on the Cora dataset, using the test results from the last
training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN showing
a tighter and lower loss distribution.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 11: Loss distribution over 100 runs on the PubMed dataset, using the test results from the
last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN
showing a tighter and lower loss distribution.

Figure 12: Loss distribution over 100 runs on the CiteSeer dataset, using the test results from the
last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN
showing a tighter and lower loss distribution.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 13: Accuracy distribution over 100 runs on the Cora dataset, using the test results from the
last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-
SAGE showing a tighter and higher performance distribution.

Figure 14: Accuracy distribution over 100 runs on the PubMed dataset, using the test results from the
last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-
SAGE showing a tighter and higher performance distribution.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 15: Accuracy distribution over 100 runs on the CiteSeer dataset, using the test results from the
last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-
SAGE showing a tighter and higher performance distribution.

Figure 16: Loss distribution over 100 runs on the Cora dataset, using the test results from the last
training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-
SAGE showing a tighter and lower loss distribution.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 17: Loss distribution over 100 runs on the PubMed dataset, using the test results from the
last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-
SAGE showing a tighter and lower loss distribution.

Figure 18: Loss distribution over 100 runs on the CiteSeer dataset, using the test results from the
last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-
SAGE showing a tighter and lower loss distribution.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 19: Accuracy distribution over 100 runs on the Cora dataset, using the test results from the
last training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared.

Figure 20: Accuracy distribution over 100 runs on the PubMed dataset, using the test results from
the last training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared, with Node2Net-
GATv2 showing a tighter and higher performance distribution.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 21: Accuracy distribution over 100 runs on the CiteSeer dataset, using the test results from
the last training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared, with Node2Net-
GATv2 showing a tighter and higher performance distribution.

Figure 22: Loss distribution over 100 runs on the Cora dataset, using the test results from the last
training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared, with Node2Net-GATv2
showing a tighter and lower loss distribution.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 23: Loss distribution over 100 runs on the PubMed dataset, using the test results from the last
training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared, with Node2Net-GATv2
showing a tighter and lower loss distribution.

Figure 24: Loss distribution over 100 runs on the CiteSeer dataset, using the test results from the last
training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared, with Node2Net-GATv2
showing a tighter and lower loss distribution.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C.3 DETAILED RESULTS FOR GRAPH TRANSFORMER METHOD GRAPHGPS

Figure 25: Test loss at best validation across 10 runs for GraphGPS (orange) and Node2Net-
GraphGPS (blue) on the ZINC dataset. Each bar represents the loss from one run (2000 training
epochs). Node2Net-GraphGPS shows a generally lower and more stable loss compared to the orig-
inal GPS.

C.4 COMPUTING ENVIRONMENT

All models are implemented using PyTorch Geometric and trained on an NVIDIA L40S GPU.
We evaluate embeddings on the node classification task, where a logistic regression classifier is
trained on the learned embeddings. Following standard practice, datasets are split into train-
ing/validation/test sets, and accuracy (and F1 score for PPI) is reported. Each experiment is repeated
with 100 random seeds, and we report the mean and standard deviation.

All models are implemented using PyTorch 2.3.1.post300, and we use the original GCN implemen-
tation provided by the authors at https://github.com/tkipf/pygcn. All experiments are
conducted on a computer server equipped with one NVIDIA RTX A6000 GPU (48GB memory) and
an Intel Xeon w5-2445 CPU (20 cores).

C.5 HYPERPARAMETERS

Table 5: Hyperparameters for Node2Net-GCN. Citation datasets (Cora, PubMed, and CiteSeer) use
Adam optimizer with negative log-likelihood loss (F.nll loss).

Category Parameter Cora PubMed CiteSeer PPI

Optimization Node Weights LR 0.001 0.001 0.001 3×10−5

Node Weights WD 0.0003 0.0003 0.0003 0.0001
GCN LR 0.01 0.01 0.01 0.01
GCN WD 0.0001 0.0001 0.0001 0.0005

Architecture Hidden Units 16 16 16 128
Node-MLP Hidden [32, 32] [32, 32] [32, 32] [64]

Training Dropout 0.5 0.5 0.5 0.5
Epochs 200 200 200 200
Runs 100 100 100 100

26

https://github.com/tkipf/pygcn

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters for Node2Net-GraphSAGE

Category Parameter PubMed Cora CiteSeer PPI

Optimization

V-MLP LR 1×10−5 1×10−5 2×10−5 1×10−5

V-MLP Weight Decay 0.0003 0.0 0.0005 0.0005
SAGE LR 0.01 0.01 0.01 0.01
SAGE Weight Decay 0.0005 0.0005 0.0005 0.0005

Architecture
Hidden Units 16 16 16 128
V-MLP Hidden [8, 8] [32] [32, 32] [64]
Hops 2 4 1 –

Training
Dropout 0.15 0.0 0.0 0.5
Epochs 200 200 400 200
Runs 100 100 100 100

Table 7: Hyperparameters for Node2Net-GATv2. All citation datasets (Cora, PubMed, and Cite-
Seer) are preprocessed using NormalizeFeatures from torch geometric.transforms.

Category Parameter PubMed Cora CiteSeer PPI

Optimization Node-MLP LR 1×10−6 1×10−6 1×10−6 5×10−6

Node-MLP WD 0.0 0.0 0.0 0.0
GATv2 LR 0.01 0.01 0.01 0.01
GATv2 WD 0.0005 0.0005 0.0005 0.0005

Architecture Heads 1 1 1 1
Hidden Units 16 16 16 16
Hops 1 1 1 –

Dropout 0.5 0.5 0.5 0.6

Training Epochs 200 200 200 200
Runs 100 100 100 100

Table 8: Hyperparameters for Node2Net-GPS

Category Parameter Value

Training Runs 10
Epochs 2000
Edge node MLP update ratio 5

Optimization Learning Rate (LR) 0.001
Weight Decay 1×10−5

LR Patience 20
Min LR 1×10−5

LR Factor 0.5
Dropout 0.0

Architecture Channels 64
Positional Enc. Dim. 8
Num. Layers 10
Attention Type multihead
Attention Heads 4
Attention Dropout 0.5

Random Seeds and Reproducibility. To ensure fair and reproducible comparisons, we adopted
dataset- and model-specific random seed settings following prior work. For the citation benchmarks
(Cora, CiteSeer, PubMed) and the PPI dataset, we trained each of the GCN, GraphSAGE, and
GATv2 models over 100 independent runs, with random seeds uniformly sampled from 1 to 100.
For the GPS model on the ZINC dataset, we followed the experimental protocol from the original

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

“Recipe for a General, Powerful, Scalable Graph Transformer” paper, performing 10 runs of 2000
training epochs each, with random seeds ranging from 1 to 10. For HoloGNN, we reproduced the
setting described in its original paper ?, which reports results over three random seeds; accordingly,
we conducted 3 runs using seeds 42, 88, and 456.

D NODE2NET MLP VARIANTS

To explore the impact of node-specific feature transformations, we design several Node2Net Multi-
Layer Perceptron (MLP) variants tailored for different learning tasks. These modules replace or
augment standard embedding layers, serving as flexible pre-transformations of node and edge fea-
tures. We summarize three representative designs below.

(1) Vanilla Node2Net MLP (V-MLP): The basic variant is a feed-forward MLP applied directly
to input node attributes Xi ∈ RF . It consists of an input projection, one or more hidden layers with
ReLU activation, and an output projection:

hi = V-MLP(Xi).

This architecture provides a straightforward non-linear mapping, and we employ it in node classifi-
cation experiments as a lightweight feature extractor.

(2) Residual Node2Net MLP (R-MLP): To enhance gradient flow and mitigate vanishing effects,
we implement a residual version where the input is added back to the MLP output:

hi = Xi +R-MLP(Xi).

This skip connection allows the model to preserve raw features while learning refinements, improv-
ing stability during node classification tasks.

(3) NodeEdge2Net MLP (NE-MLP): For graph-level prediction tasks, we extend the idea of per-
node MLPs to encompass both node types and edge types. NE-MLP replaces traditional embedding
layers with categorical MLPs operating on one-hot identifiers, jointly with a projection for positional
encodings (PE). Formally,

hi =
[
ϕnode(onehot(ti)) ∥ ϕPE(PEi)

]
,

eij = ϕedge(onehot(rij)),

where ti is the node type, rij is the edge type, and ϕnode, ϕedge, ϕPE are MLPs. Gradient scheduling
is further introduced to decouple node and edge updates: node MLPs update every iteration, while
edge MLPs update at a configurable frequency. This design is particularly suited for graph-level
tasks (e.g., molecular property prediction), where structured categorical information and positional
encodings must be fused into channel-aligned features.

E THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models to correct typos and syntax errors.

28

	Introduction
	Related Work
	Node2Net: Node-specific Parameterized GNNs
	Node2Net for node representation learning
	Node-specific parameterized Message Passing Neural Networks
	Node-Specific parameterized Graph Transformers
	Theoretical Analysis
	Relation to Node-ID Methods

	Experiments
	Experiment with node representation method Node2Vec
	Experiments with Traditional GNN Models
	Experiment with graph transformer method GraphGPS

	Conclusion
	Node2Net for higher order k-GNNs
	Direct per-k-tuple Node2Net
	Practical, parameter-efficient implementations
	Hypernetwork (generate tuple parameters from node-level codes)
	Compositional per-node functions + fusion (elementwise composition)

	Choice of tuple neighborhood and complexity

	Datasets Description
	Experimental Details
	Detailed results for node representation methods
	Detailed results for traditional GNNs
	Detailed results for graph transformer method GraphGPS
	Computing environment
	Hyperparameters

	Node2Net MLP Variants
	The use of Large Language Models

