

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NODE2NET: NODE-SPECIFIC PARAMETERIZATION FOR EXPRESSIVE GRAPH REPRESENTATION LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

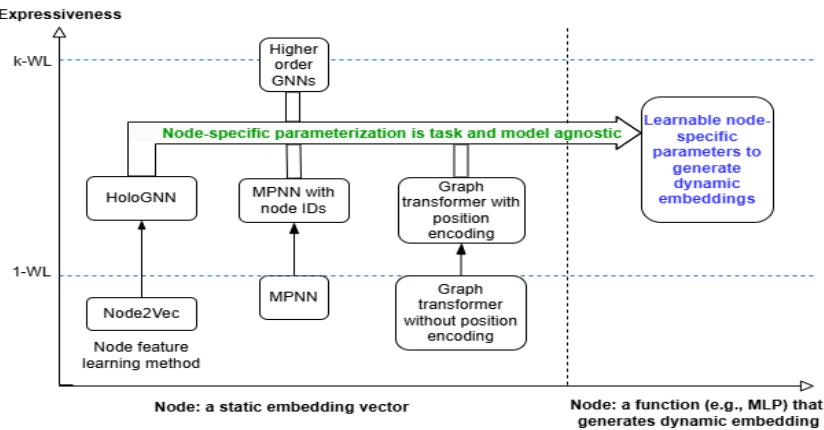
Graph Neural Networks (GNNs) have emerged as powerful tools for graph learning. Classical message-passing GNNs enforce permutation equivariance at the node level and permutation invariance at the graph level, but these symmetries constrain expressiveness, limiting them to the discriminative power of the 1-WL test. Recent advances such as Graph Transformers extend GNNs with global attention and positional encodings, yet still rely on shared graph-level parameters. In this work, we revisit the symmetry-expressiveness trade-off through node-specific parameterization, where each node contains a small trainable neural network—an approach we term Node2Net. Unlike existing methods that represent each node with a static embedding vector, Node2Net represents each node with a parametric function capable of modeling nonlinear feature interactions and adaptive transformations. Node2Net breaks 1-WL indistinguishability and can act as universal approximators capable of representing arbitrarily complex node-level transformations. Its computational and memory costs scale linearly with the number of nodes and remain practical on standard benchmarks. As a fundamental node representation method, Node2Net is model- and task-agnostic and does not change the transductive or inductive generalization properties of GNN backbones. Extensive experiments on multiple benchmarks demonstrate that Node2Net consistently improves over node feature learning methods, traditional message-passing GNNs, and recent Graph Transformers.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become a cornerstone of modern machine learning on relational and structured data, enabling many applications in a wide range of domains including social networks (Hamilton et al., 2017), recommendation systems (Ying et al., 2018), knowledge graphs (Schlichtkrull et al., 2018), and molecular property prediction (Gilmer et al., 2017; Rong et al., 2020). At the core of GNN research lies the topic of node representation that bounds the expressiveness of a graph learning technique. Existing work usually represents a node with an embedding vector, which can be directly from original data features, or generated from graph structural information (e.g., substructures (Bouritsas et al., 2023), subgraphs (Bar-Shalom et al., 2024)) and spectral information (e.g., positional encoding (Rampášek et al., 2022)). Node embeddings can be learned with either unsupervised (Grover & Leskovec, 2016) or supervised approaches (Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019).

Despite their architectural diversity, most existing GNN models can be characterized by a shared parameterization scheme: a small number of global weight matrices shared across all nodes and layers govern how information is aggregated and transformed throughout the model. Consequently, nodes in different structural or semantic contexts are processed with identical transformation functions, which may hinder expressivity and adaptability in heterogeneous or complex graphs (Alon & Yahav, 2021; Oono & Suzuki, 2020). Theoretically such shared-parameter GNNs are limited to the discriminative power of the 1-Weisfeiler–Lehman (1-WL) test, so they cannot distinguish graphs that are 1-WL-indistinguishable (Xu et al., 2019; Morris et al., 2019). As illustrated in Figure 1, to break the expressiveness barrier of 1-WL, several directions have been explored: high-order GNNs incorporating higher-order neighborhoods or higher-dimensional structures (Morris et al., 2019), MPNNs with node IDs, substructure/subgraph-aware GNNs (Bouritsas et al., 2023; Bevilacqua et al., 2022;

054 You et al., 2021), Graph transformers with global attention and positional encodings(Dwivedi &
 055 Bresson, 2021; Ying et al., 2021; Rampášek et al., 2022; Kreuzer et al., 2021).
 056



071 Figure 1: Nodes in existing GNNs (e.g., node feature learning methods, Message passing neural
 072 networks, higher-order GNNs, graph transformers) are represented with static embeddings from
 073 data or graph structural information. Our approach of node-specific parameterization (Node2Net)
 074 represents a node with an expressive function (e.g., MLP) that generates dynamic embeddings.
 075

076 Among these directions of improving GNN expressiveness, we focus on a fundamental building
 077 block for graph modeling: node representation learning. Although adding node IDs (usually random
 078 embedding vectors) to GNNs breaks symmetry and provides discriminative power above 1-WL, it
 079 faces challenges such as initialization, inductive generalization etc. In this paper we propose *Node-
 080 specific Parameterized GNNs* (abbreviated as Node2Net) to augment existing GNNs with trainable
 081 node-specific functions. Each node consists of a small neural network (e.g., a two-layer MLP)
 082 whose weights are updated during training alongside global GNN parameters. Intuitively, while
 083 shared global parameters enforce inductive bias and generalization, introducing a lightweight local
 084 parameter module per node can increase a model’s capacity to capture fine-grained, node-specific
 085 patterns that are otherwise washed out in homogeneous aggregations. Unlike static node embeddings
 086 (Grover & Leskovec, 2016; Perozzi et al., 2014; Bevilacqua et al., 2025), Node2Net can model
 087 nonlinear feature interactions (e.g., feature interaction in an XOR function), allow identical features
 088 at different nodes to map to different outputs, and in principle act as universal approximators capable
 089 of representing arbitrarily complex node-level transformations. Node2Net is architecture-agnostic
 090 and can be applied to node feature learning methods (Grover & Leskovec, 2016; Bevilacqua et al.,
 091 2025), traditional GNN models such as GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
 092 2017), GAT (Veličković et al., 2018), and recent Graph Transformers (Ying et al., 2021; Rampášek
 093 et al., 2022). While this parameterization sacrifices strict permutation invariance, in many practical
 094 domains node identity is semantically meaningful and invariance is not required.
 095

096 In summary, Node2Net introduces a fundamental architectural principle for GNNs, whose applicability
 097 extends beyond node classification to encompass link prediction and graph-level learning. Al-
 098 though this paper focuses on parameterizing nodes in a graph, the general idea of component-specific
 099 parameterization can be readily extended to edge-centric representations (e.g., in our extension on
 100 Graph-GPS in Section 4.3) or tuple-centric representations for k-GNNs discussed in Appendix A.
 101 This work thereby delineates a new architectural design space for GNNs and underscores the im-
 102 portance of systematically investigating the interaction between global structural characteristics and
 103 localized computations. Our main contributions are:

- **A Novel Node-specific Parameterization Paradigm called Node2Net.** Node2Net intro-
 104 duces node-specific trainable functions for GNNs. Node2Net is versatile, flexible, and
 105 model- and task-agnostic, and can be integrated with most GNN models including node
 106 representation methods, MPNNs, and graph transformers.
- **Theoretical Insights.** We show that Node2Net is strictly more expressive than static node
 107 embeddings, capable of breaking 1-WL indistinguishability.

108
 109
 110
 111
 112
 113

- **Empirical Validation.** We rigorously evaluate Node2Net by comparing with node representation methods, traditional GNNs, and recent graph transformers using multiple benchmark datasets and demonstrate consistent gains.

2 RELATED WORK

114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124

Graph learning is a large and active field. Here we focus on work related to node representation and GNN expressiveness. Node representation learns a static embedding vector for each node, e.g., by maximizing the likelihood of random-walk-based neighborhoods (Grover & Leskovec, 2016). More recent holographic node representation targets on generalist node representations capable of solving tasks of any order (Bevilacqua et al., 2025). Spectral methods further advanced this direction (Bruna et al., 2014; Defferrard et al., 2016), culminating in the influential Graph Convolutional Network (GCN) of Kipf & Welling (2017). The message-passing framework was formalized in the Message Passing Neural Network (MPNN) model by Gilmer et al. (2017), encompassing numerous GNN variants. Among these, GraphSAGE (Hamilton et al., 2017) introduced neighborhood sampling to improve scalability, while Graph Attention Networks (GAT) (Veličković et al., 2018) leveraged self-attention for adaptive aggregation. In terms of expressivity, several directions have been explored.

125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

1. **High-order GNNs** are graph neural architectures that extend beyond standard 1-hop message passing by incorporating information from higher-order neighborhoods or higher-dimensional structures (e.g., k-tuples of nodes, subgraphs, or simplicial complexes) to match or exceed the power of k-WL tests, enabling them to capture richer structural patterns, higher-order interactions, and role-based equivalences (Morris et al., 2019). Xu et al. (2019) proposed the Graph Isomorphism Network (GIN), aligning MPNNs with the Weisfeiler-Lehman test. Morris et al. (2019; 2020) extended it with k-GNNs. However, high-order GNNs are often intractable with polynomial complexity. Herbst & Jegelka (2025) extends Invariant Graph Networks to graphons, and shows Invariant Graphon Networks of order k are at least as powerful as the k-WL test.
2. **MPNNs with node IDs** initialize each node with its attributes and a unique identifier embedding, and usually show linear complexity. However, unique node IDs break permutation invariance, and these models are often hard to train, tune, and generalize in practice. Sato et al. (2020) shows nodes assigned with random features can maintain permutation invariance in expectation, but will lose rich feature information.
3. **Substructure/subgraph-aware Substructure-aware GNNs** incorporate graph substructure information (e.g., motifs, walks, paths, or induced subgraphs) into the message-passing process (Bouritsas et al., 2023; Bevilacqua et al., 2022; You et al., 2021). By encoding local or higher-order structural patterns, these methods go beyond standard neighborhood aggregation and achieve greater expressivity than 1-WL, enabling them to capture role similarity, structural equivalence, and higher-order dependencies in graphs.
4. **Graph transformers** extend the Transformer framework by replacing or augmenting the local message-passing mechanism of GNNs with global attention (Dwivedi & Bresson, 2021; Ying et al., 2021; Rampášek et al., 2022; Kreuzer et al., 2021). Unlike traditional MPNNs, which aggregate information only from neighbors, Graph Transformers allow each node to attend to all other nodes (often modulated by positional encodings, structural biases, or sparsity constraints). This enables long-range dependency modeling, higher expressivity beyond 1-WL, and scalability to heterogeneous and large graphs.

Theoretical studies such as Alon & Yahav (2021); Oono & Suzuki (2020); Garg et al. (2020) discusses into expressivity, oversquashing, and generalization bounds, while Du et al. (2019); Poli et al. (2019) explore links between GNNs and spectral or dynamical systems. More recent work studies generalization to arbitrary graphs and features with graph foundation models (Finkelshtein et al., 2025), and finer measures of GNN expressiveness (Zhang et al., 2024a; Jin et al., 2024)

3 NODE2NET: NODE-SPECIFIC PARAMETERIZED GNNs

GNNs traditionally operate under a paradigm of parameter sharing, where a single set of parameters is globally applied across all nodes and edges in the graph. While this approach offers computa-

tional efficiency and generalizability, it inherently limits the expressiveness of the network, particularly when need to model graphs with node-specific behaviors or heterogeneous structural roles. As shown in Figure 2, Node2Net can be flexibly integrated into a GNN model as long as the model uses an embedding vector to represent a node. Node2Net can take various types of features (e.g., original features from datasets, graph structural features, position encodings, random features) in the input layers, perform complex transformations with the neural network inside a node, and output a new embedding vector of the same size at the output layer. One common issue with node representation methods is that nodes only appearing in testsets are not trained. While we can not solve this issue faced by all node representation methods, we will perform a pre-training step after initializing parameters of all nodes, so the output from each node equals to the input vector before any actual graph learning is conducted. In this way, Node2Net will not affect the transductive or inductive nature of a backbone GNN model, and applies to both types of GNNs.

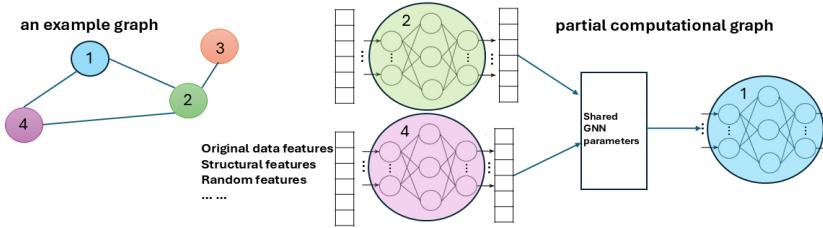


Figure 2: Node2Net can be flexibly integrated into a GNN model’s computational graph.

We present how to integrate our Node2Net approach into three popular categories of graph representation models: node representation learning, message passing neural networks (MPNNs), and graph transformers respectively. The case of k-GNNs is discussed in Appendix A.

3.1 NODE2NET FOR NODE REPRESENTATION LEARNING

We will use the well-known Node2Vec as a representative of node representation learning methods to show how it can be transformed to Node2Net. Let $G = (V, E)$ be a graph with node features $\{x_v \in \mathbb{R}^{d_{in}} : v \in V\}$. While Node2Vec generates a static embedding vector for each node, Node2Net parameterizes each node with its own lightweight neural function:

$$\Phi_v(\cdot; \theta_v) : \mathbb{R}^{d_{in}} \rightarrow \mathbb{R}^d,$$

where θ_v denotes the trainable parameters of a lightweight neural network (e.g., a two-layer MLP). The node representation is then

$$h_v = \Phi_v(x_v; \theta_v),$$

with x_v as the input node features (e.g., original attributes, structural features, random features (Abboud et al., 2020), one-hot vector). During training, we generate random-walk contexts $\mathcal{N}_{RW}(v)$ for each node v , and maximize the likelihood of context nodes conditioned on h_v :

$$\max_{\{\theta_v\}_{v \in V}} \sum_{v \in V} \sum_{u \in \mathcal{N}_{RW}(v)} \log \Pr(u | h_v),$$

where the conditional probability is defined as a softmax

$$\Pr(u | h_v) = \frac{\exp(h_u \cdot h_v)}{\sum_{w \in V} \exp(h_w \cdot h_v)}.$$

Remark: Node2Net generalizes Node2Vec if each Φ_v degenerates to a trainable lookup vector (i.e., $\Phi_v(x_v) = e_v$), the formulation reduces to Node2Vec. By using parametric functions, Node2Net can model nonlinear feature transformations, adapt node representations based on input features, and achieve higher representational capacity than static embeddings. Computationally, the number of parameters scales linearly with $|V|$, but Φ_v can be kept lightweight (e.g., shallow MLPs).

216 3.2 NODE-SPECIFIC PARAMETERIZED MESSAGE PASSING NEURAL NETWORKS
217

218 We extend the standard MPNN framework by assigning each node $v \in V$ its own parameterized
219 local function as follows. Let $\theta_v^{(t)}$ denote the trainable parameters of node v at layer t . At iteration
220 t , the hidden state update is defined as:

$$221 \quad m_v^{(t)} = \text{AGG} \left(\{ M_v^{(t)}(h_v^{(t-1)}, h_u^{(t-1)}, e_{uv}; \theta_v^{(t)}) : u \in \mathcal{N}(v) \} \right), \\ 222 \quad h_v^{(t)} = U_v^{(t)}(h_v^{(t-1)}, m_v^{(t)}; \theta_v^{(t)}),$$

224 where $M_v^{(t)} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d_e} \rightarrow \mathbb{R}^d$ is a message passing function parameterized by $\theta_v^{(t)}$, AGG is a
225 permutation-invariant aggregation (e.g., sum, mean, max), $U_v^{(t)}$ is a update function for node v .
226

227 After T layers, each node is represented by $\{h_v^{(T)} : v \in V\}$, and each node's evolution depends on
228 its own dedicated parameters. Graph-level outputs can be obtained by applying a readout function:

$$229 \quad h_G = R(\{h_v^{(T)} : v \in V\}). \\ 230$$

231 This formulation strictly subsumes the standard MPNN: if parameters are tied across all nodes, i.e.,
232 $\theta_v^{(t)} = \theta^{(t)}$, we recover the classical shared-parameter MPNN (Gilmer et al., 2017).
233

234 3.3 NODE-SPECIFIC PARAMETERIZED GRAPH TRANSFORMERS
235

236 With the idea of Node2Net, we extend a graph transformer-style GNN by equipping each node
237 $v \in V$ with its own trainable parameter set θ_v , which defines a lightweight neural network

$$238 \quad f_{\theta_v} : \mathbb{R}^d \rightarrow \mathbb{R}^d,$$

239 where f_{θ_v} is the node-specific function whose parameters θ_v are unique to node v . Let $h_v^{(0)} = x_v$
240 and $h_v^{(t)} \in \mathbb{R}^d$ denote the representation of node v at layer t , where x_v is the input feature vector.
241 The attention-based aggregation remains

$$242 \quad z_v^{(t)} = \sum_{u \in \mathcal{N}(v) \cup \{v\}} \alpha_{vu}^{(t)} W_V^{(t)} h_u^{(t-1)},$$

245 where $z_v^{(t)}$ denotes aggregated neighborhood message for node v at layer t , $\mathcal{N}(v)$ are neighbors of
246 node v , $h_u^{(t-1)}$ is the representation of neighbor u from the previous layer, $W_V^{(t)}$ is the global value
247 projection matrix at layer t , $\alpha_{vu}^{(t)}$ is attention weight between node v and neighbor u .
248

249 The attention weights are defined as

$$250 \quad \alpha_{vu}^{(t)} = \frac{\exp \left((W_Q^{(t)} h_v^{(t-1)})^\top (W_K^{(t)} h_u^{(t-1)}) / \sqrt{d} \right)}{251 \quad \sum_{u' \in \mathcal{N}(v) \cup \{v\}} \exp \left((W_Q^{(t)} h_v^{(t-1)})^\top (W_K^{(t)} h_{u'}^{(t-1)}) / \sqrt{d} \right)}, \\ 253$$

254 The update rule now integrates node-specific transformations:

$$255 \quad h_v^{(t)} = f_{\theta_v}(U^{(t)}(h_v^{(t-1)}, z_v^{(t)})), \\ 256$$

257 where $U^{(t)}$ is the global feed-forward module (e.g., an MLP with residual and normalization layers)
258 shared across all nodes, f_{θ_v} is node-specific neural network, unique to node v , parameterized by
259 θ_v , $h_v^{(t)}$ is the updated representation of node v at layer t . Thus, each node learns an individualized
260 parametric mapping that modulates its representation after global self-attention, enabling feature-
261 dependent, node-specific expressiveness beyond uniform parameter sharing.

262 3.4 THEORETICAL ANALYSIS
263

264 A standard *shared-parameter* MPNN computes node states $\{h_v^{(t)}\}$ via globally shared message and
265 update functions. A *Node2Net* model instead associates to each node $v \in V$ a local parametric
266 function $\Phi_v(\cdot; \theta_v)$, such as a small MLP, so that the update rule becomes

$$267 \quad h_v^{(t)} = \Phi_v(U^{(t)}(h_v^{(t-1)}, m_v^{(t)})), \\ 268$$

269 where $m_v^{(t)}$ denotes the aggregated messages from neighbors and $U^{(t)}$ is a global feed-forward
270 module with residual connections.

270 **Expressivity beyond 1-WL.** It is well known that shared-parameter MPNNs are upper bounded
 271 by the 1-Weisfeiler–Lehman (1-WL) test in distinguishing non-isomorphic graphs (Xu et al., 2019;
 272 Morris et al., 2019). Node2Net relaxes this limitation by allowing node-specific mappings.
 273

274 **Theorem 1** (Node2Net breaks 1-WL indistinguishability). *There exist two non-isomorphic graphs*
 275 *G, H such that (1) G and H are 1-WL indistinguishable, but (2) Node2Net produces distinct node*
 276 *outputs on G and H for some choice of node-local parameters $\{\theta_v\}$.*

277 *Proof sketch.* Classical counterexamples (e.g., certain regular graphs) are not separated by 1-WL,
 278 hence not by MPNNs. In Node2Net, even if nodes receive identical aggregated inputs, distinct local
 279 functions Φ_v can map these inputs to different outputs, breaking the symmetry. Thus, a parameteri-
 280 zation exists that separates G and H . \square

281 **Modeling Feature interactions.** Because Φ_v can be nonlinear (e.g., an MLP with ReLU),
 282 Node2Net models higher-order feature interactions. Concretely, for two nodes u, v with identical
 283 feature multisets and neighborhoods, a shared-parameter MPNN yields $h_u^{(t)} = h_v^{(t)}$, while Node2Net
 284 can produce $h_u^{(t)} \neq h_v^{(t)}$ by using different Φ_u, Φ_v . This enables the model to distinguish nodes in
 285 symmetric roles, which is impossible for 1-WL.

289 3.5 RELATION TO NODE-ID METHODS

290 A common way to increase GNN expressivity beyond 1-WL is to augment nodes with unique identi-
 291 fiers or random features (Node-ID methods) (Abboud et al., 2020; Sato, 2020; Loukas, 2020). Each
 292 node is assigned v an identifier vector e_v (often sampled from a random distribution) and feeds e_v
 293 as part of the input feature. This breaks 1-WL indistinguishability, since nodes with identical local
 294 neighborhoods can now be separated by their IDs. However, ID-based approaches face two key dif-
 295 ficulties (1) **randomness and instability:** Random ID features introduce variance across runs and
 296 may require multiple restarts to stabilize performance, and (2) **limited functional role:** IDs act as
 297 static tags; they do not provide feature-dependent transformations or model nonlinear interactions
 298 between a node’s attributes and its structural context. In contrast, Node2Net assigns each node a
 299 parametric function $\Phi_v(\cdot; \theta_v)$ instead of a fixed ID vector, which has several advantages:
 300

- 301 • **Learnable parameters:** node-local parameters are optimized during training, removing
 302 the need for careful stochastic initialization and aligning with the training objective.
- 303 • **Beyond tagging:** Whereas node IDs only differentiate nodes by identity, Node2Net enables
 304 each node to *transform* its input features and aggregated messages in a node-specific man-
 305 ner. That is, even if two nodes share identical features and neighborhoods, their different
 306 Φ_v mappings can produce distinct outputs.
- 307 • **Modeling feature interactions:** Since Φ_v can be an MLP or other nonlinear module,
 308 Node2Net captures nonlinear interactions between input features, node identity, and local
 309 context—a capacity entirely absent from pure ID methods.

311 **Expressivity consequence.** Formally, node-ID augmentation can be seen as the special case of
 312 Node2Net where each Φ_v ignores its input and directly outputs a learnable embedding vector. Thus,
 313 Node2Net *strictly subsumes* node-ID methods in representational power: it retains the ability to
 314 differentiate nodes by identity while also providing flexible, data-dependent transformations. This
 315 additional functional capacity explains why Node2Net can overcome the instability and limited ex-
 316 pressivity of random-feature ID methods.

318 4 EXPERIMENTS

319 We conducted extensive experiments to validate our Node2Net approach by comparing with three
 320 categories of GNN methods (node representation methods, traditional GNNs, graph transformers)
 321 using 5 graph learning benchmarks (details are given in Appendix B) and two graph tasks (node
 322 classification and graph regression).

324 4.1 EXPERIMENT WITH NODE REPRESENTATION METHOD NODE2VEC
325

326 For node representation methods, we chose to compare with the classic Node2Vec (Grover &
327 Leskovec, 2016) approach with a 2-phase implementation of Node2Net. In Phase 1, we train
328 Node2Vec to obtain base embeddings. In Phase 2, we insert a lightweight MLP into each node
329 and pretrain this MLP to input and output the same Phase 1 embedding using an L_2 reconstruction
330 loss (MSE). We then continue training with skip-gram objective, replacing the embedding lookup
331 with MLP outputs. For each random walk, a *positive sample* is defined as a center node v paired
332 with its context node u from the walk, while *negative samples* are nodes n_i randomly drawn from a
333 noise distribution P_n . Following standard setting in Node2Vec, the noise distribution is defined as
334

$$P_n(v) \propto d_v^{3/4},$$

335 where d_v denotes the degree of node v . The objective encourages large inner products for positive
336 pairs and small inner products for negative pairs:
337

$$\mathcal{L} = - \left[\log \sigma(h_u \cdot h_v) + \sum_{i=1}^K \mathbb{E}_{n_i \sim P_n} \log \sigma(-h_{n_i} \cdot h_v) \right],$$

340 where $\sigma(\cdot)$ is the sigmoid function.
341

342 For evaluation, we follow standard practice in node classification: the learned embeddings are fed
343 into a logistic regression classifier, trained on the training split and evaluated on the test split. We
344 report accuracy (and F1 score for PPI) averaged over 100 random seeds. Table 1 summarizes the per-
345 formance of two methods. Node2Net consistently outperforms the baseline across datasets, achiev-
346 ing the highest accuracy on Cora and PubMed, and strong improvements in F1 score on PPI.
347

348 It is worth noting that we cannot directly use `node2vec.loss()` function provided in PyTorch
349 Geometric, because it only computes losses over an internal embedding lookup table. In our two-
350 phase procedure, embeddings are generated dynamically by node-specific MLPs instead of static
351 lookup vectors. Therefore, we explicitly compute the skip-gram loss with MLP outputs so gradients
352 correctly flow into the MLP parameters. Hence, Node2Net loss values are not directly comparable
353 to Node2Vec losses, but embeddings dynamically generated by Node2Net exhibit improved linear
354 separability, leading to higher downstream classification accuracy as shown in Table 1.
355

356 Table 1: Experiment results with node representation method. Reported values are accuracy (%) for
357 Cora, CiteSeer, and PubMed, and Micro-F1 for PPI. More detailed results are in Appendix C.1.
358

Method	Cora	CiteSeer	PubMed	PPI (Micro-F1)
Node2Vec	68.75 ± 1.18	48.63 ± 1.67	69.95 ± 0.85	0.1911 ± 0.0040
Node2Net	73.24 ± 0.95	51.58 ± 1.15	71.97 ± 1.31	0.1930 ± 0.0055

361 4.2 EXPERIMENTS WITH TRADITIONAL GNN MODELS
362

363 We chose three widely used traditional GNN models for comparison: GCN (Kipf & Welling, 2017),
364 GraphSAGE (Hamilton et al., 2017), and GATv2 (Veličković et al., 2018). For each model, we
365 construct an enhanced variant by inserting a pretrained MLP (pretrained so initial output equals to
366 input) into each node:
367

$$X'_i = \begin{cases} \phi_i(X_i), & \text{if } i \in \mathcal{V}_{\text{train}}, \text{then } i\text{'s MLP is activated,} \\ X_i, & \text{otherwise.} \end{cases}$$

368 where $\mathcal{V}_{\text{train}}$ is the set of nodes included in the training set, each training node i has its own MLP ϕ_i .
369 The GNN f_θ then operates on X' :
370

$$Z = f_\theta(X', \hat{A}), \quad \hat{Y} = \text{softmax}(Z).$$

371 By construction, validation/test nodes never pass through any Node-MLP, preventing information
372 leakage and keeping inference cost identical to the baseline models.
373

374 We adopt a two-phase training procedure to integrate node-specific MLPs into each backbone:
375

- **Phase 1 (Node MLP pretraining).** Each ϕ_i is trained independently on nodes in $\mathcal{V}_{\text{covered}} = \text{train nodes} \cup \text{their 1-hop neighbors}$, with reconstruction objective $\phi_i(X_i) \approx X_i$ (MSE). This initializes Node-MLPs to behave like identity mappings.
- **Phase 2 (Joint model training).** The pre-trained Node-MLPs are activated inside the GNN backbone. We then train the full model end-to-end for 200 epochs, allowing node features to evolve dynamically through both message passing and per-node refinement. Unless otherwise specified, backbone parameters remain trainable during this phase. Hyperparameters and detailed experiment settings can be found in Appendix C.5.

As shown in Table 2 and Table 3, Node2Net consistently improves or matches baseline performance:

- **Local parameterization:** Node-specific parameterization improves both message-passing (GCN, GraphSAGE) and attention-based (GATv2) backbones.
- **Robustness:** Gains are stable across citation networks (Cora, CiteSeer, PubMed) and PPI, demonstrating generality. Improvements on loss are often significant.
- **Flexibility:** In featureless graphs (PPI), integrating Node2Net embeddings enables strong performance in both GraphSAGE and GATv2 backbones.

Table 2: Experiment results on (Accuracy / Micro-F1). More detailed results are in Appendix C.2.

Method	Cora	CiteSeer	PubMed	PPI (Micro-F1)
GCN	83.07 ± 0.79	67.89 ± 0.81	78.51 ± 0.57	0.1749 ± 0.0043
Node2Net-GCN	83.30 ± 0.73	67.95 ± 0.71	78.59 ± 0.54	0.1770 ± 0.0056
GATv2	81.23 ± 1.60	69.02 ± 2.00	76.91 ± 1.06	0.1020 ± 0.0206
Node2Net-GATv2	81.01 ± 1.28	69.21 ± 1.68	77.29 ± 0.71	0.1006 ± 0.0201
GraphSAGE	79.54 ± 0.77	70.19 ± 0.55	76.61 ± 0.47	0.1839 ± 0.0035
Node2Net-GraphSAGE	79.61 ± 0.85	70.48 ± 0.63	77.31 ± 0.34	0.1848 ± 0.0043

Table 3: Experiment results on loss. More detailed results can be found in Appendix C.2.

Method	Cora	CiteSeer	PubMed	PPI (Loss)
GCN	60.96 ± 2.00	116.68 ± 3.70	57.63 ± 0.81	1.0324 ± 0.0020
Node2Net-GCN	60.85 ± 2.19	116.09 ± 3.28	57.57 ± 0.75	0.8145 ± 0.0022
GATv2	103.88 ± 3.66	129.10 ± 1.92	61.10 ± 1.76	1.2585 ± 0.0289
Node2Net-GATv2	87.49 ± 3.24	102.86 ± 2.14	58.08 ± 1.50	1.2592 ± 0.0301
GraphSAGE	64.87 ± 1.77	92.42 ± 0.89	62.87 ± 1.05	0.6507 ± 0.0038
Node2Net-GraphSAGE	65.92 ± 2.13	92.58 ± 1.23	60.66 ± 0.75	0.5721 ± 0.0045

4.3 EXPERIMENT WITH GRAPH TRANSFORMER METHOD GRAPHGPS

For graph transformers, we chose GraphGPS (Rampášek et al., 2022) due to its incorporation of rich graph information. We extend GraphGPS by introducing **NodeEdgeMLP (NE-MLP)** (Appendix §D) to replace static embeddings with categorical MLPs operating on one-hot identifiers for both nodes and edges. This design enhances structural expressivity, incorporates positional encodings, and introduces gradient scheduling to decouple the dynamics of edge and node optimization.

Baseline GraphGPS initialization: node and edge features are initialized by embedding lookups:

$$h_i^{(0)} = [\text{Embed}_{\text{node}}(t_i) \parallel W_{\text{PE}} \text{PE}_i], \quad e_{ij}^{(0)} = \text{Embed}_{\text{edge}}(r_{ij}),$$

where t_i is the node type, r_{ij} the edge type, and PE_i the positional encoding.

432 **NE-MLP initialization (ours).** We replace static embeddings with categorical MLPs:
 433

$$434 \quad h_i^{(0)} = [\phi_{\text{node}}(\text{onehot}(t_i)) \parallel \phi_{\text{PE}}(\text{PE}_i)], \quad e_{ij}^{(0)} = \phi_{\text{edge}}(\text{onehot}(r_{ij})),$$

435 where

$$436 \quad \phi_{\text{node}} : \mathbb{R}^{|T|} \rightarrow \mathbb{R}^{d_h - d_{\text{PE}}}, \quad \phi_{\text{edge}} : \mathbb{R}^{|R|} \rightarrow \mathbb{R}^{d_h}, \quad \phi_{\text{PE}} : \mathbb{R}^{d_{\text{PE,in}}} \rightarrow \mathbb{R}^{d_{\text{PE}}},$$

438 with $|T|$ and $|R|$ denoting the number of node and edge types, and d_h the hidden channel size.
 439

440 **Gradient scheduling.** To reduce optimization noise, we introduce an update mask:
 441

$$442 \quad \nabla \phi_{\text{node}} \neq 0 \quad \forall \text{ steps}, \quad \nabla \phi_{\text{edge}} = \begin{cases} \nabla \phi_{\text{edge}}, & \text{if } s \equiv 0 \pmod{n}, \\ 0, & \text{otherwise,} \end{cases}$$

444 where s is the training step index and n is the update period (default $n = 5$).
 445

446 Discussion and summary of results.

447

- 448 **Enhanced structural bias.** NE-MLP maps node types, edge types, and positional encodings into unified channel-aligned features, yielding richer structural encodings compared to fixed embeddings and clear performance improvement as shown in Table 4.
- 449
- 450
- 451 **Controlled gradient scheduling.** Node MLPs update every iteration while edge MLPs update periodically ($n = 5$ by default), providing smoother training for edge embeddings.
- 452
- 453 **Inductive generalization.** No pretraining or auxiliary supervision is applied. Both GPS and Node2Net-GPS are trained from scratch, showing that NE-MLP generalizes without external knowledge transfer.
- 454
- 455

456 Table 4: Experiment results on ZINC. More detailed results can be found in Appendix C.3.
 457

459 Model	460 Test mean loss \pm standard deviation
461 GPS	0.08708 \pm 0.006
462 Node2Net-GPS (NE-MLP)	0.08621 \pm 0.004

463 Recent trends in graph learning increasingly emphasize the integration of richer structural, topo-
 464 logical, and semantic information from graphs (Hussain et al., 2024; Gao et al., 2024; Zhao et al.,
 465 2025), and integration of specially designed architectural component such as Node2Net is often not
 466 straightforward and deserves more study. Specifically with graph transformers, their performance
 467 is significantly impacted by tokenization (Zhang et al., 2024b; Müller & Morris, 2024), which is
 468 central to our Node2Net approach and will be explored in future work.
 469

470 5 CONCLUSION

471 In this work, we introduced a novel node-specific parameterization method called Node2Net as a
 472 principled approach to enhance the expressiveness of GNNs by equipping each node with a learn-
 473 able function capable of modeling nonlinear feature interactions and feature-dependent variability.
 474 This mechanism strictly extends the representational power beyond traditional node embeddings
 475 and shared-parameter GNNs, allowing the model to break 1-WL indistinguishability while main-
 476 taining linear computational and memory scaling. Importantly, Node2Net does not alter the inherent
 477 transductive or inductive generalization properties of the backbone, ensuring applicability to both
 478 settings. We demonstrated how this concept can be seamlessly integrated into many widely-used
 479 GNN architectures. Empirical results on multiple node classification benchmarks confirm consis-
 480 tent performance gains over node representation methods, classical GNNs, and graph trans-
 481 formers. Node2Net constitutes a fundamental design principle with potential applications beyond node
 482 classification, including link prediction and graph-level tasks. Additionally, the idea of component-
 483 specific parameterization can also be applied to more graph components, which will be explored
 484 in future work. We believe this work opens a new avenue for GNN design and encourages further
 485 exploration into the interplay between global structure and local computation.

486 **Reproducibility statement** We are committed to ensuring the reproducibility of our results. To this
 487 end, upon acceptance we will provide:
 488

- 489 1. Code and Implementation Details: Our full implementation, including training and evalua-
 490 tion scripts, is available in an open-source repository (link to be released upon acceptance).
 491 The code specifies all model architectures, hyperparameters, and random seeds.
- 492 2. Datasets: All datasets used in this work (Cora, Citeseer, Pubmed, and others) are publicly
 493 available. We include preprocessing scripts to reproduce the exact input data splits used in
 494 our experiments.
- 495 3. Experimental Setup: We document the computing environment (hardware, software ver-
 496 sions, GPU/CPU specifications) and report training times and memory usage.
- 497 4. Hyperparameters: All hyperparameters are reported in the Appendix, including learning
 498 rates, batch sizes, optimizer settings, regularization coefficients, and early stopping criteria.
- 499 5. Statistical Rigor: For each benchmark, results are averaged across multiple runs with differ-
 500 ent random seeds, and we report both mean and standard deviation. Statistical significance
 501 is assessed using paired tests where appropriate.
- 502 6. Limitations: While our experiments cover widely used benchmarks, large-scale industrial
 503 graphs and certain application domains (e.g., temporal or dynamic graphs) are beyond the
 504 scope of this study. Future work will address scalability and broader applicability.

506 REFERENCES

507 Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. Surprising power
 508 of graph neural networks with random node initialization. In *Advances in Neural Information
 509 Processing Systems (NeurIPS)*, 2020.

510 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
 511 In *ICLR*, 2021.

512 Guy Bar-Shalom, Yam Eitan, Fabrizio Frasca, and Haggai Maron. A flexible, equivariant frame-
 513 work for subgraph GNNs via graph products and graph coarsening. In *The Thirty-eighth Annual
 514 Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=9cFyqhjEHC>.

515 Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
 516 Balamurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
 517 works. In *International Conference on Learning Representations (ICLR)*, 2022.

518 Beatrice Bevilacqua, Joshua Robinson, Jure Leskovec, and Bruno Ribeiro. Holographic node repre-
 519 sentations: Pre-training task-agnostic node embeddings. In *The Thirteenth International Confer-
 520 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tGYFikNONB>.

521 Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
 522 neural network expressivity via subgraph isomorphism counting. *IEEE Transactions on Pattern
 523 Analysis and Machine Intelligence*, 45(1):657–668, 2023. doi: 10.1109/TPAMI.2022.3154319.

524 Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
 525 connected networks on graphs. In *ICLR*, 2014.

526 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
 527 graphs with fast localized spectral filtering. In *NeurIPS*, 2016.

528 Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, and Keyulu
 529 Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In *NeurIPS*,
 530 2019.

531 Vikas P Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. *AAAI
 532 Workshop on Deep Learning on Graphs: Methods and Applications*, 2021.

540 Ben Finkelshtein, Ismail İlkan Ceylan, Michael Bronstein, and Ron Levie. Equivariance everywhere
 541 all at once: A recipe for graph foundation models, 2025. URL <https://arxiv.org/abs/2506.14291>.

543 Zhangyang Gao, Daize Dong, Cheng Tan, Jun Xia, Bozhen Hu, and Stan Z. Li. A graph is worth
 544 k words: euclideanizing graph using pure transformer. In *Proceedings of the 41st International
 545 Conference on Machine Learning*, ICML'24. JMLR.org, 2024.

546 Vikas Garg, Stefanie Jegelka, and Jaakkola Tommi. Generalization and representational limits of
 547 graph neural networks. In *ICML*, 2020.

548 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 549 message passing for quantum chemistry. In *ICML*, 2017.

550 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings
 551 of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
 552 (KDD)*, pp. 855–864. ACM, 2016.

553 William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
 554 graphs. In *NeurIPS*, 2017.

555 Daniel Herbst and Stefanie Jegelka. Higher-order graphon neural networks: Approximation and cut
 556 distance. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 557 <https://openreview.net/forum?id=SjufxrSOYd>.

558 Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Triplet interaction
 559 improves graph transformers: accurate molecular graph learning with triplet graph transformers.
 560 In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org,
 561 2024.

562 Emily Jin, Michael Bronstein, undefinedsmail undefinedlkan Ceylan, and Matthias Lanzinger. Ho-
 563 momorphism counts for graph neural networks: all about that basis. In *Proceedings of the 41st
 564 International Conference on Machine Learning*, ICML'24. JMLR.org, 2024.

565 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 566 works. In *ICLR*, 2017.

567 Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
 568 Tossou. Rethinking graph transformers with spectral attention. In *Advances in Neural Infor-
 569 mation Processing Systems (NeurIPS)*, 2021.

570 Andreas Loukas. What graph neural networks cannot learn: Depth vs width. In *International
 571 Conference on Learning Representations (ICLR)*, 2020.

572 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
 573 Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
 574 In *AAAI*, 2019.

575 Christopher Morris, Nils M Kriege, Kristian Kersting, Petra Mutzel, and Marion Neumann. Tu-
 576 dataset: A collection of benchmark datasets for learning with graphs. In *ICML Workshop on
 577 Graph Representation Learning*, 2020.

578 Luis Müller and Christopher Morris. Aligning transformers with weisfeiler-leman. In *Proceedings
 579 of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2024.

580 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
 581 classification. *ICLR*, 2020.

582 Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
 583 sentations. In *Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
 584 Discovery and Data Mining (KDD)*, pp. 701–710. ACM, 2014.

585 Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park. Graph
 586 neural ordinary differential equations. In *ICML*, 2019.

594 Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 595 minique Beaini. Recipe for a general, powerful, scalable graph transformer. In *Proceedings of the*
 596 *36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook,
 597 NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

598 Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, and Junzhou Huang. Self-supervised
 599 graph transformer on large-scale molecular data. In *Advances in Neural Information Processing*
 600 *Systems (NeurIPS)*, 2020.

601 Ryoma Sato. A survey on the expressive power of graph neural networks. *arXiv preprint*
 602 *arXiv:2003.04078*, 2020.

603 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
 604 networks. *CoRR*, abs/2002.03155, 2020. URL <https://arxiv.org/abs/2002.03155>.

605 Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
 606 Welling. Modeling relational data with graph convolutional networks. In *ESWC*, 2018.

607 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 608 Bengio. Graph attention networks. In *ICLR*, 2018.

609 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 610 networks? In *ICLR*, 2019.

611 Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
 612 Graph convolutional neural networks for web-scale recommender systems. In *ACM SIGKDD*
 613 *International Conference on Knowledge Discovery and Data Mining (KDD)*, 2018.

614 Rex Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yelong Shen, and Tie-Yan
 615 Liu. Do transformers really perform badly for graph representation? In *NeurIPS*, 2021.

616 Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
 617 networks. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2021.

618 Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
 619 lehman: A quantitative framework for GNN expressiveness. In *The Twelfth International Confer-
 620 ence on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=HSKaGOi7Ar>.

621 Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns via
 622 graph biconnectivity, 2024b. URL <https://arxiv.org/abs/2301.09505>.

623 Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael M. Bronstein, and Jian
 624 Tang. Fully-inductive node classification on arbitrary graphs. In *The Thirteenth International
 625 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=1Qpt43cqhg>.

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A NODE2NET FOR HIGHER ORDER K-GNNs
649650 Let $G = (V, E)$ be a graph. For a positive integer k , denote by $\mathcal{T}_k = \{S = (v_1, \dots, v_k) : v_i \in V\}$
651 the set of ordered or unordered k -tuples (we use ordered tuples for notational simplicity). Let $x_v \in$
652 \mathbb{R}^{d_x} be the input feature of node v . For a tuple $S = (v_1, \dots, v_k) \in \mathcal{T}_k$ we write x_S for a tuple-level
653 feature (e.g., concatenation or a structural feature):
654

655
$$x_S = \text{concat}(x_{v_1}, \dots, x_{v_k}) \in \mathbb{R}^{kd_x}.$$

656 Here x_S is the input to the k -tuple representation function.
657658 A.1 DIRECT PER- k -TUPLE NODE2NET
659660 Assign each k -tuple $S \in \mathcal{T}_k$ its own lightweight parametric function $f_{\theta_S} : \mathbb{R}^D \rightarrow \mathbb{R}^D$ (where D
661 is the tuple representation dimension). Let $h_S^{(t)} \in \mathbb{R}^D$ denote the representation of tuple S at layer
662 t . The high-order attention aggregation and update follow the same pattern as node-level, but over
663 tuple neighborhoods $\mathcal{N}_k(S)$ (tuples adjacent to S under the chosen k-GNN adjacency relation).
664

665
$$z_S^{(t)} = \sum_{T \in \mathcal{N}_k(S) \cup \{S\}} \alpha_{S,T}^{(t)} W_V^{(t)} h_T^{(t-1)},$$

666
667
$$\alpha_{S,T}^{(t)} = \frac{\exp((W_Q^{(t)} h_S^{(t-1)})^\top (W_K^{(t)} h_T^{(t-1)}) / \sqrt{D})}{\sum_{T' \in \mathcal{N}_k(S) \cup \{S\}} \exp((W_Q^{(t)} h_S^{(t-1)})^\top (W_K^{(t)} h_{T'}^{(t-1)}) / \sqrt{D})},$$

668
669
$$h_S^{(t)} = f_{\theta_S}(U^{(t)}(h_S^{(t-1)}, z_S^{(t)})),$$

670
671

672 This is a direct extension: each k -tuple has a unique parametric mapping f_{θ_S} . It is expressive but
673 scales as $|\mathcal{T}_k|$, which is typically intractable for moderate-sized graphs.
674675 A.2 PRACTICAL, PARAMETER-EFFICIENT IMPLEMENTATIONS
676677 Below are two parameter-efficient ways to capture tuple-specific adaptation while avoiding an ex-
678 plosion in parameters.
679680 A.2.1 HYPERNETWORK (GENERATE TUPLE PARAMETERS FROM NODE-LEVEL CODES)
681682 Equip each node v with a small code $c_v \in \mathbb{R}^p$ (or node-specific parameters θ_v). Form a tuple code
683 c_S by pooling the node codes:
684

685
$$c_S = \text{Pool}(c_{v_1}, \dots, c_{v_k}),$$

686 and use a hypernetwork G_ϕ to generate lightweight parameters for tuple S :
687

688
$$\tilde{\theta}_S = G_\phi(c_S).$$

689 The tuple update becomes
690

691
$$h_S^{(t)} = f_{\tilde{\theta}_S}(U^{(t)}(h_S^{(t-1)}, z_S^{(t)})),$$

692 where $f_{\tilde{\theta}_S}$ is a small MLP whose parameters are the output $\tilde{\theta}_S$ of the hypernetwork. Only $\{c_v\}_{v \in V}$
693 and ϕ are learned (plus global projection matrices), keeping parameter count manageable. The
694 hypernetwork compresses per-tuple variation into a function of node-level codes. Complexity scales
695 with $|V|$ rather than $|\mathcal{T}_k|$.
696697 A.2.2 COMPOSITIONAL PER-NODE FUNCTIONS + FUSION (ELEMENTWISE COMPOSITION)
698699 Instead of generating tuple parameters, apply node-specific transformations to each element in the
700 tuple and then fuse the transformed element representations.
701702 Assign each node v a node-specific function $g_{\theta_v} : \mathbb{R}^{d_x} \rightarrow \mathbb{R}^{d'}$. Compute elementwise transformed
703 features and combine:
704

702

$$u_i^{(t)} = g_{\theta_{v_i}}(\pi_i(U^{(t)}(h_S^{(t-1)}, z_S^{(t)}))), \quad i = 1, \dots, k,$$

$$h_S^{(t)} = \mathcal{F}(u_1^{(t)}, \dots, u_k^{(t)}),$$

703 Alternatively, one can use multi-head cross-attention among the transformed elements:

$$h_S^{(t)} = \text{CrossAtt}([u_1^{(t)}, \dots, u_k^{(t)}]),$$

704 This scheme only stores per-node parameters θ_v (as in Node2Net) and a small global fusion network;
705 it is computationally efficient and naturally generalizes standard k -GNN architectures.

706

A.3 CHOICE OF TUPLE NEIGHBORHOOD AND COMPLEXITY

707 **Tuple neighborhood** $\mathcal{N}_k(S)$. A standard choice: $\mathcal{N}_k(S)$ contains tuples obtained from S by re-
708 placing one element v_i with a neighbor $u \in \mathcal{N}(v_i)$. Formally, for ordered tuples:

$$\mathcal{N}_k(S) = \{(v_1, \dots, v_{i-1}, u, v_{i+1}, \dots, v_k) : i \in [k], u \in \mathcal{N}(v_i)\}.$$

709

Complexity observations.

710

- 711 • Direct per-tuple parameters: memory $\mathcal{O}(|\mathcal{T}_k| \cdot P)$ for param size P — infeasible for large
712 graphs.
- 713 • Hypernetwork: memory $\mathcal{O}(|V| \cdot p + |\phi|)$ — scalable when $p \ll P$.
- 714 • Compositional scheme: memory $\mathcal{O}(|V| \cdot P_v + P_{\text{fusion}})$ where P_v is per-node MLP size —
715 typically feasible.

716

B DATASETS DESCRIPTION

717

- 718 • **Cora:** A citation network with 2,708 nodes and 5,429 edges, where each node corresponds
719 to a scientific publication and edges represent citation links. Each node is assigned to one
720 of 7 classes. Following the GCN paper, we use 20 nodes per class for training (140 in total),
721 500 nodes for validation, and 1,000 nodes for testing.

722

- 723 • **CiteSeer:** A citation network containing 3,327 nodes and 4,732 edges, categorized into 6
724 classes. The split uses 20 nodes per class for training (120 in total), 500 nodes for validation,
725 and 1,000 nodes for testing.

726

- 727 • **PubMed:** A large-scale biomedical citation network with 19,717 nodes and 44,338 edges,
728 divided into 3 classes. The split uses 20 nodes per class for training (60 in total), 500 nodes
729 for validation, and 1,000 nodes for testing.

730

- 731 • **PPI:** A subgraph of the Protein–Protein Interaction (PPI) network for *Homo Sapiens*. This
732 subgraph is induced by proteins for which labels are available from hallmark gene sets,
733 representing different biological states. It contains 3,890 nodes, 76,584 edges, and 50
734 distinct labels, and is evaluated as a multi-label node classification task.

735

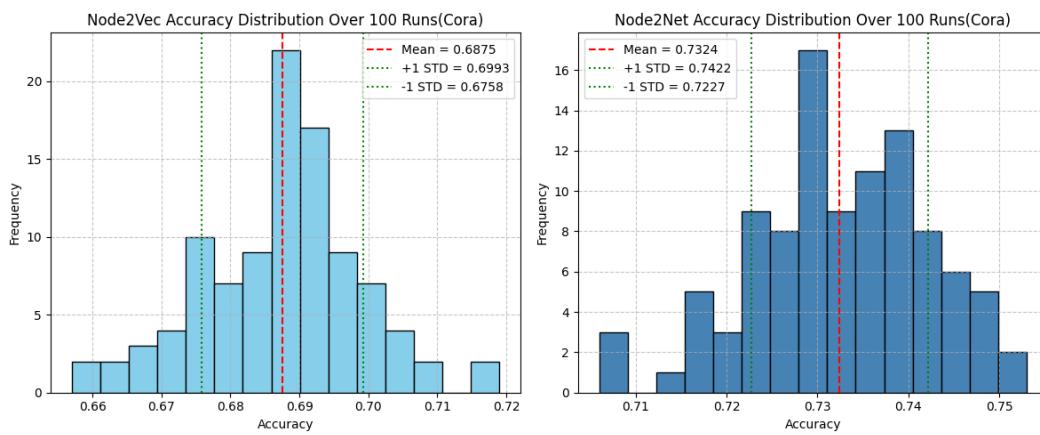
- 736 • **ZINC:** A molecular graph regression dataset widely used for benchmarking graph trans-
737 formers. Each molecule is represented as a graph with atoms as nodes and bonds as edges,
738 and the task is to predict constrained solubility values. We follow example setting in PyG
739 GraphGPS to adopt the standard *ZINC subset*.

740

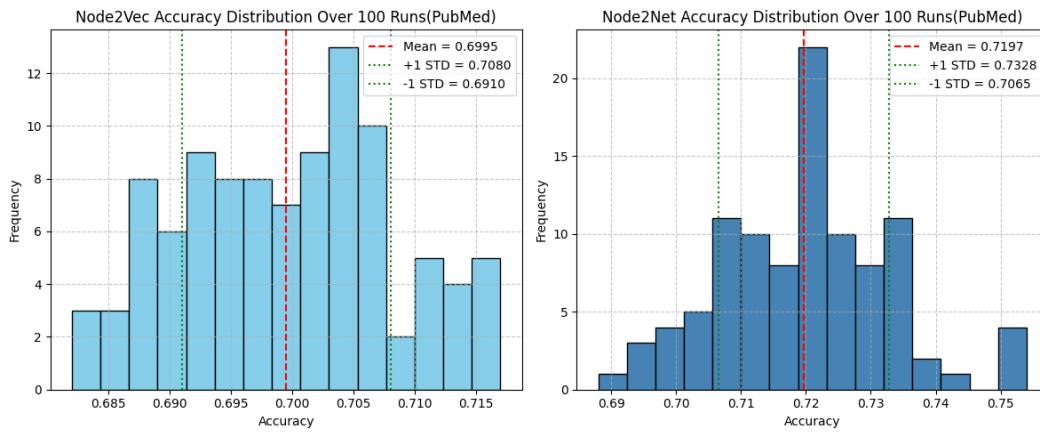
741 **Dataset Splits** For the citation networks (Cora, CiteSeer, and PubMed), we follow the standard
742 fixed splits introduced in the GCN paper Kipf & Welling (2017), using 20 nodes per class for training
743 (e.g., 140 for Cora, 120 for CiteSeer, and 60 for PubMed), 500 nodes for validation, and 1,000 nodes
744 for testing.

745 For the PPI dataset, we follow the inductive setting introduced by the GCN paper Kipf & Welling
746 (2017), which uses the *Homo sapiens* protein–protein interaction (PPI) subgraph with approximately
747 3,890 nodes and 50 labels, split into 20 graphs for training, 2 graphs for validation, and 2 graphs for
748 testing.

749 For the ZINC dataset, we use the standard subset split provided by PyG: 12,000 molecules split into
750 10,000/1,000/1,000 for train/validation/test. We apply random walk positional encodings of length
751 20 as a pre-transform step, consistent with prior work.

756 C EXPERIMENTAL DETAILS
757
758
759
760761 C.1 DETAILED RESULTS FOR NODE REPRESENTATION METHODS
762
763
764
765
766
767

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809



893 Figure 4: Accuracy distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the
894 PubMed dataset. Node2Net shows a tighter and higher performance distribution.
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
9999

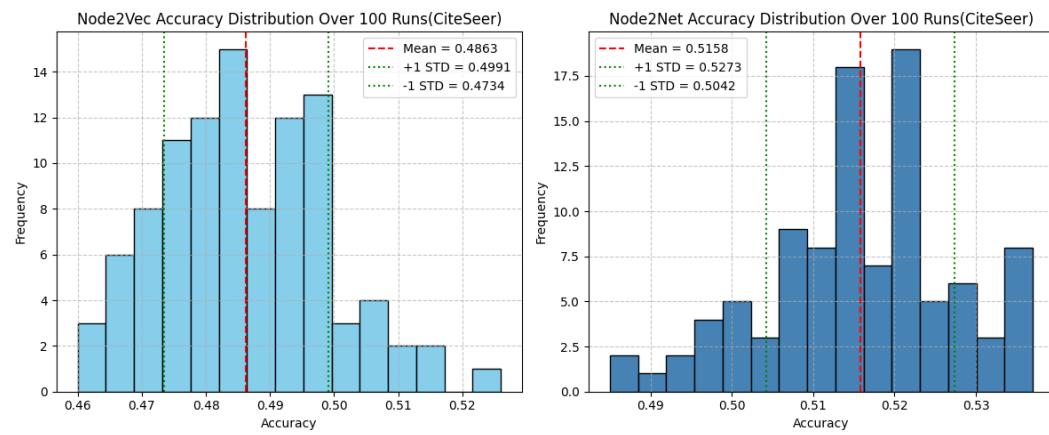


Figure 5: Accuracy distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the CiteSeer dataset. Node2Net shows a tighter and higher performance distribution.

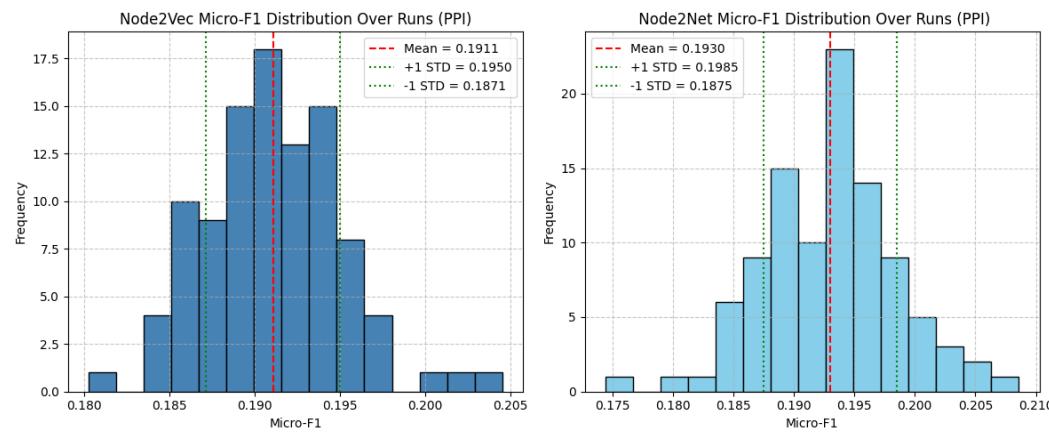
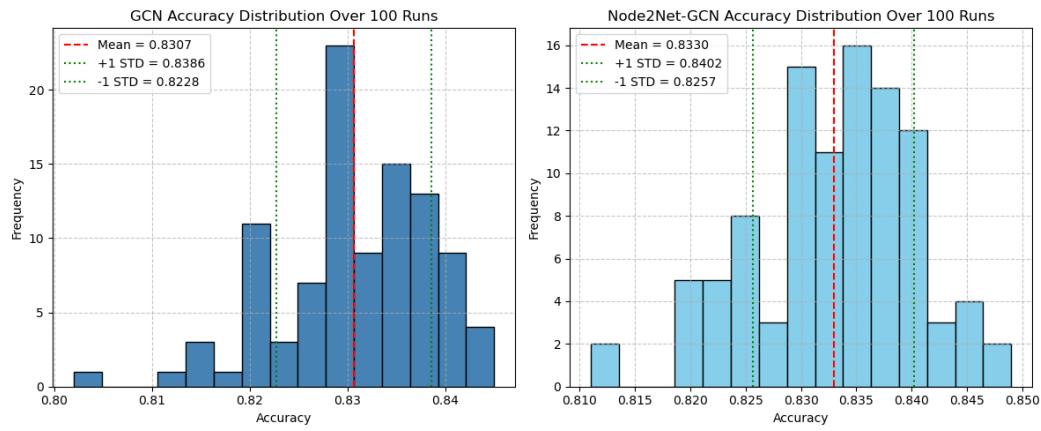
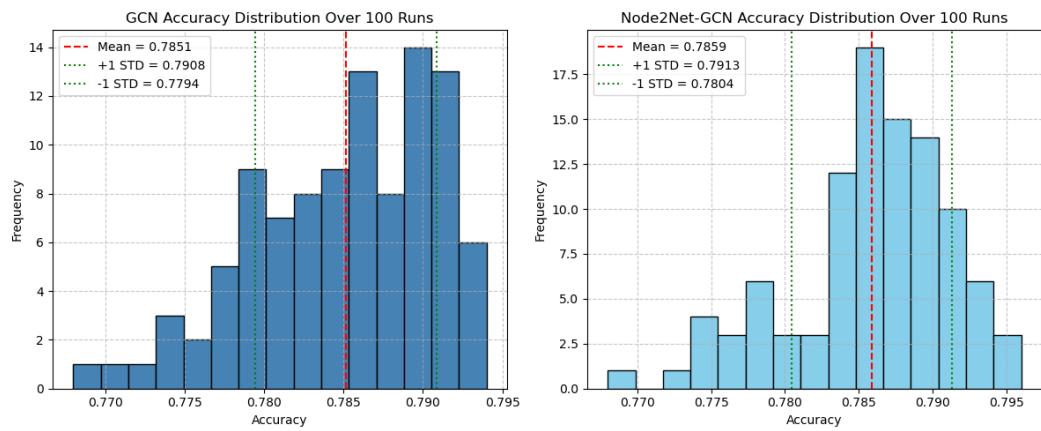


Figure 6: F1 distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the PPI dataset. Node2Net shows a tighter and higher performance distribution.

864
865
866
867
868
869
870
871
872
873 C.2 DETAILED RESULTS FOR TRADITIONAL GNNS
874
875
876
877
878
879
880
881
882
883
884
885
886887
888 Figure 7: Accuracy distribution over 100 runs on the Cora dataset, using the test results from the
889 last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN
890 showing a tighter and higher performance distribution.
891
892
893
894
895
896
897
898
899
900901
902
903
904
905
906
907
908
909
910
911
912
913
914
915 Figure 8: Accuracy distribution over 100 runs on the PubMed dataset, using the test results from
916 the last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN
917 showing a tighter and higher performance distribution.
918

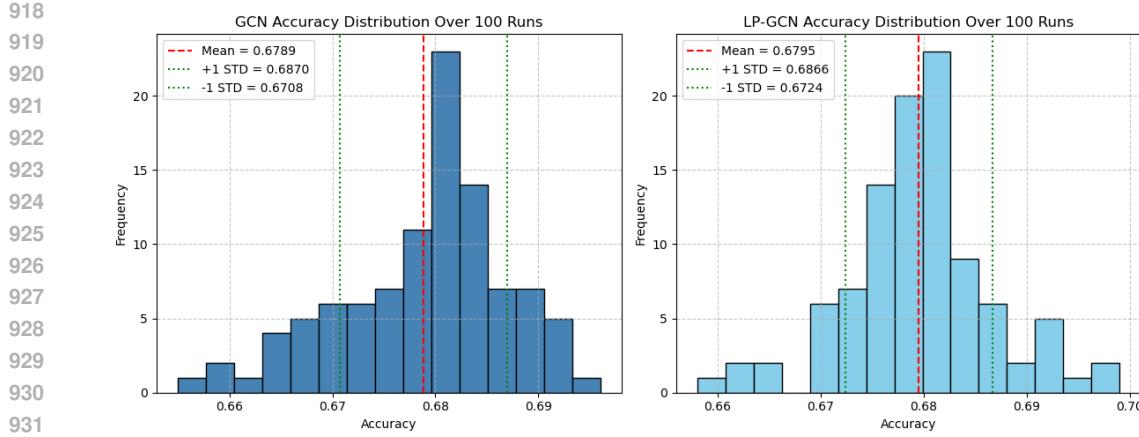


Figure 9: Accuracy distribution over 100 runs on the CiteSeer dataset, using the test results from the last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN showing a tighter and higher performance distribution.

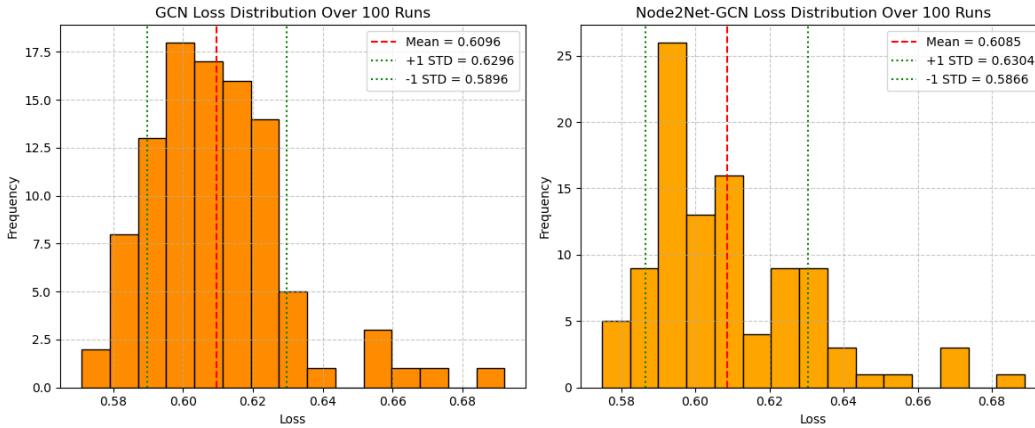


Figure 10: Loss distribution over 100 runs on the Cora dataset, using the test results from the last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN showing a tighter and lower loss distribution.

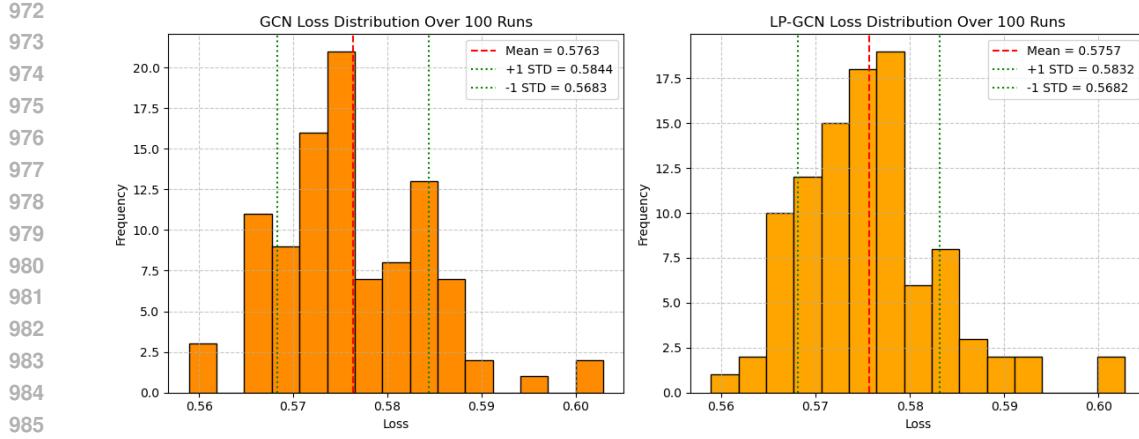


Figure 11: Loss distribution over 100 runs on the PubMed dataset, using the test results from the last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN showing a tighter and lower loss distribution.

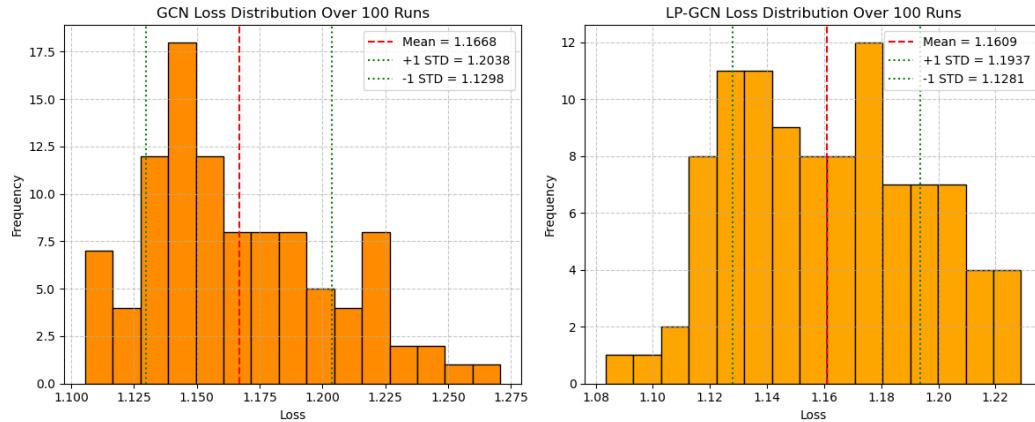


Figure 12: Loss distribution over 100 runs on the CiteSeer dataset, using the test results from the last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN showing a tighter and lower loss distribution.

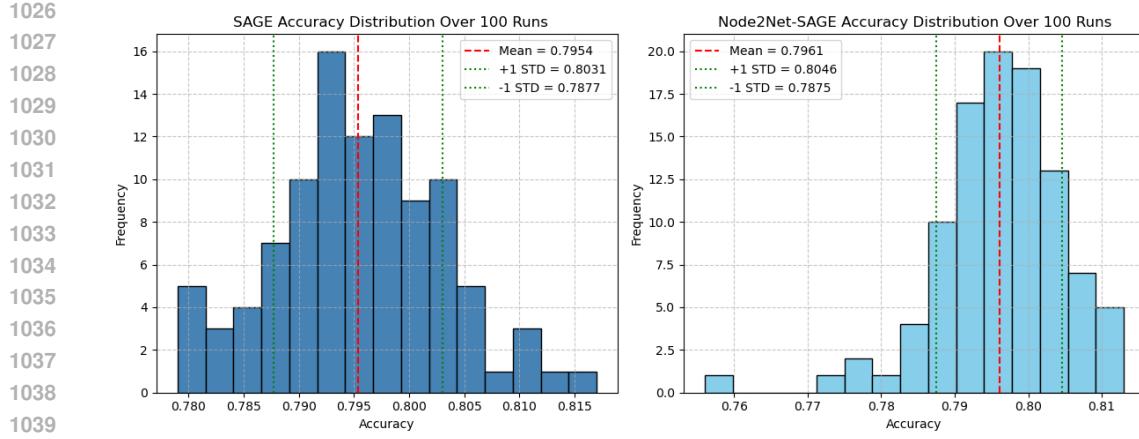


Figure 13: Accuracy distribution over 100 runs on the Cora dataset, using the test results from the last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-SAGE showing a tighter and higher performance distribution.

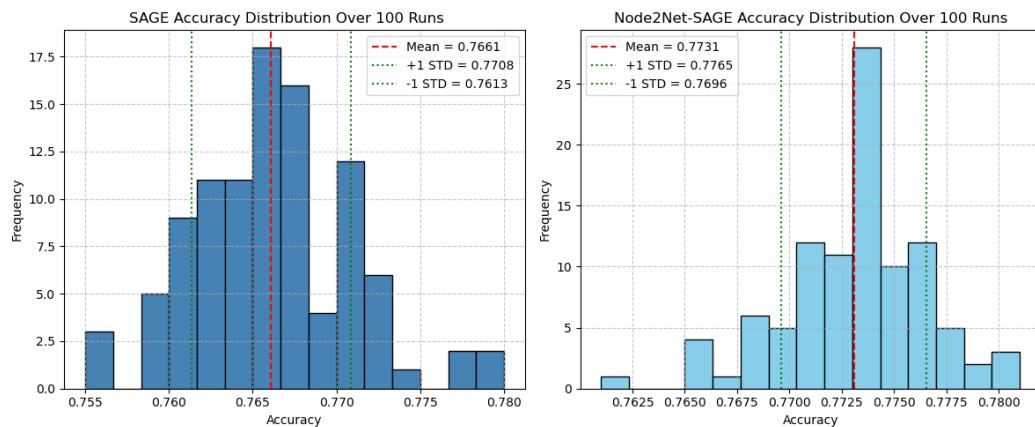


Figure 14: Accuracy distribution over 100 runs on the PubMed dataset, using the test results from the last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-SAGE showing a tighter and higher performance distribution.

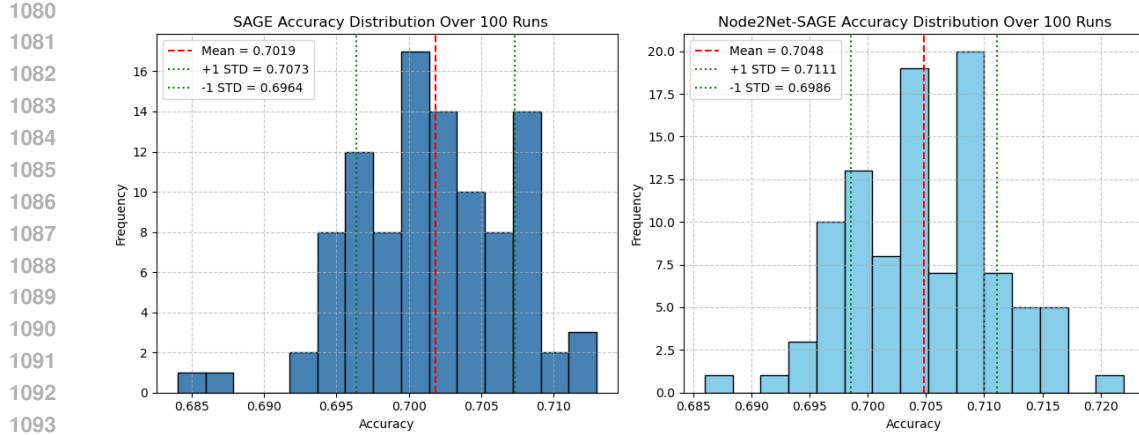


Figure 15: Accuracy distribution over 100 runs on the CiteSeer dataset, using the test results from the last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-SAGE showing a tighter and higher performance distribution.

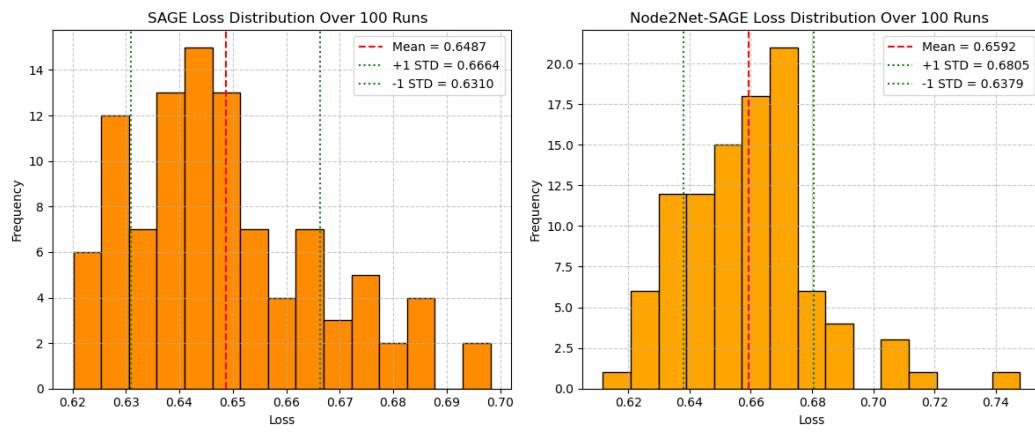


Figure 16: Loss distribution over 100 runs on the Cora dataset, using the test results from the last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-SAGE showing a tighter and lower loss distribution.

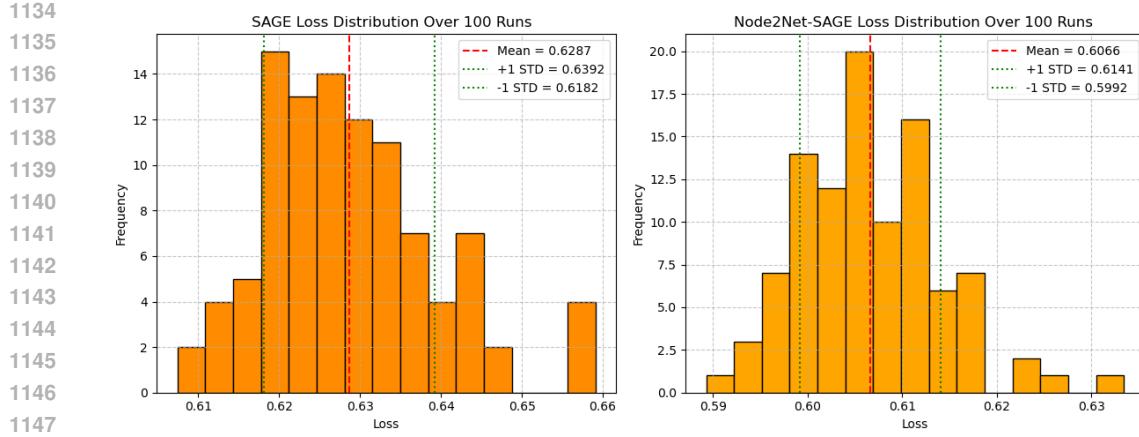


Figure 17: Loss distribution over 100 runs on the PubMed dataset, using the test results from the last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-SAGE showing a tighter and lower loss distribution.

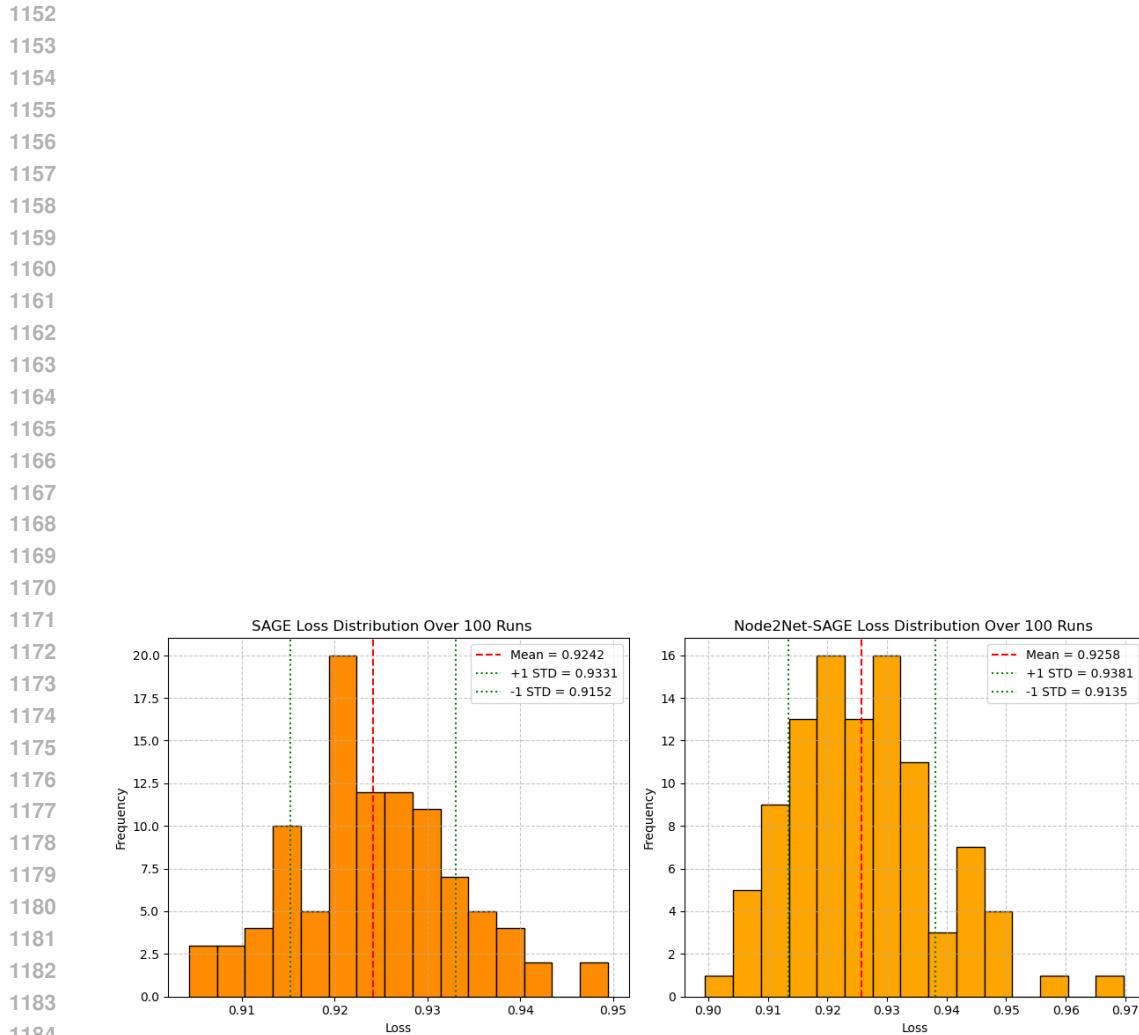


Figure 18: Loss distribution over 100 runs on the CiteSeer dataset, using the test results from the last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-SAGE showing a tighter and lower loss distribution.

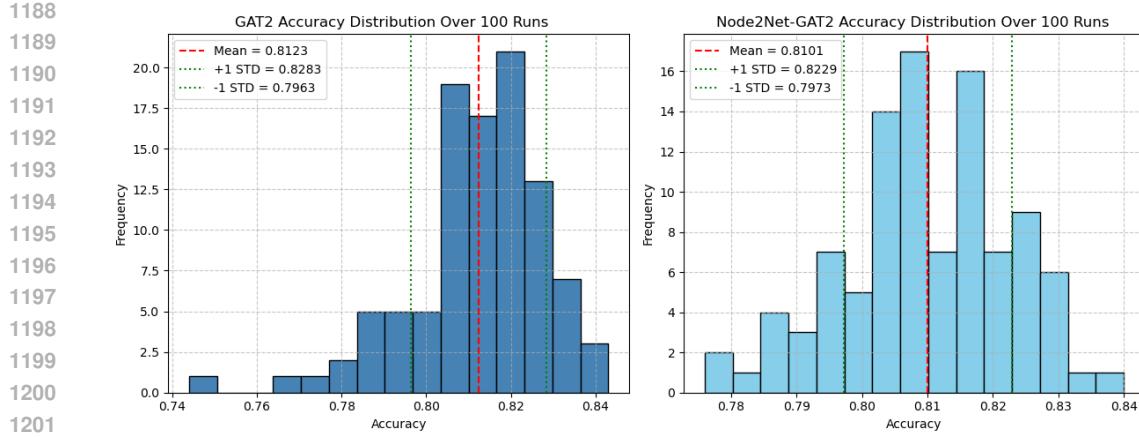


Figure 19: Accuracy distribution over 100 runs on the Cora dataset, using the test results from the last training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared.

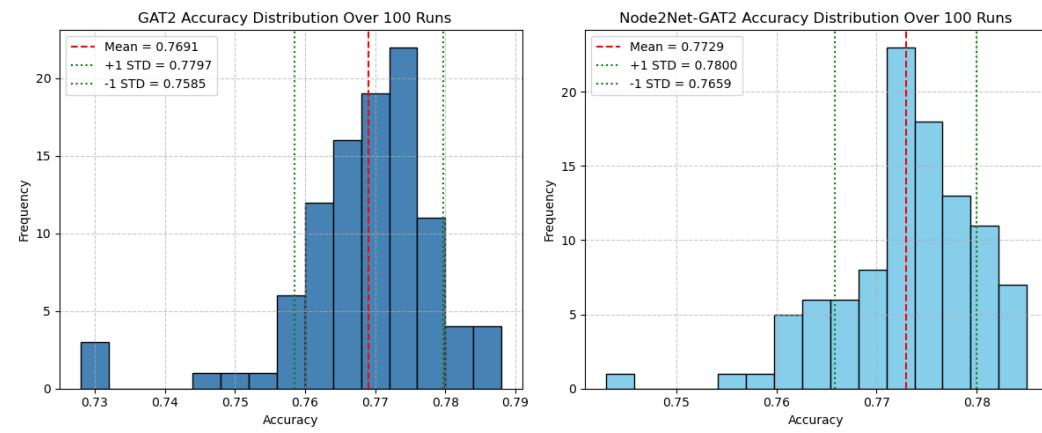


Figure 20: Accuracy distribution over 100 runs on the PubMed dataset, using the test results from the last training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared, with Node2Net-GATv2 showing a tighter and higher performance distribution.



Figure 21: Accuracy distribution over 100 runs on the CiteSeer dataset, using the test results from the last training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared, with Node2Net-GATv2 showing a tighter and higher performance distribution.

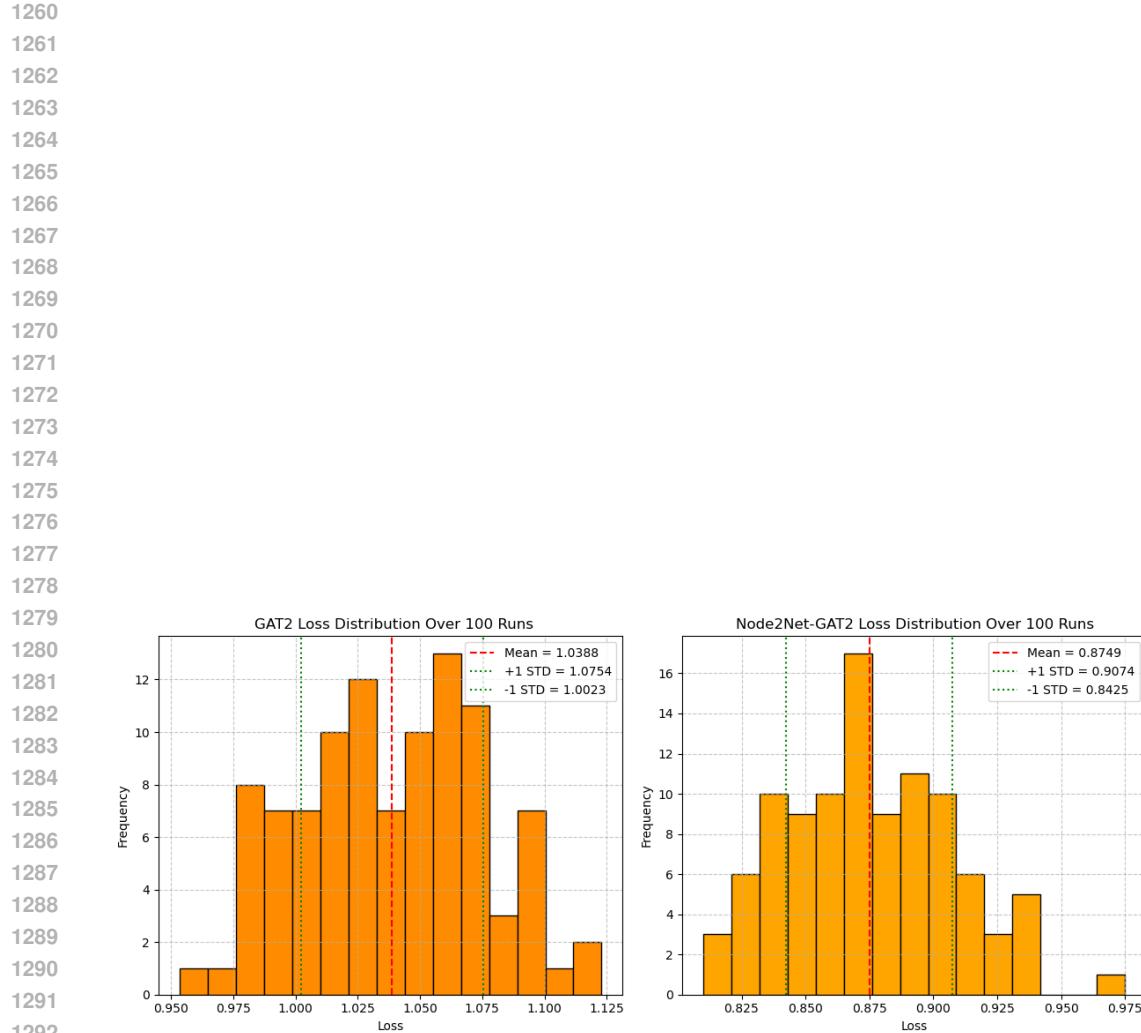


Figure 22: Loss distribution over 100 runs on the Cora dataset, using the test results from the last training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared, with Node2Net-GATv2 showing a tighter and lower loss distribution.

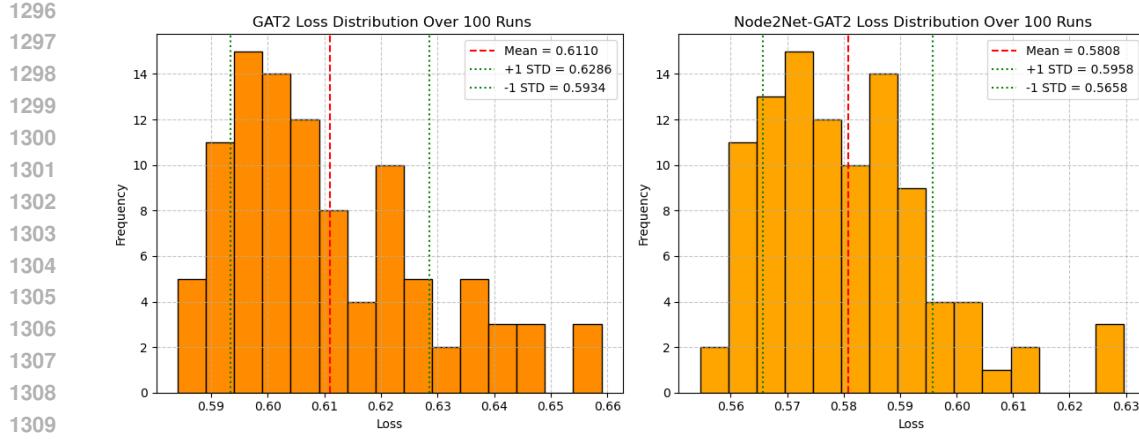


Figure 23: Loss distribution over 100 runs on the PubMed dataset, using the test results from the last training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared, with Node2Net-GATv2 showing a tighter and lower loss distribution.

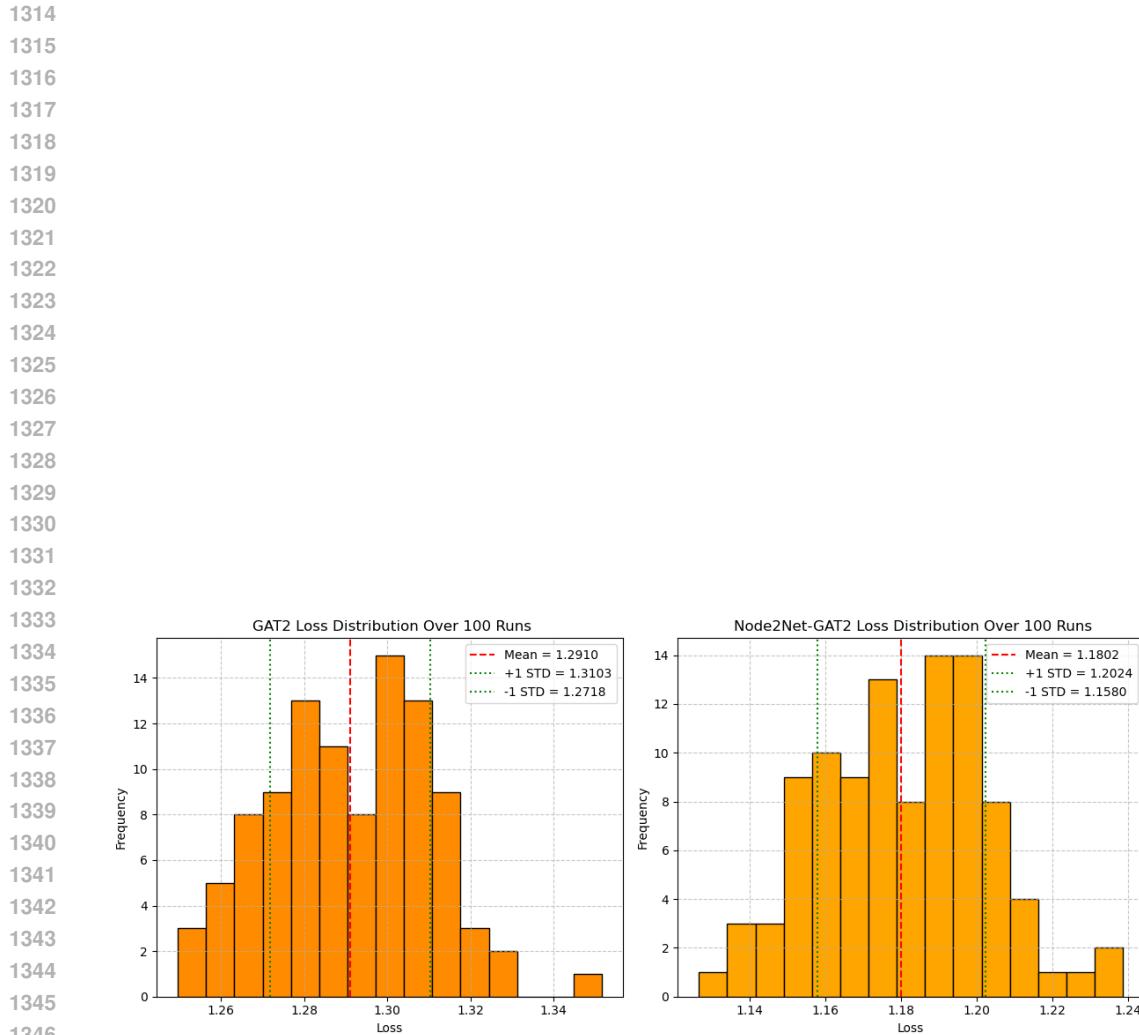
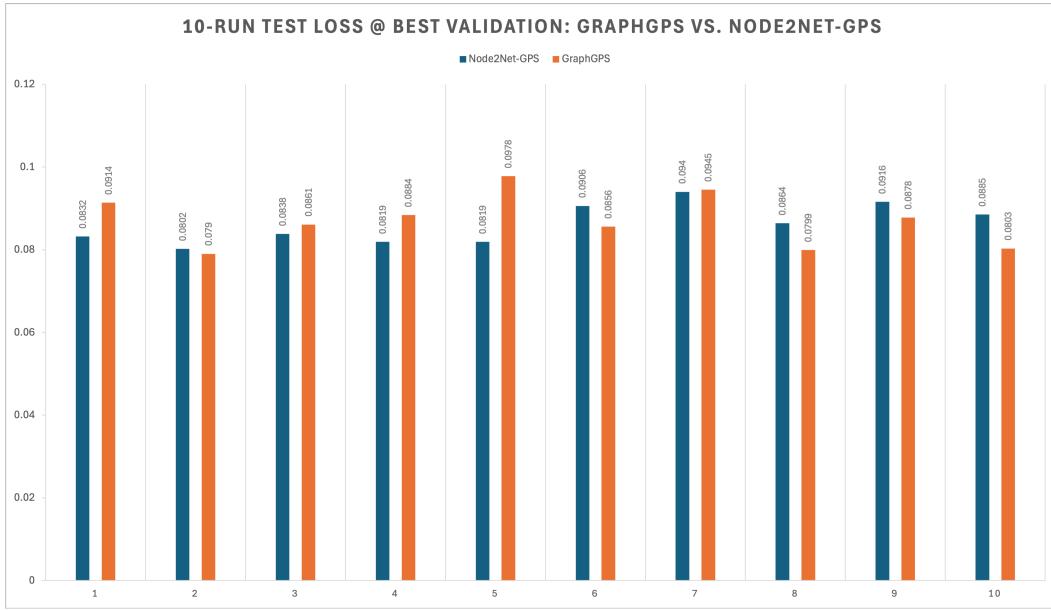


Figure 24: Loss distribution over 100 runs on the CiteSeer dataset, using the test results from the last training epoch. GATv2 (left) and Node2Net-GATv2 (right) are compared, with Node2Net-GATv2 showing a tighter and lower loss distribution.

1350
1351 C.3 DETAILED RESULTS FOR GRAPH TRANSFORMER METHOD GRAPHGPS
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
13711372
1373 Figure 25: Test loss at best validation across 10 runs for GraphGPS (orange)
1374 and Node2Net-
1375 GraphGPS (blue) on the ZINC dataset. Each bar represents the loss from one run (2000 training
1376 epochs). Node2Net-GraphGPS shows a generally lower and more stable loss compared to the orig-
1377 inal GPS.
13781378 C.4 COMPUTING ENVIRONMENT
1379

1380 All models are implemented using PyTorch Geometric and trained on an NVIDIA L40S GPU.
1381 We evaluate embeddings on the node classification task, where a logistic regression classifier is
1382 trained on the learned embeddings. Following standard practice, datasets are split into training/
1383 validation/test sets, and accuracy (and F1 score for PPI) is reported. Each experiment is repeated
1384 with 100 random seeds, and we report the mean and standard deviation.

1385 All models are implemented using PyTorch 2.3.1.post300, and we use the original GCN implemen-
1386 tation provided by the authors at <https://github.com/tkipf/pygcn>. All experiments are
1387 conducted on a computer server equipped with one NVIDIA RTX A6000 GPU (48GB memory) and
1388 an Intel Xeon w5-2445 CPU (20 cores).

1389 C.5 HYPERPARAMETERS
13901391 Table 5: Hyperparameters for Node2Net-GCN. Citation datasets (Cora, PubMed, and CiteSeer) use
1392 Adam optimizer with negative log-likelihood loss (`F.nll_loss`).
1393

Category	Parameter	Cora	PubMed	CiteSeer	PPI
Optimization	Node Weights LR	0.001	0.001	0.001	3×10^{-5}
	Node Weights WD	0.0003	0.0003	0.0003	0.0001
	GCN LR	0.01	0.01	0.01	0.01
	GCN WD	0.0001	0.0001	0.0001	0.0005
Architecture	Hidden Units	16	16	16	128
	Node-MLP Hidden	[32, 32]	[32, 32]	[32, 32]	[64]
Training	Dropout	0.5	0.5	0.5	0.5
	Epochs	200	200	200	200
	Runs	100	100	100	100

Table 6: Hyperparameters for Node2Net-GraphSAGE

Category	Parameter	PubMed	Cora	CiteSeer	PPI
Optimization	V-MLP LR	1×10^{-5}	1×10^{-5}	2×10^{-5}	1×10^{-5}
	V-MLP Weight Decay	0.0003	0.0	0.0005	0.0005
	SAGE LR	0.01	0.01	0.01	0.01
	SAGE Weight Decay	0.0005	0.0005	0.0005	0.0005
Architecture	Hidden Units	16	16	16	128
	V-MLP Hidden	[8, 8]	[32]	[32, 32]	[64]
	Hops	2	4	1	–
Training	Dropout	0.15	0.0	0.0	0.5
	Epochs	200	200	400	200
	Runs	100	100	100	100

Table 7: Hyperparameters for Node2Net-GATv2. All citation datasets (Cora, PubMed, and CiteSeer) are preprocessed using `NormalizeFeatures` from `torch_geometric.transforms`.

Category	Parameter	PubMed	Cora	CiteSeer	PPI
Optimization	Node-MLP LR	1×10^{-6}	1×10^{-6}	1×10^{-6}	5×10^{-6}
	Node-MLP WD	0.0	0.0	0.0	0.0
	GATv2 LR	0.01	0.01	0.01	0.01
	GATv2 WD	0.0005	0.0005	0.0005	0.0005
Architecture	Heads	1	1	1	1
	Hidden Units	16	16	16	16
	Hops	1	1	1	–
Training	Dropout	0.5	0.5	0.5	0.6
	Epochs	200	200	200	200
	Runs	100	100	100	100

Table 8: Hyperparameters for Node2Net-GPS

Category	Parameter	Value
Training	Runs	10
	Epochs	2000
	Edge node MLP update ratio	5
Optimization	Learning Rate (LR)	0.001
	Weight Decay	1×10^{-5}
	LR Patience	20
	Min LR	1×10^{-5}
	LR Factor	0.5
	Dropout	0.0
Architecture	Channels	64
	Positional Enc. Dim.	8
	Num. Layers	10
	Attention Type	multihead
	Attention Heads	4
	Attention Dropout	0.5

Random Seeds and Reproducibility. To ensure fair and reproducible comparisons, we adopted dataset- and model-specific random seed settings following prior work. For the citation benchmarks (Cora, CiteSeer, PubMed) and the PPI dataset, we trained each of the **GCN**, **GraphSAGE**, and **GATv2** models over **100 independent runs**, with random seeds uniformly sampled from **1 to 100**. For the **GPS** model on the **ZINC** dataset, we followed the experimental protocol from the original

1458 “*Recipe for a General, Powerful, Scalable Graph Transformer*” paper, performing **10 runs** of **2000**
 1459 **training epochs** each, with random seeds ranging from **1 to 10**. For **HoloGNN**, we reproduced the
 1460 setting described in its original paper ?, which reports results over three random seeds; accordingly,
 1461 we conducted **3 runs** using seeds **42, 88, and 456**.
 1462

1463 D NODE2NET MLP VARIANTS

1464 To explore the impact of node-specific feature transformations, we design several Node2Net Multi-
 1465 Layer Perceptron (MLP) variants tailored for different learning tasks. These modules replace or
 1466 augment standard embedding layers, serving as flexible pre-transformations of node and edge fea-
 1467 tures. We summarize three representative designs below.
 1468

1469 **(1) Vanilla Node2Net MLP (V-MLP):** The basic variant is a feed-forward MLP applied directly
 1470 to input node attributes $X_i \in \mathbb{R}^F$. It consists of an input projection, one or more hidden layers with
 1471 ReLU activation, and an output projection:

$$1473 \quad h_i = \text{V-MLP}(X_i).$$

1474 This architecture provides a straightforward non-linear mapping, and we employ it in node classifi-
 1475 cation experiments as a lightweight feature extractor.
 1476

1477 **(2) Residual Node2Net MLP (R-MLP):** To enhance gradient flow and mitigate vanishing effects,
 1478 we implement a residual version where the input is added back to the MLP output:

$$1480 \quad h_i = X_i + \text{R-MLP}(X_i).$$

1481 This skip connection allows the model to preserve raw features while learning refinements, improv-
 1482 ing stability during node classification tasks.
 1483

1484 **(3) NodeEdge2Net MLP (NE-MLP):** For graph-level prediction tasks, we extend the idea of per-
 1485 node MLPs to encompass both node types and edge types. NE-MLP replaces traditional embedding
 1486 layers with categorical MLPs operating on one-hot identifiers, jointly with a projection for positional
 1487 encodings (PE). Formally,

$$1489 \quad h_i = [\phi_{\text{node}}(\text{onehot}(t_i)) \parallel \phi_{\text{PE}}(\text{PE}_i)],$$

$$1490 \quad e_{ij} = \phi_{\text{edge}}(\text{onehot}(r_{ij})),$$

1491 where t_i is the node type, r_{ij} is the edge type, and ϕ_{node} , ϕ_{edge} , ϕ_{PE} are MLPs. Gradient scheduling
 1492 is further introduced to decouple node and edge updates: node MLPs update every iteration, while
 1493 edge MLPs update at a configurable frequency. This design is particularly suited for graph-level
 1494 tasks (e.g., molecular property prediction), where structured categorical information and positional
 1495 encodings must be fused into channel-aligned features.
 1496

1497 E THE USE OF LARGE LANGUAGE MODELS

1500 We used Large Language Models to correct typos and syntax errors.
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511