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ABSTRACT

Graph Neural Networks (GNNs) have emerged as powerful tools for graph learn-
ing. Classical message-passing GNNs enforce permutation equivariance at the
node level and permutation invariance at the graph level, but these symmetries
constrain expressiveness, limiting them to the discriminative power of the 1-WL
test. Recent advances such as Graph Transformers extend GNNs with global atten-
tion and positional encodings, yet still rely on shared graph-level parameters. In
this work, we revisit the symmetry—expressiveness trade-off through node-specific
parameterization, where each node contains a small trainable neural network-an
approach we term Node2Net. Unlike existing methods that represent each node
with a static embedding vector, Node2Net represents each node with a parametric
function capable of modeling nonlinear feature interactions and adaptive trans-
formations. Node2Net breaks 1-WL indistinguishability and can act as universal
approximators capable of representing arbitrarily complex node-level transforma-
tions. Its computational and memory costs scale linearly with the number of nodes
and remain practical on standard benchmarks. As a fundamental node represen-
tation method, Node2Net is model- and task-agnostic and does not change the
transductive or inductive generalization properties of GNN backbones. Extensive
experiments on multiple benchmarks demonstrate that Node2Net consistently im-
proves over node feature learning methods, traditional message-passing GNN,
and recent Graph Transformers.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become a cornerstone of modern machine learning on rela-
tional and structured data, enabling many applications in a wide range of domains including social
networks (Hamilton et al., 2017), recommendation systems (Ying et al., |2018), knowledge graphs
(Schlichtkrull et al., 2018), and molecular property prediction (Gilmer et al., |2017; Rong et al.,
2020). At the core of GNN research lies the topic of node representation that bounds the expres-
siveness of a graph learning technique. Existing work usually represents a node with an embedding
vector, which can be directly from original data features, or generated from graph structural infor-
mation (e.g., substructures (Bouritsas et al., 2023)), subgraphs(Bar-Shalom et al.,[2024)) and spectral
information (e.g., positional encoding (Rampasek et al., |2022)). Node embeddings can be learned
with either unsupervised (Grover & Leskovec| 2016) or supervised approaches (Kipf & Welling,
2017; |Velickovic et al., 2018; [Xu et al.,|2019).

Despite their architectural diversity, most existing GNN models can be characterized by a shared
parameterization scheme: a small number of global weight matrices shared across all nodes and
layers govern how information is aggregated and transformed throughout the model. Consequently,
nodes in different structural or semantic contexts are processed with identical transformation func-
tions, which may hinder expressivity and adaptability in heterogeneous or complex graphs (Alon &
Yahavl, 20215 |Oono & Suzukil [2020). Theoretically such shared-parameter GNNs are limited to the
discriminative power of the 1-Weisfeiler—Lehman (1-WL) test, so they cannot distinguish graphs that
are 1-WL-indistinguishable (Xu et al.,[2019; Morris et al.,|2019). As illustrated in Figure to break
the expressiveness barrier of 1-WL, several directions have been explored: high-order GNNSs incor-
porating higher-order neighborhoods or higher-dimensional structures (Morris et al.,[2019), MPNNs
with node IDs, substructure/subgraph-aware GNNs (Bouritsas et al., 2023; Bevilacqua et al.| 2022;
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You et al., [2021), Graph transformers with global attention and positional encodings(Dwivedi &
Bresson, [2021; |Ying et al., [2021; [Rampasek et al.,|2022; |Kreuzer et al., 2021).
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Figure 1: Nodes in existing GNNs (e.g., node feature learning methods, Message passing neural
networks, higher-order GNNs, graph transformers) are represented with static embeddings from
data or graph structural information. Our approach of node-specific parameterization (Node2Net)
represents a node with an expressive function (e.g., MLP) that generates dynamic embeddings.

Among these directions of improving GNN expressiveness, we focus on a fundamental building
block for graph modeling: node representation learning. Although adding node IDs (usually random
embedding vectors) to GNNs breaks symmetry and provides discriminative power above 1-WL, it
faces challenges such as initialization, inductive generalization etc. In this paper we propose Node-
specific Parameterized GNNs (abbreviated as Node2Net) to augment existing GNNs with trainable
node-specific functions. Each node consists of a small neural network (e.g., a two-layer MLP)
whose weights are updated during training alongside global GNN parameters. Intuitively, while
shared global parameters enforce inductive bias and generalization, introducing a lightweight local
parameter module per node can increase a model’s capacity to capture fine-grained, node-specific
patterns that are otherwise washed out in homogeneous aggregations. Unlike static node embeddings
(Grover & Leskovec| [2016; [Perozzi et al., 2014} Bevilacqua et al. [2025)), Node2Net can model
nonlinear feature interactions (e.g., feature interaction in an XOR function), allow identical features
at different nodes to map to different outputs, and in principle act as universal approximators capable
of representing arbitrarily complex node-level transformations. Node2Net is architecture-agnostic
and can be applied to node feature learning methods (Grover & Leskovec| 2016, Bevilacqua et al.,
2023)), traditional GNN models such as GCN (Kipf & Welling,|[2017)), GraphSAGE (Hamilton et al.,
2017), GAT (Velickovic et al., [2018), and recent Graph Transformers (Ying et al.,2021; |Rampasek
et al.|2022). While this parameterization sacrifices strict permutation invariance, in many practical
domains node identity is semantically meaningful and invariance is not required.

In summery, Node2Net introduces a fundamental architectural principle for GNNs, whose applica-
bility extends beyond node classification to encompass link prediction and graph-level learning. Al-
though this paper focuses on parameterizing nodes in a graph, the general idea of component-specific
parameterization can be readily extended to edge-centric representations (e.g., in our extension on
Graph-GPS in Section 4.3) or tuple-centric representations for k-GNNs discussed in Appendix A.
This work thereby delineates a new architectural design space for GNNs and underscores the im-
portance of systematically investigating the interaction between global structural characteristics and
localized computations. Our main contributions are:

* A Novel Node-specific Parameterization Paradigm called Node2Net. Node2Net intro-
duces node-specific trainable functions for GNNs. Node2Net is versatile, flexible, and
model- and task-agnostic, and can be integrated with most GNN models including node
representation methods, MPNNs, and graph transformers.

* Theoretical Insights. We show that Node2Net is strictly more expressive than static node
embeddings, capable of breaking 1-WL indistinguishability.
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* Empirical Validation. We rigorously evaluate Node2Net by comparing with node repre-
sentation methods, traditional GNNs, and recent graph transformers using multiple bench-
mark datasets and demonstrate consistent gains.

2 RELATED WORK

Graph learning is a large and active field. Here we focus on work related to node representation and
GNN expressiveness. Node representation learns a static embedding vector for each node, e.g., by
maximizing the likelihood of random-walk—based neighborhoods (Grover & Leskovec,2016). More
recent holographic node representation targets on generalist node representations capable of solving
tasks of any order (Bevilacqua et al., [2025). Spectral methods further advanced this direction (Bruna
et al., 2014; Defferrard et al., 2016), culminating in the influential Graph Convolutional Network
(GCN) of Kipf & Welling| (2017)). The message-passing framework was formalized in the Message
Passing Neural Network (MPNN) model by |Gilmer et al.| (2017)), encompassing numerous GNN
variants. Among these, GraphSAGE (Hamilton et al.l [2017) introduced neighborhood sampling to
improve scalability, while Graph Attention Networks (GAT) (Velickovi¢ et al., 2018) leveraged self-
attention for adaptive aggregation. In terms of expressivity, several directions have been explored.

1. High-order GNNs are graph neural architectures that extend beyond standard 1-hop mes-
sage passing by incorporating information from higher-order neighborhoods or higher-
dimensional structures (e.g., k-tuples of nodes, subgraphs, or simplicial complexes) to
match or exceed the power of k-WL tests, enabling them to capture richer structural pat-
terns, higher-order interactions, and role-based equivalences (Morris et al., [2019). Xul
et al.| (2019) proposed the Graph Isomorphism Network (GIN), aligning MPNNs with
the Weisfeiler-Lehman test. Morris et al.[ (2019; [2020) extended it with k-GNNs. How-
ever, high-order GNNs are often intractable with polynomial complexity. Herbst & Jegelka
(2025) extends Invariant Graph Networks to graphons, and shows Invariant Graphon Net-
works of order k are at least as powerful as the k-WL test.

2. MPNNs with node IDs initialize each node with its attributes and a unique identifier em-
bedding, and usually show linear complexity. However, unique node IDs break permutation
invariance, and these models are often hard to train, tune, and generalize in practice. [Sato!
et al.| (2020) shows nodes assigned with random features can maintain permutation invari-
ance in expectation, but will lose rich feature information.

3. Substructure/subgraph-aware Substructure-aware GNNs incorporate graph substruc-
ture information (e.g., motifs, walks, paths, or induced subgraphs) into the message-passing
process (Bouritsas et al.,[2023; |Bevilacqua et al.|[2022} You et al.,|2021). By encoding local
or higher-order structural patterns, these methods go beyond standard neighborhood aggre-
gation and achieve greater expressivity than 1-WL, enabling them to capture role similarity,
structural equivalence, and higher-order dependencies in graphs.

4. Graph transformers extend the Transformer framework by replacing or augmenting the
local message-passing mechanism of GNNs with global attention (Dwivedi & Bresson,
2021} |Ying et al., 2021} Rampasek et al., 2022} Kreuzer et al.| [2021). Unlike traditional
MPNNs, which aggregate information only from neighbors, Graph Transformers allow
each node to attend to all other nodes (often modulated by positional encodings, struc-
tural biases, or sparsity constraints). This enables long-range dependency modeling, higher
expressivity beyond 1-WL, and scalability to heterogeneous and large graphs.

Theoretical studies such as|Alon & Yahav| (2021); |[Oono & Suzuki| (2020); |Garg et al.| (2020) dis-
cusses into expressivity, oversquashing, and generalization bounds, while|Du et al.|(2019); Poli et al.
(2019) explore links between GNNs and spectral or dynamical systems. More recent work studies
generalization to arbitary graphs and features with graph foundation models (Finkelshtein et al.,
2025)), and finer measures of GNN expressiveness (Zhang et al.|[2024a; Jin et al., [2024)

3 NODE2NET: NODE-SPECIFIC PARAMETERIZED GNNS

GNNgs traditionally operate under a paradigm of parameter sharing, where a single set of parameters
is globally applied across all nodes and edges in the graph. While this approach offers computa-
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tional efficiency and generalizability, it inherently limits the expressiveness of the network, particu-
larly when need to model graphs with node-specific behaviors or heterogeneous structural roles. As
shown in Figure[2] Node2Net can be flexibly integrated into a GNN model as long as the model uses
an embedding vector to represent a node. Node2Net can take various types of features (e.g., original
features from datasets, graph structural features, position encodings, random features) in the input
layers, perform complex transformations with the neural network inside a node, and output a new
embedding vector of the same size at the output layer. One common issue with node representation
methods is that nodes only appearing in testsets are not trained. While we can not solve this issue
faced by all node representation methods, we will perform a pre-training step after initializing pa-
rameters of all nodes, so the output from each node equals to the input vector before any actual graph
learning is conducted. In this way, Node2Net will not affect the transductive or inductive nature of
a backbone GNN model, and applies to both types of GNNs.

an example graph
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Figure 2: Node2Net can be flexibly integrated into a GNN model’s computational graph.

We present how to integrate our Node2Net approach into three popular categories of graph represen-
tation models: node representation learning, message passing neural networks (MPNNs), and graph
transformers respectively. The case of k-GNNs is discussed in Appendix A.

3.1 NODE2NET FOR NODE REPRESENTATION LEARNING

We will use the well-known Node2Vec as a representative of node representation learning methods
to show how it can be transformed to Node2Net. Let G = (V, E) be a graph with node features
{z, € R4~ : v € V}. While Node2Vec generates a static embedding vector for each node,
Node2Net parameterizes each node with its own lightweight neural function:

®,(;6,) : REn — RY,

where 6,, denotes the trainable parameters of a lightweight nerual network (e.g., a two-layer MLP).
The node representation is then

hv = (I)v(-r'u;ev)7

with z, as the input node features (e.g., original attributes, structural features, random features
(Abboud et al., 2020)), one-hot vector). During training, we generate random-walk contexts N gy (v)
for each node v, and maximize the likelihood of context nodes conditioned on h,,:

{9131}2};‘/ Z Z log Pr (u | hv),

veEV ueNgw (v)
where the conditional probability is defined as a softmax

exp(hy - hy)
ZwEV exp(hw : hv) .

Remark: Node2Net generalizes Node2Vec if each ¢, degenerates to a trainable lookup vec-
tor (i.e., ®,(x,) = e,), the formulation reduces to Node2Vec. By using parametric functions,
Node2Net can model nonlinear feature transformations, adapt node representations based on input
features, and achieve higher representational capacity than static embeddings. Computationally, the
number of parameters scales linearly with |V|, but ®,, can be kept lightweight (e.g., shallow MLPs).

Pr(u | hy) =



Under review as a conference paper at ICLR 2026

3.2 NODE-SPECIFIC PARAMETERIZED MESSAGE PASSING NEURAL NETWORKS

We extend the standard MPNN framework by assigning each node v € V' its own parameterized
local function as follows. Let Gq(,t) denote the trainable parameters of node v at layer ¢. At iteration
t, the hidden state update is defined as:

mgt) = AGG({MTEU (hi()tfl), hq(ffl), Cuv; H(t)) Tu € N(U)}),

v
W = U® (hS~D,mP;00),
where M"Y : R? x RY x R — R? is a message passing function parameterized by 6, AGG is a
permutation-invariant aggregation (e.g., sum, mean, max), Uét) is a update function for node v.

After T layers, each node is representated by {hSJT) : v € V'}, and each node’s evolution depends on
its own dedicated parameters. Graph-level outputs can be obtained by applying a readout function:

he = R({h{" :v e V}).

This formulation strictly subsumes the standard MPNN: if parameters are tied across all nodes, i.e.,
Of,t) = 0@ we recover the classical shared-parameter MPNN (Gilmer et al.,[2017).

3.3 NODE-SPECIFIC PARAMETERIZED GRAPH TRANSFORMERS

With the idea of Node2Net, we extend a graph transformer—style GNN by equipping each node
v € V with its own trainable parameter set 6,,, which defines a lightweight neural network

fo, 1 R = RY,
where fy, is the node-specific function whose parameters 6, are unique to node v. Let hS,O) =T,

and th) € R? denote the representation of node v at layer ¢, where z, is the input feature vector.
The attention-based aggregation remains

)
ueN (v)U{v}

o

where 2y’ denotes aggregated neighborhood message for node v at layer ¢, A/(v) are neighbors of

node v, th‘” is the representation of neighbor u from the previous layer, W‘(/t ) is the global value
projection matrix at layer ¢, aS}iZ is attention weight between node v and neighbor u.

The attention weights are defined as
" exp (WS D)T(WPRE) / V)
a'UU =

2w eN (0)U{o} eXP((Wg)hgffl))T(W;(f)hfffl)) / \/3)

The update rule now integrates node-specific transformations:

hgf) = fo. (U(t)(hff_l), zf)t))),
where U(®) is the global feed-forward module (e.g., an MLP with residual and normalization layers)
shared across all nodes, fp, is node-specific neural network, unique to node v, parameterized by

0y, hq(,t) is the updated representation of node v at layer ¢. Thus, each node learns an individualized
parametric mapping that modulates its representation after global self-attention, enabling feature-
dependent, node-specific expressiveness beyond uniform parameter sharing.

3.4 THEORETICAL ANALYSIS

A standard shared-parameter MPNN computes node states {hf,t)} via globally shared message and
update functions. A Node2Net model instead associates to each node v € V a local parametric
function @, (-; 8,), such as a small MLP, so that the update rule becomes

h) = @ (UG (™D, m{)),
0

where my’ denotes the aggregated messages from neighbors and U®) is a global feed-forward
module with residual connections.
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Expressivity beyond 1-WL. It is well known that shared-parameter MPNNs are upper bounded
by the 1-Weisfeiler—Lehman (1-WL) test in distinguishing non-isomorphic graphs (Xu et al.| 2019;
Morris et al., 2019). Node2Net relaxes this limitation by allowing node-specific mappings.

Theorem 1 (Node2Net breaks 1-WL indistinguishability). There exist two non-isomorphic graphs
G, H such that (1) G and H are 1-WL indistinguishable, but (2) Node2Net produces distinct node
outputs on G and H for some choice of node-local parameters {0, }.

Proof sketch. Classical counterexamples (e.g., certain regular graphs) are not separated by 1-WL,
hence not by MPNNSs. In Node2Net, even if nodes receive identical aggregated inputs, distinct local
functions ®,, can map these inputs to different outputs, breaking the symmetry. Thus, a parameteri-
zation exists that separates G and H. [ O

Modeling Feature interactions. Because ®, can be nonlinear (e.g., an MLP with ReLU),
Node2Net models higher-order feature interactions. Concretely, for two nodes u, v with identical

feature multisets and neighborhoods, a shared-parameter MPNN yields h,(f) = hgt) , while Node2Net

can produce hq(f) =+ hq(,t) by using different ®,,, ®,,. This enables the model to distinguish nodes in
symmetric roles, which is impossible for 1-WL.

3.5 RELATION TO NODE-ID METHODS

A common way to increase GNN expressivity beyond 1-WL is to augment nodes with unique identi-
fiers or random features (Node-ID methods) (Abboud et al., [2020; [Satol 2020; |[Loukas, 2020). Each
node is assigned v an identifier vector e, (often sampled from a random distribution) and feeds e,
as part of the input feature. This breaks 1-WL indistinguishability, since nodes with identical local
neighborhoods can now be separated by their IDs. However, ID-based approaches face two key dif-
ficulties (1) randomness and instability: Random ID features introduce variance across runs and
may require multiple restarts to stabilize performance, and (2) limited functional role: IDs act as
static tags; they do not provide feature-dependent transformations or model nonlinear interactions
between a node’s attributes and its structural context. In contrast, Node2Net assigns each node a
parametric function ®,,(+; ,,) instead of a fixed ID vector, which has several advantages:

* Learnable parameters: node-local parameters are optimized during training, removing
the need for careful stochastic initialization and aligning with the training objective.

* Beyond tagging: Whereas node IDs only differentiate nodes by identity, Node2Net enables
each node to transform its input features and aggregated messages in a node-specific man-
ner. That is, even if two nodes share identical features and neighborhoods, their different
®,, mappings can produce distinct outputs.

* Modeling feature interactions: Since ®, can be an MLP or other nonlinear module,
Node2Net captures nonlinear interactions between input features, node identity, and local
context—a capacity entirely absent from pure ID methods.

Expressivity consequence. Formally, node-ID augmentation can be seen as the special case of
Node2Net where each ®,, ignores its input and directly outputs a learnable embedding vector. Thus,
Node2Net strictly subsumes node-ID methods in representational power: it retains the ability to
differentiate nodes by identity while also providing flexible, data-dependent transformations. This
additional functional capacity explains why Node2Net can overcome the instability and limited ex-
pressivity of random-feature ID methods.

4 EXPERIMENTS

We conducted extensive experiments to validate our Node2Net approach by comparing with three
categories of GNN methods (node representation methods, traditional GNNs, graph transformers)
using 5 graph learning benchmarks (details are given in Appendix B) and two graph tasks (node
classification and graph regression).
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4.1 EXPERIMENT WITH NODE REPRESENTATION METHOD NODE2VEC

For node representation methods, we chose to compare with the classic Node2Vec (Grover &
Leskovecl 2016) approach with a 2-phase implementation of Node2Net. In Phase 1, we train
Node2Vec to obtain base embeddings. In Phase 2, we insert a lightweight MLP into each node
and pretrain this MLP to input and output the same Phase 1 embedding using an Ls reconstruction
loss (MSE). We then continue training with skip-gram objective, replacing the embedding lookup
with MLP outputs. For each random walk, a positive sample is defined as a center node v paired
with its context node u from the walk, while negative samples are nodes n; randomly drawn from a
noise distribution P,,. Following standard setting in Node2Vec, the noise distribution is defined as

P,(v) x d3/4,

where d,, denotes the degree of node v. The objective encourages large inner products for positive
pairs and small inner products for negative pairs:

K
L=— IOgU(hu : hv) + ZEmNPn IOgU(fhm ' hv)}v
=1

where o (+) is the sigmoid function.

For evaluation, we follow standard practice in node classification: the learned embeddings are fed
into a logistic regression classifier, trained on the training split and evaluated on the test split. We
report accuracy (and F1 score for PPI) averaged over 100 random seeds. Table[T|summarizes the per-
formance of two methods. Node2Net consistently outperforms the baseline across datasets, achiev-
ing the highest accuracy on Cora and PubMed, and strong improvements in F1 score on PPI.

It is worth noting that we cannot directly use node2vec.loss () function provided in PyTorch
Geometric, because it only computes losses over an internal embedding lookup table. In our two-
phase procedure, embeddings are generated dynamically by node-specific MLPs instead of static
lookup vectors. Therefore, we explicitly compute the skip-gram loss with MLP outputs so gradients
correctly flow into the MLP parameters. Hence, Node2Net loss values are not directly comparable
to Node2Vec losses, but embeddings dynamically generated by Node2Net exhibit improved linear
separability, leading to higher downstream classification accuracy as shown in Table

Table 1: Experiment results with node representation method. Reported values are accuracy (%) for
Cora, CiteSeer, and PubMed, and Micro-F1 for PPI. More detailed results are in Appendix C.1.

Method Cora CiteSeer PubMed | PPI (Micro-F1)

Node2Vec 68.75+1.18 48.63+1.67 69.95+0.85 | 0.1911 £ 0.0040
Node2Net 73.24+0.95 51.58+1.15 71.97 +1.31 | 0.1930 £ 0.0055

4.2 EXPERIMENTS WITH TRADITIONAL GNN MODELS

We chose three widely used traditional GNN models for comparison: GCN (Kipf & Welling}, 2017)),
GraphSAGE (Hamilton et al., [2017), and GATv2 (Velickovic et al. [2018)). For each model, we
construct an enhanced variant by inserting a pretrained MLP (pretrained so initial output equals to
input) into each node:

X! — ¢i(X;), if i € Viainthen i’s MLP is activated,
’ X; otherwise.
where Vipin 1s the set of nodes included in the training set, each training node ¢ has its own MLP ¢;.
The GNN fy then operates on X"
Z = fo(X',A), Y =softmax(Z).

By construction, validation/test nodes never pass through any Node-MLP, preventing information
leakage and keeping inference cost identical to the baseline models.

We adopt a two-phase training procedure to integrate node-specific MLPs into each backbone:
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* Phase 1 (Node MLP pretraining). Each ¢; is trained independently on nodes in Vovered =
train nodes U their 1-hop neighbors, with reconstruction objective ¢;(X;) ~ X; (MSE).
This initializes Node-MLPs to behave like identity mappings.

* Phase 2 (Joint model training). The pre-trained Node-MLPs are activated inside the GNN
backbone. We then train the full model end-to-end for 200 epochs, allowing node features
to evolve dynamically through both message passing and per-node refinement. Unless oth-
erwise specified, backbone parameters remain trainable during this phase. Hyperparame-
ters and detailed experiment settings can be found in Appendix C.5.

As shown in Table[2]and Table[3] Node2Net consistently improves or matches baseline performance:

* Local parameterization: Node-specific parameterization improves both message-passing
(GCN, GraphSAGE) and attention-based (GATv2) backbones.

¢ Robustness: Gains are stable across citation networks (Cora, CiteSeer, PubMed) and PPI,
demonstrating generality. Improvements on loss are often significant.

* Flexibility: In featureless graphs (PPI), integrating Node2Net embeddings enables strong
performance in both GraphSAGE and GATv2 backbones.

Table 2: Experiment results on (Accuracy / Micro-F1). More detailed results are in Appendix C.2.

Method Cora CiteSeer PubMed PPI (Micro-F1)
GCN 83.07+£0.79 67.89+£0.81 78.51+£0.57 0.1749 +0.0043
Node2Net-GCN 83.30£0.73 67.95+x0.71 78.59+0.54 0.1770 = 0.0056
GATv2 81.23+£1.60 69.02+2.00 7691+1.06 0.1020 = 0.0206
Node2Net-GATv?2 81.01 +1.28 69.21 £1.68 77.29+0.71 0.1006 +0.0201
GraphSAGE 79.54+0.77 70.19+0.55 76.61+047 0.1839 +0.0035
Node2Net-GraphSAGE  79.61 +0.85 70.48 £0.63 77.31 +0.34 0.1848 + 0.0043

Table 3: Experiment results on loss. More detailed results can be found in Appendix C.2.

Method Cora CiteSeer PubMed PPI (Loss)

GCN 6096 +2.00 116.68+3.70 57.63+0.81 1.0324 +0.0020
Node2Net-GCN 60.85+2.19 116.09+3.28 57.57+0.75 0.8145 0.0022
GATv2 103.88 £3.66 129.10+1.92 61.10+1.76 1.2585 +0.0289
Node2Net-GATv2 87.49 +3.24 102.86+2.14 58.08+1.50 1.2592 +0.0301
GraphSAGE 64.87 +£1.77 9242+0.89 62.87+1.05 0.6507 +0.0038
Node2Net-GraphSAGE ~ 65.92 +2.13 9258 +£1.23  60.66 +0.75 0.5721 + 0.0045

4.3 EXPERIMENT WITH GRAPH TRANSFORMER METHOD GRAPHGPS

For graph transformers, we chose GraphGPS (Rampasek et al.,2022)) due to its incorporation of rich
graph information. We extend GraphGPS by introducing NodeEdgeMLP (NE-MLP) (Appendix
§D) to replace static embeddings with categorical MLPs operating on one-hot identifiers for both
nodes and edges. This design enhances structural expressivity, incorporates positional encodings,
and introduces gradient scheduling to decouple the dynamics of edge and node optimization.

Baseline GraphGPS initialization: node and edge features are initialized by embedding lookups:

h{” = [Embeduoae(t;) | WePE; |, €l = Embedegee(ri;),

where ; is the node type, r;; the edge type, and PE; the positional encoding.



Under review as a conference paper at ICLR 2026

NE-MLP initialization (ours). We replace static embeddings with categorical MLPs:

hl(.o) = [ Pnode (onehot(t;)) || ¢pe(PE;) ], ez(-?) = Pedge (OnehOt(35)),
where
¢n0de : R‘T‘ — Rdh_dPE7 (bedge : RlRl — Rdh7 ¢PE : RdPEJ" — RdPE7

with |T'| and | R| denoting the number of node and edge types, and dj, the hidden channel size.

Gradient scheduling. To reduce optimization noise, we introduce an update mask:

Veqge, ifs=0 (mod n),
0, otherwise,

Vnode 0 V steps, Vedge = {
where s is the training step index and n is the update period (default n = 5).

Discussion and summary of results.

* Enhanced structural bias. NE-MLP maps node types, edge types, and positional encod-
ings into unified channel-aligned features, yielding richer structural encodings compared
to fixed embeddings and clear performance improvement as shown in Table ]

* Controlled gradient scheduling. Node MLPs update every iteration while edge MLPs
update periodically (n = 5 by default), providing smoother training for edge embeddings.

* Inductive generalization. No pretraining or auxiliary supervision is applied. Both GPS
and Node2Net-GPS are trained from scratch, showing that NE-MLP generalizes without
external knowledge transfer.

Table 4: Experiment results on ZINC. More detailed results can be found in Appendix C.3.

Model Test mean loss + standard deviation
GPS 0.08708 4 0.006
Node2Net-GPS (NE-MLP) 0.08621 4+ 0.004

Recent trends in graph learning increasingly emphasize the integration of richer structural, topo-
logical, and semantic information from graphs (Hussain et al.l 2024} |Gao et al., 2024; [Zhao et al.,
2025), and integration of specially designed architectural component such as Node2Net is often not
straightforward and deserves more study. Specifically with graph transformers, their performance
is significantly impacted by tokenization (Zhang et al., 2024b; [Miiller & Morris, [2024)), which is
central to our Node2Net approach and will be explored in future work.

5 CONCLUSION

In this work, we introduced a novel node-specific parameterization method called Node2Net as a
principled approach to enhance the expressiveness of GNNs by equipping each node with a learn-
able function capable of modeling nonlinear feature interactions and feature-dependent variability.
This mechanism strictly extends the representational power beyond traditional node embeddings
and shared-parameter GNNs, allowing the model to break 1-WL indistinguishability while main-
taining linear computational and memory scaling. Importantly, Node2Net does not alter the inherent
transductive or inductive generalization properties of the backbone, ensuring applicability to both
settings. We demonstrated how this concept can be seamlessly integrated into many widely-used
GNN architectures. Empirical results on multiple node classification benchmarks confirm consis-
tent performance gains over node representation methods, classical GNNs, and graph transform-
ers. Node2Net constitutes a fundamental design principle with potential applications beyond node
classification, including link prediction and graph-level tasks. Additionally, the idea of component-
specific parameterization can also be applied to more graph components, which will be explored
in future work. We believe this work opens a new avenue for GNN design and encourages further
exploration into the interplay between global structure and local computation.
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Reproducibility statement We are committed to ensuring the reproducibility of our results. To this
end, upon acceptance we will provide:

1. Code and Implementation Details: Our full implementation, including training and evalua-
tion scripts, is available in an open-source repository (link to be released upon acceptance).
The code specifies all model architectures, hyperparameters, and random seeds.

2. Datasets: All datasets used in this work (Cora, Citeseer, Pubmed, and others) are publicly
available. We include preprocessing scripts to reproduce the exact input data splits used in
our experiments.

3. Experimental Setup: We document the computing environment (hardware, software ver-
sions, GPU/CPU specifications) and report training times and memory usage.

4. Hyperparameters: All hyperparameters are reported in the Appendix, including learning
rates, batch sizes, optimizer settings, regularization coefficients, and early stopping criteria.

5. Statistical Rigor: For each benchmark, results are averaged across multiple runs with differ-
ent random seeds, and we report both mean and standard deviation. Statistical significance
is assessed using paired tests where appropriate.

6. Limitations: While our experiments cover widely used benchmarks, large-scale industrial
graphs and certain application domains (e.g., temporal or dynamic graphs) are beyond the
scope of this study. Future work will address scalability and broader applicability.
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A NODE2NET FOR HIGHER ORDER K-GNNS

Let G = (V, E) be a graph. For a positive integer k, denote by T, = {S = (v1,...,v;) : v; € V}
the set of ordered or unordered k-tuples (we use ordered tuples for notational simplicity). Let x,, €
R?% be the input feature of node v. For a tuple S = (v1,...,v;) € Tr we write xg for a tuple-level
feature (e.g., concatenation or a structural feature):

T = concat(y,,...,o,,) € RF:,

Here x g is the input to the k-tuple representation function.

A.1 DIRECT PER-k-TUPLE NODE2NET

Assign each k-tuple S € Tj, its own lightweight parametric function fp, : RP — RP (where D

is the tuple representation dimension). Let hg) € RP denote the representation of tuple S at layer
t. The high-order attention aggregation and update follow the same pattern as node-level, but over
tuple neighborhoods N, (S) (tuples adjacent to S under the chosen k-GNN adjacency relation).

t t t t—1
= Y e wiRgTY,
TeN(S)U{S}
-1 —
o exp(WSRE™ )T W PrEY) VD)

Asr = t—1 ), (t—1 )
ZT’ENk(S)u{S}eXp((WS)hg‘ NTwPhE) VD)

W) = (UL, 0)),

This is a direct extension: each k-tuple has a unique parametric mapping fy,. It is expressive but
scales as | 7|, which is typically intractable for moderate-sized graphs.

A.2 PRACTICAL, PARAMETER-EFFICIENT IMPLEMENTATIONS

Below are two parameter-efficient ways to capture tuple-specific adaptation while avoiding an ex-
plosion in parameters.

A.2.1 HYPERNETWORK (GENERATE TUPLE PARAMETERS FROM NODE-LEVEL CODES)

Equip each node v with a small code ¢, € R? (or node-specific parameters 6,)). Form a tuple code
cs by pooling the node codes:
cs = Pool(cvl, ceey cvk)7

and use a hypernetwork G to generate lightweight parameters for tuple S:
és = G¢(Cs).
The tuple update becomes
-1
W) = o UOBED, ),

where f;_ is a small MLP whose parameters are the output 05 of the hypernetwork. Only {c¢, },ev
and ¢ are learned (plus global projection matrices), keeping parameter count manageable. The

hypernetwork compresses per-tuple variation into a function of node-level codes. Complexity scales
with |V| rather than | 7%|.

A.2.2 COMPOSITIONAL PER-NODE FUNCTIONS + FUSION (ELEMENTWISE COMPOSITION)

Instead of generating tuple parameters, apply node-specific transformations to each element in the
tuple and then fuse the transformed element representations.

Assign each node v a node-specific function gg, : R% — R?. Compute elementwise transformed
features and combine:

13
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W = 0, (mEOBE ). =k

t t t
hy = Fl, .. ul),
Alternatively, one can use multi-head cross-attention among the transformed elements:

hg) = CrossAtt([ugt), . ,u,(ct)]),

This scheme only stores per-node parameters 6, (as in Node2Net) and a small global fusion network;
it is computationally efficient and naturally generalizes standard k-GNN architectures.

A.3 CHOICE OF TUPLE NEIGHBORHOOD AND COMPLEXITY

Tuple neighborhood N (S). A standard choice: N (.S) contains tuples obtained from S by re-
placing one element v; with a neighbor v € N (v;). Formally, for ordered tuples:

Ne(S) = {(vl, U1, U Vi1, -, ) G E K], uE N(vl)}
Complexity observations.

* Direct per-tuple parameters: memory O(|7x| - P) for param size P — infeasible for large
graphs.

* Hypernetwork: memory O(|V| - p + |¢|) — scalable when p < P.

* Compositional scheme: memory O(|V'| - P, + Piusion) Where P, is per-node MLP size —
typically feasible.

B DATASETS DESCRIPTION

» Cora: A citation network with 2,708 nodes and 5,429 edges, where each node corresponds
to a scientific publication and edges represent citation links. Each node is assigned to one
of 7 classes. Following the GCN paper, we use 20 nodes per class for training (140 in total),
500 nodes for validation, and 1,000 nodes for testing.

» CiteSeer: A citation network containing 3,327 nodes and 4,732 edges, categorized into 6
classes. The split uses 20 nodes per class for training (120 in total), 500 nodes for valida-
tion, and 1,000 nodes for testing.

* PubMed: A large-scale biomedical citation network with 19,717 nodes and 44,338 edges,
divided into 3 classes. The split uses 20 nodes per class for training (60 in total), 500 nodes
for validation, and 1,000 nodes for testing.

* PPI: A subgraph of the Protein—Protein Interaction (PPI) network for Homo Sapiens. This
subgraph is induced by proteins for which labels are available from hallmark gene sets,
representing different biological states. It contains 3,890 nodes, 76,584 edges, and 50
distinct labels, and is evaluated as a multi-label node classification task.

e ZINC: A molecular graph regression dataset widely used for benchmarking graph trans-
formers. Each molecule is represented as a graph with atoms as nodes and bonds as edges,
and the task is to predict constrained solubility values. We follow example setting in PyG
GraphGPS to adopt the standard ZINC subset.

Dataset Splits For the citation networks (Cora, CiteSeer, and PubMed), we follow the standard
fixed splits introduced in the GCN paper [Kipf & Welling|(2017)), using 20 nodes per class for training
(e.g., 140 for Cora, 120 for CiteSeer, and 60 for PubMed), 500 nodes for validation, and 1,000 nodes
for testing.

For the PPI dataset, we follow the inductive setting introduced by the GCN paper Kipf & Welling
(2017), which uses the Homo sapiens protein—protein interaction (PPI) subgraph with approximately
3,890 nodes and 50 labels, split into 20 graphs for training, 2 graphs for validation, and 2 graphs for
testing.

For the ZINC dataset, we use the standard subset split provided by PyG: 12,000 molecules split into
10,000/1,000/1,000 for train/validation/test. We apply random walk positional encodings of length
20 as a pre-transform step, consistent with prior work.

14
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C EXPERIMENTAL DETAILS

C.1 DETAILED RESULTS FOR NODE REPRESENTATION METHODS
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Figure 3: Accuracy distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the Cora
dataset. Node2Net shows a tighter and higher performance distribution.
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Figure 4: Accuracy distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the
PubMed dataset. Node2Net shows a tighter and higher performance distribution.
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Node2Net Accuracy Distribution

Over 100 Runs(CiteSeer)
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Figure 5: Accuracy distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the
CiteSeer dataset. Node2Net shows a tighter and higher performance distribution.

Node2Vec Micro-F1 Distribution Over Runs (PPI)
T T T
: : i -—- Mean=0.1911

----- +1STD = 0.1950
----- -15TD = 0.1871

17.5 4

15.0 4

12.5 4

10.0

Frequency

~
w
s

5.0 4

2.5

0.0 -
0.180 0.190 0.195

Micro-F1

Frequency

20+

,_.
o
L

,_.
=]
L

Node2Net Micro-F1 Distribution Over Runs (PPI)

——- Mean = 0.1930
----- +1 STD = 0.1985
- -1STD = 0.1875

[ I

T T T
0.175 0.180 0.185

T T T
0.190 0.195 0.200 0.205
Micro-F1

T
0.210

Figure 6: F1 distribution over 100 runs for Node2Vec (left) and Node2Net (right) on the PPI dataset.
Node2Net shows a tighter and higher performance distribution.
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C.2 DETAILED RESULTS FOR TRADITIONAL GNNS

GCN Accuracy Distribution Over 100 Runs Node2Net-GCN Accuracy Distribution Over 100 Runs
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Figure 7: Accuracy distribution over 100 runs on the Cora dataset, using the test results from the
last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN
showing a tighter and higher performance distribution.
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Figure 8: Accuracy distribution over 100 runs on the PubMed dataset, using the test results from
the last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN
showing a tighter and higher performance distribution.
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935 showing a tighter and higher performance distribution.

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955 GCN Loss Distribution Over 100 Runs Node2Net-GCN Loss Distribution Over 100 Runs
956 : i E : :
957
958
959
960
961
962
963
964 5.0
965
966
967 0.0~
968 Loss Loss

969
970 Figure 10: Loss distribution over 100 runs on the Cora dataset, using the test results from the last

training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN showing
a tighter and lower loss distribution.

——- Mean = 0.6795 |
...... +15TD = 0.6866 : |
-1STD =0.6724 | !

204 20 A

.
«
L
—
o
L

Frequency

Frequency
=
S

L

=
o
L

175 1 : | Mean = 0.6096

+15TD = 0.6296 254
------ -1STD = 0.5896

--- Mean = 0.6085
------ +15TD = 0.6304
-+ -15TD = 0.5866

=
o
=3

204

-
g
n

Frequency
=
e
(=)
Frequency
-
v
)

~
[
s
=
=]
s

2.5

971

18



Under review as a conference paper at ICLR 2026

972 GCN Loss Distribution Over 100 Runs LP-GCN Loss Distribution Over 100 Runs
H T H H

973 : H —-- Mean = 0.5763 H ! H —--- Mean = 0.5757

074 20.01 - - +15TD = 0.5844 | +15TD = 0.5832
H FE P -15TD = 0.5683 ’ i i -15TD = 0.5682
975 : '

976
977
978
979
980
981
982
983
984
985 Loss Loss

986

987 Figure 11: Loss distribution over 100 runs on the PubMed dataset, using the test results from the
088 last training epoch. GCN (left) and Node2Net-GCN (right) are compared, with Node2Net-GCN
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Figure 13: Accuracy distribution over 100 runs on the Cora dataset, using the test results from the
last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-
SAGE showing a tighter and higher performance distribution.
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Figure 14: Accuracy distribution over 100 runs on the PubMed dataset, using the test results from the
last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-
SAGE showing a tighter and higher performance distribution.
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Figure 15: Accuracy distribution over 100 runs on the CiteSeer dataset, using the test results from the
last training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-
SAGE showing a tighter and higher performance distribution.
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training epoch. GraphSAGE (left) and Node2Net-SAGE (right) are compared, with Node2Net-
SAGE showing a tighter and lower loss distribution.
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Figure 19: Accuracy distribution over 100 runs on the Cora dataset, using the test results from the
last training epoch. GATV2 (left) and Node2Net-GATv2 (right) are compared.
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Figure 21: Accuracy distribution over 100 runs on the CiteSeer dataset, using the test results from
the last training epoch. GATv2 (left) and Node2Net-GATVv2 (right) are compared, with Node2Net-
GATVv2 showing a tighter and higher performance distribution.
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Figure 22: Loss distribution over 100 runs on the Cora dataset, using the test results from the last
training epoch. GATV2 (left) and Node2Net-GATv?2 (right) are compared, with Node2Net-GATv2
showing a tighter and lower loss distribution.
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10-RUN TEST LOSS @ BEST VALIDATION: GRAPHGPS VS. NODE2NET-GPS

C.3 DETAILED RESULTS FOR GRAPH TRANSFORMER METHOD GRAPHGPS
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Figure 25: Test loss at best validation across 10 runs for GraphGPS (orange) and Node2Net-
GraphGPS (blue) on the ZINC dataset. Each bar represents the loss from one run (2000 training
epochs). Node2Net-GraphGPS shows a generally lower and more stable loss compared to the orig-
inal GPS.

C.4 COMPUTING ENVIRONMENT

All models are implemented using PyTorch Geometric and trained on an NVIDIA L40S GPU.
We evaluate embeddings on the node classification task, where a logistic regression classifier is
trained on the learned embeddings. Following standard practice, datasets are split into train-
ing/validation/test sets, and accuracy (and F1 score for PPI) is reported. Each experiment is repeated
with 100 random seeds, and we report the mean and standard deviation.

All models are implemented using PyTorch 2.3.1.post300, and we use the original GCN implemen-
tation provided by the authors at https://github.com/tkipf/pygcn. All experiments are
conducted on a computer server equipped with one NVIDIA RTX A6000 GPU (48GB memory) and
an Intel Xeon w5-2445 CPU (20 cores).

C.5 HYPERPARAMETERS

Table 5: Hyperparameters for Node2Net-GCN. Citation datasets (Cora, PubMed, and CiteSeer) use
Adam optimizer with negative log-likelihood loss (F.nl1l_loss).

Category Parameter Cora PubMed CiteSeer PPI
Optimization =~ Node Weights LR 0.001 0.001 0.001 3x107°
Node Weights WD 0.0003 0.0003 0.0003 0.0001
GCN LR 0.01 0.01 0.01 0.01
GCN WD 0.0001 0.0001 0.0001 0.0005
Architecture  Hidden Units 16 16 16 128
Node-MLP Hidden  [32,32] [32,32] [32, 32] [64]
Training Dropout 0.5 0.5 0.5 0.5
Epochs 200 200 200 200
Runs 100 100 100 100
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Table 6: Hyperparameters for Node2Net-GraphSAGE

Category Parameter PubMed Cora CiteSeer PPI
V-MLP LR 1x107®  1x107® 2x107® 1x107°
Optimization V-MLP Weight Decay 0.0003 0.0 0.0005 0.0005
P SAGE LR 0.01 0.01 0.01 0.01
SAGE Weight Decay 0.0005 0.0005 0.0005 0.0005
Hidden Units 16 16 16 128
Architecture  V-MLP Hidden [8, 8] [32] [32,32] [64]
Hops 2 4 1 _
Dropout 0.15 0.0 0.0 0.5
Training Epochs 200 200 400 200
Runs 100 100 100 100

Table 7: Hyperparameters for Node2Net-GATv2. All citation datasets (Cora, PubMed, and Cite-
Seer) are preprocessed using NormalizeFeatures from torch_geometric.transforms.

Category Parameter PubMed Cora CiteSeer PPI
Optimization Node-MLPLR  1x107% 1x107°® 1x107%® 5x107°¢
Node-MLP WD 0.0 0.0 0.0 0.0
GATv2 LR 0.01 0.01 0.01 0.01
GATv2 WD 0.0005 0.0005 0.0005 0.0005
Architecture ~ Heads 1 1 1 1
Hidden Units 16 16 16 16
Hops 1 1 1 -
Dropout 0.5 0.5 0.5 0.6
Training Epochs 200 200 200 200
Runs 100 100 100 100
Table 8: Hyperparameters for Node2Net-GPS
Category Parameter Value
Training Runs 10
Epochs 2000
Edge node MLP update ratio 5
Optimization Learning Rate (LR) 0.001
Weight Decay 1x107°
LR Patience 20
Min LR 1x107°
LR Factor 0.5
Dropout 0.0
Architecture ~ Channels 64
Positional Enc. Dim. 8
Num. Layers 10
Attention Type multihead
Attention Heads 4
Attention Dropout 0.5

Random Seeds and Reproducibility. To ensure fair and reproducible comparisons, we adopted
dataset- and model-specific random seed settings following prior work. For the citation benchmarks
(Cora, CiteSeer, PubMed) and the PPI dataset, we trained each of the GCN, GraphSAGE, and
GATVv2 models over 100 independent runs, with random seeds uniformly sampled from 1 to 100.
For the GPS model on the ZINC dataset, we followed the experimental protocol from the original
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“Recipe for a General, Powerful, Scalable Graph Transformer” paper, performing 10 runs of 2000
training epochs each, with random seeds ranging from 1 to 10. For HoloGNN, we reproduced the
setting described in its original paper ?, which reports results over three random seeds; accordingly,
we conducted 3 runs using seeds 42, 88, and 456.

D NODE2NET MLP VARIANTS

To explore the impact of node-specific feature transformations, we design several Node2Net Multi-
Layer Perceptron (MLP) variants tailored for different learning tasks. These modules replace or
augment standard embedding layers, serving as flexible pre-transformations of node and edge fea-
tures. We summarize three representative designs below.

(1) Vanilla Node2Net MLP (V-MLP): The basic variant is a feed-forward MLP applied directly
to input node attributes X; € R It consists of an input projection, one or more hidden layers with
ReLU activation, and an output projection:

hi = V-MLP(X;).

This architecture provides a straightforward non-linear mapping, and we employ it in node classifi-
cation experiments as a lightweight feature extractor.

(2) Residual Node2Net MLP (R-MLP): To enhance gradient flow and mitigate vanishing effects,
we implement a residual version where the input is added back to the MLP output:

h; = X; + R-MLP(X,).

This skip connection allows the model to preserve raw features while learning refinements, improv-
ing stability during node classification tasks.

(3) NodeEdge2Net MLP (NE-MLP): For graph-level prediction tasks, we extend the idea of per-
node MLPs to encompass both node types and edge types. NE-MLP replaces traditional embedding
layers with categorical MLPs operating on one-hot identifiers, jointly with a projection for positional
encodings (PE). Formally,

h; = [ ¢n0de(0neh0t(ti)) H ¢PE(PE1) ]7
€ij = Pedge(0nehot(r;;)),

where ¢; is the node type, r;; is the edge type, and @node, Pedge, PpE are MLPs. Gradient scheduling
is further introduced to decouple node and edge updates: node MLPs update every iteration, while
edge MLPs update at a configurable frequency. This design is particularly suited for graph-level
tasks (e.g., molecular property prediction), where structured categorical information and positional
encodings must be fused into channel-aligned features.

E THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models to correct typos and syntax errors.
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