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ABSTRACT

Federated learning aims to infer a shared model from private and decentralized
data stored locally by multiple clients. Personalized federated learning (PFL) goes
one step further by adapting the global model to each client’s data, enhancing the
model’s fit for different clients. A significant level of personalization is required
for highly heterogeneous clients, but can be challenging to achieve especially when
they have small datasets. To address this problem, we propose a PFL algorithm
named PAC-PFL for learning probabilistic models within a PAC-Bayesian frame-
work that utilizes differential privacy to handle data-dependent priors. Our algo-
rithm collaboratively learns a shared hyper-posterior and regards each client’s poste-
rior inference as the personalization step. By establishing and minimizing a general-
ization bound on the average true risk of clients, PAC-PFL effectively combats over-
fitting. Empirically, PAC-PFL achieves accurate and well-calibrated predictions
as demonstrated through experiments on a highly heterogeneous dataset of pho-
tovoltaic panel power generation and the FEMNIST dataset (Caldas et al., 2019).

1 INTRODUCTION

Federated Learning (FL) aims at collaboratively learning from multiple private datasets stored by
end-devices, called clients (Konečný et al., 2015). The main line of FL iteratively trains a global
model that performs well for all clients. A trusted server orchestrates the training by sending the
model to a subset of the clients at each iteration and collecting model updates from them. The server
prepares the model for the next iteration by aggregating these local updates. The server only accesses
the communicated model updates and not the clients’ datasets. Thus, FL offers better data privacy and
lowers communication than a data-centric approach, where all clients’ datasets are sent to the server.

A defining characteristic of FL is that the clients’ data are potentially heterogeneous (Kairouz et al.,
2021; Li et al., 2020a). This violates the critical i.i.d samples assumption in training a single global
model, leading to convergence issues or poor performance (Li et al., 2020b). Personalized FL (PFL)
addresses this challenge by incorporating a further personalization step of adapting the global model
to each client’s data. While PFL has been extensively studied, the following challenges (c1-c4) remain
less explored. First, (c1) the majority of PFL approaches yield point estimates of the models, limiting
their ability to quantify epistemic uncertainty, which is problematic in safety-critical applications (Guo
et al., 2017; Achituve et al., 2021). Second, (c2) the resulting personalized models remain closely tied
and are not fully capable of capturing highly heterogeneous, multimodal scenarios. Third, (c3) many
proposed methods suffer from performance degradation when clients’ datasets are small. Finally,
(c4) most approaches do not take into account the collection of new data over time. In this paper,
we propose a PFL algorithm, called PAC-PFL, for tackling the challenges outlined above, (c1-c4).

A natural PFL method for probabilistic models is to collaboratively learn a shared prior and regard
the posterior inference as the personalization step. However, in this setting, the learned prior depends
on each client’s data, conflicting with the Bayesian framework (Box and Tiao, 1992). To overcome
this, we leverage a PAC-Bayesian technique capable of handling data-dependent priors (Rivasplata
et al., 2020) for inferring the posterior and providing uncertainty quantification, hence addressing (c1).
However, the clients’ posterior distributions tend to resemble each other due to their connection with
the shared prior, impairing the performance in heterogeneous scenarios (see c2). As an alternative,
we collaboratively learn a shared distribution over priors, termed a hyper-posterior, from which the
clients sample their priors to perform personalized posterior inference. By removing the linkage of
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Figure 1: Overview of the framework for client n using the notation introduced in Section 4. Black
arrows indicate algorithmic dependencies, blue arrows show sampling from distributions, red arrows
represent repeated sampling for computing expectations, and dark-shaded regions contain unknown
elements. As can be seen in the figure, the prior depends on the client’s data, Sn, making it data-
dependent. Note that the server does not have direct access to S1, · · · ,Sn, but rather to some gradients,
as will be discussed in Section 5. The information exchange between the clients and the server is
described by Algorithm 1, which complements the conceptual dependencies illustrated in this figure.

the personalized posteriors to the same shared prior, this approach enhances flexibility in capturing
heterogeneous patterns, thus resolving (c2).

To mitigate potential overfitting in low-data scenarios (see c3), we select the hyper-posterior by
minimizing a generalization bound on clients’ true loss. Section 4 will demonstrate that this approach
provides a principled regularization of the hyper-posterior, facilitating the learning of complex models
without overfitting. Regarding (c4), PAC-PFL accommodates collecting new data over time. Due to
practical constraints, only a fraction of clients communicate with the server in each iteration. Before
reconnecting with the server, a client may collect new data that can be used for personalization,
but not for training the shared hyper-posterior. In an extreme case, there may be clients joining the
system later, denoted as new clients, who have never communicated with the server. The distinction
between existing and new clients is important, as distinct generalization bounds hold for each group.

We evaluate our framework on Gaussian Process (GP) regression and Bayesian Neural Network
(BNN) classification as representative examples of probabilistic models. Our experiments demonstrate
that PAC-PFL produces accurate and well-calibrated predictions (c1) even in highly heterogeneous
(c2) and data-poor (c3) scenarios. Additionally, we show that PAC-PFL enables positive transfer
learning from existing clients to new clients. (c4) Finally, our method can be interpreted through
Jaynes’ principle of maximum entropy (Jaynes, 1957) as explained in Appendix 8.1.

2 RELATED WORK

Meta-PFL. PAC-PFL falls under the meta-PFL category (Kulkarni et al., 2020). Meta-learning,
developed independently of FL, involves training a global model on various related learning problems
(tasks), which can be efficiently fine-tuned for a new task. The link between meta-learning and PFL
was first explored in Jiang et al. (2019), where a method was proposed to simultaneously learn the
global model and its personalization. Several methods aim to find a model initialization that performs
well after personalization by individual clients using their respective data (Khodak et al., 2019;
Fallah et al., 2020; Chen et al., 2018). However, the approach of Khodak et al. (2019) suffers from
scalability issues due to its reliance on sequential updates from clients. On the other hand, Fallah
et al. (2020) proposes an intuitive algorithm by narrowing the personalization step down to taking
one or a few steps of gradient descent with respect to clients’ own data. However, the personalized
models have a high resemblance to the shared model due to the personalization scheme. Additionally,
all these methods are frequentist, specific to parametric models, and lack generalization bounds. For
a comprehensive overview of PFL, please refer to Kulkarni et al. (2020).

FL for probabilistic models. Several FL methods aim to learn a global posterior at the server level,
which is generally intractable. Accordingly, these studies resort to approximation techniques such as
Laplace approximation (Al-Shedivat et al., 2020), Stein Variational Gradient Descent (SVGD) (Kassab
and Simeone, 2022), and Variational Inference (VI) (Bui et al., 2018). In Corinzia and Buhmann
(2019), personalized posteriors are achieved by training global and per-client variational factors
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jointly, but this method faces scalability issues in systems with many clients since refining person-
alized models is performed sequentially. While this approach performs well in the tested scenarios,
it is expected that the global variational factors cannot capture patterns among highly heterogeneous
clients, and the framework becomes equivalent to clients learning solely on their local data, as empha-
sized by Marfoq et al. (2021). Recently, Zhang et al. (2022) introduced pFedBayes which is a bilevel
optimization approach combining a server-level global prior with client-level personalized posteriors.
In each round, clients calculate local posteriors by optimizing their data likelihood while adding reg-
ularization towards the global prior. The server calculates the prior by minimizing the average client
loss. However, this approach, due to its bi-level optimization, imposes a significant computational
burden. Additionally, it results in a heuristic posterior, forfeiting the Bayesian interpretation, due
to the dependence of the prior on the client data. In contrast, we employ an inference framework,
as proposed by Dziugaite and Roy (2018), to handle data-dependent priors. Akin to meta-PFL
approaches, regularization towards a global model may limit the degree of personalization achievable.

The closest work to our approach is Achituve et al. (2021), which performs deep kernel learning
for GPs by maximizing the average Log Marginal Likelihood (LML) across all clients, learning a
shared prior, and regarding the posterior inference as personalization. Our method distinguishes itself
from Achituve et al. (2021) by learning a distribution over priors instead of a single prior. Moreover,
while Achituve et al. (2021) only considers zero-mean priors, our approach can learn both the mean
and the covariance of the prior distribution. The reason for focusing on covariance learning and
ignoring the mean in Achituve et al. (2021) may be that the LML implicitly regularizes the kernel,
while the mean can quickly overfit, as suggested in Fortuin et al. (2020). Our approach overcomes
this issue by incorporating a principled regularization term.

PAC-Bayesian meta-learning The setup described in Section 1 is closely related to meta-learning
within the PAC-Bayesian framework (Amit and Meir, 2018; Pentina and Lampert, 2014; Rothfuss
et al., 2021). In this scheme, a meta-learner is presented with a sequence of heterogeneous learning
tasks and aims to learn a hyper-posterior from previous tasks to facilitate posterior inference for a new
unseen task. The meta-learner achieves this by establishing and minimizing a generalization bound on
the new task using the previous tasks’ data, establishing a data flow from existing to new tasks. While
the mentioned approaches can be used for FL by treating each client as a task, they do not incentivize
existing clients to collaborate in the scheme. In contrast, our approach focuses on the existing
clients who are the primary concern of an FL system and minimizes a generalization bound on them.
Particularly, our approach is an adaptation of Rothfuss et al. (2021) to PFL, where the key technical
difference is dealing with data-dependent priors. Our obtained bounds are structurally similar to those
of Rothfuss et al. (2021), allowing us to leverage similar methods for optimizing the hyper-posterior.

3 PRELIMINARIES AND NOTATION

Consider n ∈ N existing clients, each characterized by an unknown data distribution, Di, that is over
a support of Rz = Rx ×Ry. Every sample from Di, is a pair of features, x, and the corresponding
target, y, where x ∈ Rx ⊂ Rd and y ∈ Ry ⊂ R. The support of features and targets, Rx and Ry,
are identical among clients, and the target is assumed scalar for simplicity. Each client observes
two distinct sets of mi ∈ N and m̃i ∈ N ∪ {0} i.i.d samples from Di, denoted by Si ∼ Dmi

i and
S̃i ∼ Dm̃i

i . The first set, Si, collects the samples that client i involves in both FL and personalization
steps and is non-empty. The second set, S̃i, consists of the samples obtained later that are used only for
model personalization and may be empty. We assume that m̃i ≤ mi for all i, and denote the number
of clients with m̃i > 0 by n2 ∈ {0, · · · , n}. We allow Di ̸= Dj and mi ̸= mj to accommodate
clients’ heterogeneity. Still, we consider a distribution T over the unknown data distributions and the
number of samples, (Di,mi) ∼ T , to encode relatedness among clients. For notation convenience,
we shall use S := {Si}ni=1, D := {Di}ni=1, m := [m1, · · · ,mn], and m̃ := [m̃1, · · · , m̃n].

Each client i ∈ 1, · · · , n aims to learn a hypothesis function hi : Rx −→ Ry that can be used for pre-
dicting the label y∗ of an unseen input x∗ drawn from the unknown data distribution Di. The quality
of h at (x∗, y∗) is measured by a loss function which we assume to be bounded, ℓ : H×Rz −→ [a, b].
Since the data distribution, Di, is unknown, standard methods select the best hypothesis according to
the set of observed samples, Si ∪ S̃i; for instance, by minimizing the empirical risk associated with ℓ.
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Using a single hypothesis based on limited observations leads to epistemic uncertainty (Draper,
1995) and overconfident target estimation (Kass and Raftery, 1995). To address this issue, the
PAC-Bayesian framework (McAllester, 1999) places probability distributions over the hypothesis
space, H, and combines all possible hypotheses sampled from these distributions for making
inferences. Two such distributions are enlisted: a prior distribution, P , and a posterior distribution,
Qi, which depends on the prior and the observations through a mapping, Qi := Q(P,Si ∪ S̃i). While
the prior and posterior terms resemble the Bayesian terminology, the posterior mapping, Q, is not
(necessarily) obtained through Bayes’ theorem. Additionally, recent advances in PAC-Bayesian
analysis enable employing priors that depend slightly on the data to make the learning pipeline more
data-driven, which is contrary to the Bayesian formalism (Rivasplata et al., 2020).

Client-level PAC-Bayesian bounds The flexibility in choosing the mapping Q can be exploited to
achieve desired characteristics. Ideally, clients aim to choose a Q that minimizes the true risk,

LC
(
Q(P,Si ∪ S̃i),Di

)
:= E

h∼Q(P,Si∪S̃i)
E

z∼Di

[
ℓ(h, z)

]
, (1)

where superscript C indicates that (1) is calculated by a client. In most cases, Di is unknown and the
true loss is approximated by its empirical counterpart,

L̂C
(
Q(P,Si ∪ S̃i),Si ∪ S̃i

)
:= E

h∼Q(P,Si∪S̃i)

[ 1

mi + m̃i

∑
z∈Si∪S̃i

ℓ(h, z)
]
. (2)

PAC-Bayes theory (McAllester, 1999) provides a guarantee on the worst loss clients may suffer
by upper bounding the unknown true risk in (1) based on the empirical risk in (2). The original
PAC bound by McAllester (1999) assumes that the prior, P , is independent of the data. However,
in our setup, the prior is obtained from the FL algorithm acting on the data subset Si, hence, is
data-dependent. Dziugaite and Roy (2018) propose a recipe for adapting any PAC bound with
data-free prior to a data-dependent prior that is stable to slight changes in the data, formalized by
the notion of Differential Privacy (DP) defined below.
Definition 3.1 ((Dwork and Roth, 2014)). Let ϵi ∈ R+ and A be a randomized algorithm that takes
a dataset as input and generates a stochastic output. The algorithm A is ϵi-differentially private if for
all datasets Si and Ŝi that differ in a single data sample and all subsets O of possible outcomes of A,

e−ϵi Pr[A(Ŝi) ∈ O] ≤ Pr[A(Si) ∈ O] ≤ eϵi Pr[A(Ŝi) ∈ O], (3)
where the probability is taken over the randomness used by the algorithm.

Intuitively, (3) states that A is stable w.r.t changing one sample of S (Dwork et al., 2015). The
parameter ϵ controls the privacy/stability level and is smaller if A is more private/stable.

To state a PAC bound for client i, we regard the federated pipeline as a randomized algorithm that takes
Si as input and outputs P = AS\Si

(Si). The subscript S\Si contains samples from all clients except
i and emphasizes that P depends on data from other clients likewise. However, DP is only studied for
the argument, Si. Randomization in AS\Si

arises from sampling the prior from the hyper-posterior.

When the prior is obtained through a differentially private algorithm, we apply the method of
Dziugaite and Roy (2018) on a bound due to Alquier et al. (2016) to derive the following theorem.
Theorem 3.1. Fix a data-dependent prior P obtained through an ϵi-DP algorithm, a data distribution
Di, and a bounded loss function ℓ(·, ·) ∈ [a, b]. For every β > 0, confidence level δ ∈ (0, 1], and
posterior Qi = Q(P,Si ∪ S̃i), the inequality

LC
(
Qi,Di

)
≤ L̂C

(
Qi,Si ∪ S̃i

)
+

1

β

(
KL

(
Qi∥P

)
+

β2(b− a)2

8(mi + m̃i)
+ I(ϵi,mi, δ) + ln (

1

δ
)
)

(4)

holds with probability at least 1 − δ over Si ∼ Dmi
i and S̃i ∼ Dm̃i

i . In the above, I(ϵi,mi, δ) =

0.5miϵ
2
i + ϵi

√
0.5mi ln(4/δ) + ln(2), and does not depend on the posterior. It is assumed that the

KL divergence between Qi and P exists and is denoted by KL(Qi∥P ).
Remark. The term I(ϵi,mi, δ) is the only change from the bound of Alquier et al. (2016) with a
data-free prior.

We refer to Theorem 3.1 as the client-level upper bound because it provides a guarantee on the
unknown true risk of each client i.
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Optimal posterior The bound in (4) holds for all Qi and thus can be minimized w.r.t Qi to obtain
the tightest upper bound on the true risk. Since ϵi only reflects through the term I in (4), the optimal
posterior is the same as the minimizer of the bound with a data-free prior derived in Catoni (2007).

Corollary 3.1.1 ((Catoni, 2007)). Given a prior, P , obtained through an ϵi-DP algorithm and obser-
vations, Si ∪ S̃i, the optimal posterior minimizing the right-hand side of (4) is a Gibbs distribution:

Q∗
i := Q

∗(P,Si ∪ S̃i) = P (h) · exp
( −β
mi + m̃i

∑
z∈Si∪S̃i

ℓ(h, z)
)
/ZCβ (P,Si ∪ S̃i), (5)

where ZCβ (P,Si ∪ S̃i) := Eh∼P exp
(

−β
mi+m̃i

∑
z∈Si∪S̃i

ℓ(h, z)
)

is a normalization constant.

Using the negative log-likelihood loss, ℓ(h, z) := − ln Pr[z|h] and β = mi + m̃i, reduces ZCβ to the
LML and the Gibbs posterior coincides with the Bayes posterior (Guedj, 2019).

Plugging in the closed-form formula of the optimal posterior (5) into the client-level bound obtains:

LC
(
Q∗(P,Si ∪ S̃i),Di

)
≤ 1

β

(
− lnZβ(P,Si ∪ S̃i) +

β2(b− a)2

8(mi + m̃i)
+ I(ϵi,mi, δ) + ln (

1

δ
)
)
, (6)

holding with probability at least 1− δ over Si ∼ Dmi
i , S̃i ∼ Dm̃i

i . The simplified bound (6) removes
the explicit dependence on Qi and is tighter than the generic bound per (4).

In the rest of this paper, we assume that clients utilize Q∗
i whenever the privacy requirement of

Theorem 3.1 is satisfied. This is a mild assumption bearing into mind that the family of Gibbs
posteriors (for different choices of ℓ and β) encompasses the Bayes posterior.

4 THEORETICAL FRAMEWORK FOR PAC-BAYESIAN FEDERATED LEARNING

Overview of the approach. Having defined basic components, we reemphasize the main research
problem. In this paper, we employ FL to select the prior distribution in a data-driven manner. With
a similar justification of considering distributions over hypotheses, we formulate two distributions
over priors: a hyper-prior, P , and a hyper-posterior, Q. The hyper-prior must be independent of
observations, while the hyper-posterior depends on the observed samples by clients.

We assume the existence of a trusted server communicating with a set of existing clients, 1, · · · , n,
each holding a set of observed samples, S1, · · · ,Sn. The server aims to extract common knowledge in
the form of a hyper-posterior distribution without directly accessing clients’ datasets (as enforced by
FL). The server communicates the learned hyper-posterior to clients, including those who participated
in federated training and some new ones. The clients proceed by repeatedly drawing a prior from the
received hyper-posterior and using it to calculate the optimal posterior per (5), involving any potential
additional samples, S̃i in the inference procedure. The goal is to find the optimal hyper-posterior,Q∗,
such that the posterior obtained through the described pipeline has a low true risk (1) for all clients.
An overview of the setup is depicted in Fig. 1.

In the sequel, we consider hyper-posteriors, Q, that satisfy the condition of having a finite ϵ ∈ R+

such that sampling P from Q preserves ϵ-DP for all clients. This assumption enables us to use Corol-
lary 3.1.1 and is rather weak as ϵ can be arbitrarily, albeit not infinitely, large. Analogous to the pro-
cedure in Section 3, we establish PAC bounds for the pair P andQ. We derive a closed-form formula
for the optimal hyper-posterior, Q∗, which minimizes the PAC bound, and verify that Q∗ satisfies the
privacy assumption. Finally, we establish a PAC bound for new clients who sample their priors from
Q∗ without participating in the federated learning process. An interpretation through the principle of
maximum entropy (Jaynes, 1957) and all proofs are provided in Appendices 8.1 and 8.2, respectively.

Server-level PAC-Bayesian bound. Following the introduced inference setup, the quality of Q can
be measured by server-level true risk, defined as:

LS(Q,D,S, m̃) :=
1

n

n∑
i=1

E
P∼Q

E
S̃i∼Dm̃i

i

LC(Q∗(P,Si ∪ S̃i),Di). (7)
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Equation (7) averages the true loss across all clients, accounting for every possible set of new samples,
S̃, with sizes specified by m̃. The data generating distributions D are unknown in the true loss
definition per (7), calling for an empirical estimation merely based on the available information:

L̂S(Q,S) := 1

n

n∑
i=1

E
P∼Q

L̂C(Q∗(P,Si),Si), (8)

where observed samples replace potential future data. We refer to (8) as the server-level empirical
loss because it can be computed by the server by collecting summands from clients.

Below, we present our first main contribution, which is a PAC bound on server-level risks.
Theorem 4.1. Let ℓ(·, ·) ∈ [a, b] be a bounded loss function, β ≥ 1/n,

∆i :=
1

n
min

{
b− a, b

(
e

2βm̃i
mi+m̃i

(b−a) − e
−2βm̃i
mi+m̃i

(b−a))}
, ∀i ∈ {1, · · · , n}.

Assume clients employ the optimal posterior with parameter β. Let Q be a hyper-posterior such that
sampling P from Q preserves ϵ-DP for all clients. For every hyper-prior P independent from S,
υ > 0, λ > n2 + υ, and confidence level δ ∈ (0, 1),

LS(Q,D,S, m̃) ≤−1
nβ

n∑
i=1

E
P∼Q

lnZCβ (P,Si) +
( 1

nβ
+
n2 + υ

λ

)
KL(Q∥P)

+
β(b− a)2

8n

n∑
i=1

1

mi
+
λ
∑n
i=1 ∆

2
i

8(n2 + υ)
+

1√
n
ln (

1

δ
), (9)

holds with probability at least 1− δ over Si ∼ Dmi
i and S̃i ∼ Dm̃i

i for i = 1, · · · , n.

The constant υ can be chosen very small and avoids numerical issues when n2 = 0. The bound in (9)
depends on the number of clients and the current dataset sizes, n and m. Additionally, it relies on
a prediction of the number of clients who will have new samples and the corresponding number
of new samples, n2 and m̃. While the server knows n and m, the estimates for n2 and m̃ might
be coarse. The following lemma states that a pessimistic forecast results in a looser upper bound.
Lemma 4.2. If the number of new samples of client i, m̃i ≥ 0, is unknown, Theorem 4.1 holds when
replacing ∆i with (b− a)/n and counting client i in n2, i.e., as if m̃i > 0.

The asymptotic behavior and non-vacuousness of the client-level and server-level bounds are
discussed in Appendix 8.3.1.

Optimal hyper-posterior. Our algorithm picks the optimal hyper-posterior, Q∗, leading to the
lowest upper bound on the server-level true risk per (4). Inspecting the structural similarity between
the server and client-level bounds in (4) and (9), we arrive at a closed-form formula for Q∗.
Corollary 4.2.1. When clients use the optimal posterior, Q∗

i , the optimal hyper-posterior is a Gibbs
distribution with parameter τ = λ/

(
λ+ βn(n2 + υ)

)
:

Q∗(P ) = P(P ) · exp
(
τ

n∑
i=1

ln
(
ZCβ (P,Si)

))
/ZSτ (P,S),

where ZSτ (P,S) := EP∼P exp
(
τ
∑n
i=1 ln

(
ZCβ (P,Si)

))
is a normalization constant.

The parameter τ depends on the number of clients from different types, n and n2, but not on the
number of samples, m and m̃. If n2 is unknown, it can be replaced by counting i in n2, consistently
with Lemma 4.2. In this case, a looser upper bound would be minimized.

The privacy of sampling a prior from Q∗ is crucial to obtain ϵi for plugging it into the client-level
bound (6) and for employing Theorem 4.1. We rely on a result by Mir (2012) that proves the DP of
sampling from the Gibbs distribution.
Lemma 4.3. A prior sampled from Q∗ preserves ϵi-DP for client i, where ϵi = 2βτ(b− a)/mi .

As a result, Q∗ satisfies the privacy assumption of Theorem 4.1 with ϵ = maxi∈{1,··· ,n} ϵi. Comple-
mentary discussions regarding the role of DP in our framework are available in Appendix 8.4.
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PAC-Bayesian bound for new clients. So far, we considered a fixed set of existing clients who
participate in training the optimal hyper-posterior. In a realistic FL setup, there might be new clients
(see c4) who join the system later and hence, do not engage in federated training. A new client holds
a presumably small set of samples which leads to overfitting. Assuming the existing and new clients
are similar, it is constructive for the new clients to readily employ Q∗ without having contributed to
training it. In this section, we establish a PAC bound for such new clients.

In Section 3, we introduced the distribution T to represent the similarity among the existing clients.
Consistently, we expect that a new client ι is sampled from the same distribution, (Dι, m̃ι) ∼ T . In
line with the previous notation, m̃ι is the cardinality of the set S̃ι ∼ Dm̃ι

ι employed by client ι for
personalization but held out from FL. We present below our second PAC-Bayesian bound.

Lemma 4.4. For a new client ι sampled from T adopting Q∗ and Q∗ as per Corollaries 3.1.1, 4.2.1,

E
(Dι,m̃ι)∼T

E
S̃ι∼Dm̃ι

ι

E
P∼Q∗

LC
(
Q∗(P, S̃ι),Dι

)
≤− (

1

nβ
+
n2 + υ

λ
) lnZSτ (P,S)

+
(b− a)2

8n

(
β

n∑
i=1

1

mi
+

λ

n2 + υ

)
+

1√
n
ln(

1

δ
),

holds with probability at least 1− δ over (Dι, m̃ι) ∼ T and S̃ι ∼ Dm̃ι
ι .

Since Q∗ is tailored to minimize the server-level bound for existing clients, the bound in Lemma 4.4
is looser than that of Theorem 4.1 with Q = Q∗ (see Appendix 8.2.5 for the proof). This motivates
the clients to actively engage in trainingQ∗ rather than readily employing the learned hyper-posterior.

5 PRACTICAL FEDERATED IMPLEMENTATION

In Section 3, we motivated learning a distribution over priors when dealing with heterogeneous clients,
where selecting a single best prior may not be accurate or feasible. Consequently, we derived the
optimal hyper-posterior in Corollary 4.2.1. In this section, we address the computational limitations
at both the client and server levels and propose a practical PFL algorithm.

Models at the client level. The formula for Q∗ in Corollary 4.2.1 relies on ZCβ (P,Si) for i ∈
{0, · · · , n}. As per Corollary 3.1.1, calculating ZCβ (P,Si) entails computing the expectation over
all hypotheses sampled from the prior, which is in general intractable. We consider the negative
log-likelihood loss and set β = mi + m̃i, which results in Zβ aligning with the LML, as discussed in
Section 3. We calculate the LML in two scenarios: when clients use Gaussian Processes (GPs) or
Bayesian Neural Networks (BNNs). MLL is readily available in closed-form for GPs but is intractable
for BNNs. To address this, we adopt the approximation method described in Rothfuss et al. (2021).

Inspired by Fortuin et al. (2020); Rothfuss et al. (2021), we parameterize the GP mean and kernel by
two deep neural networks (NN) and consider a Gaussian likelihood. The resulting model enhances the
expressive power and scalability to high-dimensional data of GPs (Wilson et al., 2016). Additional
details about the models and likelihood formulas can be found in Appendices 8.3.2 and 8.3.3.

SVGD at the server level. Given ZCβ (P,Si),Q∗ is computable up to the constant ZSτ (P,S), which
leaves sampling from Q∗ intractable. Following Rothfuss et al. (2021), we use Stein Variational Gra-
dient Descent (SVGD) (Liu and Wang, 2016) that approximates Q∗ as a set of priors, Pϕ1 , · · · , Pϕk

.
Each prior Pϕκ is parameterized by ϕκ. SVGD is initialized with a set of priors and then iteratively
transports them to match Q∗. This is achieved through a form of functional gradient descent on the
SVGD loss (see Appendix 8.3.4), making it suitable for being integrated into an FL scheme. As
SVGD is deterministic (Liu, 2017), the inherent privacy of Q∗ established in Lemma 4.3 is com-
promised. To reintroduce privacy, a conventional approach involves injecting noise into the SVGD
gradients (Geyer et al., 2017). We propose a privacy-preserving variant of PAC-PFL in Appendix 8.4.

Federated algorithm. PAC-PFL leverages the FedAvg (McMahan et al., 2016) technique to
minimize the SVGD loss. Initially, we sample Pϕ1

, · · · , Pϕk
from P , which we define as a

multi-variate Gaussian distribution with a diagonal covariance matrix. At each iteration, the server

7
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randomly selects a subset of existing clients to send ϕ1, · · · ,ϕk. This is sufficient to reconstruct
Pϕ1

, · · · , Pϕk
. The selected clients compute the required SVGD gradients and send them back

to the server. The server aggregates all gradients before using them to update the priors. A
pseudocode is provided in Algorithm 1 with sub-routines Client_Update and SVGD_Update defined
in Appendix 8.3.5. For a comprehensive list of parameters used in both our theoretical results and
algorithm, along with selection guidelines, please refer to Appendix 8.3.6.

Algorithm 1 PAC-PFL. Requires: number of SVGD priors (k), hyper-prior (P), parameter (τ ),
number of iterations (T ), number of clients per iteration (c), mini-batch size (b), learning rate (η).

1: Server executes:
2: Initialize priors Pϕ1

, . . . , Pϕk

i.i.d∼ Pk
3: for t = 1 to T do
4: Select a random subset Ct of c clients
5: for each selected client i in Ct in parallel do
6: Gi ← Client_Update(b,ϕ1, . . . ,ϕk)

7: Aggregate gradients: G← 1
c

∑
i∈Ct

Gi

8: Update priors: ϕ1, . . . ,ϕk ← SVGD_Update(η, τ,G,P,ϕ1, . . . ,ϕk)

9: return SVGD approximation of Q∗: Pϕ1 , . . . , Pϕk

6 EXPERIMENTS

We empirically evaluate PAC-PFL on four datasets: a dataset of photovoltaic (PV) panels and a
polynomial synthetic dataset for regression, alongside the FEMNIST (Caldas et al., 2019) and
EMNIST (Cohen et al., 2017) datasets for classification. Our algorithm consistently outperforms
federated and data-centric baselines, improving the prediction accuracy and the calibration of
uncertainty estimates simultaneously. These enhancements are evident in the reduction of both
variance and mean of these metrics across both existing and new clients.

Datasets. We consider a time-series dataset of PV generation from multiple houses within a city.
Each house is a client, and the clients exhibit heterogeneity due to their diverse locations, variations
in shadows, and distinct orientations relative to the sun. In this section, we investigate a highly
heterogeneous scenario characterized by a bimodal distribution over the clients, where half of the
clients are oriented toward the east and half toward the west. We consider 24 existing and 24 new
clients, each having a small set of 150 training samples. We denote this scenario, involving challenges
(c1-c4), as PV-EW (150). Other setups for using the PV dataset are introduced in Appendix 8.5.

The FEMNIST dataset consists of handwritten characters from various writers, treated as clients, and
we employ it for 10-way digit classification. The heterogeneity among clients arises from their distinct
handwritings (c2). We select 40 clients and examine two scenarios: one with 20 samples per client and
another with 500 samples per client on average. In the low-data case (c3), we demonstrate PAC-PFL’s
superior performance over all baselines. In the full-data case, we highlight the scalability of our
algorithm with large datasets. The polynomial and the EMNIST datasets are detailed in Appendix 8.5.

Baselines. We compare PAC-PFL against pFedGP (Achituve et al., 2021) and pFedBayes (Zhang
et al., 2022), two probabilistic PFL methods. Additionally, we include two non-federated approaches:
Vanilla, where each client trains a model individually, and Pooled, where a single model is trained
on a pooled dataset comprising data from all clients in a data-centric manner. The performance of the
Pooled approach is expected to be low for heterogeneous clients due to the absence of personalization.
Furthermore, we assess two frequentist PFL approaches for training NNs, namely MAML (Fallah
et al., 2020) and MTL (Evgeniou and Pontil, 2004). Hyper-parameters for each method are tuned
through cross-validation. Further baseline details can be found in Appendix 8.6.

Metrics. We assess prediction accuracy and calibration for each client. In regression tasks, we use
root standardized mean squared error (RSMSE) that normalizes RMSE by the standard deviation of
targets. For classification, we measure the percentage of correctly classified samples. Additionally, we
compute the calibration error (CE), which quantifies the deviation of predicted confidence intervals

8
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Figure 2: Box plots of test RSMSE and CE for existing and new clients in the PV-EW (150) dataset.
The middle line in each box is the median. PAC-PFL consistently outperforms all baselines in terms of
CE median, CE spread, and RSMSE median. The RSMSE spread is comparable to MTL and pFedGP.

from actual proportions of test data within those intervals (Kuleshov et al., 2018), using the formula
in Rothfuss et al. (2021). The concept of CE applies exclusively to probabilistic models and is not
relevant to frequentist baselines such as MAML and MTL. In evaluating FL methods, the sample
mean of a metric is often a biased estimate due to correlations across clients. We utilize box plots to
analyze the distribution of metric values across clients, offering a more comprehensive understanding.

Results The results for PV-EW (150) are presented in Fig. 2, highlighting several key findings.
MAML does not perform well, likely because a single gradient descent step lacks the necessary
personalization (c2), while MTL and pFedGP showcase their capability to capture heterogeneity.
The limited sample size (c3) adversely impacts the performance of the local Vanilla GP. Notably,
PAC-PFL surpasses all baselines, leveraging its robust personalization capability to address (c2)
and intrinsic regularization to resolve (c3). Notably, our method outperforms all baselines due to its
strong personalization capability, addressing (c2), and inherent regularization, resolving (c3). Pooled
GP results are not plotted due to poor performance but are reported in Appendix 8.6.

On the FEMNIST dataset with 20 samples per client, PAC-PFL archives a remarkable test accuracy
of 94.2% for existing clients, outperforming other baselines: pFedGP (83.6%), pFedBayes (87.0%),
and FedAvg (88.1%). Complementary experimental results are reported in Appendix 8.6.

7 CONCLUSION

This paper presents PAC-PFL, a novel PFL algorithm that enables the learning of probabilistic models.
The proposed approach learns a shared hyper-posterior in a federated manner, which clients use to
sample their priors for personalized posterior inference. To prevent overfitting, PAC-PFL minimizes
an upper bound on the true risk of the clients participating in federated training. Moreover, the learned
hyper-posterior can be applied to new clients who did not participate in the training, resulting in posi-
tive transfer. Conducting experiments on a heterogeneous dataset of PV panels and on the FEMNIST
dataset, we empirically demonstrate that PAC-PFL produces accurate and well-calibrated predictions.

There are two main directions for future research: improving client-level computational complexity
(detailed in Appendix 8.3.7) and addressing the privacy-utility trade-off more effectively. Our
framework leverages DP to derive valid generalization bounds despite having data-dependent priors
and to avoid data leakage, as typical in FL. While our theoretical results in Section 4 show that
our ideal pipeline provides DP, we forfeit this property due to the SVGD approximation technique.
We empirically validated that PAC-PFL avoids overfitting, though the bounds might not hold. DP
can be reintroduced to prevent data leakage using the common method of injecting noise during
training (Geyer et al., 2017), as demonstrated in Appendix 8.4, but this may compromise accuracy
(Bagdasaryan et al., 2019). Exploring alternative privacy techniques is an avenue for future research.
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REPRODUCIBILITY STATEMENT

For all theorems and theoretical results, we present detailed assumptions and proofs in Appendix 8.2.
Moreover, we provide a comprehensive table containing all parameters utilized throughout the paper
in Appendix 8.3.6. This table highlights the interconnections between these parameters and marks
the free parameters that can be tuned for optimal utilization of our algorithm.

Regarding the datasets, we employ the FEMNIST dataset, which is curated and main-
tained by the LEAF project (Caldas et al., 2019). We utilize the original train-test
split provided with the data, without any additional preprocessing. The PV dataset can
be accessed via the following link: https://drive.google.com/drive/folders/
153MeAlntN4VORHdgYQ3wG3OylW0SlBf9?usp=sharing.

The source code for our PAC-PFL implementation using GP is accessible within the same Google
Drive repository. Upon acceptance, we intend to make the source code for BNN publicly available.
To facilitate the use of our software, we have incorporated a demonstration Jupyter Notebook in the
source code repository. Furthermore, we have included pre-trained models for PAC-PFL and other
baseline models for the PV dataset. Finally, we provide a notebook that generates the figures featured
in the paper.

10

https://drive.google.com/drive/folders/153MeAlntN4VORHdgYQ3wG3OylW0SlBf9?usp=sharing
https://drive.google.com/drive/folders/153MeAlntN4VORHdgYQ3wG3OylW0SlBf9?usp=sharing


Under review as a conference paper at ICLR 2024

REFERENCES

Photovoltaic geographical information system (PVGIS) of the joint research center of
the European commission. https://joint-research-centre.ec.europa.eu/
pvgis-online-tool [Accessed: 17 May 2023].

Idan Achituve, Aviv Shamsian, Aviv Navon, Gal Chechik, and Ethan Fetaya. Per-
sonalized federated learning with Gaussian processes. In Advances in Neural In-
formation Processing Systems, volume 34, pages 8392–8406. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/46d0671dd4117ea366031f87f3aa0093-Paper.pdf.

Maruan Al-Shedivat, Jennifer Gillenwater, Eric P. Xing, and Afshin Rostamizadeh. Federated learning
via posterior averaging: A new perspective and practical algorithms. CoRR, abs/2010.05273, 2020.
URL https://doi.org/10.48550/arXiv.2010.05273.

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational approximations
of Gibbs posteriors. Journal of Machine Learning Research, 17(236):1–41, 2016. URL http:
//jmlr.org/papers/v17/15-290.html.

Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended PAC-Bayes theory. In
Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 205–214. PMLR, 10–15 Jul 2018. URL https://
proceedings.mlr.press/v80/amit18a.html.

Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential privacy has disparate
impact on model accuracy. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/fc0de4e0396fff257ea362983c2dda5a-Paper.pdf.

George E.P. Box and George C. Tiao. Nature of Bayesian Inference, chapter 1, pages 1–75. John
Wiley and Sons, Ltd, 1992. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/9781118033197.ch1.

Thang D Bui, Cuong V Nguyen, Siddharth Swaroop, and Richard E Turner. Partitioned variational
inference: A unified framework encompassing federated and continual learning. arXiv preprint
arXiv:1811.11206, 2018. URL https://doi.org/10.48550/arXiv.1811.11206.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan
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8 APPENDIX

8.1 INTERPRETATION THROUGH THE PRINCIPLE OF MAXIMUM ENTROPY

In this section, we provide additional justification for the optimal hyper-posterior derived in Corol-
lary 4.2.1 based on the principle of maximum entropy (Jaynes, 1957). The principle of maximum
entropy suggests that when only the class of a distribution is known, the distribution with the highest
entropy should be chosen as the least-informative default. The distribution class can be specified
by certain moment constraints.This principle is motivated by two key reasons: first, maximizing
entropy minimizes the amount of prior information embedded in the distribution, allowing for a
more agnostic representation; second, it aligns with the observation that many physical systems tend
to evolve towards configurations of maximal entropy over time. While the principle of maximum
entropy is commonly employed to derive prior probability distributions in Bayesian inference (Merwe
and Skilling, 2010), we utilize it in the context of obtaining the optimal hyper-posterior distribution.

Consider the following constrained maximum entropy problem:

max
Q

HP(Q) (10a)

s.t. − E
P∼Q

lnZβ(P,Si) + I(ϵi,mi, δ) ≤ − E
P∼P

lnZβ(P,Si) ∀i ∈ {1, · · · , n}. (10b)

In Equation (10a), HP(Q) = −KL(Q∥P) represents Jaynes’ entropy with the hyper-prior P serving
as the invariant measure (Jaynes, 1957). The objective is to maximize this entropy subject to n
constraints on the expectations of lnZβ(P,Si) under the distribution Q, as given in (10b). The
constants ϵi and I(ϵi,mi, δ) are determined by Lemma 4.3 and Theorem 3.1, respectively. Below,
we establish a connection between the maximum entropy problem and our approach in Section 4.

Proposition 1. The minimizer of the server-level upper bound, Q∗, derived in Corollary 4.2.1,
coincides with the maximizer of the constrained maximum entropy problem presented in (10a)-(10b),
when the maximum entropy problem is solved by optimizing the Lagrange function:

argmax
Q

HP(Q) + τ

n∑
i=1

(
E

P∼Q
lnZβ(P,Si)− I(ϵi,mi, δ)− E

P∼P
lnZβ(P,Si)

)
, (11)

where the Lagrange multiplier τ is used for all constraints. The constant τ is as per Corollary 4.2.1.

Proof. Let Q̃∗ denote the maximizer of the Lagrange function in (11). By removing the terms in (11)
that are constant with respect to Q, we obtain:

Q̃∗ = argmax
Q

HP(Q) + τ

n∑
i=1

E
P∼Q

lnZβ(P,Si). (12)

According to the definition of Jaynes’ entropy,

Q̃∗ = argmin
Q

1

τ
KL(Q∥P)−

n∑
i=1

E
P∼Q

lnZβ(P,Si), (13)

where we have multiplied the objective in (12) by−1/τ and changed maximization into minimization.
By substituting the formula for τ , one can verify that (13) is equivalent to the server-level upper
bound, except for some constant values. Hence, Q̃∗ = Q∗.

The maximum entropy interpretation of Q∗ allows us to analyze the effect of sampling P from Q∗

on client-level bounds. If client i chooses not to participate in FL and decides not to use Q∗, the best
alternative approach is to sample P from P . The following corollary provides a comparison between
sampling P from Q∗ and sampling P from P .

Corollary 8.0.1. The i-th constraint in (10b) imposes that the expected upper bound for client i is
tighter when sampling the prior P from the optimal hyper-posterior, Q∗, compared to sampling from
the hyper-prior, P .
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Proof. Since a prior which is sampled from the hyper-prior is no longer data-dependent, we utilize
the result from Alquier et al. (2016) to derive a bound for client i:

LC(Qi,Di) ≤ L̂C(Qi,Si) +
1

β

(
KL(Qi∥P ) +

β2(b− a)2

8mi
+ ln (

1

δ
)
)
, (14)

which holds with probability at least 1 − δ over Si ∼ Dmi
i . The upper bound in (14) is equal to

the upper bound in (4) with S̃i = ∅, except for the constant term I . Therefore, the posterior that
minimizes the right-hand side of (14) is the same asQ∗(P,Si) derived in Corollary 3.1.1 with S̃i = ∅.
By plugging Q∗(P,Si) into (14), we obtain the counterpart of (6):

LC(Q∗(P,Si),Di) ≤
1

β

(
− lnZβ(P,Si) +

β2(b− a)2

8mi
+ ln (

1

δ
)
)
, (15)

holding with probability at least 1− δ over Si ∼ Dmi
i . The i-th constraint in (10b) is obtained by

taking the expectation of the upper bounds in (6) and (15) when P ∼ Q∗ and P ∼ P , respectively,
and enforcing that the former is smaller than the latter.

According to Corollary 8.0.1, participating in FL is beneficial for client i if the i-th constraint is
satisfied. However, since we solved the constrained problem per (10a)-(10b) using the Lagrange
method with a single multiplier, the constraints might be violated. The constraints are more likely to
be satisfied when τ is large, which can be achieved by having small n, n2, and β, while simultaneously
having a large value for λE . In other words, when there are fewer clients participating in FL, the
hyper-posterior is more likely to provide improvements for those clients.
Remark. In a similar manner, we can avoid any PAC arguments and use the principle of minimum
cross entropy for calculating the posterior. With these two rules, the optimal posterior and hyper-
posterior are the same as those obtained by minimizing client-level and server-level PAC bounds.

8.2 PROOFS AND DERIVATIONS

We first mention without proof a powerful lemma, called the change of measure inequality, that is the
basis of proving PAC bounds in most papers. The statement below is adapted from the Appendix of
Pentina and Lampert (2014).

Lemma 8.1 ((Pentina and Lampert, 2014)). Let f be a random variable taking values in a set A and
let X1, · · · , Xl be l independent random variables with each Xk distributed according to µk over
the set Ak. For functions gk : A×Ak −→ R, k = 1, · · · , l, let ξk(f) = E

Xk∼µk

gk(f,Xk) denote the

expectation of gk under Xk ∼ µk as a function of f . Then, for any fixed distributions π, ρ over A
and any γ > 0, we have that

E
f∼ρ

[ l∑
k=1

(
ξk(f)− gk(f,Xk)

)]
≤ 1

γ
KL(ρ∥π) + 1

γ
ψ(γ),

where ψ(γ) := lnEf∼π
[
eγ

∑l
k=1

(
ξk(f)−gk(f,Xk)

)]
is referred to as the log moment-generating

function.

When ξk − gk is bounded, we bound the expectation of the log moment-generating function in
Corollary 8.2.1, which uses the Hoeffding’s lemma stated below.

Lemma 8.2 ((Hoeffding, 1963)). Let Y be a zero-mean real-valued random variable such that
Y ∈ [a, b] almost surely, i.e. with probability one. Then for any γ > 0:

E
[
eγY

]
≤ e

γ2

8 (b−a)2 .

Corollary 8.2.1. If ξk(f)− gk(f,Xk) ∈ [ak, bk] almost surely for all f and Xk, it holds for every
γ ≥ 1 that EX1∼µ1 · · ·EXl∼µl

e
1
γψ(γ) ≤ e

γ
8

∑l
k=1(bk−ak)

2

.
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Proof of Corollary 8.2.1. By taking the expectation of the moment-generating function w.r.t every
Xk,

E
X1∼µ1

· · · E
Xl∼µl

eψ(γ) = E
X1∼µ1

· · · E
Xl∼µl

E
f∼π

[ l∏
k=1

eγ
(
ξk(f)−gk(f,Xk)

)]
= E
f∼π

E
X1∼µ1

· · · E
Xl∼µl

[ l∏
k=1

eγ
(
ξk(f)−gk(f,Xk)

)]
,

where in the last line we have changed the order of expectations. For a given f , the terms ξk(f)−
gk(f,Xk) for k ∈ {1, · · · , l} are independent from each other which allows applying Lemma 8.2:

E
X1∼µ1

· · · E
Xl∼µl

eψ(γ) = E
f∼π

[ l∏
k=1

E
Xk∼µk

eγ
(
ξk(f)−gk(f,Xk)

)]
≤ E
f∼π

[ l∏
k=1

e
γ2(bk−ak)2

8

]
= e

γ2

8

∑l
k=1(bk−ak)

2

.

Since 1/γ ≤ γ, we can use Jensen’s inequality (Jensen, 1906) to write:

E
X1∼µ1

· · · E
Xl∼µl

e
1
γψ(γ) ≤ e

γ
8

∑l
k=1(bk−ak)

2

.

One can utilize Markov’s inequality1 to remove the expectation in Corollary 8.2.1 and obtain a
probabilistic bound on ψ(γ). We will use Corollary 8.2.1 multiple times, and thus, postpone applying
Markov’s inequality to avoid simultaneous stochastic inequalities which must be combined with a
union bound argument.

8.2.1 PROOF OF THEOREM 4.1

The proof of Theorem 4.1 is carried out in three steps. The first two steps bound the true risk of
clients with S̃i = ∅ and clients with enlarged datasets, respectively. By merging these two, we will
obtain a bound on the server-level true risk. In the last step, the closed-form formula of the optimal
posterior is exploited to make some simplifications. The main assumptions are independence of
clients (guaranteeing independence of Xk in Lemma 8.1), boundedness of the loss function (needed
to apply Corollary 8.2.1), adoption of the optimal posterior (yielding the bound per (6)), and existence
of a finite ϵ ∈ R+ such that sampling P from Q preserves ϵ-DP for all clients (required to use
Corollary 3.1.1).

Step 1. We apply Lemma 8.1 with the following instances: take l =
n∑
i=1

mi and assign a random

variable to each observed sample by clients, Xk = zij , where zij is the j’th sample of Si. Let
α : {1, · · · , l} −→ {1, · · · , n} be a mapping from each random variable Xk to the corresponding
client, α(k) = i if Xk = zij for some j. Correspondingly, we take µk = Dα(k) to be the
respective distribution. Further, we set f = (P, h1, · · · , hn) to be a tuple of one prior and n
hypotheses and consider distributions π = (P, P, · · · , P ) and ρ =

(
Q,Q∗(P,S1), · · · ,Q∗(P,Sn)

)
over it. Each function gk is designated to be one of the summands in the empirical server-level risk,
gk(f,Xk) =

1
nmα(k)

ℓ(hα(k), Xk). By invoking Lemma 8.1 with γ = λ1 ≥ 1, we have:

1

n
E

P∼Q

n∑
i=1

LC
(
Q∗(P,Si),Di

)
≤ 1

n
E

P∼Q

n∑
i=1

L̂C
(
Q∗(P,Si),Si

)
(*)

+
1

λ1
KL

(
Q∥P

)
+

1

λ1

n∑
i=1

E
P∼Q

KL
(
Q∗(P,Si)∥P

)
(†)

+
1

λ1
ψ1(λ1). (16)

1According to Markov’s inequality, if X is a nonnegative random variable and a > 0, then Pr[X ≥ a] ≤
E[X]/a.
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Line (†) is equal to KL
(
ρ∥π

)
due to (13-15) in Rothfuss et al. (2021), and ψ1(λ1) is a log moment-

generating function defined as:

ψ1(λ1) := ln E
P∼P

E
h∼P

e
λ1
n

∑n
i=1

(
Ez∼Di

ℓ(h,z)− 1
mi

∑
z∈Si

ℓ(h,z)
)
.

For ℓ ∈ [a, b], we apply Corollary 8.2.1 acknowledging that |ξk − gk| ≤ (b − a)/nmα(k), hence,
obtaining:

E
S1∼Dm1

1

· · · E
Sn∼Dmn

n

e
1
λ1
ψ1(λ1) ≤ e

λ1
8n2 (b−a)2

∑n
i=1

1
mi . (17)

The right-hand side of (*) matches the server-level empirical loss per (8), but the left-hand side is
different from the true risk in (7), as new clients and new samples are missing.

Step 2. In the second step, we use l = n and assign one random variable Xk to each client.
To maintain a cohesive notation, we will use subscript i instead of k for elements of Lemma 8.1.
We substitute each Xi with a subset of m̃i samples from Si drawn without replacement, which is
possible as m̃i ≤ mi. Set f = P , π = P , ρ = Q, and gi(f,Xi) = 1

nL
C
(
Q∗(f,Si ∪ Xi),Di

)
.

Notice that Si and Di are embedded in the definition of gi and not given as function arguments. Let
λ2 = λ/(n2 + υ) ≥ 1, where n2 is the number of clients with m̃i > 0 and υ is a small positive
number. By applying Lemma (8.1) with parameter γ = λ2, we obtain:

1

n
E

P∼Q

n∑
i=1

E
S̃i∼Dm̃i

i

LC
(
Q∗(P,Si ∪ S̃i),Di

)
≤ 1

n
E

P∼Q

n∑
i=1

LC
(
Q∗(P,Si),Di

)
(⋄)

+
1

λ2
KL

(
Q∥P

)
+

1

λ2
ψ2(λ2), (18)

ψ2(λ2) := ln E
P∼P

e
λ2
n

∑n
i=1

(
E
S̃i∼Dm̃i

i

LC
(
Q∗(P,Si∪S̃i),Di

)
−LC

(
Q∗(P,Si),Di

))
.

When m̃i = 0 for all clients, the two sides of (⋄) are equal, ψ2(λ2) is zero, and the weight of the KL
term in (18) goes to zero as υ −→ 0. Thus, by setting λ2 proportional to n2 + υ, (16) and (18) are
consistent.

It is evident from the definition of ξi and gi that |ξi − gi| ≤ (b − a)/n. Still, we can exploit the
explicit formula of Q∗ per (5) to obtain a potentially smaller range by controlling the effect of a new
sample of size m̃i on the optimal posterior. Let Q∗

i = Q
∗(P,Si) and Q̃∗

i = Q
∗(P,Si ∪ S̃i) for some

fixed P and S̃i. From the closed form formula of Q∗ per (5), for every h ∈ H:

Q̃∗
i (h)

Q∗
i (h)

=
e

−β
mi+m̃i

∑
z∈Si∪S̃i

ℓ(h,z)

e
−β
mi

∑
z∈Si

ℓ(h,z)
.

Eh∼P e
−β
mi

∑
z∈Si

ℓ(h,z)

Eh∼P e
−β

mi+m̃i

∑
z∈Si∪S̃i

ℓ(h,z)
(19)

From the bounded loss assumption, we have:∣∣ 1

mi + m̃i

∑
z∈Si∪S̃i

ℓ(h, z)− 1

mi

∑
z∈Si

ℓ(h, z)
∣∣ ≤ m̃i(b− a)

mi + m̃i
. (20)

From (19) and (20), Q̃∗
i (h)

Q∗
i (h)

∈
[
e

−2βm̃i
mi+m̃i

(b−a)
, e

2βm̃i
mi+m̃i

(b−a)], which obtains a bound on ξi(f) −
gi(f,Xi):

ξi(f)− gi(f,Xi) =
1

n
E

S̃i∼Dm̃i
i

LC
(
Q∗(P,Si ∪ S̃i),Di

)
− 1

n
LC

(
Q∗(P,Si),Di

)
=

1

n
E

S̃i∼Dm̃i
i

E
z∼Di

∫
H
ℓ(h, z)(Q̃∗

i (h)−Q∗
i (h))dh

∈ 1

n
LC

(
Q∗(P,Si),Di

)
.
[
e

−2βm̃i
mi+m̃i

(b−a) − 1, e
2βm̃i

mi+m̃i
(b−a) − 1

]
⊂ b

n

[(
e

−2βm̃i
mi+m̃i

(b−a) − 1
)
,
(
e

2βm̃i
mi+m̃i

(b−a) − 1
)]
. (21)
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Comparing (21) and the naive inequality |ξi − gi| ≤ (b− a)/n, it can be verified that |ξi − gi| ≤ ∆i,
where:

∆i :=
1

n
min

{
b− a, b

(
e

2βm̃i
mi+m̃i

(b−a) − e
−2βm̃i
mi+m̃i

(b−a))}
.

It is possible to obtain a tighter range, ∆i < (b− a)/n, when mi is large, m̃i is small, or β is small.
Particularly, for m̃i = 0, ∆i = 0 but b− a provides a vacuous bound.

By applying Corollary 8.2.1, one obtains:

E
S̃1∼Dm̃1

1

· · · E
S̃n∼Dm̃n

n

e1/λ2ψ2(λ2) ≤ e
λ2
8

∑n
i=1 ∆2

i ≤ e
λ2
8n (b−a)2 . (22)

Note that Si ̸= ∅ is required for defining Xi. Hence, new clients are not added to the analysis yet.

Merging steps 1 and 2. Bringing (16) and (18) together, we get:

LS(Q,D,S, m̃) ≤L̂S(Q,S) +
( 1

λ1
+

1

λ2

)
KL(Q∥P) + 1

λ1

n∑
i=1

E
P∼Q

KL
(
Q∗(P,Si)∥P

)
+

1

λ1
ψ1(λ1) +

1

λ2
ψ2(λ2). (23)

Equation (23) provides a bound on the server-level true loss and incorporates various components such
as the empirical loss, complexity penalty terms (represented by KL divergences between the posterior
and the prior, and between the hyper-posterior and the hyper-prior), and two log moment-generating
functions.

Next, we bound the weighted sum of the log moment-generating functions in (23) when ℓ ∈ [a, b].
One obtains from Markov’s inequality that:

Pr
[
e

1
λ1
ψ1(λ1)+

1
λ2
ψ2(λ2) ≤ 1

δ
e

λ1(b−a)2

8n2

∑n
i=1

1
mi

+
λ2
8

∑n
i=1 ∆2

i

]
≥

1−
ES1∼Dm1

1
· · ·ESn∼Dmn

n
ES̃1∼Dm̃1

1
· · ·ES̃n∼Dm̃n

n
e

1
λ1
ψ1(λ1)+

1
λ2
ψ2(λ2)

1
δ e

λ1(b−a)2

8n2

∑n
i=1

1
mi

+
λ2
8

∑n
i=1 ∆2

i

, (24)

where the probability is taken over Si ∼ Dmi
i and S̃i ∼ Dm̃i

i for i = 1, · · · , n and δ ∈ (0, 1) is the
confidence level given in Theorem 4.1. To bound the right-hand side, we multiply (17) and (22),
which is possible as they involve expectations over independent random variables, resulting in:

E
S1∼Dm1

1

· · · E
Sn∼Dmn

n

E
S̃1∼Dm̃1

1

· · · E
S̃n∼Dm̃n

n

e
1
λ1
ψ1(λ1)+

1
λ2
ψ2(λ2) ≤ e

λ1(b−a)2

8n2

∑n
i=1

1
mi

+
λ2
8

∑n
i=1 ∆2

i .

(25)

By putting together (24) and (25), we derive:

Pr
[ 1

λ1
ψ1(λ1) +

1

λ2
ψ2(λ2) ≤

λ1(b− a)2

8n2

n∑
i=1

1

mi
+
λ2
8

n∑
i=1

∆2
i + ln(

1

δ
)
]
=

Pr
[
e

1
λ1
ψ1(λ1)+

1
λ2
ψ2(λ2) ≤ 1

δ
e

λ1(b−a)2

8n2

∑n
i=1

1
mi

+
λ2
8

∑n
i=1 ∆2

i

]
≥ 1− δ, (26)

where the probability is taken over Si ∼ Dmi
i and S̃i ∼ Dm̃i

i for i = 1, · · · , n.

One obtains from (23) and (26) that:

Pr
[
LS(Q,D,S, m̃) ≤L̂S(Q,S) +

( 1

λ1
+

1

λ2

)
KL(Q∥P) + 1

λ1

n∑
i=1

E
P∼Q

KL
(
Q∗(P,Si)∥P

)
+
λ1(b− a)2

8n2

n∑
i=1

1

mi
+
λ2
8

n∑
i=1

∆2
i + ln (

1

δ
)
]
≥ 1− δ. (27)
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Step 3. In the final step, we utilize the closed-form expression of the optimal posterior for each
client, Q∗, based on Corollary 3.1.1, to simplify (27). By substituting the definition of the server-level
empirical loss given in (8) into (27) and refactoring some terms, one obtains:

Pr
[
LS(Q,D,S, m̃) ≤ E

P∼Q

1

n

n∑
i=1

(
L̂C(Q∗(P,Si),Si) +

n

λ1
KL

(
Q∗(P,Si)∥P

))
(‡)

+
( 1

λ1
+

1

λ2

)
KL(Q∥P)

+
λ1(b− a)2

8n2

n∑
i=1

1

mi
+
λ2
8

n∑
i=1

∆2
i + ln (

1

δ
)
]
≥ 1− δ.

When we set λ1 = nβ, each term in the summation in (‡) becomes equivalent to the upper bound for
client i in Theorem 3.1 up to a constant. This choice of λ1 enables us to simplify (‡) similar to (6),
resulting in:

Pr
[
LS(Q,D,S, m̃) ≤−1

nβ

n∑
i=1

E
P∼Q

lnZCβ (P,Si) +
( 1

nβ
+

1

λ2

)
KL(Q∥P)

+
β(b− a)2

8n

n∑
i=1

1

mi
+
λ2
8

n∑
i=1

∆2
i + ln (

1

δ
)
]
≥ 1− δ.

Note that the selection of λ1 = nβ is only feasible when β ≥ 1/n because the first step of this proof
requires λ1 ≥ 1. This is the reason behind the assumption β ≥ 1/n in Theorem 4.1. By substituting
λ2 = λ/(n2 + υ), which was motivated in the second step, we get the desired bound. Finally, we use
the factorization proposed in Rothfuss et al. (2021) to convert ln(1/δ) into ln(1/δ)/

√
n.

8.2.2 PROOF OF LEMMA 4.2

Assume m̃i is only known when i ∈ A, where A ⊂ {1, · · · , n} is a subset of clients, but is unknown
for the rest of the clients, i ∈ B = {1, · · · , n}\A. In an extreme case, A = ∅ means that m̃i is
unknown for all clients. Let ρ(A) and ρ(B) denote the number of clients with m̃i > 0 in sets A and
B respectively. It is clear from the definition that ρ(A) + ρ(B) = n2, where ρ(A) is known but ρ(B)
and n2 are unknown. Also, ρ(A) ≤ |A| and ρ(B) ≤ |B|, where |A| and |B| stand for the cardinality
of the respective set.

We prove that the upper bound in Theorem 4.1 is looser when replacing ∆i with (b− a)/n for i ∈ B
and n2 with ρ(A) + |B|. It is enough to show:

ρ(A) + ρ(B) + υ

λ
KL(Q∥P) +

∑
i∈A∆2

i +
∑
i∈B ∆2

i

8
(
ρ(A) + ρ(B) + υ

) λ ≤
ρ(A) + |B|+ υ

λ
KL(Q∥P) +

∑
i∈A∆2

i + |B|( b−an )2

8
(
ρ(A) + |B|+ υ

) λ.

Since ρ(B) ≤ |B| and KL divergence is non-negative, we will prove that:∑
i∈A∆2

i +
∑
i∈B ∆2

i

ρ(A) + ρ(B) + υ
≤

∑
i∈A∆2

i + |B|( b−an )2

ρ(A) + |B|+ υ
. (28)

For clients in B with m̃i = 0, ∆i = 0, and for the rest, ∆i ≤ (b − a)/n. Hence,
∑
i∈B ∆2

i ≤
ρ(B)

(
(b− a)/n

)2
and a stronger condition than (28) is:∑

i∈A∆2
i + ρ(B)( b−an )2

ρ(A) + ρ(B) + υ
≤

∑
i∈A∆2

i + |B|( b−an )2

ρ(A) + |B|+ υ
⇐⇒

∑
i∈A

∆2
i ≤

(
ρ(A) + υ

)(b− a
n

)2
,

which holds since
∑
i∈A∆2

i ≤ ρ(A)
(
(b− a)/n

)2
and υ ≥ 0.

8.2.3 PROOF OF COROLLARY 4.2.1

The optimal hyper-posterior minimizes the upper bound on the true server-level risk established
in 9. By utilizing the structural similarity between the server-level and client-level upper-bounds,
equations (9) and (4), we employ Corollary 3.1.1 to obtain Q∗.
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8.2.4 PROOF OF LEMMA 4.4

We invoke Lemma 8.1 by defining Xi = (Di,mi,Si) and using Xi = (Xi[D], Xi[m], Xi[S])
to distinguish between components in Xi. The distribution over Xi is µi = (T , Xi[D]Xi[m]).
Additionally, l = n, f = P , π = P , ρ = Q∗, and gi(f,Xi) =

1
nL

C
(
Q∗(f,Xi[S]), Xi[D]

)
are used.

While gi defined above resembles the one from the second step of Proposition 8.2.1, the difference
lies in considering Si and Di as part of the random variable Xi, giving rise to their presence in the
expectation. By applying Lemma (8.1) with γ = λ̃ ≥ 1, one obtains:

E
(Dι,m̃ι)∼T

E
S̃ι∼Dm̃ι

ι

E
P∼Q∗

LC
(
Q∗(P, S̃ι),Dι

)
≤ 1

n
E

P∼Q∗

n∑
i=1

LC
(
Q∗(P,Si),Di

)
+

1

λ̃
KL

(
Q∗∥P

)
+

1

λ̃
ψ̃(λ̃). (29)

The left-hand side of (29) is the true loss for a generic new client, ι, sampled from T . The moment
generating function and the bound on its expectation due to Corollary 8.2.1 are:

ψ̃(λ̃) := ln E
P∼P

e
λ̃

(
E(Dι,m̃ι)∼T E

S̃ι∼Dm̃ι
ι

LC
(
Q∗(P,S̃ι),Dι

)
− 1

n

∑n
i=1 LC

(
Q∗(P,Si),Di

))
,

E
(D1,m1)∼T

· · · E
(Dn,mn)∼T

E
S1∼Dm1

1

· · · E
Sn∼Dmn

n

e
1
λ̃
ψ̃(λ̃) ≤ e λ̃

8n (b−a)2 . (30)

Merging (6) and the result of Step 1 in the proof of Proposition 8.2.1 when λ1 = 1/(nβ) and Q∗ is
the optimal posterior mapping in. 5, we rewrite (29) as:

E
Dι∼T

E
S̃ι∼Dm̃ι

ι

E
P∼Q∗

LC
(
Q∗(P, S̃ι),Dι

)
≤−1
nβ

n∑
i=1

E
P∼Q∗

lnZβ(P,Si)

+ (
1

λ̃
+

1

nβ
)KL

(
Q∗∥P

)
+

1

λ̃
ψ̃(λ̃) +

1

nβ
ψ1(nβ).

Plugging in the formula of Q∗ given in Corollary (4.2.1) and setting λ̃ = λ/(n2 + υ),

E
Dι∼T

E
S̃ι∼Dm̃ι

ι

E
P∼Q∗

LC
(
Q∗(P, S̃ι),Dι

)
≤− (

1

nβ
+
n2 + υ

λ
) lnZSτ (P,S)

+
1

nβ
ψ1(nβ) +

n2 + υ

λ
ψ̃(

λ

n2 + υ
).

Using a similar technique to the proof of Proposition 8.2.1, along with (17) and (30), we obtain the
desired result.

8.2.5 LOOSER UPPER BOUND FOR NEW CLIENTS

We consider Theorem 4.1 when Q = Q∗ and simplify the terms in the upper bound that involve Q∗:

−1
nβ

n∑
i=1

E
P∼Q∗

lnZCβ (P,Si) +
( 1

nβ
+
n2 + υ

λ

)
KL(Q∗∥P)

=
1

nβτ
E

P∼Q∗

(
− τ

n∑
i=1

lnZCβ (P,Si) + ln
Q∗(P )

P(P )

)
(31)

= − 1

nβτ
lnZSτ (P,S) = −(

1

nβ
+
n2 + υ

λ
) lnZSτ (P,S). (32)

Equation (31) follows from the KL divergence definition and (32) is obtained by substituting the
closed-form formula of Q∗ derived in Corollary 4.2.1 into the expression. To compare the bound
in Theorem 4.1 with Lemma 4.4, we can substitute the first two terms in Theorem 4.1 with (32). In
order for the bound in Lemma 4.4 to be looser than this substituted bound, it is sufficient to show that∑n
i=1 ∆

2
i ≤ (b− a)2/n, which is true based on the definition of ∆i in Theorem 4.1.
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8.3 DETAILS OF THE ALGORITHM

8.3.1 ASYMPTOTIC BEHAVIOR AND NON-VACUOUSNESS OF BOUNDS

We analyze the asymptotic behavior of the client-level and server-level bounds as the number of
samples per client and the number of existing clients approach infinity, i.e., mi −→∞ and n −→∞. A
PAC bound is considered consistent when the gap between the true and empirical risks goes to zero.
The client-level and server-level bounds are consistent if and only if: a) β ∈ Ω(1), b) β ∈ o(mi), c)
λ ∈ Ω(n2), d) λ ∈ o(n(n2 + υ)). Here, o and Ω represent the small-oh and big-omega notations for
function growth rate (Cormen et al., 2022).

Non-vacuous bounds are essential, ensuring that the terms independent of the posterior or the hyper-
posterior are not excessively large such that the bound on the true loss holds regardless of the empirical
loss. To achieve a non-vacuous bound, it is necessary (but not sufficient) that b − a < 8 and that
ϵi <

√
2(b− a). The latter condition can be converted into an upper bound on λ based on the results

from Lemma 4.3.

In our experiments, we follow Rothfuss et al. (2021) and set β = mi+m̃i, leading to a non-vanishing
gap between the true and empirical risks at the client and server levels. However, this choice simplifies
the computations as discussed in Section 5. Moreover, this choice leads to faster decay of the KL
term in both the client-level and server-level bounds, which can be advantageous when mi is small
(Rothfuss et al., 2021). We tune λ, while respecting the non-vacuousness condition, to manipulate
the regularization strength of the hyper-posterior towards the hyper-prior.

8.3.2 BACKGROUND ON GP

Below, we provide additional details regarding the GP models we use. For a more comprehensive
overview on GPs, please refer to Rasmussen and Williams (2005). In the rest of this section, we
express the dataset of client i as Si = (Xi,yi), where Xi ∈ Rmi

x ⊂ Rmi×d is a matrix with row j
representing the features of the j-th sample in Si denoted as xij ∈ Rx. The corresponding target
values are stored in the vector yi ∈ Rmi

y ⊂ Rmi , with row j representing the target value yij ∈ Ry .

GP with a deep mean and a deep kernel (Wilson et al., 2016). Let Pϕ(h) =
GP(h|mϕ(x), kϕ(x,x

′)) denote a GP prior specified by a deep mean function, mϕ, a deep ker-
nel function, kϕ, and a Gaussian likelihood with noise standard deviation, σϕ ∈ R+. The vector
ϕ ∈ Rdϕ concatenates all learnable hyper-parameters of the GP prior, including the mean parameters,
kernel parameters, and the likelihood noise. The mean function, mϕ : Rx −→ R, is implemented as a
multi-layer NN with weights given by ϕ, hyperbolic tangent activation functions in the hidden layers,
and linear output functions in the output layer. The kernel function is a squared-exponential (SE)
kernel applied on top of an NN, defined as:

kϕ(x,x
′) := exp(

−1
2
∥fϕ(x)− fϕ(x′)∥22) ∈ [0, 1].

The function fϕ : Rx −→ Rdf represents an NN with weights given by ϕ that maps the typically
high-dimensional feature vector, x ∈ Rx ⊂ Rd, to a lower-dimensional output vector in Rdf , where
in our specific case, df is two. Deep kernels serve as feature extractors and allow for learning more
sophisticated representations from the data (Ober et al., 2021). The length scale of the SE kernel is
set to 1 because the weights of the output layer of fϕ can be freely chosen to compensate for it.

Computing the LML. As mentioned in Section 5, when employing a GP prior, negative log
likelihood loss, and setting β = mi, the quantity lnZCmi

(P,Si) defined in Corollary 3.1.1 corresponds
to the LML of the GP. For client i using the prior Pϕκ

, the closed-form formula for the LML is as
follows:

lnZCmi
(P,Si) = lnPr[yi|Xi] =−

1

2
(yi −mκ,i)

⊤(Kκ,i + σ2
ϕκ

I)−1(yi −mκ,i)

− 1

2
ln |Kκ,i + σ2

ϕκ
I| − mi

2
ln(2π), (33)

where mκ,i ∈ Rmi is given by [mϕκ
(xi1), · · · ,mϕκ

(ximi
)]T and |A| denotes the determinant of

the matrix A. The matrix Kκ,i ∈ Rmi×mi is the kernel matrix associated with the kernel function
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kϕκ
applied to the feature matrix Xi. Furthermore, Kκ,i,∗ ∈ Rmi is computed using the kernel

function kϕκ
between the feature matrix Xi and the test features x∗.

The determinant term is commonly viewed as a complexity penalty for the kernel (Rasmussen
and Williams, 2005). However, recent findings in Rothfuss et al. (2021) suggest that this form of
complexity regularization may be inadequate when dealing with expressive kernels that possess
numerous hyperparameters, such as deep kernels. Furthermore, there is no complexity penalty
imposed on the prior mean, which can lead to a higher risk of overfitting. In PAC-PFL, we address
these limitations by using (9) as the loss function, which includes a KL divergence term between the
hyper-posterior and the hyper-prior. The KL term penalizes hyper-posteriors that deviate significantly
from the hyper-prior, thereby effectively regularizing both the mean and the kernel of the GP prior.

Computing the predictive posterior. Given a set of priors Pϕ1 , · · · , Pϕk
trained by PAC-PFL,

our objective is to compute the predictive posterior at a test point x∗. We denote by Q̂ a uniform
distribution over these priors, which serves as the SVGD approximation to the true optimal hyper-
posterior, Q∗. By introducing a categorical random variable Z that is distributed uniformly over
1, · · · , k and denotes which of the priors Pϕ1

, · · · , Pϕk
is used for making inference, the predictive

posterior can be expressed as follows:

Pr[y∗|x∗,Si, Q̂] =
k∑
κ=1

Pr[y∗|x∗,Si, Q̂, Z = κ] Pr[Z = κ|x∗,Si, Q̂]

=

k∑
κ=1

Pr[y∗|x∗,Si, Pϕκ ] Pr[Z = κ|x∗,Si, Q̂]

=

k∑
κ=1

Pr[y∗|x∗,Si, Pϕκ ] Pr[x∗,Si|Pϕκ ]
Pr[Z = k|Q̂]
Pr[x∗,Si|Q̂]

(Bayes rule)

=
1/k

Pr[x∗,Si|Q̂]

k∑
κ=1

Pr[y∗|x∗,Si, Pϕκ ] Pr[x∗,Si|Pϕκ ] (Q̂ is uniform). (34)

The first term in (34) is the predictive posterior distribution for client i corresponding to the GP prior
Pϕκ

(h) = GP(h|mϕκ
, kϕκ

), which is given by Rasmussen and Williams (2005) as:

Pr[y∗|x∗,Si, Pϕκ
] = N (y∗;µκ,Σκ), (35a)

µκ := mϕκ
(x∗) +KT

κ,i,∗
(
Kκ,i + σ2

ϕκ
I
)−1(

yi −mκ,i

)
, (35b)

Σκ := kϕκ
(x∗,x∗)−KT

κ,i,∗
(
Kκ,i + σ2

ϕκ
I
)−1

Kκ,i,∗ + σ2
ϕκ

I. (35c)

Based on the assumption that x∗ is independent of all samples in Si, we can expand the second term
in (34) as follows:

Pr[x∗,Si|Pϕκ
] = Pr[x∗|Pϕκ

] Pr[Xi|Pϕκ
] Pr[yi|Xi, Pϕκ

]

= Pr[x∗] Pr[Xi] Pr[yi|Xi, Pϕκ
]

= Pr[x∗] Pr[Xi]N
(
yi;mϕκ(Xi), kϕκ(Xi,Xi) + σ2

ϕκ
I
)
, (36)

where the last line is the predictive distribution of a GP before conditioning on the observed data.

By merging (34)-(36), one obtains

Pr[y∗|x∗,Si, Q̂] =
k∑
κ=1

ακN (y∗;µκ,Σκ), (37a)

ακ :=
Pr[x∗] Pr[Xi]

kPr[x∗,Si|Q̂]
N
(
yi;mϕκ

(Xi), kϕκ
(Xi,Xi) + σ2

ϕκ
I
)
∈ [0, 1] (37b)

It is straightforward to show that
∑k
κ=1 ακ = 1 in equation (37b). As a result, the predictive posterior

in equation (37a) is a valid distribution over y∗.
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8.3.3 BACKGROUND ON BNN

In this section, we explore using Bayesian Neural Networks (BNNs) as a classification tool. Let
hθ : Rx −→ Ry represent a neural network, with θ denoting its weight parameters. Utilizing this
mapping, we establish the conditional distribution as a Categorical distribution, derived as follows:
Pr[y|x,θ] = Categorical

(
softmax

(
hθ(x)

))
. Unlike for GPs, the LML,

lnZβ(Si, Pϕ) = ln E
θ∼Pϕ

[
e−βL̂

C
(
Q(Pθ,Si∪S̃i),Si∪S̃i

)]
,

is intractable for BNNs. Instead, we use the following formula, as proposed by Rothfuss et al. (2021),
to approximate the LML:

ln Z̃β(Si, Pϕ) = LSELj=1

(
−βL̂C

(
Q(Pθj

,Si ∪ S̃i),Si ∪ S̃i
))
− lnL,

where LSE is the LogSumExp function. This formula involves drawing L samples θ1, · · · , θL from
Pϕ to approximate the LML. We utilize this formula for LML approximation in the context of BNNs.

8.3.4 BACKGROUND ON SVGD

SVGD approximates a target probability distribution using a discrete uniform distribution over a set of
designated samples called particles (Liu and Wang, 2016). Through an iterative process, the particles
are updated by minimizing the KL divergence between the estimated and the target distributions
in the reproducing kernel Hilbert space corresponding to a kernel function, kSV GD. We utilize an
RBF (Radial Basis Function) kernel with a heuristically chosen length scale, as described in Liu and
Wang (2016). In our framework, we aim to obtain samples Pϕ1

, · · · , Pϕk
from the target distribution

Q∗. To simplify the notation, we represent the particles as ϕ1, · · · ,ϕk, where each particle ϕκ fully
characterizes the corresponding prior, Pϕκ

. Accordingly, we write P(ϕκ) and Q∗(ϕκ) instead of
P(Pϕκ) and Q∗(Pϕκ).

Initially, the particles are sampled independently from the hyper-prior. Then, at each iteration, each
particle ϕκ for κ ∈ {1, · · · , k} is updated according to the following rule:

ϕκ ← ϕκ +
η

k

k∑
l=1

(
kSV GD(ϕl,ϕκ)∇ϕl

lnQ∗(ϕl) +∇ϕl
kSV GD(ϕl,ϕκ)

)
, (38)

where η is the learning rate at the current iteration. By utilizing the formula for Q∗ provided in
Corollary 4.2.1 when β = mi, we can derive the following expression for κ ∈ {1, · · · , k}:

∇ϕκ lnQ∗(ϕκ) = ∇ϕκ lnP(ϕκ) + τ

n∑
i=1

∇ϕκ lnZ
C
mi

(Pϕκ ,Si), (39)

where τ is defined in Corollary 4.2.1. By comparing (38) and (39), it becomes evident that the
data of client i is solely involved in the SVGD update through the term ∇ϕκ lnZ

C
mi

(Pϕκ ,Si)
for each particle ϕκ. As a result, the clients only need to transmit the gradient vector,
[∇ϕ1

lnZCmi
(Pϕ1

,Si), · · · ,∇ϕk
lnZCmi

(Pϕk
,Si)]T , or an approximation of it using a mini-batch

approach, to the server. This observation is the intuition behind the sub-routine Client_Update in
Algorithm 1 which we present in detail in the next subsection.

8.3.5 ALGORITHM SUB-ROUTINES

In light of the GP formulas and the SVGD tool outlined in Appendices 8.3.2 and 8.3.4, we proceed to
describe the Client_Update and SVGD_Update sub-routines of Algorithm 1. As stated in Appendix
8.3.4, client i is required to transmit [∇ϕκ

lnZCmi
(Pϕκ

,Si)] to the server for every κ ∈ 1, · · · , k.
However, calculating lnZCmi

(Pϕκ
,Si)] as derived in (33) involves inverting an mi × mi matrix,

which can be computationally demanding for clients with large datasets. Therefore, we use an
approximation lnZCmi

(Pϕκ
,S(b)i ) computed on a mini-batch S(b)i extracted from the data of client i.

A pseudocode of the described procedure for client i is presented in Algorithm 2.
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Algorithm 2 Client_Update for client i with dataset Si. Requires: mini-batch size (b), current
particles (ϕ1, · · · ,ϕk).

1: Client i executes:
2: Sample mini-batch S(b)i of size b from Si
3: for κ = 1 to k do
4: Compute ∇ϕκ lnZ

C
mi

(Pϕκ ,S
(b)
i ) by performing automatic differentiation over (33)

5: Gi ← [∇ϕ1 lnZ
C
mi

(Pϕ1 ,S
(b)
i ), · · · ,∇ϕk

lnZCmi
(Pϕk

,S(b)i )]T

6: return Gi

The procedure takes as input the particles at the current iteration, ϕ1, · · · ,ϕk, and the mini-batch
size, b. It computes the gradients∇ϕκ lnZ

C
mi

(Pϕκ ,S
(b)
i ) for each particle ϕκ over a mini-batch S(b)i .

Finally, the gradients are returned as the output of the procedure, Gi ∈ Rk×dϕ .

After collecting and aggregating client updates from the subset of sampled clients Ct in Line 7 of
Algorithm 1, the SVGD update is executed as per Algorithm 3.

Algorithm 3 SVGD_Update. Requires: learning rate (η), parameter (τ ), aggregated gradients (G),
hyper-prior (P), current particles (ϕ1, · · · ,ϕk).

1: Server executes:
2: for κ = 1 to k do
3: ∇ϕκ lnQ∗(ϕκ)← ∇ϕκ lnP(ϕκ) + τ (Gκ∗)

T

4: for κ = 1 to k do
5: ϕκ ← ϕκ +

η
k

∑k
l=1

(
kSV GD(ϕl,ϕκ)∇ϕl

lnQ∗(ϕl) +∇ϕl
kSV GD(ϕl,ϕκ)

)
6: return ϕ1, · · · ,ϕk

In Line 3, Gκ∗ refers to the κ-th row of the matrix G. The server executes Algorithm 3 to update the
particles based on the aggregated gradients G and the learning rate η. Note that besides the algorithm
inputs, η,G,ϕ1, · · · ,ϕk, the procedure also depends on the SVGD kernel, kSV GD.

Lastly, it is worth mentioning that if necessary, the mini-batch size, b, can vary from client to client.
In such cases, the aggregation process in Line 7 of Algorithm 1 becomes a weighted average instead.

8.3.6 TABLE OF PARAMETERS

We provide a comprehensive overview of the parameters relevant to our theoretical results and to
our algorithm, along with their interrelationships in Table 1. To enhance clarity, the parameters are
categorized into three groups, separated by horizontal lines. The first group describes the fundamental
attributes of the FL problem, such as the number of clients, and is set externally. In the second
group, we list the parameters central to our theoretical findings, elucidating their relations to other
parameters. Lastly, the third group encapsulates the parameters used in implementing Algorithm 1,
explaining their role in the practical application of our proposed methodology. Importantly, it should
be noted that the constraints on the parameters have been deliberately set to ensure non-vacuous
bounds, as discussed in Appendix 8.3.1.

8.3.7 COMPUTATIONAL COMPLEXITY

In this section, we discuss the computational complexity of a single iteration in training PAC-PFL,
specifically when employing the log-likelihood loss and β = mi, as outlined in the paper. At the
client level, the computational complexity hinges on the calculation of the LML. For GPs, this
complexity is O(km3

i ), where k is the number of SVGD particles, and mi denotes the size of the
training dataset for the specific client i. For BNNs, the complexity isO(kLmi), where L corresponds
to the number of samples used to approximate the LML, as explained in Appendix 8.3.3.

At the server level, the computational complexity varies based on the type of hyper-prior used. When
utilizing a hyper-prior with a diagonal covariance matrix, the complexity is O(ck + k2), where c
represents the number of clients selected per iteration. If a hyper-prior with a full covariance matrix
is used, the complexity increases to O(ck + k3).
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Param Description Constraint Selection
n number of clients ∈ N enforced by the problem

n2
number of clients
with new samples ∈ {0, · · · , n} enforced by the problem

mi
number of samples
for client i ∈ N enforced by the problem

m̃i
number of new
samples for client i ∈ {0, · · · ,mi} enforced by the problem

P hyper-prior - σ2
PI

σ2
P variance of P ∈ R+ tuned by cross-validation

λ
≥ n2 + υ

s.t. ϵi ≤
√
2(b− a) tuned by CV

δ confidence level ∈ (0, 1]
decided individually by
the clients or the server

υ constant in Theorem 4.1 ∈ R+ 10−4

ℓ loss ∈ [a, b]
s.t. b− a < 8

negative log-likelihood

β temperature of Q∗
i ∈ R+ mi (see Appendix 8.3.1)

τ temperature of Q∗ ∈ R+
λ

λ+βn(n2+υ)
(Corollary 4.2.1)

ϵi DP parameter ∈ R+ 2βτ(b− a)/mi (Lemma 4.3)
η learning rate ∈ R+ tuned by CV
k number of SVGD particles ∈ N see code
T number of iterations ∈ N see code
c number of clients per iteration ∈ {1, · · · , n} see code
b data batch size for each client ∈ {1, · · · ,mi} see code

L
number of samples for
estimating the MLL of BNNs ∈ N see code

Table 1: Parameters involved in our theoretical results and in our algorithm and their interrelations.
The constraints are set such that the bounds are non-vacuous. The parameters are categorized into
three groups separated by horizontal lines: the first group describes the characteristics of the FL
problem. The second group enumerates the parameters used in our theoretical results, while the final
group encompasses the parameters involved in Algorithm 1.

8.4 ROLE OF DP

We adopt DP in two key ways. Firstly, we utilize DP to ensure that when the server samples a prior
distribution from the hyper-posterior and releases it, this published prior distribution does not raise
privacy concerns for the existing clients. This application is akin to typical scenarios in FL research
where DP is used to protect the model shared by the server from revealing information about clients’
data. Besides addressing privacy concerns, we use DP to establish a PAC bound at the client level.
As illustrated in Fig. 1, our setup involves prior distributions that depend on the data of existing
clients. While most PAC bounds assume the prior distribution was selected before observing any
data, we leverage results from Dziugaite and Roy (2018) to derive a PAC bound that holds when
a data-dependent prior is obtained through a differentially private algorithm. To the best of our
knowledge, DP has not been employed for this purpose in previous FL methods. Below, we discuss
the role of DP in our ideal setup (Section 4) and our practical algorithm (Section 5).

Inherent privacy of the optimal hyper-posterior In Section 4, we considered a specific family
of hyper-posteriors, where sampling a prior from the hyper-posterior satisfies ϵ-DP for a finite ϵ.
This assumption simplifies computations and enables us to use the closed-form posterior provided in
Corollary 3.1.1. We then established the server-level upper bound in Theorem 4.1 for hyper-posteriors
meeting the privacy criterion. Interestingly, the resulting upper bound does not contain the parameter
ϵ. This can be intuitively explained by the fact that the hyper-prior is chosen independently of the data,
making the server-level scheme akin to typical PAC-Bayesian bounds that employ data-independent
priors. Additional details can be found in the proof presented in Appendix 8.2. In summary, the ϵ-DP
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assumption facilitates the computations by allowing us to use the optimal posterior formula without
directly impacting the server-level bound.

By minimizing the server-level upper bound, we derived the closed-form formula for the optimal
hyper-posterior in Corollary 4.2.1. Subsequently, we ensured that the optimal hyper-posterior satisfies
the privacy assumption we started with. To achieve this, Lemma 4.3 determined the value of ϵ for
which sampling the prior from the optimal hyper-posterior meets ϵ-DP. As this ϵ is finite, it confirms
that our optimal hyper-posterior belongs to the family of hyper-posteriors we initially considered,
thus completing the derivations. While assuming a finite ϵ is sufficient for deriving the intended
results, it is worth noting that the client-level bound becomes looser for larger values of ϵ. Further
discussion on providing non-vacuous bounds can be found in Appendix 8.3.1.

In the ideal setup, DP arises from the inherent randomness in sampling from the optimal hyper-
posterior. As a result, DP is achieved without the need for externally injecting noise, which is a
common practice in typical DP mechanisms. We refer to this property as the inherent DP of the
optimal hyper-posterior.

Loss of inherent DP due to SVGD As discussed in Section 5, since SVGD is a deterministic
sampling algorithm, we forfeit the inherent privacy of Q∗. Consequently, the client-level and server-
level bounds no longer hold for the approximate hyper-posterior. Instead, we rely on the premise
that if SVGD effectively approximates the optimal hyper-posterior, the empirical and true risks of
the approximated and optimal hyper-posteriors should be closely aligned, suggesting the bound’s
validity.

Differentially private PAC-PFL To reintroduce ϵ-DP after SVGD approximation, Algorithm 1
can be modified, drawing inspiration from differentially private FedAvg (Geyer et al., 2017). In this
modified version, the server clips the norm of the gradient sent by each client and introduces noise
to the aggregated gradient. For simplicity, we will illustrate the algorithm using only one SVGD
particle. A pseudo-code for this private version of PAC-PFL is provided in Algorithm 4.

Algorithm 4 Differentially private PAC-PFL with 1 SVGD particle. Requires: privacy parameter
(ϵ), gradient clipping norm (γ), hyper-prior (P), parameter (τ ), number of iterations (T ), number of
clients per iteration (c), mini-batch size (b), learning rate (η).

1: Server executes:
2: Initialize prior Pϕ ∼ P
3: for t = 1 to T do
4: Select a random subset Ct of c clients
5: for each selected client i in Ct in parallel do
6: gi ← Client_Update(b,ϕ)
7: Clip gradient norm: ĝi ← gi/max

(
1, ∥gi∥2

γ

)
8: Sample noise: ν ∼ Lap(0, Tγϵc Idϕ)
9: Aggregate gradients and inject noise: ĝ ← 1

c

∑
i∈Ct

ĝi + ν

10: Update priors: ϕ← SVGD_Update(η, τ, ĝ,P,ϕ)
11: return differentially private SVGD approximation of Q∗: Pϕ1

As we are considering a single particle in Algorithm 4, the Client_Update function returns a vector
gi instead of a matrix Gi, as is the case when using multiple SVGD particles. In Algorithm 4, the
notation Lap(0, Tγϵc Idϕ) represents a multivariate Laplace probability distribution. In this context, 0
denotes a zero mean vector, and Tγ

ϵc Idϕ specifies the scale parameter applied across all dimensions.
Both the particle, ϕ, and the noise vector, ν, have dimension dϕ.

The noise scale in Algorithm 4 grows linearly with the number of iterations, T . This can introduce
significant noise into the gradients, potentially impairing both convergence and the overall accuracy
of the algorithm. This challenge is intrinsic to differentially private gradient descent and is not unique
to our model or FL in general (Bagdasaryan et al., 2019). Investigating alternative strategies to
achieve ϵ-DP remains a promising avenue for future research.
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We assess the performance of Algorithm 4 using a synthetic toy dataset, introduced in Appendix 8.5.
Specifically, we use 120 existing clients, each with 10 samples. We vary the privacy parameter ϵ and
examine its impact on the algorithm’s performance, measured by the average RSMSE metric. Figure 3
illustrates the RSMSE across different values of ϵ. Additionally, we plot the RSMSE of the non-private
algorithm, Algorithm 1, in red for reference. As anticipated, the model’s performance improves as ϵ
increases, signifying a lower level of privacy and consequently reduced noise requirements.

Figure 3: Performance evaluation of differentially private PAC-PFL (Algorithm 4) on the synthetic toy
dataset from Appendix 8.5. The RSMSE metric is plotted against varying values for the differential
privacy parameter, ϵ. Lower ϵ values correspond to lower privacy levels. The RSMSE of non-private
PAC-PFL (Algorithm 1) is shown in red for reference. As expected, performance improves as the
privacy level decreases due to lower noise injection.

8.5 DATASETS

8.5.1 PV DATASET

The transition to renewable energy sources, such as roof-top photovoltaic (PV) panels, is crucial
to address energy challenges; however, the intermittency of solar energy remains a challenge that
requires accurate prediction of solar panel power output. Predicting the time series of PV panel power
outputs requires either specific measurements or large amounts of data. A potential solution is to
design a collaborative methodology among multiple PV datasets collected at nearby locations for
predictive modeling.

We work with an hourly simulated dataset of PV generation time series from rooftop panels in
Lausanne, Switzerland. Our objective is to predict the next-hour PV generation, utilizing 15 features
encompassing auto-regressors and weather data. We investigate four scenarios: PV-S (150), PV-S
(610), PV-EW (150), and PV-EW (610). In the PV-S variants, all houses face south, while the PV-EW
variants involve houses oriented either east or west. The PV-EW scenarios, being bimodal and highly
heterogeneous, present greater modeling challenges. To assess the impact of dataset sizes (denoted
as m), we consider two settings: clients with either 150 or 610 training samples, corresponding to
two-week and two-month data windows, respectively. The number in each dataset’s name indicates
the training sample size.

Data generation. To generate simulated datasets for the PV-S and PV-EW experiments, we first
obtained a real dataset of hourly solar radiation and meteorological measurements in Lausanne
from the Photovoltaic Geographical Information System (PVGIS) online tool (PVG). We then used
the pvlib Python library (Holmgren et al., 2022) to simulate the PV power output based on these
measurements. To simulate the PV panels in different houses, we sampled meteorological data and
installation specifications from normal distributions with specified means and standard deviations.
For example, in the PV-EW experiment, the azimuths of the PV panels were sampled from a bimodal
normal distribution of 0.5

(
N (90◦, 15◦) +N (270◦, 15◦)

)
, where N denotes the normal distribution.

Figure 4 illustrates the power output profiles of 24 houses in the PV-EW experiment over five days.
This figure demonstrates that the curves have noticeable differences; however, they show similar
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Figure 4: Power output profile of 24 houses in the PV-EW experiment over five days in June 2018,
where each line represents the PV generation of one house. Green and blue curves correspond to
houses facing the east and the west respectively. Although the curves have noticeable differences,
there are consistent trends present in the data.

trends. As expected, the houses facing east or west are more similar to one another, while the
differences among different sub-populations are higher. For instance, the peak production of the
houses facing the east occurs in the morning, whereas the peak for those facing the west occurs in the
afternoon.

To ensure that each client’s dataset is identically distributed, despite the variations in meteorological
patterns throughout the year, we filter the dataset down to the months of June and July. We employ
two distinct training datasets for our analysis. The first dataset comprises the initial two weeks of
June 2018, which provides a total of 150 samples for each client. The second dataset encompasses the
data from both June and July 2018, resulting in 610 training samples per client. For all experiments,
the test dataset consists of the data from June and July 2019. Furthermore, we exclude nighttime data
points when the PV generation is zero. To normalize the data, we standardize each house’s features
and output, setting the mean to zero and the standard deviation to one.

Features. The dataset contains various meteorological features, including solar beam and diffuse
irradiances, temperature, wind speed, solar altitude, time, and date. Solar beam and diffuse irradiances
are particularly valuable in predicting PV generation, but their measurement can be costly. To reflect
a realistic scenario, we assume that all households have access to the irradiance data recorded at a
specific location in the city, such as a weather station. However, they are unaware of the specific
irradiance values at their own houses, which may differ from the weather station. The temperature
and wind speed may vary slightly among different houses in the dataset. Additionally, some houses
may experience intermittent shadows caused by nearby trees or buildings, which can appear and
disappear at certain times of the day. These shadows are considered as noise, and no recorded feature
in the dataset provides explicit information about their occurrence or characteristics.

In addition to the meteorological features, we also incorporate autoregressors in our analysis. Autore-
gressors are advantageous in time-series prediction tasks and aim to capture the temporal dependencies
in the data. To determine the autoregressors to include in our analysis, we utilize the partial auto-
correlation function (PACF). The PACF measures the correlation between a time series and its lagged
values while controlling for the correlations with all shorter lags. We select autoregressors with the
highest values of the PACF among the lagged values up to two weeks ago. By focusing on these highly
correlated autoregressors, we aim to capture the most relevant information from the past time steps.

8.5.2 SYNTHETIC DATASET

We examine a bimodal dataset where the data for each client is generated by sampling a function from
one of two GP priors. Each GP prior is characterized by a polynomial mean function of order 7 and
an SE kernel function. The two modes have distinct polynomial means and length scales associated

29



Under review as a conference paper at ICLR 2024

0.75 0.50 0.25 0.00 0.25 0.50 0.75
input

0.5

0.0

0.5

1.0

1.5

2.0

ou
tp

ut

clients from mode 1

0.75 0.50 0.25 0.00 0.25 0.50 0.75
input

0.8

0.6

0.4

0.2

0.0

0.2

ou
tp

ut

clients from mode 2

Figure 5: Synthetic dataset for a total of 24 clients, with 12 clients belonging to the first mode
and another 12 clients belonging to the second mode. The solid lines represent the unknown true
data-generating distribution for each client. Each client has a training dataset with 10 samples. The
solid lines in the figure represent the true data-generating distribution, which is unknown to us. The
points on the graph represent the noisy samples in each client’s training dataset.

with the SE kernel. Additionally, Gaussian noise is introduced into the generated data to account for
measurement errors and other sources of variability. Figure 5 illustrates the dataset for a total of 24
clients, with 12 clients belonging to the first mode and another 12 clients belonging to the second
mode, where each client has 10 training samples.

8.6 EXPERIMENTS DETAILS

8.6.1 REGRESSION EXPERIMENTS DETAILS

Baselines details. In the Vanilla approach, the GP hyperparameters for each client are tuned by
maximizing the LML of that specific client, without using FL. For pooled GP, we use inducing points
to handle computational issues due to the large number of samples involved in this approach. pFedGP
optimizes the average LML across clients to obtain the deep kernel hyper-parameters. We adapted
pFedGP, originally designed specifically for classification, to suit our regression task. With this
adaptation, pFedGP is a special case of our algorithm when using a single prior in SVGD and a very
wide hyper-prior. We try pFedGP with a zero GP mean, as originally done in Achituve et al. (2021),
and a NN mean and do not use inducing points. We apply pFedBayes (Zhang et al., 2022) only to the
FEMNIST data as the authors only consider classification tasks in their experiments.

Hyper-parameter tuning. We perform hyper-parameter tuning for all baselines and our method
using 5-fold cross-validation. For all neural networks, we explore structures with the same number
of neurons per layer. The number of neurons per layer can take values of 2n for n ∈ 1, · · · , 6, and
we consider 2 or 4 hidden layers. For PAC-PFL, we employ 4 SVGD particles and set k = 4. The
parameter β is set equal to the number of samples for each client, β = mi. To determine the value
of τ , we conduct a search for values greater than 1/(1 + nβ), ensuring that λ > n2 + υ and thus,
satisfying the assumption outlined in Theorem 4.1.

The employed hyper-prior is a multivariate Gaussian distribution with a diagonal covariance matrix.
It is a distribution over the weights and biases of the mean and kernel neural networks, as well as the
noise standard deviation of the likelihood. In all PV experiments, we set the hyper-prior mean for the
neural network weights and biases to 0 and the hyper-prior mean for the noise standard deviation to
0.4. These choices help prevent overfitting.

Results. In this section, we evaluate our algorithm and compare it to the baseline methods introduced
earlier. We assess the performance based on the RSMSE and CE error metrics for both existing and
new clients. To obtain these metrics for a given method, we calculate the RSMSE and CE, where
applicable, for each existing and new client using a fixed random seed. Then, we compute 4 values
for the average RSMSE and CE metrics across the existing and new client groups. We performed the
analysis five times using different random seeds and calculated the 95% confidence interval for the
sample mean of RSMSE and CE over both the existing and new clients.
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Table 2: RSMSE of existing clients for various methods. We report 95% confidence interval for the
average test RSMSE across all existing clients. Our proposed algorithm, PAC-PFL, demonstrates
superior performance compared to all other baselines across all datasets.

Method PV-S (150) PV-EW (150) PV-S (610) PV-EW (610) Synthetic (10)

PAC-PFL 0.429 ± 0.016 0.412 ± 0.008 0.425 ± 0.014 0.403 ± 0.008 0.582 ± 0.048
pFedGP 0.479 ± 0.038 0.452 ± 0.013 0.514 ± 0.034 0.457 ± 0.012 0.802 ± 0.147
MTL 0.445 ± 0.000 0.426 ± 0.001 0.441 ± 0.005 0.414 ± 0.000 0.851 ± 0.150
MAML 0.568 ± 0.023 0.523 ± 0.027 0.580 ± 0.016 0.524 ± 0.015 0.976 ± 0.129
Vanilla 0.683 ± 0.024 0.626 ± 0.033 0.488 ± 0.044 0.458 ± 0.015 0.727 ± 0.067
Pooled 0.484 ± 0.034 0.467 ± 0.045 0.492 ± 0.022 0.461 ± 0.030 2.328 ± 0.545

Table 3: RSMSE of new clients for various methods. We report 95% confidence interval for the
average test RSMSE across all new clients. Our proposed algorithm, PAC-PFL, outperforms other
baselines in the majority of cases. The column name indicates the number of training samples
specifically for the existing clients. However, the number of training samples for new clients remains
constant at 150. In the Vanilla case, where each client trains their model individually, the size of the
training data for the existing clients does not impact the performance for the new clients. Hence, the
RSMSE values for the new clients employing the Vanilla method is the same in both the PV-S (150)
and PV-S (610) datasets (similarly for PV-EW (150) and PV-EW (610)).

Method PV-S (150) PV-EW (150) PV-S (610) PV-EW (610) Synthetic (10)

PAC-PFL 0.432 ± 0.018 0.417 ± 0.011 0.433 ± 0.012 0.430 ± 0.010 0.654 ± 0.024
pFedGP 0.464 ± 0.042 0.447 ± 0.017 0.513 ± 0.053 0.457 ± 0.012 0.874 ± 0.408
MTL 0.440 ± 0.001 0.423 ± 0.001 0.449 ± 0.002 0.430 ± 0.000 0.885 ± 0.123
MAML 0.546 ± 0.029 0.522 ± 0.013 0.552 ± 0.014 0.530 ± 0.021 1.107 ± 0.284
Vanilla 0.687 ± 0.020 0.632 ± 0.053 0.687 ± 0.020 0.632 ± 0.053 0.763 ± 0.046
Pooled 0.477 ± 0.029 0.469 ± 0.046 0.481 ± 0.022 0.460 ± 0.028 2.321 ± 0.371

The results are presented in Tables 2 to 5. In each column, the number after the dataset name
represents the number of training samples per client. As shown in Tables 2 and 3, our method
outperforms other approaches in the majority of cases in terms of RSMSE for both existing and new
clients. Furthermore, we observe that our method’s performance improves with an increase in the
number of training samples per client.

Concerning CE, reported in Tables 4 and 5, PAC-PFL consistently exhibits low CE values across all
scenarios, establishing itself as the top-performing or closely competitive method. This observation
aligns with findings in Rothfuss et al. (2021), where the authors noted that CE improvement is notable
when the meta-learning tasks exhibit greater similarity. In our own experiments, given the high client
heterogeneity present in both PV-EW and PV-S, the improvements in CE are comparatively modest.

We believe there are three reasons why PAC-PFL outperforms other baselines. First, by learning the
prior with FL and treating posterior inference as personalization, PAC-PFL exhibits a high level of
adaptability to individual patterns. Second, PAC-PFL’s ability to learn multiple priors enables it to
effectively model clients with heterogeneous data distributions. Finally, the regularization of the hyper-
posterior towards the hyper-prior in PAC-PFL helps prevent overfitting and allows for learning more
complex prior means even with limited training data. For example, when selecting the GP prior mean
structure through cross-validation, it is observed that the best GP mean for pFedGP is a linear function,
while for PAC-PFL it is a 2-layer neural network with 32 neurons per layer. The use of a more
complex prior mean in PAC-PFL allows for the potential capture of more intricate patterns in the data.

8.6.2 CLASSIFICATION EXPERIMENTS DETAILS

Baselines details. In our experiments, we utilize the original software by Achituve et al. (2021) for
pFedGP and do not use inducing points. Since the source code for pFedBayes has not been publicly
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Table 4: CE of existing clients for various methods. We report 95% confidence interval for the
average test CE across all existing clients.

Method PV-S (150) PV-EW (150) PV-S (610) PV-EW (610) Synthetic (10)

PAC-PFL 0.072 ± 0.003 0.041 ± 0.002 0.068 ± 0.002 0.044 ± 0.003 0.140 ± 0.017
pFedGP 0.067 ± 0.020 0.057 ± 0.006 0.066 ± 0.002 0.052 ± 0.007 0.119 ± 0.012
Vanilla 0.122 ± 0.008 0.120 ± 0.011 0.036 ± 0.002 0.028 ± 0.001 0.178 ± 0.011
Pooled 0.256 ± 0.004 0.260 ± 0.010 0.263 ± 0.005 0.266 ± 0.010 0.326 ± 0.036

Table 5: CE of new clients for various methods. We report the 95% confidence interval for the
average test CE across all new clients. The CE values for the new clients employing the Vanilla
method are not affected by the number of training samples for the existing clients, as indicated in the
column names.

Method PV-S (150) PV-EW (150) PV-S (610) PV-EW (610) Synthetic (10)

PAC-PFL 0.073 ± 0.005 0.044 ± 0.003 0.071 ± 0.004 0.044 ± 0.002 0.165 ± 0.008
pFedGP 0.069 ± 0.015 0.061 ± 0.007 0.064 ± 0.007 0.056 ± 0.008 0.147 ± 0.023
Vanilla 0.121 ± 0.011 0.120 ± 0.010 0.121 ± 0.011 0.120 ± 0.010 0.237 ± 0.033
Pooled 0.262 ± 0.002 0.263 ± 0.010 0.269 ± 0.002 0.266 ± 0.014 0.356 ± 0.023

released, we rely on an unofficial implementation2. Our implementations of FedAvg, MTL, and
MAML are based on the code provided in Xie et al. (2023). For the Vanilla model, we follow the
procedure described for the PV dataset. We utilize a Bayesian Convolutional Neural Network (BCNN)
(Gal and Ghahramani, 2016) for all Bayesian approaches and a Convolutional Neural Network (CNN)
for the frequentist methods.

Hyper-parameter tuning. Hyper-parameter tuning for all baselines and our method is conducted
using the cross-validation approach. In the case of PAC-PFL, we select β and τ following the same
procedure as employed for the PV dataset. We use 3 SVGD particles and a multivariate Gaussian
hyper-prior with a diagonal covariance matrix.

FEMNIST results. We evaluate PAC-PFL in two scenarios: first, with 40 clients, each having 20
training samples, and second, with the same 40 clients, each utilizing their entire available training
dataset, averaging around 500 samples per client. In Table 6, we present the average accuracy and CE
scores, together with 95% confidence intervals, across five different random seeds for the existing
clients. Remarkably, in the low-data scenario with only 20 samples per client, PAC-PFL consistently
outperforms all other methods.

In the data-rich scenario, pFedGP demonstrates a slight advantage over PAC-PFL in terms of the mean,
albeit with a considerably higher standard deviation, indicating sensitivity to initialization. Given the
closely aligned means for both pFedGP and PAC-PFL and the fact that the confidence interval of
PAC-PFL is encompassed within that of pFedGP, PAC-PFL is a more reliable method. It offers nearly
identical mean performance. Additionally, pFedGP has a substantially higher computational cost than
PACA-PFL. It is worth noting that the authors of Achituve et al. (2021) propose alternative variants
of pFedGP that trade off accuracy for reduced computational cost. However, for our experiments, we
employ the original algorithm.

2https://github.com/AllenBeau/pFedBayes
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Table 6: Accuracy and calibration error on the FEMNIST classification dataset. We evaluate the
metrics in two scenarios: first, with 40 clients, each having 20 training samples, and second, with the
same 40 clients, each utilizing their entire available training dataset, averaging around 500 samples
per client. The number after the metric name signifies the per-client training sample size. For each
metric, the sample mean and 95% confidence interval using 5 random seeds is reported. While it is
theoretically possible to calculate CE for pFedBayes, it is not included in the table as the available
software only provides prediction means and lacks variances required for CE computation.

Method Accuracy (20) CE (20) Accuracy (≈ 500) CE (≈ 500)

PAC-PFL 0.942 ± 0.026 0.080 ± 0.013 0.971 ± 0.016 0.046 ± 0.007
pFedGP 0.836 ± 0.020 0.096 ± 0.039 0.977 ± 0.066 0.022 ± 0.008
pFedBayes 0.870 ± 0.020 - 0.883 ± 0.024 -
FedAvg 0.881 ± 0.017 - 0.967 ± 0.005 -
MTL 0.758 ± 0.037 - 0.875 ± 0.001 -
MAML 0.820 ± 0.067 - 0.881 ± 0.026 -
Vanilla 0.819 ± 0.013 0.120 ± 0.014 0.925 ± 0.018 0.325 ± 0.062
Pooled 0.894 ± 0.043 0.106 ± 0.048 0.943 ± 0.021 0.073 ± 0.033
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