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Abstract

Traditional spiking neural networks (SNNs) can be viewed as a combination of
multiple subnetworks with each running for one time step, where the parameters
are shared, and the membrane potential serves as the only information link between
them. However, the implicit nature of the membrane potential limits its ability
to effectively represent temporal information. As a result, each time step cannot
fully leverage information from previous time steps, seriously limiting the model’s
performance. Inspired by the top-down mechanism in the brain, we introduce
TDFormer, a novel model with a top-down feedback structure that functions hi-
erarchically and leverages high-order representations from earlier time steps to
modulate the processing of low-order information at later stages. The feedback
structure plays a role from two perspectives: 1) During forward propagation, our
model increases the mutual information across time steps, indicating that richer
temporal information is being transmitted and integrated in different time steps. 2)
During backward propagation, we theoretically prove that the feedback structure
alleviates the problem of vanishing gradients along the time dimension. We find
that these mechanisms together significantly and consistently improve the model
performance on multiple datasets. In particular, our model achieves state-of-the-art
performance on ImageNet with an accuracy of 86.83%.

1 Introduction

Spiking Neural Networks (SNNss) are more energy-efficient and biologically plausible than traditional
artificial neural networks (ANNs) [1]. Transformer-based SNNs combine the architectural advantages
of Transformers with the energy efficiency of SNNs, resulting in a powerful and efficient models
that have attracted increasing research interest in recent years [2, [3, 14, |5, |6]. However, there is
still a big performance gap between existing SNNs and ANNs. This is because SNNs represent
information using binary spike activations, whereas ANNs use floating-point numbers, resulting in
reduced representational capacity and degraded performance. Moreover, the non-differentiability of
spikes hinders effective training with gradient-based methods.

In traditional SNNs, a common approach to increase representational capacity is to expand the
time step 7. However, SNNs trained with direct coding and standard learning methods [7] lack
structural mechanisms for temporal adaptation. Temporal information is solely conveyed through
membrane potential dynamics, while the network architecture, parameters, and inputs remain fixed
across time steps. This reliance on membrane dynamics imposes two fundamental limitations. First,
temporal information can only be expressed when spikes are fired, yet firing rates are typically low
across layers, restricting the bandwidth of information flow. Moreover, the cumulative nature of
membrane potentials leads to loss of temporal detail, as earlier spike patterns are summed. Second,
temporal gradients must propagate solely through membrane potentials, which can result in vanishing
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Figure 1: Visualization of mutual information matrices of features across time steps on ImageNet.
The left panel shows the baseline model; the right panel shows the model incorporating feedback
connections. A higher level of mutual information suggests that the model captures more consistent
and temporally dependent features across time steps

gradients[8, [9]. We further confirm these limitations through temporal correlation analysis shown
in Figure[I] which demonstrates the limited representational capacity of membrane potentials, and
theoretical derivation in appendix

Previous work has been done to enhance the ability of SNNs to represent temporal information, e.g.,
by initializing the membrane potential and altering the surrogate gradients and dynamics equations
[10} (11, [12]]. Furthermore, some approaches have incorporated the dimension of time into attention
mechanisms, resulting in time complexity that scales linearly with the number of simulation time steps
[13]. However, structural mechanisms to facilitate information flow across multiple time steps remain
largely unexplored. We argue that adding connections between different time steps has the following
two benefits: First, in forward propagation, such connections help the model better leverage features
from previous time steps. Second, in backpropagation, structural connections support gradient flow
and help mitigate vanishing gradients caused by the membrane potential dynamics.

While traditional SNNs rely on bottom-up signal propagation, top-down mechanisms are prevalent in
the brain, especially between the prefrontal and visual cortices [14} 15116, [17], as shown in Figure |Zl
These mechanisms are fundamental to how the brain incrementally acquires visual information over
time, with higher-level cognitive processes guiding the extraction of lower-level sensory features,
and prior knowledge informing the interpretation and refinement of new sensory input. Inspired
by top-down mechanisms, we introduce TDFormer, a Transformer-based SNN architecture that
incorporates a top-down feedback structure to improve temporal information utilization. Our main
contributions can be summarized as follows:

* We identify structural limitations in traditional SNNs, showing that features across time steps
exhibit weak mutual information, indicating insufficient temporal integration and utilization.

* We propose TDFormer, a Transformer-based SNN with a novel top-down feedback structure.
We show that the proposed structure improves temporal information utilization, and provide
theoretical analysis showing it mitigates vanishing gradients along the temporal dimension.

* We demonstrate state-of-the-art performance across multiple benchmarks with minimal
energy overhead, achieving ANN-Ilevel accuracy on ImageNet while preserving the efficiency
of SNNs.

2 Related Works

2.1 Transformer-based SNNs

Spikformer [2]] presented the first Transformer architecture based on SNNs, laying the groundwork for
spike-based self-attention mechanisms. Spike-driven TransformerV1 [5] introduced a spike-driven
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mechanism to effectively process discrete-time spike signals and employed stacked transformer layers
to capture complex spatiotemporal features. Built on [5], Spike-driven TransformerV2 [[6] enhanced
the spike-driven mechanism and added dynamic weight adjustment to improve adaptability and
accuracy in processing spike data. SpikformerV?2 [[18] was specifically optimized for high-resolution
image recognition tasks, incorporating an improved spike encoding method and a multi-layer self-
attention mechanism. SpikeGPT [19] proposed an innovative combination of generative pre-trained
Transformers with SNNs. SGLFormer [20] enhanced feature representations by effectively capturing
both global context and local details.

2.2 Models with Top-Down Mechanisms

Unlike bottom-up processes that are driven by sensory stimuli, top-down attention is governed
by higher cognitive processes such as goals, previous experience, or prior knowledge[21]. This
mechanism progressively acquires information by guiding the focus of attention to specific regions
or features of the visual scene. It can be seen as a feedback loop where higher-level areas provide
signals that modulate the processing of lower-level sensory inputs, ensuring that the most relevant
information is prioritized.

Many works have explored top-down attention mechanisms to improve model performance in
traditional ANNSs. For example, Zheng et al. [21] proposed FBTP-NN, which integrates bottom-up
and top-down pathways to enhance visual object recognition, where top-down expectations modulate
neuron activity in lower layers [21]. Similarly, Anderson et al. introduced a model combining bottom-
up and top-down attention for image captioning and visual question answering, where top-down
attention weights features based on task context [22]. Shi et al. introduced a top-down mechanism
for Visual Question Answering (VQA), where high-level cognitive hypotheses influence the focus
on relevant scene parts [23)]. Finally, Abel and Ullman proposed a network that combines back-
propagation with top-down attention to adjust gradient distribution and focus on important features
[24].

3 Preliminaries

3.1 The Spiking Neuron

The fundamental distinction between SNNs and ANNSs lies in their neuronal activation mechanisms.
Drawing on established research [2| 14, 5] 3], we select the Leaky Integrate-and-Fire (LIF) [25] neuron
model as our primary spike activation unit. LIF neuron dynamics can be formulated by:

VI = HI(1 ~ 1) + ViewrSTt], m
HIf = VI =1+ Z(X[] = (VI = 1] = View), @
S[t] = ©(H[t] — Vi), A3)

where Ve is the reset potential. When a spike is generated, S[t] = 1, the membrane potential V' [¢]
is reset to Vieser; Otherwise, it remains at the hidden membrane potential H [¢]. Moreover, T represents
the membrane time constant, and the input current X [¢] is decay-integrated into H [t].

3.2 Spike-Based Self-Attention Mechanisms

A critical challenge in designing spike-based self-attention is eliminating floating-point matrix
multiplication in Vanilla Self-Attention (VSA) [26], which is crucial for utilizing the additive
processing characteristics of SNNs.

Spiking Self-Attention (SSA) Zhou et al. [2] first leveraged spike dynamics to replace the softmax
operation in VSA, thereby avoiding costly exponential and division calculations, and reducing energy
consumption. The process of SSA is as follows:

Is = SN(BN(XWI))v-[ € {QaKvV}a (4)
SSA(Qs, K, Vi) = SN(Qs K, Vy % 5), o)

where W € RT*N*D denotes a learnable weight matrix, I, represents the spiking representations of
query Q,, key K, and value V. Here, SA/(+) denotes the LIF neuron, and s is a scaling factor.
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Spike-Driven Self-Attention (SDSA) Yao et al. [516] improved the SSA mechanism by replacing
the matrix multiplication with the Hadamard product and computing the attention via column-wise
summation, effectively utilizing the additive properties of SNNs. The first version of SDSA [3] is as
follows:

SDSA(Qs, Ky, V) = Qs ® SN (SUM (K, ® Vy)), (6)
where ® denotes the Hadamard product, SUM,(-) represents the column-wise summation. Further-
more, the second version of SDSA [6]] is described as follows:

SDSA(Qs, K, Vi) = SN ((Qs K[ )Vy), @)
where SN s denotes a spiking neuron with a threshold of s - V. Q-K Attention (QKA) The work
in [3] reduces the computational complexity from quadratic to linear by utilizing only the query
and key. QKA can be further divided into two variants: Q-K Token Attention (QKTA) and Q-K
Channel Attention (QKCA). The formulations for QKTA and QKCA are provided in Equations
and 9] respectively:

D

QKTA(QsaKs) = SN(Z Qs(%])) ® K, (8)
1;0

QKCA(Q,, Ky) = SN (Y Q4(i. ) @ K., ©)
7=0

where IV denotes the token number, D represents the channel number.

4 Method

In this section, we introduce TDFormer, a Transformer-based SNN model featuring a top-down
feedback structure. We describe its architecture, including the division into sub-networks for feed-
back processing. We theoretically show that the attention module prior to the LIF neuron in the
feedback pathway exhibits lower variance compared to SSA and QKTA, and we provide guidance
for hyperparameter selection. Finally, we introduce the training loss and inference process. Detailed
mathematical derivations are provided in appendix [B]

4.1 TDFormer Architecture

This work is based on three backbones: SpikformerV1 [2], Spike-driven TransformerV1 [5]] and
QKformer [3]. These can be summarized into a unified structure, as shown in Figure[2} which consists
of L. Conv-based SNN blocks, L; Transformer-based SNN blocks, and a classification head (CH).
Additionally, the Transformer-based SNN blocks incorporate spike-based self-attention modules and
Multi-Layer Perceptron (MLP) modules.

Apart from the backbone structure, the TDFormer architecture specifically introduces a top-down
pathway called TDAC that includes two modules: the control module (CM) and the processing
module (PM), as shown in Figure@

Viewing traditional SNNs as a sequence of 7" = 1 sub-networks with shared parameters and temporal
dynamics governed by membrane potentials, we propose two approaches to introducing the top-
down pathway. The first adds recurrent feedback connections between these fine-grained 7' = 1
sub-networks, enabling temporal context to propagate backward through time. The second adopts
a coarser temporal resolution by dividing a sequence (e.g., I’ = 4) into fewer segments (e.g., two
T = 2 blocks). Importantly, the additional power overhead introduced by both schemes remains
minimal. Detailed analysis of power consumption is provided in appendix [C.I} Both approaches can
be expressed in the following unified formulation:

H, = Fy, (oM (s}, 2)) Hy € {0,1)T*VxC gl ¢ {0, }T<IxWxC (1)
S = PM(H,) S3) € {0,1)T*N*C |, € {0,1)T*NxC (11)
H, = Fy (OM (S0, 8570)) S e (0.1} WxC =1 N (12)
57 — PM(H,,) 57 € {0,1}TN*C =1, N (13)
O,, = CH(H,,) O, € {0,1}7>F H, € {0,1}7>N*C n=1...N (14)
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Figure 2: Overview of the TDFormer architecture. (a) Overall design inspired by top-down pathways
in the brain, mimicking feedback from the prefrontal cortex to the visual cortex for temporal modula-
tion in SNNs; (b) and (c) Detailed structures of the processing and control modules; (d) Information
flow within the subnetwork, highlighting processing of feedback signals; (¢) Four processing module
variants, labeled v1—-v4.

In the above formulation, Szﬁﬁ) denotes the bottom-up input at time step n, while 55571) represents
the top-down feedback from the previous step. CM is a control module that integrates bottom-up and
top-down signals, and F, denotes the Transformer-based processing unit. The processing module
PM generates the current feedback signal St(g) from the high-level representation H,,, and CH maps
H,, to the final output O,,, where N denotes the number of sub-networks. The bottom part of Figure

illustrates the feedback information flow between sub-networks.

For the control module (CM), CM derives the query (), key K, and value V' vectors from the
bottom-up information .Sy,, and the top-down information S;4. In more detail, Sy, facilitates attention
correction by controlling the attention map. The CM can be formulated as follows:

Q7K7V = CM(Sbuastd)a (15)
K = SN(BN(TokenMix ((Spy, Sta)))), (16)
Q = SN(BN(Linear(Spy))), V = SN (BN(Linear(Sy,))). (17)

We choose concatenation along the channel dimension as the default token mixer, which allows us
to combine the features of the current time step with those from previous time steps, and use the
fused information to dynamically adjust the self-attention map. After passing through the CM, the
query @, key K and value V vectors are fed into the self-attention module to obtain the top-down
attention map. To prevent the fusion of top-down information from altering the distribution of K
in the self-attention computation, we first normalize the combined features, and then apply spike
discretization before computing self-attention. Ablation studies on different CM variants are provided

in the appendix [C.2}
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The processing module (PM) PM includes both channel-wise token mixer and spatial-wise token
mixer [27]. The feature enhancement component enhances the original spiking feature maps X
by learning channel-wise W and computing spatial-wise attention maps Mjpqiia1. This attention
mechanism requires very few parameters and has a time complexity of O(N D). This operation is
represented as:

Mspdudl t TL Z W Xt ,n,C) (18)

Mspatial = clamp (Mspatiala bv a) . (19)

where X, ,, . represents the spiking activation at time ¢, spatial position n (corresponding to the
2D coordinate (h,w) in the feature map), and channel c. Here, a and b are hyperparameters. We
theoretically derive their effects on the PM output, and the details are given in appendix The
spatial attention map Mpaia Weights the spiking feature map X via element-wise multiplication,
with broadcasting over the channel dimension:

O = SN(X ® Mpaial)- (20)

The attention embedding spaces are different across layers, and we aim to use a PM variants to
align the top-down information with the embedding spaces of different layers. We explored four PM
variants that serve as the channel-wise token mixer, which are illustrated in Figure @

We introduce a clamp operation in the attention module to enforce a strict upper bound on the variance
of the attention map which is formally stated in Proposition 4.1} Excessive variance can lead to
gradient vanishing, as gradients in spiking neurons are only generated near the firing threshold of
the membrane potential. Outside this narrow region, the gradient tends to vanish. Furthermore, high
variance may introduce outliers, resulting in significant quantization errors during spike generation.
The effect of the clamp operation on the gradient is shown in the Figure appendix [C.2]

Proposition 4.1. The upper bound Var(Yyy,.) for the X © M paiiai is given as follows:

_ (2= f+ 5 +abl—2f)+ 5, F0<f< gL
Var(Yine) = ¢, ) 21
a +2abtlb 74fab’ ifaTJ;b S f S 17
where we assume each X, . is independent random variable Xy, ~ Bernoulli(f), with f as the
firing rate.

Additionally, the clamp operation eliminates the need for scaling operations in attention mechanisms
(e.g., QK product scaling), simplifying computations, reducing complexity, and improving energy
efficiency in hardware implementations. The detailed proofs of this proposition are provided in

appendix [B.1]
4.2 Loss Function

The loss of the TDFormer can be formulated as follows:

‘CTDFOTTT\CI‘ - Z an y7 n Z Qp = 1 0 S 7% S 1. (22)

Here, «,, are hyperparameters. To maintain the overall loss scale, we apply a weighted average over
the losses from all NV stages, assigning a larger weight to the final output loss. This is because we
believe that the receptive field in the temporal dimension increases as time progresses. Since the
earlier stages lack feedback from future steps, their outputs are less accurate and thus subject to
weaker supervision. By contrast, the final stage benefits from a larger temporal receptive field due to
feedback, making its output more reliable. Therefore, during testing, only the output from the last
sub-network is used for evaluation.

4.3 Top-down feedback enhances temporal dependency

Top-down feedback enhances temporal dependency from two perspectives. First, from the forward
propagation perspective, we compute the mutual information matrix between features at different time
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Table 1: Comparison with the baseline and previous work on ImageNet. The result in bold indicates
superior performance compared to the baseline. SOTA is marked with *, previous SOTA with #. The
default PM variant is v1.

ImageNet
Methods Spike Architecture Time
S Power (mJ) Param (M)  Acc (%)
tep
ViT [28] X ViT-B/16(3842) 1 254.84 86.59 77.90
DeiT [29] X DeiT-B(3842) 1 254.84 86.59 83.10
Swin [30] X Swin Transformer-B(384%) 1 216.20 87.77 84.50
Spikingformer [4] v Spikingformer-8-768 4 13.68 66.34 75.85
. v Spikformer-8-512 4 11.58 29.68 73.38
SpikformerV1 2]/, Spikformer-8-768 4 2148  66.34 74.81
v/ Meta-SpikeFormer-8-384 4 32.80 31.30 77.20
SDTVZIOl /' Meta-SpikeFormer-8-512 4 5240 55.40 80.00
v E-Spikeformer 8 30.90 83.00 84.00
E-Spikeformer [31] v E-Spikeformer 8 54.70 173.00 85.10
v E-Spikeformer 8 - 173.00 86.20 #
v HST-10-768 (224?) 4 38.91 64.96 84.22
QKFormer [3]] v HST-10-768 (2882) 4 64.27 64.96 85.20
v HST-10-768 (3842) 4 113.64 64.96 85.65
v HST-10-768 (2242) 4 38.93 65.55  85.37(+1.15)
v HST-10-768 (2882) 4 64.39 65.55  86.29(+1.09)
TDFormer v HST-10-768 (2242) 4 39.10 69.09  85.57(+1.35)
v HST-10-768 (2882) 4 64.45 69.09  86.43 (+1.23)
v HST-10-768 (3842) 4 113.79 69.09 86.83 (+1.18)*

steps, as shown in Figure|l] Second, from the backward propagation perspective, we demonstrate that
introducing top-down feedback helps alleviate the problem of vanishing gradients along the temporal
dimension. We present the following theorem:

Definition 4.2. ¢! (t) is defined as the sensitivity of the membrane potential H! (¢ + 1) to its previous
state H'(t), and is computed as:
OH'(t+1) OH(t+1) 9S'(t)

‘O="5ww *esw o) )

where [ indexes the layer.

Theorem 4.3. We adopt the rectangular function as the surrogate gradient, following the setting
used in previous studies[|8, 19, |12)]. For a conventional SNN, the sensitivity of the membrane potential

is expressed as follows:
0, 29<HLt) <29
LY. = ) J 2%
€ (t)i { 1—1 otherwise . 24

For SNN with top-down feedback structure, the sensitivity of the membrane potential can be expressed

as:
dpo(S'() 1 l 3
El(t)jj _ 8Sll(t) s 2’0 < Hj (t) < 2’(9, (25)
1— =, otherwise .
where U is the spike threshold, T is a time constant and @y is a differentiable feedback function

parameterized by 0.

According to Equation ¢! (t) becomes zero within an easily-reached interval, and outside that
interval, it is upper-bounded by a small value 1 — %, since T is typically close to 1 in practice[32, 33|

l
34, 9]. In contrast, our method allows non-zero gradients within this interval, and the %,S(t(f)) can
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Table 2: Comparison with the baselines and previous work on static datasets: CIFAR-10 and CIFAR-
100. Conventions align with those in Table[T| The default PM variant is v1.

Methods Time CIFAR-10 CIFAR-100
[Architecture] Step Acc Acc
(%) (%)
STBP-tdBN [33] [ResNet-19] 4 92.92 70.86
TET [32] [ResNet-19] 4 94.44 74.47
SDTVI1[3][SDT-2-512] 4 95.60 78.40
QKformer [3]] [HST-4-384] 4 96.18 # 81.15#
SpikformerV1 [2] [Spikformer-4-384] 3 9379 7628
SpikformerV 1(ours)[Spikformer-4-384] i gi% ;3 %g
TDFormer[Spikformer-4-384] i ggﬂ g:ggg; ;;;g ggi(l);
SDTV1(ours)[SDT-2-256] 4 94.47 76.05
SDTV1(ours)[SDT-2-512] 4 95.78 79.15
TDFormer[SDT-2-256] 4 94.61 (+0.14)  76.23 (+0.18)
TDFormer[SDT-2-512] 4 96.07 (+0.29)  79.67 (+0.52)
TDFormer [HST-4-384] 4 96.51 (+0.33)*  81.45 (+0.30)*

exceed 1 — % This property helps to alleviate the vanishing gradient problem along the temporal
dimension. The detailed proof is provided in the appendix

5 Experiments

We evaluate our models on several datasets: CIFAR-10 [35]], CIFAR-100 [35]], CIFAR10-DVS [36],
DVS128 Gesture [37], ImageNet [38], CIFAR-10C [39] and ImageNet-C [39]. For the smaller
datasets, we employ the feedback pathway on SpikformerV1 [2]] , Spike-driven TransformerV1 [5]
and QKformer[3]], experimenting with different configurations tailored to each dataset. For the large-
scale datasets, we utilize QKformer[3] as baselines. Specific implementation details are provided in

appendix
5.1 Experiments on ImageNet

Table [T] presents the results for the large-scale dataset ImageNet. The incorporation of top-down
feedback structure has demonstrated significant improvements on E-spikformer, which is the previous
SOTA model of SNNs. Notably, compared to QKFormer, increasing the model size by merely 0.02
million parameters and 0.59 millijoules of power consumption leads to a significant gain of 1.15%
in top-1 accuracy on the ImageNet dataset. Our model sets a new SOTA performance in the SNN
field. This milestone lays a solid foundation for advancing SNNs toward large-scale networks, further
bridging the gap between SNNs and traditional deep learning models. Furthermore, we calculate the
power of TDFormer following the method in [3]}, as detailed in Table[I} TDFormer results in a slight
increase in energy consumption due to the feedback structure, but it achieves superior performance
with minimal additional power usage. The detailed calculation of power consumption is provided in

the appendix

5.2 Experiments on Neuromorphic and CIFAR Datasets

Table [3| presents the results for the neuromorphic datasets CIFAR10-DVS and DVS128 Gesture. Our
proposed TDFormer consistently outperforms the baselines across all experiments, except for the
Spiking Transformer-2-256 at a time step of 10. Furthermore, we achieve SOTA results, with an
accuracy of 85.83% on CIFAR10-DVS using the HST-2-256 (V1), marking a notable improvement
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Table 3: Comparison with the baselines and previous work on the Neuromorphic Dataset. Conventions
align with those in Table[I| The default PM variant is v1.

CIFAR10-DVS DVS128 Gesture
Methods [Architecture] Time Acc Time Acc
Step (%) Step (%)
STBP-tdBN [33] [ResNet-19] 10 67.80 40 96.90
DSR [40] [VGG-11] 10 77.30 - -
SDTV1 [5][SDT-2-256] 16 80.00 16 99.30 #
SpikformerV1 [2] [Spikformer-2-256] |0 oo o o
Spikingformer [4] [Spikingformer-2-256] |0 e o oo
Qkformer [3]] [HST-2-256] 16 84.00 # 16 98.60
10 78.08 - -

SpikformerV1(ours) [Spikformer-2-256] ¢ 79.40 - -
10 78.90 (+0.82) - -
16 81.70 (+2.30) - -

10 75.22 10 96.79
16 77.07 16 97.98

10 7505(017) 10  96.92 (+0.13)
TDFormer[SDT-2-256] 16 77.45(+0.38) 16  99.65 (+1.67)*
TDFormer[HST-2-256] 16 8583 (+1.83)* 16  98.96 (+0.36)

TDFormer [Spikformer-2-256]

SDTV1(ours) [SDT-2-256]

of 1.83% compared to the previous SOTA model, QKformer. We also achieve 99.65% accuracy on
DVS128 Gesture using the Spiking Transformer-2-256 (V1) at 16 time steps.

In addition, the results for the static datasets CIFAR-10 and CIFAR-100 are summarized in Table 2}
Compared to the baselines, the proposed TDFormer consistently demonstrates significant performance
improvements across all experiments, with the exception of Spikformer-4-384 (V1) at time step
6. Furthermore, we achieve the SOTA performance, attaining 96.51% accuracy on CIFAR-10 and
81.45% on CIFAR-100 using the HST-2-256 (V1) at a time step of 4.

5.3 Model Generalization Analysis

As reported in Table[5] we report results averaged over five random seeds for reliability. Our model
consistently improves performance across time steps and depths. To assess robustness, we evaluate
on the CIFAR-10C dataset with 15 corruption types. As shown in Table[/| the model equipped with
the TDAC module consistently achieves higher accuracy under various distortion settings.

Moreover, we provide a visualization analysis of the TDFormer attention modules on CIFAR-10C
and ImageNet-C. The specific results can be seen in Figure ] and Figure [5]of the appendix [C] We
find that after adding the TDAC module, the model focuses more on the targets and their surrounding
areas. This indicates that TDAC can filter noise and irrelevant information, allowing the model to
focus more on task-related information.

6 Conclusion

In this study, we propose TDFormer, which integrates an adaptive top-down feedback structure into
Transformer-based SNNs, addressing a key limitation of temporal information utilization in existing
models by incorporating biological top-down mechanisms. The TDFormer model outperforms
traditional Transformer-based SNNs, achieving SOTA performance across all evaluated datasets. Our
work suggests that the top-down feedback structure could be a valuable component for Transformer-
based SNNs and offers insights for future research into more advanced, biologically inspired neural
architectures that better mimic human cognition.
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A Implementation Details

A.1 Training Protocols

We adopted the following training protocols:

Spike Generation: We used a rate-based method for spike generation [2].

Data Augmentation and Training Duration: SpikformerV1 experiments followed [2],
while Spike-driven TransformerV1 experiments followed [5], furthermore QKformer experi-
ments followed the experimental setting in and [3]].

Optimization: We employed AdamW [41]] as the optimizer for our experiments. The
learning rate was set to 3 x 10~ for the Spike-driven TransformerV 1. For SpikformerV1,
we used a learning rate of 5 x 10~ on static datasets and 1 x 10~3 on neuromorphic
datasets. Additionally, we utilized a cosine learning rate scheduler to adjust the learning
rate dynamically during training. Specifically, for QKformer, we fine-tuned the pretrained
network with a base learning rate of 2 x 10~° for 15 epochs, due to the high cost of direct
training on ImageNet using 4 time steps.

Batch Size: The batch sizes for different datasets and models are specified in Table 4]

Table 4: Batch sizes for different datasets and models.

\ Dataset \ Model | Batch Size |
CIFAR-10 and SpikeformerV1 128
CIFAR-100 Spike-driven TransformerV1 64
CIFAR10-DVS and SpikeformerV1 16
DVS128 Gesture | Spike-driven TransformerV1 16

\ ImageNet \ QKformer \ 57 \

A.2 Datasets

Our experiments evaluated the performance and robustness of the TDFormer model using the
following datasets:

CIFAR-10: This dataset contains 60,000 32 x 32 color images divided into 10 classes [33].

CIFAR-100: This dataset is similar to CIFAR-10 but includes 100 classes, providing a more
challenging classification task [335].

CIFAR10-DVS: This is an event-based version of the CIFAR-10 dataset [36]].

DVS128 Gesture: This is an event-based dataset for gesture recognition with 11 classes
[37].

ImageNet: This large-scale dataset contains over 1.2 million images divided into 1,000
classes [38]].

CIFAR-10C: This is a corrupted version of CIFAR-10 with 19 common distortion types,
used to assess robustness [39]].

ImageNet-C: This dataset is a corrupted version of ImageNet, designed similarly to CIFAR-
10C [39].

A.3 Computational Environment

A.3.1 Software Setup

We utilized PyTorch version 2.0.1 with CUDA 11.8 support and SpikingJelly version 0.0.0.0.12 as
the primary software tools.
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A.3.2 Hardware Setup.

For the smaller dataset experiments, we utilized the following configuration:

* Hardware Used: NVIDIA L40S and L40 GPUs.
* Configuration: Single-GPU for each experiment.
* Memory Capacity: Each GPU is equipped with 42 GB of memory.

For the large-scale dataset (ImageNet) experiments, we employed the following setup:

e Hardware Used: NVIDIA H20 GPUs.
* Configuration: Eight-GPU for each experiment.
* Memory Capacity: Each GPU provides 96 GB of memory.

A.4 Random Seed

To ensure the comparability of the results, we selected the same random seeds as those in the baseline
paper. To ensure robustness, we also conducted experiments with random seeds 0, 42, 2024, 3407
and 114514, averaging the results. Detailed results are presented in Table[5]

B Mathematical Derivations

B.1 Detailed proofs of the upper bound on PM output variance

Proof. We assume that each Mpqgial (t,n) is an independent random variable My,. Given that
b < My, < a, it follows that b < E[My,] < a. Furthermore, when X3, # 0, we have:

(ththn - b)(a - ththn) Z O; (26)
which expands to:
_(ththn)2 + (a + b)(ththn) - ab 2 0 (27)
Taking the expectation on both sides yields:
E [(thth7L)2] < (a+ b)E [XipeMyy] — ab. (28)

Using the Law of Total Variance, we can decompose the variance of Y3, as:
Var(Y;nc) = E[Var(Y—tnC|thc)] + Var(E[thnc|thc]) (29)

For the first term, the expectation of the conditional variance can be expressed as:

E[Var(}/;fnc|thc)] = f ' Var(}/:fnc‘thc = 1) + (1 - f) : Var(Y;ﬁnc|thc = 0) (30)

For the second term, the variance of the conditional expectation can be expanded as:

Var (E[Yine| Xenc]) = EEYinel Xencl*] ~ BEYine|Xionc]l* (31)
By substituting the conditional probabilities, we have:
Var(E[Yine| Xine]) = f - E[Yine| Xine = 1]2 - f2 “E[Yine| Xine = 1]2. (32)

Combining the two terms, the total variance becomes:

Var(Ythc) = f . Var(}/tnc|thc = 1) + (f - f2) . E[thnc‘thc = 1]2 (33)

From Equation we define E[Y;y,c| X¢ne = 1] = p. Substituting this definition, the variance can be
rewritten as:

Var(Yine) = f - (E[YtiJthc =1] - ,UQ) +(f = f2) 'M2~ (34)
Using the constraints b < My, < a, we have the following bound for Var(Y},,.|X¢ne = 1):

Var(Yine| Xine = 1) < (a4 b)pu — ab — p. (35)
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By substituting this into the total variance expression, the upper bound of Var(Y},,.) becomes:

Var(Yine) < f - ((a+b)p—ab—p*) + (f = ) - *
<ozt | a®+2ab+b* —4fab
= 2f 4 ‘

Next, we will prove that this upper bound can be achieved with equality under specific conditions.

(36)

Case 1: When “sz < f <1, we assume that:
a+b

E[}/tnc|thc = 1] = 72.}0 y Mtn =aorb. (37)

Here, My, is a binary random variable, taking the value a with probability p and the value b with
probability 1—p. Using this assumption, we can express the conditional expectation E[Y;,¢| Xtne = 1]
as:

[Y;fnc|thc = 1] = pa + (1 - )b (38)
Substituting E[Yznc| Xene = 1] = “;;b into the above equation, we solve for p:
a+b a+b—2b
pa+ (1 —p)b= = 7]( (39)

Tof T PT afa—0)

The variance of Y}, under this distribution is maximized when Mj,, follows this binary distribution.
Substituting p into the variance formula, the maximum variance is given by:
a’? +2ab + b — 4fab

max(Var(Yzn.)) = 1 . (40)

Case 2: When 0 < f < “2—21’, the upper bound is achieved when My,, = a. In this scenario, My, is
deterministic, and therefore:

thnc = ththn = cha, E[thnchtnc = 1] = Q. (41)

Substituting this into the variance formula, the maximum variance simplifies to:
max(Var(Yin.)) = a*(f% — f +1/2) + ab(1 — 2f) + b*/2. (42)
The proof is now complete. O

We observe that both SSA and QKTA exhibit significantly larger variance compared to our proposed
attention mechanism. Their variances are expressed as follows:

Variance of QKTA:
Var(QKTA) = dfg(1 - fo), (43)

where d is the feature dimension, and f¢ represents the firing rate of the query.
Variance of SSA:

Var(SSA) = Nd(foKfv(l — fo)(1 = fx)(1 = fv)

+ fofx fi(1 = fo)(1 — fx)

+ fofufv(l = f)(1 = fv)

+ fofxfv(l = f)(1 = fv)

+ fofwfv (1= fo)

+foKfv( — [k)

+ 131k fv (= 1)), (44)

where N is the number of spatial locations, d is the feature dimension, and fg, fx, fv are the firing
rates of the query, key, and value.
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Comparison with Our Attention Mechanism: The variance of QKTA scales linearly with d.
By contrast, the variance of SSA grows with both N and d, resulting in significantly larger values
compared to QKTA. Our proposed attention mechanism is particularly effective in scenarios with large
spatial (V) and feature (d) dimensions. The strict upper bound on output variance ensures numerical
stability, preventing vanishing during training. Additionally, this upper bound eliminates the need
for traditional scaling operations (e.g., scaling factors in QK products), simplifying computations,
reducing complexity, and enhancing energy efficiency.

B.2 The mathematical properties of hyperparameters

Next, we will analyze the expectation and variance of the PM and propose an appropriate selection of
hyperparameters to ensure output stability.
Lemma B.1. if the set {c € N : w, = 0} is finite and 3m, M > 0,V c € N, m < |w.| < M, then:

We

wl, = lim =0 (45)
VIl v
Proof. We begin by defining the normalized weight:
L (46)
chzl w?

By assumption, there are k terms where w. = 0, and for the remaining C' — k terms, the weights
satisfy:
m? <w? < M? forall c. 47)

Thus, the sum of squares of the weights is bounded as follows:

C
(C—k)m? <> w? < (C—k)M>. (48)

Taking the square root, we find that the denominator grows as:

(49)
(50)
To ensure |w/,| < e for a given € > 0, it suffices to require:
M
— <. (51)
(C = k)ym?
Rearranging, this condition can be rewritten as:
M2
C>—5+k. (52)
me

As C' — o0, the condition C' > 2 = + k is always satisfied. Thus, for any € > 0, we have |w;| <,
which implies:

lim w =0. (53)

C—o00

The proof is complete. O
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Lemma B.2. We assume that the features across different channels are independent and identically
distributed (i.i.d.). When the number of channels C'is large, we have:

c C
MtnNN(Zwéfrvzw?fr(l_fr)) ) C_>OOV 54
c=1 c=1
C
My =Y et (55)
c=1

where x € X, x ~ Bernoulli(f,), f. represents the firing rate (the probability of xip. = 1).

Proof. To prove this lemma, we use the characteristic function method. The characteristic function
of a Bernoulli random variable x;,, is given by:

Oy, (1) =E [e"me] = fre™ + (1 fp). (56)
For the weighted variable w/,z ., its characteristic function is:

Dy (1) = B[00 | = frette g (1 ). (57)

Since the features across channels are independent, the characteristic function of My, is:

C
Oar,,, (1) = [ ] Puran. ()- (58)
c=1

Substituting the expression for @/, (t):

s, () = T (o™ + (1= 1) (59)

c=1
o 1
Fet s (U g = £y (Uit = 3P0 4 ow)) + (1 1)
1
~ 1+ fr(itw], — 5t%uf). (60)

Thus, the characteristic function becomes:

C

Dy, () = H (1 + fr(itw!, — ;th/f)) . (61)

c=1

Taking the logarithm to simplify the product into a sum:

C
1
In®y,,, () = Zln <1 + fr(itw!, — 2t2w;2)>

c=1
¢ 1 1

= fritw, = S fr o+ SPw? ] 4+ O(w(?), (62)
c=1

where we used In(1 + z) = z — 22% + O(2?) for small .

Separating terms, we get:

C C
1
In@ar,, () ~ it Yy jwifr = 512 Y w?f (1= fr). (63)
c=1 c=1
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Exponentiating the logarithm gives:
c 1.8
Py, (1) = exp (z‘t Do wily =5ty wlf(1- f») :
c=1 c=1
This is the characteristic function of a normal distribution with:
c
Mean: p= Z wl. fr,
c=1
c
Variance: o2 = Z w?f(1— f).
c=1

Since the characteristic function corresponds to a normal distribution, we conclude:

C C
Mtn ~ N <Z w:;f’r'a wafr(l - f?)) .

c=1 c=1

The proof is complete.

(64)

(65)

(66)

(67)

O

Lemma B.3. The distributions of X, and My, can be considered independent when the number of

channels C'is large. Specifically, for all t1,ts € R, we have:

¢Mtn7thc (tla t2) = ¢Jme (tl) : QSch (t2)7 C — o0,

where ¢ x (t) represents the characteristic function of X.

Proof. The joint characteristic function of M},, and X3, is given by:

(bMt Xt ,(t]_,t2) =K |:e(it1Mtn,+it2thc):|

- [e(z‘tl . w;Xt,ﬁithW)} .

Separating Xy, and the sum ) _, 4o WX i, We rewrite:
¢M X (tl, tg) =K |:6(it1 Zi#c w;th,i+ithC(t2+tlw£))i|
tn,Ntnc

—E |:e(it1 Zi#c wr/ithi):| . E I:e(ithlc(t2+t1w£x)):| .

Using the independence of X4,,; across channels:

M e X (t1,12) = HE [e(itlwéxt""’)] -E [e(ixmc(t2+t1w/ﬂ))] .
i#cC

Substituting the characteristic function of Bernoulli random variables X},,. ~ Bernoulli( f):

E [eitX,,nC)] _ (1 _ f) + fez't.
Thus:

¢MM,XMC(t1,t2) _ H {(1 o f) +feit1w;} . [(1 o f) + fei(tz+t1w/c) )
i#c

Using Lemma for small w’,, we apply the Taylor expansion to approximate each term:

(1= f)+ fe"r " 1+ f(ityu)),
(1= )+ fellt=Hne) ~ (1= f) + et

18
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Substituting back:

OMy, Xine (L1, t2) & H (1+ fityw]) - [(1 -+ feitQ] _

i#c

(76)

s25  Using Equation [59} Equation [72]and Taylor expansion, the product of the characteristic functions for
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the two distributions is:

(1= f+ fetrei

o

DXy (t2) P01, (1) = (1 — f + fe'™2)

s
Il
-

o

= (1= f+ fe2) [ + fityw))

)

=1
= (1= f+ fe"™)(1 + fitiw) [ [(1 + fitrw))
i#c
= (1= f+ fe"™) [ + fityw))

iF#c
= ¢Mtn7thc (tl, t2)

(77)

Thus, the joint characteristic function factorizes into the product of the marginal characteristic

functions, which demonstrates that M},, and X;,,. are asymptotically independent as C' — oc.

O

Proposition B.4. Ifb =~ 0, a > 1, and the firing rate f is relatively small value, the PM output Yy,

satisfies:
]E(thnc) ~ f(lT;f) E(thc)
Var(Yine) = w Var(Xine)

Proof. For convenience, we denote:

c c
u= Zwéf, o? = waf(l -y =fQ-=f), M, =clamp(M,,b,a).
c=1 c=1

According to Lemma|[B.2] the input distribution satisfies:
My, ~ N (p,02).
The expectation of the clamped variable M, is:

BOf) = [

—00

af(x)dx

(x — p)?

1 a a o0
= 727“72/0 T exp (— 952 )dac—l— 7%271_02/(1 exp(

For the first term, let t = (x — )2, if 4 ~ 0, then:

1 . (z —p)?
s /0 T exp < 957 dx

_W) d.

202

L [l t no [ (z — p)?
2V 2mo? /;ﬁ P ( 2‘72) * V2mro? /0 P < 202 ) !

()
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where ®(z) is the CDF of the standard normal distribution. The second term in the expectation is
straightforward:

Gl P tQ dt, 84)
W exp 952 T = W exp (

Using the cumulative distribution function (CDF) again:

e e (- “)dfa(w<“a")>
m(1_q>(§)) (85)

The ®(%) and exp(—3 ) function decay rapidly as o decreases. Now, combining the results from
the two integrals we have

E(M;,) = f - e (2;> ta <1 s (a;u»
\/ﬁ

~ (86)
Based on|B.3] we calculate the expectation and variance of M/?:
E(M) = / 2 f(@)da
x? 5 [
\/W z? exp ~557 dr +a” - ’ f(z)de. (87)
We calculate the first term using integration by parts. Let:
x? x?
u==xz, dv=zxexp|——s |dz, du=dzr, v=—0clexp|——s ). (88)
202 202

Then:
1 T g z?
W/O T exp (_W> dzx
1 9 z2 \1° 5 [ x?
= \/ﬁ (|:—0’ T exp <_%‘2>}0 +0o /0 exp (_W dx

1 9 a? N z?
= \/ﬁ (—o aexp( 55 2) + o / exp (—M) dx) . (89)
To 0

The remaining integral is a standard normal distribution integral:

\/W (—j) de = o2 (<I> (g) _ ;) , (90)

where ®(z) is the CDF of the standard normal distribution.

Substituting (90) into (89):
z? —ao a? 9 a 1
\/W/ x exp( 55 2>dm—mexp<—w)+a (@(0)—2>. ©n

The second term is the tail of the normal distribution:

/aoo f(z)dz = ® (—g) : 92)
a2 /OO fl@)de = a®® (—g) . 93)

20

we have:



548

549

551

553

554

555

556

557
558
559
560
561

562

563
564
565
566

567

Combining (@) and (93) into (87)), we get:
- 2 1 a
E(M?2) =~ “ Y ) i (e (L) - 2) v a0 _7)
(Miz) \/2ﬂ_exp 202 to (O’) 2 ta ( o

0,2

R 94
5 (94)
Since ¢ (—%) is exponentially small for moderate a, the term a?® (—%) is negligible compared to

leading terms and is often omitted for simplicity.
Using Var(M],) = E(M/?) — E(M],)?, we calculate:

= (7 oo 55)]

7r716r2
2
T—1

=5 fa-1 95)

Q

Given that Y;,. = M{,,.. - Xtne, and based on Lemmathat the distributions of X}, .and M/, can

be considered independent, the expectation of Yy, is:

F=9,

27T (thc)- (96)

The variance of Y. is computed as:
Var(Y;pe) = Var(M],)) - Var(Xne) + Var(M],)) - E(Xine)? + Var(Xipe) - E[M],]?

—I0 Dy
~ wvﬂ(xtm). 7

Thus, the proposition is proven:

2

Xine), Var(Yine) ~ MVar(chy (98)

E(Yine) =~
(Yinc) 21

O

In practice, we recommend setting the hyperparameters as follows: b = 0 and a € [1,2]. Setting
b = 0 allows the processing module to completely eliminate certain features in the spatial domain.
Furthermore, selecting a € [1, 2] enables the processing module to selectively enhance specific spatial
features. This also ensures that both the mean and variance do not become too large or too small,
maintaining the numerical stability.

B.3 Gradient Analysis

This section on the derivation of the traditional SNN network is mainly referenced from [40} [7, [§]].
First, we derive the temporal gradient of the traditional SNN network, where the temporal gradient
is primarily backpropagated through the membrane potential. Taking the vanilla LIF neuron as an
example, we use the following form to analyze the gradient problem:

1
H(t+1) = <1 - ) (H'(t) —vS'(t)) + WIS (£ + 1), (99)
T
The derivative of the loss with respect to the weights W is:
T-1 g, T
= Hyti=r,0-1,---,1 1
VWlE Z 8Hl(t) S [t] al ) ) y Ly ( OO)
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The gradient expression can be written as:
oc oL OH'tL(t) oS\ (t)
OHL(t)  OH!*(t) 0Sl(t) OH!(t)

Spatial Gradient

t'—t

8Hl+1 (t/) asl (t ) o .
Z 8Hl+1 t' 98! (t/) OH! (t,) H € (t -1 ),l <L, (101)

t'=t+1 t''=1

Temporal Gradient

T—1 t'—t

oL oL asi(t az as! ()

— Loyt g1
oH(1) — 95'(1) aHl 98T (¥) oH (7) | [] " =),
R , t'= =1

=1, (102)

Spatial Gradient Temporal Gradient

elis defined as the sensitivity of the membrane potential H'(¢ + 1) with respect to H'(t) between
adjacent timesteps.

OH'(t+1) OH!(t+1) 9S!(?)

Ly —
t) = . 103
<) =—5mm osi{t) OH(1) (103)
If we use a simple rectangular function as a surrogate for the gradient.
Iy _ 0, 39 <HLt) < 39,
€(t)j; = { 1—1,  otherwise . (104)

From the above equation, it can be concluded that if the membrane potential approaches the threshold

at any given timestep, the temporal gradient Hij,_:tl el (¢ — ") will vanish. This highlights a
common issue with temporal gradients in the vanilla LIF model, which remains a problem even with
short timesteps.

Next, we perform gradient analysis on neurons with a feedback structure. Assume the structure of the
feedback is ¢, which includes PM and CM.

H'(t+1) = (1 — T) (H'(t) — S (1)) + W'SITL(t + 1) + pp(S(2)) (105)

Following the above derivation, we similarly define the variable e:

OHNt+1) OHI(t+1) dS(t)  OHNt+ 1) dpe(SH(t)) 3SL(t)

l =
<) ="5mm 9Sift) OHLE) T Ope(SI(D)  0S(t) omi() 09
Feedback gradient
iy (1Y (1) 98Ut | Ove(S'(t) 9S'(1)
6(“‘(1 )2 ame T esie) ami) (107
Similarly we have:
A0 (8' (1) 1 l 3
el(t)jf{ B < < (108)
177, otherwise .

l
Then, in training, %S(t(;)) is not possible to be zero.

C Supplementary Results

C.1 Energy Consumption Calculation of TDFormer

This section is mainly referenced from [3]]. We calculate the number of Synaptic Operations (SOPs)
of spike before calculating theoretical energy consumption for TDFormer.

SOP = f, x T x FLOPs (109)
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Table 5: Results averaged across seeds: 0, 42, 2024, 3407 and 114514. Bold results indicate superior
performance compared to the baselines.

Methods Dataset/Time Step Architecture Baseline CM1+V1
CIFAR-10/T =2 Spikf 9384 94.18+0.06 94.07+0.07
CIFAR-10/T = 4 prictormer 94.84+0.14  94.8620.05
CIFAR-10/T =2 93.65+0.23 94.05+0.14
CIFAR-100/T =2 75.2540.19  75.99+0.12
SpikeformerV 1 CIFAR-10/T =4 94.73+0.06 95.13+0.07
CIFAR-100/T =4 Spikf 4384 77.56+0.22 77.60+£0.26
CIFAR-10/T=6 pritormer 95.09+£0.08  95.160.14
CIFAR-100/T =6 78.21+0.22 77.99+0.05
CIFAR10-DVS/T =10 78.08+0.70 78.13+0.72
CIFAR10-DVS/T=16 79.40+0.36  80.20%0.75
CIFAR-10/T =4 Spiking 95.76+0.06  95.92+0.02
CIFAR-100/T =4 Transformer-2-512  79.15+0.14 79.35+0.16
CIFAR-10/T =4 94.47+0.11 94.64+0.04
SDTV1 CIFAR-100/T =4 o 76.15+0.13 76.26+0.13
DVS128 Gesture/T=10 Spiking 96.79+0.67 96.92+0.29
DVS128 Gesture/T=16 Transformer-2-256 97.98+0.59  99.04+0.28
CIFAR10-DVS/T =10 75.03+£0.67 75.05%0.11
CIFAR10-DVS/T = 16 77.07£0.19 77.45+0.43

where f. is the firing rate of the block and T is the simulation time step of spiking neuron. FLOPS
refers to floating point operations of block, which is the number of multiply-and-accumulate (MAC)
operations and SOP is the number of spike-based accumulate (AC) operations.

ETDFormer - EBaseline + EAC X (SOPPM + S()PCM) (110)

The channel-wise token mixer in TDFormer is highly power-efficient, consisting of only a linear
layer, a LIF neuron, and a BN layer. The BN parameters can be fused into the linear layer via
reparameterization, making its power consumption negligible. The linear layer maintains a constant
channel dimension, resulting in much lower power usage than conventional MLPs. Furthermore, the
spatial-wsie token mixer in PM has a time complexity of only O(N D), which is much lower than
the O(N?D) of SSA. In the CM module, although a token mixer is used, the firing rates in both PM
and CM are very low. In our experiments, we observed that the firing rate in both modules remains
around 0.05. As a result, the overall power overhead of TDFormer is marginal.

C.2 Additional Experiments and Visualizations
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Table 6: Results of different TDFormer variants. The results in bold indicate superior performance
compared to the baseline. The default configuration used in our work is indicated by *. CM1-CM3
denote different strategies for integrating top-down information with bottom-up features. CM1: Sy4
is fused into the computation of the attention map. CM2: Sy, is fused into the value of self-attention.
CM3:5,4 is incorporated into the input of the attention module.

SpikeformerV1 SDTV1
Model Type (Spikformer-4-384) (Spiking Transformer-2-256)
Acc (%) FLOPs (G) Param M) Acc (%) FLOPs(G) Param (M)
Baseline 94.73 3.71 9.33 94.47 1.25 2.57
*CM1+V1 95.14 3.88 9.92 94.77 1.31 2.69
CM1+V2 94.79 3.88 9.92 94.93 1.31 2.69
CM1+V3 94.90 3,88 9.92 94.61 1.31 2.69
CM1+V4 94.94 3.88 9.92 94.88 1.31 2.69
CM2+V1 94.88 3.88 9.92 94.73 1.31 2.69
CM2+V2 94.75 3.88 9.92 94.79 1.31 2.69
CM2+V3 94.70 3.88 9.92 94.75 1.31 2.69
CM2+V4 95.27 3.88 9.92 94.66 1.31 2.69
CM3+V1 94.69 3.90 9.92 94.43 1.32 2.69
CM3+V2 94.89 3.90 9.92 94.69 1.32 2.69
CM3+V3 94.35 3.90 9.92 93.94 1.32 2.69
CM3+V4 94.90 3.90 9.92 94.61 1.32 2.69

Histogram Comparison: w/o Clamp vs. w/ Clamp
w/o Clamp

w/ Clamp
108

10°

Number of ltems
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Figure 3: This is the histogram of the gradient of the surrogate function for LIF neurons in the
attention module within the PM model. From the figure, we can see that the clamp operation ensures
that the variance in the attention map does not become too large, thus preventing the vanishing
gradient problem.
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Figure 4: Visualization of CIFAR-10C. This figure showcases 19 columns corresponding to 19
different types of corruptions. Each column contains four images: the top image displays the original
CIFAR-10C image; the second image shows the visualization result of the baseline model; the third
image illustrates the first feedforward stage of the TDFormer model; the fourth image depicts the
second feedforward stage of the TDFormer model, demonstrating the model’s dynamic attention
adjustments across stages.
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Figure 5: Visualization of ImageNet-C. This figure showcases 19 columns corresponding to 19
different types of corruptions. The layout and visualization style are similar to those shown in Figure
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Table 7: Robustness comparison on the CIFAR-10C dataset. The results in bold indicate superior
performance compared to the baseline. Average performance across different distortion types is

indicated by *.

. SpikformerV1 . SpikformerV1 .
Corruption /TDFormer Time /TDFormer Corruption
Type Step Type
Acc (%) Acc (%)
91.32/91.27 (-0.05) 1 76.23/76.97 (+0.74)
Brightness 91.87/91.94 (+0.06) 2 77.00/78.30 (+1.30)  Motion Blur
93.14/93.29 (+0.15) 4 79.44/80.01 (+0.57)
69.93/70.40 (+0.47) 1 79.31/79.51 (+0.20)
Contrast 70.41/71.25 (+0.84) 2 78.70/78.67 (-0.03) Pixelate
77.06/76.57 (-0.49) 4 81.14/81.45 (+0.31)
80.59/80.83 (+0.24) 1 87.33/87.10 (-0.23)
Defocus Blur 81.39/82.15 (+0.76) 2 88.30/88.44 (+0.14) Saturate
82.88/82.75 (-0.13) 4 90.58/90.60 (+0.02)
84.00/84.05 (+0.05) 1 69.63/70.68 (+1.05)
Elastic Transform  84.10/84.63 (+0.53) 2 70.96/71.09 (+0.13) Shot Noise
85.54/85.52 (-0.02) 4 73.23/73.32 (+0.09)
84.29/85.22 (+0.93) 1 84.47/84.71 (+0.24)
Fog 85.09/85.75 (+0.66) 2 84.72/84.72 (+0.00) Snow
87.25/87.53 (+0.28) 4 86.90/87.18 (+0.28)
82.35/82.66 (+0.31) 1 88.20/88.03 (-0.17)
Frost 83.04/83.27 (+0.23) 2 87.58/87.71 (+0.13) Spatter
85.46/85.70 (+0.24) 4 89.14/89.02 (-0.12)
73.33/74.05 (+0.72) 1 71.77/72.66 (+0.89)
Gaussian Blur 74.79/75.84 (+1.05) 2 72.66/72.64 (-0.02)  Speckle Noise
76.08/76.25 (+0.17) 4 75.10/75.37 (+0.27)
61.35/62.71 (+1.36) 1 75.98/76.68 (+0.70)
Gaussian Noise 63.05/62.71 (-0.34) 2 77.60/78.75 (+1.15) Zoom Blur
64.34/64.89 (+0.55) 4 78.68/79.14 (+0.46)
67.84/68.10 (+0.26) 1 57.86/58.26 (+0.40)
Impulse Noise 65.83/65.36 (-0.47) 2 56.09/55.81 (-0.28) Glass Blur
65.98/66.93 (+0.95) 4 59.43/60.46 (+1.03)
83.32/83.53 (+0.21) 1 78.11/78.55 (+0.44)
JPEG Compression  83.93/84.00 (+0.07) 2 78.52/78.84 (+0.32) * Avg
84.60/84.76 (+0.16) 4 80.53/80.78 (+0.25)

D Limitations, Future Work, and Broader Impacts

D.1 Limitations

Despite the promising enhancements introduced by our proposed TDFormer with top-down feedback
structure for spiking neural networks, several limitations remain. First, the current feedback mecha-
nism is specifically designed for Transformer-based architectures and may not be directly applicable
to CNN-based SNNs, limiting its architectural generalizability. Second, our evaluation has so far
been limited to image classification tasks, which may not fully reflect the method’s effectiveness in
other domains such as object detection[42], semantic segmentation[43]], and NLP tasks[44].

D.2 Future Work

Future work could focus on generalizing the proposed TDFormer architecture to other network back-
bones, such as CNN-based spiking neural networks, thereby improving its architectural compatibility
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and deployment flexibility. In addition, extending the evaluation of TDFormer to tasks such as object
detection, semantic segmentation, and natural language processing would provide deeper insights
into its generalization capacity across diverse domains and data modalities. Moreover, we observe
that the proposed top-down feedback structure increases the diversity of spike patterns[10], which
may contribute to the observed performance gains. Investigating the underlying relationship between
spike diversity and task performance remains an important direction for future research.

D.3 Broader Impacts

This paper focuses on the fundamental research of spiking neural networks, introducing a top-down
feedback structure that aims to enhance their performance. Generally, there are no negative societal
impacts in this work.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our contributions in the field of
spiking neural networks, including the discovery of limitation caused by SNN dynamics and
the inspired improvement methods.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discussed the limitations of the proposed method in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The paper provides a complete proof of the proposed viewpoint and method.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method section provides a detailed introduction to the method proposed in
this paper, which can be reproduced by referring to the experiment section and submitted
code.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset used in this article is publicly available, and the code will be made
public to ensure that others can reproduce the experimental results.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

31


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

776
777

778
779

780

781
782
783

784

785

786

787
788

790
791

792

793
794

795

797
798

799

800

801
802
803
804
805
806

807
808
809
810
811
812
813
814
815
816
817
818
819

820

821
822
823

824

825
826

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The appendix of the paper provides detailed experimental settings.
Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper accurately presents error bars for the execution speed benchmark.
Notably, our experiments involved comparing our method’s optimal performance with other
approaches

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The article provides the resource cost required for conducting experiments,
further detailed information is provided in the code.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research in this paper adheres to the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on the fundamental research of spiking neural networks,
there are no negative societal impacts in this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: This paper focuses on the fundamental research of spiking neural networks,
which does not involve the development or release of data or models that have a high risk
for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in

the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of the assets (such as code, data, and models)
used in this paper have been properly credited. Their contributions have been explicitly
mentioned in an appropriate manner. Additionally, the license and terms of use for each asset

have been explicitly stated and adhered to, including obtaining any necessary permissions or
authorizations.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The experimental code will be made openly accessible, along with the neces-
sary documents to facilitate reproducibility of the experimental results and utilization of the
code for future work.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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* The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with
human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The LLM was only used for translation purposes and did not affect the core
scientific methodology, analysis, or originality of the research.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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