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Abstract

Traditional spiking neural networks (SNNs) can be viewed as a combination of1

multiple subnetworks with each running for one time step, where the parameters2

are shared, and the membrane potential serves as the only information link between3

them. However, the implicit nature of the membrane potential limits its ability4

to effectively represent temporal information. As a result, each time step cannot5

fully leverage information from previous time steps, seriously limiting the model’s6

performance. Inspired by the top-down mechanism in the brain, we introduce7

TDFormer, a novel model with a top-down feedback structure that functions hi-8

erarchically and leverages high-order representations from earlier time steps to9

modulate the processing of low-order information at later stages. The feedback10

structure plays a role from two perspectives: 1) During forward propagation, our11

model increases the mutual information across time steps, indicating that richer12

temporal information is being transmitted and integrated in different time steps. 2)13

During backward propagation, we theoretically prove that the feedback structure14

alleviates the problem of vanishing gradients along the time dimension. We find15

that these mechanisms together significantly and consistently improve the model16

performance on multiple datasets. In particular, our model achieves state-of-the-art17

performance on ImageNet with an accuracy of 86.83%.18

1 Introduction19

Spiking Neural Networks (SNNs) are more energy-efficient and biologically plausible than traditional20

artificial neural networks (ANNs) [1]. Transformer-based SNNs combine the architectural advantages21

of Transformers with the energy efficiency of SNNs, resulting in a powerful and efficient models22

that have attracted increasing research interest in recent years [2, 3, 4, 5, 6]. However, there is23

still a big performance gap between existing SNNs and ANNs. This is because SNNs represent24

information using binary spike activations, whereas ANNs use floating-point numbers, resulting in25

reduced representational capacity and degraded performance. Moreover, the non-differentiability of26

spikes hinders effective training with gradient-based methods.27

In traditional SNNs, a common approach to increase representational capacity is to expand the28

time step T . However, SNNs trained with direct coding and standard learning methods [7] lack29

structural mechanisms for temporal adaptation. Temporal information is solely conveyed through30

membrane potential dynamics, while the network architecture, parameters, and inputs remain fixed31

across time steps. This reliance on membrane dynamics imposes two fundamental limitations. First,32

temporal information can only be expressed when spikes are fired, yet firing rates are typically low33

across layers, restricting the bandwidth of information flow. Moreover, the cumulative nature of34

membrane potentials leads to loss of temporal detail, as earlier spike patterns are summed. Second,35

temporal gradients must propagate solely through membrane potentials, which can result in vanishing36
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Figure 1: Visualization of mutual information matrices of features across time steps on ImageNet.
The left panel shows the baseline model; the right panel shows the model incorporating feedback
connections. A higher level of mutual information suggests that the model captures more consistent
and temporally dependent features across time steps

gradients[8, 9]. We further confirm these limitations through temporal correlation analysis shown37

in Figure 1, which demonstrates the limited representational capacity of membrane potentials, and38

theoretical derivation in appendix B.3.39

Previous work has been done to enhance the ability of SNNs to represent temporal information, e.g.,40

by initializing the membrane potential and altering the surrogate gradients and dynamics equations41

[10, 11, 12]. Furthermore, some approaches have incorporated the dimension of time into attention42

mechanisms, resulting in time complexity that scales linearly with the number of simulation time steps43

[13]. However, structural mechanisms to facilitate information flow across multiple time steps remain44

largely unexplored. We argue that adding connections between different time steps has the following45

two benefits: First, in forward propagation, such connections help the model better leverage features46

from previous time steps. Second, in backpropagation, structural connections support gradient flow47

and help mitigate vanishing gradients caused by the membrane potential dynamics.48

While traditional SNNs rely on bottom-up signal propagation, top-down mechanisms are prevalent in49

the brain, especially between the prefrontal and visual cortices [14, 15, 16, 17], as shown in Figure 2.50

These mechanisms are fundamental to how the brain incrementally acquires visual information over51

time, with higher-level cognitive processes guiding the extraction of lower-level sensory features,52

and prior knowledge informing the interpretation and refinement of new sensory input. Inspired53

by top-down mechanisms, we introduce TDFormer, a Transformer-based SNN architecture that54

incorporates a top-down feedback structure to improve temporal information utilization. Our main55

contributions can be summarized as follows:56

• We identify structural limitations in traditional SNNs, showing that features across time steps57

exhibit weak mutual information, indicating insufficient temporal integration and utilization.58

• We propose TDFormer, a Transformer-based SNN with a novel top-down feedback structure.59

We show that the proposed structure improves temporal information utilization, and provide60

theoretical analysis showing it mitigates vanishing gradients along the temporal dimension.61

• We demonstrate state-of-the-art performance across multiple benchmarks with minimal62

energy overhead, achieving ANN-level accuracy on ImageNet while preserving the efficiency63

of SNNs.64

2 Related Works65

2.1 Transformer-based SNNs66

Spikformer [2] presented the first Transformer architecture based on SNNs, laying the groundwork for67

spike-based self-attention mechanisms. Spike-driven TransformerV1 [5] introduced a spike-driven68
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mechanism to effectively process discrete-time spike signals and employed stacked transformer layers69

to capture complex spatiotemporal features. Built on [5], Spike-driven TransformerV2 [6] enhanced70

the spike-driven mechanism and added dynamic weight adjustment to improve adaptability and71

accuracy in processing spike data. SpikformerV2 [18] was specifically optimized for high-resolution72

image recognition tasks, incorporating an improved spike encoding method and a multi-layer self-73

attention mechanism. SpikeGPT [19] proposed an innovative combination of generative pre-trained74

Transformers with SNNs. SGLFormer [20] enhanced feature representations by effectively capturing75

both global context and local details.76

2.2 Models with Top-Down Mechanisms77

Unlike bottom-up processes that are driven by sensory stimuli, top-down attention is governed78

by higher cognitive processes such as goals, previous experience, or prior knowledge[21]. This79

mechanism progressively acquires information by guiding the focus of attention to specific regions80

or features of the visual scene. It can be seen as a feedback loop where higher-level areas provide81

signals that modulate the processing of lower-level sensory inputs, ensuring that the most relevant82

information is prioritized.83

Many works have explored top-down attention mechanisms to improve model performance in84

traditional ANNs. For example, Zheng et al. [21] proposed FBTP-NN, which integrates bottom-up85

and top-down pathways to enhance visual object recognition, where top-down expectations modulate86

neuron activity in lower layers [21]. Similarly, Anderson et al. introduced a model combining bottom-87

up and top-down attention for image captioning and visual question answering, where top-down88

attention weights features based on task context [22]. Shi et al. introduced a top-down mechanism89

for Visual Question Answering (VQA), where high-level cognitive hypotheses influence the focus90

on relevant scene parts [23]. Finally, Abel and Ullman proposed a network that combines back-91

propagation with top-down attention to adjust gradient distribution and focus on important features92

[24].93

3 Preliminaries94

3.1 The Spiking Neuron95

The fundamental distinction between SNNs and ANNs lies in their neuronal activation mechanisms.96

Drawing on established research [2, 4, 5, 3], we select the Leaky Integrate-and-Fire (LIF) [25] neuron97

model as our primary spike activation unit. LIF neuron dynamics can be formulated by:98

V [t] = H[t](1− S[t]) + VresetS[t], (1)

H[t] = V [t− 1] +
1

τ
(X[t]− (V [t− 1]− Vreset)), (2)

S[t] = Θ(H[t]− Vth), (3)

where Vreset is the reset potential. When a spike is generated, S[t] = 1, the membrane potential V [t]99

is reset to Vreset; otherwise, it remains at the hidden membrane potential H[t]. Moreover, τ represents100

the membrane time constant, and the input current X[t] is decay-integrated into H[t].101

3.2 Spike-Based Self-Attention Mechanisms102

A critical challenge in designing spike-based self-attention is eliminating floating-point matrix103

multiplication in Vanilla Self-Attention (VSA) [26], which is crucial for utilizing the additive104

processing characteristics of SNNs.105

Spiking Self-Attention (SSA) Zhou et al. [2] first leveraged spike dynamics to replace the softmax106

operation in VSA, thereby avoiding costly exponential and division calculations, and reducing energy107

consumption. The process of SSA is as follows:108

Is = SN (BN(XWI)), I ∈ {Q,K, V }, (4)

SSA(Qs,Ks, Vs) = SN (QsK
⊤
s Vs ∗ s), (5)

where W ∈ RT×N×D denotes a learnable weight matrix, Is represents the spiking representations of109

query Qs, key Ks, and value Vs. Here, SN (·) denotes the LIF neuron, and s is a scaling factor.110
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Spike-Driven Self-Attention (SDSA) Yao et al. [5, 6] improved the SSA mechanism by replacing111

the matrix multiplication with the Hadamard product and computing the attention via column-wise112

summation, effectively utilizing the additive properties of SNNs. The first version of SDSA [5] is as113

follows:114

SDSA1(Qs,Ks, Vs) = Qs ⊗ SN (SUMc(Ks ⊗ Vs)), (6)
where ⊗ denotes the Hadamard product, SUMc(·) represents the column-wise summation. Further-115

more, the second version of SDSA [6] is described as follows:116

SDSA2(Qs,Ks, Vs) = SN s((QsK
⊤
s )Vs), (7)

where SN s denotes a spiking neuron with a threshold of s · Vth. Q-K Attention (QKA) The work117

in [3] reduces the computational complexity from quadratic to linear by utilizing only the query118

and key. QKA can be further divided into two variants: Q-K Token Attention (QKTA) and Q-K119

Channel Attention (QKCA). The formulations for QKTA and QKCA are provided in Equations 8120

and 9, respectively:121

QKTA(Qs,Ks) = SN (

D∑
i=0

Qs(i, j))⊗Ks, (8)

QKCA(Qs,Ks) = SN (

N∑
j=0

Qs(i, j))⊗Ks, (9)

where N denotes the token number, D represents the channel number.122

4 Method123

In this section, we introduce TDFormer, a Transformer-based SNN model featuring a top-down124

feedback structure. We describe its architecture, including the division into sub-networks for feed-125

back processing. We theoretically show that the attention module prior to the LIF neuron in the126

feedback pathway exhibits lower variance compared to SSA and QKTA, and we provide guidance127

for hyperparameter selection. Finally, we introduce the training loss and inference process. Detailed128

mathematical derivations are provided in appendix B.129

4.1 TDFormer Architecture130

This work is based on three backbones: SpikformerV1 [2], Spike-driven TransformerV1 [5] and131

QKformer [3]. These can be summarized into a unified structure, as shown in Figure 2, which consists132

of Lc Conv-based SNN blocks, Lt Transformer-based SNN blocks, and a classification head (CH).133

Additionally, the Transformer-based SNN blocks incorporate spike-based self-attention modules and134

Multi-Layer Perceptron (MLP) modules.135

Apart from the backbone structure, the TDFormer architecture specifically introduces a top-down136

pathway called TDAC that includes two modules: the control module (CM) and the processing137

module (PM), as shown in Figure 2.138

Viewing traditional SNNs as a sequence of T = 1 sub-networks with shared parameters and temporal139

dynamics governed by membrane potentials, we propose two approaches to introducing the top-140

down pathway. The first adds recurrent feedback connections between these fine-grained T = 1141

sub-networks, enabling temporal context to propagate backward through time. The second adopts142

a coarser temporal resolution by dividing a sequence (e.g., T = 4) into fewer segments (e.g., two143

T = 2 blocks). Importantly, the additional power overhead introduced by both schemes remains144

minimal. Detailed analysis of power consumption is provided in appendix C.1. Both approaches can145

be expressed in the following unified formulation:146

H1 = Ftr

(
CM

(
S
(1)
bu ,∅

))
H1 ∈ {0, 1}T×N×C , S

(1)
bu ∈ {0, 1}T×H×W×C (10)

S
(1)
td = PM(H1) S

(1)
td ∈ {0, 1}T×N×C , H1 ∈ {0, 1}T×N×C (11)

Hn = Ftr

(
CM

(
S
(n)
bu , S

(n−1)
td

))
S
(n)
bu ∈ {0, 1}T×H×W×C , n = 1 . . . N (12)

S
(n)
td = PM(Hn) S

(n)
td ∈ {0, 1}T×N×C , n = 1 . . . N (13)

On = CH(Hn) On ∈ {0, 1}T×L, Hn ∈ {0, 1}T×N×C , n = 1 . . . N (14)
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Figure 2: Overview of the TDFormer architecture. (a) Overall design inspired by top-down pathways
in the brain, mimicking feedback from the prefrontal cortex to the visual cortex for temporal modula-
tion in SNNs; (b) and (c) Detailed structures of the processing and control modules; (d) Information
flow within the subnetwork, highlighting processing of feedback signals; (e) Four processing module
variants, labeled v1–v4.

In the above formulation, S(n)
bu denotes the bottom-up input at time step n, while S

(n−1)
td represents147

the top-down feedback from the previous step. CM is a control module that integrates bottom-up and148

top-down signals, and Ftr denotes the Transformer-based processing unit. The processing module149

PM generates the current feedback signal S(n)
td from the high-level representation Hn, and CH maps150

Hn to the final output On, where N denotes the number of sub-networks. The bottom part of Figure151

2 illustrates the feedback information flow between sub-networks.152

For the control module (CM), CM derives the query Q, key K, and value V vectors from the153

bottom-up information Sbu and the top-down information Std. In more detail, Std facilitates attention154

correction by controlling the attention map. The CM can be formulated as follows:155

Q,K, V = CM(Sbu, Std), (15)
K = SN (BN(TokenMix ((Sbu, Std)))), (16)
Q = SN (BN(Linear(Sbu))), V = SN (BN(Linear(Sbu))). (17)

We choose concatenation along the channel dimension as the default token mixer, which allows us156

to combine the features of the current time step with those from previous time steps, and use the157

fused information to dynamically adjust the self-attention map. After passing through the CM, the158

query Q, key K and value V vectors are fed into the self-attention module to obtain the top-down159

attention map. To prevent the fusion of top-down information from altering the distribution of K160

in the self-attention computation, we first normalize the combined features, and then apply spike161

discretization before computing self-attention. Ablation studies on different CM variants are provided162

in the appendix C.2.163
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The processing module (PM) PM includes both channel-wise token mixer and spatial-wise token164

mixer [27]. The feature enhancement component enhances the original spiking feature maps X165

by learning channel-wise Wc and computing spatial-wise attention maps Mspatial. This attention166

mechanism requires very few parameters and has a time complexity of O(ND). This operation is167

represented as:168

Mspatial(t, n) =

C∑
c=1

Wc ·Xt,n,c, (18)

Mspatial = clamp (Mspatial, b, a) . (19)

where Xt,n,c represents the spiking activation at time t, spatial position n (corresponding to the169

2D coordinate (h,w) in the feature map), and channel c. Here, a and b are hyperparameters. We170

theoretically derive their effects on the PM output, and the details are given in appendix B.2. The171

spatial attention map Mspatial weights the spiking feature map X via element-wise multiplication,172

with broadcasting over the channel dimension:173

O = SN (X⊙Mspatial). (20)

The attention embedding spaces are different across layers, and we aim to use a PM variants to174

align the top-down information with the embedding spaces of different layers. We explored four PM175

variants that serve as the channel-wise token mixer, which are illustrated in Figure 2.176

We introduce a clamp operation in the attention module to enforce a strict upper bound on the variance177

of the attention map which is formally stated in Proposition 4.1. Excessive variance can lead to178

gradient vanishing, as gradients in spiking neurons are only generated near the firing threshold of179

the membrane potential. Outside this narrow region, the gradient tends to vanish. Furthermore, high180

variance may introduce outliers, resulting in significant quantization errors during spike generation.181

The effect of the clamp operation on the gradient is shown in the Figure appendix C.2.182

Proposition 4.1. The upper bound Var(Ytnc) for the X⊙Mspatial is given as follows:183

Var(Ytnc) =

a2(f2 − f + 1
2 ) + ab(1− 2f) + b2

2 , if 0 ≤ f ≤ a+b
2a ,

a2+2ab+b2−4fab
4 , if a+b

2a ≤ f ≤ 1,
(21)

where we assume each Xt,n,c is independent random variable Xtnc ∼ Bernoulli(f), with f as the184

firing rate.185

Additionally, the clamp operation eliminates the need for scaling operations in attention mechanisms186

(e.g., QK product scaling), simplifying computations, reducing complexity, and improving energy187

efficiency in hardware implementations. The detailed proofs of this proposition are provided in188

appendix B.1.189

4.2 Loss Function190

The loss of the TDFormer can be formulated as follows:191

LTDFormer =

N∑
n=1

αnL(y,On),

N∑
n=1

αn = 1, 0 ≤ αn ≤ 1. (22)

Here, αn are hyperparameters. To maintain the overall loss scale, we apply a weighted average over192

the losses from all N stages, assigning a larger weight to the final output loss. This is because we193

believe that the receptive field in the temporal dimension increases as time progresses. Since the194

earlier stages lack feedback from future steps, their outputs are less accurate and thus subject to195

weaker supervision. By contrast, the final stage benefits from a larger temporal receptive field due to196

feedback, making its output more reliable. Therefore, during testing, only the output from the last197

sub-network is used for evaluation.198

4.3 Top-down feedback enhances temporal dependency199

Top-down feedback enhances temporal dependency from two perspectives. First, from the forward200

propagation perspective, we compute the mutual information matrix between features at different time201
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Table 1: Comparison with the baseline and previous work on ImageNet. The result in bold indicates
superior performance compared to the baseline. SOTA is marked with *, previous SOTA with #. The
default PM variant is v1.

Methods Spike Architecture
ImageNet

Time
Step Power (mJ) Param (M) Acc (%)

ViT [28] ✗ ViT-B/16(3842) 1 254.84 86.59 77.90

DeiT [29] ✗ DeiT-B(3842) 1 254.84 86.59 83.10

Swin [30] ✗ Swin Transformer-B(3842) 1 216.20 87.77 84.50

Spikingformer [4] ✓ Spikingformer-8-768 4 13.68 66.34 75.85

SpikformerV1 [2] ✓ Spikformer-8-512 4 11.58 29.68 73.38
✓ Spikformer-8-768 4 21.48 66.34 74.81

SDTV2 [6] ✓ Meta-SpikeFormer-8-384 4 32.80 31.30 77.20
✓ Meta-SpikeFormer-8-512 4 52.40 55.40 80.00

E-Spikeformer [31]
✓ E-Spikeformer 8 30.90 83.00 84.00
✓ E-Spikeformer 8 54.70 173.00 85.10
✓ E-Spikeformer 8 - 173.00 86.20 #

QKFormer [3]
✓ HST-10-768 (2242) 4 38.91 64.96 84.22
✓ HST-10-768 (2882) 4 64.27 64.96 85.20
✓ HST-10-768 (3842) 4 113.64 64.96 85.65

TDFormer

✓ HST-10-768 (2242) 4 38.93 65.55 85.37(+1.15)
✓ HST-10-768 (2882) 4 64.39 65.55 86.29(+1.09)
✓ HST-10-768 (2242) 4 39.10 69.09 85.57(+1.35)
✓ HST-10-768 (2882) 4 64.45 69.09 86.43 (+1.23)
✓ HST-10-768 (3842) 4 113.79 69.09 86.83 (+1.18)*

steps, as shown in Figure 1. Second, from the backward propagation perspective, we demonstrate that202

introducing top-down feedback helps alleviate the problem of vanishing gradients along the temporal203

dimension. We present the following theorem:204

Definition 4.2. ϵl(t) is defined as the sensitivity of the membrane potential Hl(t+ 1) to its previous205

state Hl(t), and is computed as:206

ϵl(t) ≡ ∂Hl(t+ 1)

∂Hl(t)
+

∂Hl(t+ 1)

∂Sl(t)

∂Sl(t)

∂Hl(t)
, (23)

where l indexes the layer.207

Theorem 4.3. We adopt the rectangular function as the surrogate gradient, following the setting208

used in previous studies[8, 9, 12]. For a conventional SNN, the sensitivity of the membrane potential209

is expressed as follows:210

ϵl(t)jj =

{
0, 1

2ϑ < H l
j(t) <

3
2ϑ,

1− 1
τ , otherwise .

(24)

For SNN with top-down feedback structure, the sensitivity of the membrane potential can be expressed211

as:212

ϵl(t)jj =

{
∂φθ(S

l(t))
∂Sl(t)

, 1
2ϑ < H l

j(t) <
3
2ϑ,

1− 1
τ , otherwise .

(25)

where ϑ is the spike threshold, τ is a time constant and φθ is a differentiable feedback function213

parameterized by θ.214

According to Equation 24, ϵl(t) becomes zero within an easily-reached interval, and outside that215

interval, it is upper-bounded by a small value 1− 1
τ , since τ is typically close to 1 in practice[32, 33,216

34, 9]. In contrast, our method allows non-zero gradients within this interval, and the ∂φθ(S
l(t))

∂Sl(t)
can217
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Table 2: Comparison with the baselines and previous work on static datasets: CIFAR-10 and CIFAR-
100. Conventions align with those in Table 1. The default PM variant is v1.

Methods
[Architecture]

Time
Step

CIFAR-10 CIFAR-100
Acc
(%)

Acc
(%)

STBP-tdBN [33] [ResNet-19] 4 92.92 70.86
TET [32] [ResNet-19] 4 94.44 74.47
SDTV1[5][SDT-2-512] 4 95.60 78.40

QKformer [3] [HST-4-384] 4 96.18 # 81.15 #

SpikformerV1 [2] [Spikformer-4-384] 2 93.59 76.28
4 95.19 77.86

SpikformerV1(ours)[Spikformer-4-384] 2 93.65 75.29
4 94.73 77.88

TDFormer[Spikformer-4-384] 2 94.17 (+0.52) 75.79 (+0.50)
4 95.11 (+0.38) 77.99 (+0.11)

SDTV1(ours)[SDT-2-256] 4 94.47 76.05
SDTV1(ours)[SDT-2-512] 4 95.78 79.15

TDFormer[SDT-2-256] 4 94.61 (+0.14) 76.23 (+0.18)
TDFormer[SDT-2-512] 4 96.07 (+0.29) 79.67 (+0.52)
TDFormer [HST-4-384] 4 96.51 (+0.33)* 81.45 (+0.30)*

exceed 1− 1
τ . This property helps to alleviate the vanishing gradient problem along the temporal218

dimension. The detailed proof is provided in the appendix B.3.219

5 Experiments220

We evaluate our models on several datasets: CIFAR-10 [35], CIFAR-100 [35], CIFAR10-DVS [36],221

DVS128 Gesture [37], ImageNet [38], CIFAR-10C [39] and ImageNet-C [39]. For the smaller222

datasets, we employ the feedback pathway on SpikformerV1 [2] , Spike-driven TransformerV1 [5]223

and QKformer[3], experimenting with different configurations tailored to each dataset. For the large-224

scale datasets, we utilize QKformer[3] as baselines. Specific implementation details are provided in225

appendix A.226

5.1 Experiments on ImageNet227

Table 1 presents the results for the large-scale dataset ImageNet. The incorporation of top-down228

feedback structure has demonstrated significant improvements on E-spikformer, which is the previous229

SOTA model of SNNs. Notably, compared to QKFormer, increasing the model size by merely 0.02230

million parameters and 0.59 millijoules of power consumption leads to a significant gain of 1.15%231

in top-1 accuracy on the ImageNet dataset. Our model sets a new SOTA performance in the SNN232

field. This milestone lays a solid foundation for advancing SNNs toward large-scale networks, further233

bridging the gap between SNNs and traditional deep learning models. Furthermore, we calculate the234

power of TDFormer following the method in [3], as detailed in Table 1. TDFormer results in a slight235

increase in energy consumption due to the feedback structure, but it achieves superior performance236

with minimal additional power usage. The detailed calculation of power consumption is provided in237

the appendix C.1.238

5.2 Experiments on Neuromorphic and CIFAR Datasets239

Table 3 presents the results for the neuromorphic datasets CIFAR10-DVS and DVS128 Gesture. Our240

proposed TDFormer consistently outperforms the baselines across all experiments, except for the241

Spiking Transformer-2-256 at a time step of 10. Furthermore, we achieve SOTA results, with an242

accuracy of 85.83% on CIFAR10-DVS using the HST-2-256 (V1), marking a notable improvement243

8



Table 3: Comparison with the baselines and previous work on the Neuromorphic Dataset. Conventions
align with those in Table 1. The default PM variant is v1.

Methods [Architecture]
CIFAR10-DVS DVS128 Gesture

Time
Step

Acc
(%)

Time
Step

Acc
(%)

STBP-tdBN [33] [ResNet-19] 10 67.80 40 96.90
DSR [40] [VGG-11] 10 77.30 - -

SDTV1 [5][SDT-2-256] 16 80.00 16 99.30 #

SpikformerV1 [2] [Spikformer-2-256] 10 78.90 10 96.90
16 80.90 16 98.30

Spikingformer [4] [Spikingformer-2-256] 10 79.90 10 96.20
16 81.30 16 98.30

Qkformer [3] [HST-2-256] 16 84.00 # 16 98.60

SpikformerV1(ours) [Spikformer-2-256] 10 78.08 - -
16 79.40 - -

TDFormer [Spikformer-2-256] 10 78.90 (+0.82) - -
16 81.70 (+2.30) - -

SDTV1(ours) [SDT-2-256] 10 75.22 10 96.79
16 77.07 16 97.98

TDFormer[SDT-2-256] 10 75.05 (-0.17) 10 96.92 (+0.13)
16 77.45 (+0.38) 16 99.65 (+1.67)*

TDFormer[HST-2-256] 16 85.83 (+1.83)* 16 98.96 (+0.36)

of 1.83% compared to the previous SOTA model, QKformer. We also achieve 99.65% accuracy on244

DVS128 Gesture using the Spiking Transformer-2-256 (V1) at 16 time steps.245

In addition, the results for the static datasets CIFAR-10 and CIFAR-100 are summarized in Table 2.246

Compared to the baselines, the proposed TDFormer consistently demonstrates significant performance247

improvements across all experiments, with the exception of Spikformer-4-384 (V1) at time step248

6. Furthermore, we achieve the SOTA performance, attaining 96.51% accuracy on CIFAR-10 and249

81.45% on CIFAR-100 using the HST-2-256 (V1) at a time step of 4.250

5.3 Model Generalization Analysis251

As reported in Table 5, we report results averaged over five random seeds for reliability. Our model252

consistently improves performance across time steps and depths. To assess robustness, we evaluate253

on the CIFAR-10C dataset with 15 corruption types. As shown in Table 7, the model equipped with254

the TDAC module consistently achieves higher accuracy under various distortion settings.255

Moreover, we provide a visualization analysis of the TDFormer attention modules on CIFAR-10C256

and ImageNet-C. The specific results can be seen in Figure 4 and Figure 5 of the appendix C. We257

find that after adding the TDAC module, the model focuses more on the targets and their surrounding258

areas. This indicates that TDAC can filter noise and irrelevant information, allowing the model to259

focus more on task-related information.260

6 Conclusion261

In this study, we propose TDFormer, which integrates an adaptive top-down feedback structure into262

Transformer-based SNNs, addressing a key limitation of temporal information utilization in existing263

models by incorporating biological top-down mechanisms. The TDFormer model outperforms264

traditional Transformer-based SNNs, achieving SOTA performance across all evaluated datasets. Our265

work suggests that the top-down feedback structure could be a valuable component for Transformer-266

based SNNs and offers insights for future research into more advanced, biologically inspired neural267

architectures that better mimic human cognition.268
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A Implementation Details395

A.1 Training Protocols396

We adopted the following training protocols:397

• Spike Generation: We used a rate-based method for spike generation [2].398

• Data Augmentation and Training Duration: SpikformerV1 experiments followed [2],399

while Spike-driven TransformerV1 experiments followed [5], furthermore QKformer experi-400

ments followed the experimental setting in and [3].401

• Optimization: We employed AdamW [41] as the optimizer for our experiments. The402

learning rate was set to 3× 10−4 for the Spike-driven TransformerV1. For SpikformerV1,403

we used a learning rate of 5 × 10−4 on static datasets and 1 × 10−3 on neuromorphic404

datasets. Additionally, we utilized a cosine learning rate scheduler to adjust the learning405

rate dynamically during training. Specifically, for QKformer, we fine-tuned the pretrained406

network with a base learning rate of 2× 10−5 for 15 epochs, due to the high cost of direct407

training on ImageNet using 4 time steps.408

• Batch Size: The batch sizes for different datasets and models are specified in Table 4.

Table 4: Batch sizes for different datasets and models.

Dataset Model Batch Size
CIFAR-10 and

CIFAR-100
SpikeformerV1 128

Spike-driven TransformerV1 64

CIFAR10-DVS and
DVS128 Gesture

SpikeformerV1 16
Spike-driven TransformerV1 16

ImageNet QKformer 57

409

A.2 Datasets410

Our experiments evaluated the performance and robustness of the TDFormer model using the411

following datasets:412

• CIFAR-10: This dataset contains 60,000 32× 32 color images divided into 10 classes [35].413

• CIFAR-100: This dataset is similar to CIFAR-10 but includes 100 classes, providing a more414

challenging classification task [35].415

• CIFAR10-DVS: This is an event-based version of the CIFAR-10 dataset [36].416

• DVS128 Gesture: This is an event-based dataset for gesture recognition with 11 classes417

[37].418

• ImageNet: This large-scale dataset contains over 1.2 million images divided into 1,000419

classes [38].420

• CIFAR-10C: This is a corrupted version of CIFAR-10 with 19 common distortion types,421

used to assess robustness [39].422

• ImageNet-C: This dataset is a corrupted version of ImageNet, designed similarly to CIFAR-423

10C [39].424

A.3 Computational Environment425

A.3.1 Software Setup426

We utilized PyTorch version 2.0.1 with CUDA 11.8 support and SpikingJelly version 0.0.0.0.12 as427

the primary software tools.428
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A.3.2 Hardware Setup.429

For the smaller dataset experiments, we utilized the following configuration:430

• Hardware Used: NVIDIA L40S and L40 GPUs.431

• Configuration: Single-GPU for each experiment.432

• Memory Capacity: Each GPU is equipped with 42 GB of memory.433

For the large-scale dataset (ImageNet) experiments, we employed the following setup:434

• Hardware Used: NVIDIA H20 GPUs.435

• Configuration: Eight-GPU for each experiment.436

• Memory Capacity: Each GPU provides 96 GB of memory.437

A.4 Random Seed438

To ensure the comparability of the results, we selected the same random seeds as those in the baseline439

paper. To ensure robustness, we also conducted experiments with random seeds 0, 42, 2024, 3407440

and 114514, averaging the results. Detailed results are presented in Table 5.441

B Mathematical Derivations442

B.1 Detailed proofs of the upper bound on PM output variance443

Proof. We assume that each Mspatial(t, n) is an independent random variable Mtn. Given that444

b ≤ Mtn ≤ a, it follows that b ≤ E[Mtn] ≤ a. Furthermore, when Xtnc ̸= 0, we have:445

(XtncMtn − b)(a−XtncMtn) ≥ 0, (26)

which expands to:446

−(XtncMtn)
2 + (a+ b)(XtncMtn)− ab ≥ 0. (27)

Taking the expectation on both sides yields:447

E
[
(XtncMtn)

2
]
≤ (a+ b)E [XtncMtn]− ab. (28)

Using the Law of Total Variance, we can decompose the variance of Ytnc as:448

Var(Ytnc) = E[Var(Ytnc|Xtnc)] + Var(E[Ytnc|Xtnc]). (29)

For the first term, the expectation of the conditional variance can be expressed as:449

E[Var(Ytnc|Xtnc)] = f · Var(Ytnc|Xtnc = 1) + (1− f) · Var(Ytnc|Xtnc = 0). (30)

For the second term, the variance of the conditional expectation can be expanded as:450

Var(E[Ytnc|Xtnc]) = E[E[Ytnc|Xtnc]
2]− E[E[Ytnc|Xtnc]]

2. (31)

By substituting the conditional probabilities, we have:451

Var(E[Ytnc|Xtnc]) = f · E[Ytnc|Xtnc = 1]2 − f2 · E[Ytnc|Xtnc = 1]2. (32)

Combining the two terms, the total variance becomes:452

Var(Ytnc) = f · Var(Ytnc|Xtnc = 1) + (f − f2) · E[Ytnc|Xtnc = 1]2. (33)

From Equation 32, we define E[Ytnc|Xtnc = 1] = µ. Substituting this definition, the variance can be453

rewritten as:454

Var(Ytnc) = f · (E[Y 2
tnc|Xtnc = 1]− µ2) + (f − f2) · µ2. (34)

Using the constraints b ≤ Mtn ≤ a, we have the following bound for Var(Ytnc|Xtnc = 1):455

Var(Ytnc|Xtnc = 1) ≤ (a+ b)µ− ab− µ2. (35)
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By substituting this into the total variance expression, the upper bound of Var(Ytnc) becomes:456

Var(Ytnc) ≤ f · ((a+ b)µ− ab− µ2) + (f − f2) · µ2

≤ −f2 ·
(
µ− a+ b

2f

)2

+
a2 + 2ab+ b2 − 4fab

4
. (36)

Next, we will prove that this upper bound can be achieved with equality under specific conditions.457

Case 1: When a+b
2a ≤ f ≤ 1, we assume that:458

E[Ytnc|Xtnc = 1] =
a+ b

2f
, Mtn = a or b. (37)

Here, Mtn is a binary random variable, taking the value a with probability p and the value b with459

probability 1−p. Using this assumption, we can express the conditional expectation E[Ytnc|Xtnc = 1]460

as:461

E[Ytnc|Xtnc = 1] = pa+ (1− p)b. (38)

Substituting E[Ytnc|Xtnc = 1] = a+b
2f into the above equation, we solve for p:462

pa+ (1− p)b =
a+ b

2f
⇒ p =

a+ b− 2bf

2f(a− b)
. (39)

The variance of Ytnc under this distribution is maximized when Mtn follows this binary distribution.463

Substituting p into the variance formula, the maximum variance is given by:464

max(Var(Ytnc)) =
a2 + 2ab+ b2 − 4fab

4
. (40)

Case 2: When 0 ≤ f ≤ a+b
2a , the upper bound is achieved when Mtn = a. In this scenario, Mtn is465

deterministic, and therefore:466

Ytnc = XtncMtn = Xtnca, E[Ytnc|Xtnc = 1] = a. (41)

Substituting this into the variance formula, the maximum variance simplifies to:467

max(Var(Ytnc)) = a2(f2 − f + 1/2) + ab(1− 2f) + b2/2. (42)

The proof is now complete.468

We observe that both SSA and QKTA exhibit significantly larger variance compared to our proposed469

attention mechanism. Their variances are expressed as follows:470

Variance of QKTA:471

Var(QKTA) = dfQ(1− fQ), (43)
where d is the feature dimension, and fQ represents the firing rate of the query.472

Variance of SSA:473

Var(SSA) = Nd
(
fQfKfV (1− fQ)(1− fK)(1− fV )

+ fQfKf2
V (1− fQ)(1− fK)

+ fQf
2
KfV (1− fQ)(1− fV )

+ f2
QfKfV (1− fK)(1− fV )

+ fQf
2
Kf2

V (1− fQ)

+ f2
QfKf2

V (1− fK)

+ f2
Qf

2
KfV (1− fV )

)
, (44)

where N is the number of spatial locations, d is the feature dimension, and fQ, fK , fV are the firing474

rates of the query, key, and value.475
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Comparison with Our Attention Mechanism: The variance of QKTA scales linearly with d.476

By contrast, the variance of SSA grows with both N and d, resulting in significantly larger values477

compared to QKTA. Our proposed attention mechanism is particularly effective in scenarios with large478

spatial (N ) and feature (d) dimensions. The strict upper bound on output variance ensures numerical479

stability, preventing vanishing during training. Additionally, this upper bound eliminates the need480

for traditional scaling operations (e.g., scaling factors in QK products), simplifying computations,481

reducing complexity, and enhancing energy efficiency.482

B.2 The mathematical properties of hyperparameters483

Next, we will analyze the expectation and variance of the PM and propose an appropriate selection of484

hyperparameters to ensure output stability.485

Lemma B.1. if the set {c ∈ N : wc = 0} is finite and ∃ m,M > 0, ∀ c ∈ N, m ≤ |wc| ≤ M , then:486

w′
c = lim

C→∞

wc√∑C
c=1 w

2
c

= 0 (45)

Proof. We begin by defining the normalized weight:487

w′
c =

wc√∑C
c=1 w

2
c

. (46)

By assumption, there are k terms where wc = 0, and for the remaining C − k terms, the weights488

satisfy:489

m2 ≤ w2
c ≤ M2 for all c. (47)

Thus, the sum of squares of the weights is bounded as follows:490

(C − k)m2 ≤
C∑

c=1

w2
c ≤ (C − k)M2. (48)

Taking the square root, we find that the denominator grows as:491 √√√√ C∑
c=1

w2
c ≥

√
(C − k)m2 ∼ O(

√
C). (49)

Using the bound |wc| ≤ M , the normalized weight w′
c satisfies:492

|w′
c| =

|wc|√∑C
c=1 w

2
c

≤ M√∑C
c=1 w

2
c

≤ M√
(C − k)m2

. (50)

To ensure |w′
c| < ϵ for a given ϵ > 0, it suffices to require:493

M√
(C − k)m2

< ϵ. (51)

Rearranging, this condition can be rewritten as:494

C ≥ M2

m2ϵ2
+ k. (52)

As C → ∞, the condition C ≥ M2

m2ϵ2 + k is always satisfied. Thus, for any ϵ > 0, we have |w′
c| < ϵ,495

which implies:496

lim
C→∞

w′
c = 0. (53)

The proof is complete.497
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Lemma B.2. We assume that the features across different channels are independent and identically498

distributed (i.i.d.). When the number of channels C is large, we have:499

Mtn ∼ N

(
C∑

c=1

w′
cfr,

C∑
c=1

w′2
c fr(1− fr)

)
, C → ∞, (54)

500

Mtn =

C∑
c=1

xtncw
′
c. (55)

where x ∈ X , x ∼ Bernoulli(fr), fr represents the firing rate (the probability of xtnc = 1).501

Proof. To prove this lemma, we use the characteristic function method. The characteristic function502

of a Bernoulli random variable xtnc is given by:503

Φxtnc(t) = E
[
eitxtnc

]
= fre

it + (1− fr). (56)

For the weighted variable w′
cxtnc, its characteristic function is:504

Φw′
cxtnc(t) = E

[
eitw

′
cxtnc

]
= fre

itw′
c + (1− fr). (57)

Since the features across channels are independent, the characteristic function of Mtn is:505

ΦMtn
(t) =

C∏
c=1

Φw′
cxtnc

(t). (58)

Substituting the expression for Φw′
cxtnc

(t):506

ΦMtn(t) =

C∏
c=1

(
fre

itw′
c + (1− fr)

)
. (59)

fre
itw′

c + (1− fr) = fr

(
1 + itw′

c −
1

2
t2w′2

c + o(w′2
c )

)
+ (1− fr)

≈ 1 + fr(itw
′
c −

1

2
t2w′2

c ). (60)

Thus, the characteristic function becomes:507

ΦMtn
(t) ≈

C∏
c=1

(
1 + fr(itw

′
c −

1

2
t2w′2

c )

)
. (61)

Taking the logarithm to simplify the product into a sum:508

lnΦMtn
(t) =

C∑
c=1

ln

(
1 + fr(itw

′
c −

1

2
t2w′2

c )

)

=

C∑
c=1

fritw
′
c −

1

2
t2w′2

c fr +
1

2
t2w′2

c f
2
r +O(w′2

c ), (62)

where we used ln(1 + x) = x− 1
2x

2 +O(x2) for small x.509

Separating terms, we get:510

lnΦMtn(t) ≈ it

C∑
c=1

w′
cfr −

1

2
t2

C∑
c=1

w′2
c fr(1− fr). (63)
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Exponentiating the logarithm gives:511

ΦMtn(t) = exp

(
it

C∑
c=1

w′
cfr −

1

2
t2

C∑
c=1

w′2
c fr(1− fr)

)
. (64)

This is the characteristic function of a normal distribution with:512

Mean: µ =

C∑
c=1

w′
cfr, (65)

Variance: σ2 =

C∑
c=1

w′2
c fr(1− fr). (66)

Since the characteristic function corresponds to a normal distribution, we conclude:513

Mtn ∼ N

(
C∑

c=1

w′
cfr,

C∑
c=1

w′2
c fr(1− fr)

)
. (67)

The proof is complete.514

Lemma B.3. The distributions of Xtnc and Mtn can be considered independent when the number of515

channels C is large. Specifically, for all t1, t2 ∈ R, we have:516

ϕMtn,Xtnc(t1, t2) = ϕMtn(t1) · ϕXtnc(t2), C → ∞, (68)

where ϕX(t) represents the characteristic function of X .517

Proof. The joint characteristic function of Mtn and Xtnc is given by:518

ϕMtn,Xtnc
(t1, t2) = E

[
e(it1Mtn+it2Xtnc)

]
= E

[
e(it1

∑
c w′

cXtnc+it2Xtnc)
]
. (69)

Separating Xtnc and the sum
∑

i ̸=c w
′
iXtni, we rewrite:519

ϕMtn,Xtnc(t1, t2) = E
[
e(it1

∑
i̸=c w′

iXtni+iXtnc(t2+t1w
′
c))
]

= E
[
e(it1

∑
i̸=c w′

iXtni)
]
· E
[
e(iXtnc(t2+t1w

′
c))
]
. (70)

Using the independence of Xtni across channels:520

ϕMtn,Xtnc
(t1, t2) =

∏
i̸=c

E
[
e(it1w

′
iXtni)

]
· E
[
e(iXtnc(t2+t1w

′
c))
]
. (71)

Substituting the characteristic function of Bernoulli random variables Xtnc ∼ Bernoulli(f):521

E
[
eitXtnc

)
] = (1− f) + feit. (72)

Thus:522

ϕMtn,Xtnc
(t1, t2) =

∏
i ̸=c

[
(1− f) + feit1w

′
i

]
·
[
(1− f) + fei(t2+t1w

′
c)
]
. (73)

Using Lemma B.2, for small w′
c, we apply the Taylor expansion to approximate each term:523

(1− f) + feit1w
′
i ≈ 1 + f(it1w

′
i), (74)

(1− f) + fei(t2+t1w
′
c) ≈ (1− f) + feit2 . (75)
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Substituting back:524

ϕMtn,Xtnc(t1, t2) ≈
∏
i ̸=c

(1 + fit1w
′
i) ·
[
(1− f) + feit2

]
. (76)

Using Equation 59, Equation 72 and Taylor expansion, the product of the characteristic functions for525

the two distributions is:526

ϕXtnc
(t2)ϕMtn

(t1) = (1− f + feit2)

C∏
i=1

(1− f + feit1w
′
i)

= (1− f + feit2)

C∏
i=1

(1 + fit1w
′
i)

= (1− f + feit2)(1 + fit1w
′
c)
∏
i̸=c

(1 + fit1w
′
i)

= (1− f + feit2)
∏
i ̸=c

(1 + fit1w
′
i)

= ϕMtn,Xtnc(t1, t2) (77)

Thus, the joint characteristic function factorizes into the product of the marginal characteristic527

functions, which demonstrates that Mtn and Xtnc are asymptotically independent as C → ∞.528

Proposition B.4. If b ≈ 0, a ≥ 1, and the firing rate f is relatively small value, the PM output Ytnc529

satisfies:530

E(Ytnc) ≈
√

f(1− f)

2π
E(Xtnc) (78)

Var(Ytnc) ≈
f(π − f)

2π
Var(Xtnc) (79)

Proof. For convenience, we denote:531

µ =

C∑
c=1

w′
cf, σ2 =

C∑
c=1

w′2
c f(1− f) = f(1− f), M ′

tn = clamp(Mtn, b, a). (80)

According to Lemma B.2, the input distribution satisfies:532

Mtn ∼ N (µ, σ2). (81)

The expectation of the clamped variable M ′
tnc is:533

E(M ′
tn) =

∫ ∞

−∞
xf(x)dx

=
1√
2πσ2

∫ a

0

x exp

(
− (x− µ)2

2σ2

)
dx+

a√
2πσ2

∫ ∞

a

exp

(
− (x− µ)2

2σ2

)
dx. (82)

For the first term, let t = (x− µ)2, if µ ≈ 0, then:534

1√
2πσ2

∫ a

0

x exp

(
− (x− µ)2

2σ2

)
dx

=
1

2
√
2πσ2

∫ (a−µ)2

µ2

exp

(
− t

2σ2

)
dt+

µ√
2πσ2

∫ a

0

exp

(
− (x− µ)2

2σ2

)
dx

=
−σ√
2πσ

[
exp

(
− t

2σ2

)](a−µ)2

µ2

+ µ

(
Φ

(
a− µ

σ

)
− Φ

(
−µ

σ

))
≈ σ√

2π

(
1− exp

(
− a2

2σ2

))
. (83)
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where Φ(x) is the CDF of the standard normal distribution. The second term in the expectation is535

straightforward:536

a√
2πσ2

∫ ∞

a

exp

(
− (x− µ)2

2σ2

)
dx =

a√
2πσ2

∫ ∞

a−µ

exp

(
− t2

2σ2

)
dt, (84)

Using the cumulative distribution function (CDF) again:537

a√
2πσ2

∫ ∞

a−µ

exp

(
− t2

2σ2

)
dt = a

(
1− Φ

(
a− µ

σ

))
≈ a

(
1− Φ

( a
σ

))
(85)

The Φ( aσ ) and exp(− a2

2σ2 ) function decay rapidly as σ decreases. Now, combining the results from538

the two integrals, we have:539

E(M ′
tn) =

σ√
2π

− σ√
2π

exp

(
− a2

2σ2

)
+ a

(
1− Φ

(
a− µ

σ

))
≈ σ√

2π
(86)

Based on B.3, we calculate the expectation and variance of M ′2
tn:540

E(M ′2
tn) =

∫ ∞

−∞
x2f(x)dx

=
1√
2πσ2

∫ a

0

x2 exp

(
− x2

2σ2

)
dx+ a2 ·

∫ ∞

a

f(x)dx. (87)

We calculate the first term using integration by parts. Let:541

u = x, dv = x exp

(
− x2

2σ2

)
dx, du = dx, v = −σ2 exp

(
− x2

2σ2

)
. (88)

Then:542

1√
2πσ2

∫ a

0

x2 exp

(
− x2

2σ2

)
dx

=
1√
2πσ2

([
−σ2x exp

(
− x2

2σ2

)]a
0

+ σ2

∫ a

0

exp

(
− x2

2σ2

)
dx

)
=

1√
2πσ2

(
−σ2a exp

(
− a2

2σ2

)
+ σ2

∫ a

0

exp

(
− x2

2σ2

)
dx

)
. (89)

The remaining integral is a standard normal distribution integral:543

σ2

√
2πσ2

∫ a

0

exp

(
− x2

2σ2

)
dx = σ2

(
Φ
( a
σ

)
− 1

2

)
, (90)

where Φ(x) is the CDF of the standard normal distribution.544

Substituting (90) into (89):545

1√
2πσ2

∫ a

0

x2 exp

(
− x2

2σ2

)
dx =

−aσ√
2π

exp

(
− a2

2σ2

)
+ σ2

(
Φ
( a
σ

)
− 1

2

)
. (91)

The second term is the tail of the normal distribution:546 ∫ ∞

a

f(x)dx = Φ
(
− a

σ

)
, (92)

we have:547

a2 ·
∫ ∞

a

f(x)dx = a2Φ
(
− a

σ

)
. (93)
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Combining (91) and (93) into (87), we get:548

E(M ′2
tn) =

−aσ√
2π

exp

(
− a2

2σ2

)
+ σ2

(
Φ
( a
σ

)
− 1

2

)
+ a2Φ

(
− a

σ

)
≈ σ2

2
. (94)

Since Φ
(
− a

σ

)
is exponentially small for moderate a, the term a2Φ

(
− a

σ

)
is negligible compared to549

leading terms and is often omitted for simplicity.550

Using Var(M ′
tn) = E(M ′2

tn)− E(M ′
tn)

2, we calculate:551

Var(M ′
tn) ≈

σ2

2
−
[

σ√
2π

(
1− exp

(
− a2

2σ2

))]2
≈ π − 1

2π
σ2

=
π − 1

2π
f(1− f). (95)

Given that Ytnc = M ′
tnc ·Xtnc, and based on Lemma B.3 that the distributions of Xtncand M ′

tncan552

be considered independent, the expectation of Ytnc is:553

E(Ytnc) = E(M ′
tn) · E(Xtnc)

≈
√

f(1− f)

2π
E(Xtnc). (96)

The variance of Ytnc is computed as:554

Var(Ytnc) = Var(M ′
tn) · Var(Xtnc) + Var(M ′

tn) · E(Xtnc)
2 + Var(Xtnc) · E[M ′

tn]
2

=
f(π − f)

2π
f(1− f)

≈ f(π − f)

2π
Var(Xtnc). (97)

Thus, the proposition is proven:555

E(Ytnc) ≈
√

f(1− f)

2π
E(Xtnc), Var(Ytnc) ≈

f(π − f)

2π
Var(Xtnc). (98)

556

In practice, we recommend setting the hyperparameters as follows: b = 0 and a ∈ [1, 2]. Setting557

b = 0 allows the processing module to completely eliminate certain features in the spatial domain.558

Furthermore, selecting a ∈ [1, 2] enables the processing module to selectively enhance specific spatial559

features. This also ensures that both the mean and variance do not become too large or too small,560

maintaining the numerical stability.561

B.3 Gradient Analysis562

This section on the derivation of the traditional SNN network is mainly referenced from [40, 7, 8].563

First, we derive the temporal gradient of the traditional SNN network, where the temporal gradient564

is primarily backpropagated through the membrane potential. Taking the vanilla LIF neuron as an565

example, we use the following form to analyze the gradient problem:566

Hl(t+ 1) =

(
1− 1

τ

)(
Hl(t)− ϑSl(t)

)
+WlSl−1(t+ 1), (99)

The derivative of the loss with respect to the weights Wl is:567

∇WlL =

T−1∑
t=0

∂L
∂Hl(t)

⊤
Sl−1[t]⊤, l = L,L− 1, · · · , 1, (100)
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The gradient expression can be written as:568

∂L
∂Hl(t)

=
∂L

∂Hl+1(t)

∂Hl+1(t)

∂Sl(t)

∂Sl(t)

∂Hl(t)︸ ︷︷ ︸
Spatial Gradient

+

T−1∑
t′=t+1

∂L
∂Hl+1 (t′)

∂Hl+1 (t′)

∂Sl (t′)

∂Sl (t′)

∂Hl (t′)

t′−t∏
t′′=1

ϵL (t′ − t′′)︸ ︷︷ ︸
Temporal Gradient

, l < L, (101)

569

∂L
∂Hl(t)

=
∂L

∂Sl(t)

∂Sl(t)

∂Hl(t)︸ ︷︷ ︸
Spatial Gradient

+

T−1∑
t′=t+1

∂L
∂Sl (t′)

∂Sl (t′)

∂Hl (t′)

t′−t∏
t′′=1

ϵL (t′ − t′′)︸ ︷︷ ︸
Temporal Gradient

, l = L, (102)

ϵLis defined as the sensitivity of the membrane potential H l(t+ 1) with respect to H l(t) between570

adjacent timesteps.571

ϵl(t) ≡ ∂Hl(t+ 1)

∂Hl(t)
+

∂Hl(t+ 1)

∂Sl(t)

∂Sl(t)

∂Hl(t)
. (103)

If we use a simple rectangular function as a surrogate for the gradient.572

ϵl(t)jj =

{
0, 1

2ϑ < H l
j(t) <

3
2ϑ,

1− 1
τ , otherwise .

(104)

From the above equation, it can be concluded that if the membrane potential approaches the threshold573

at any given timestep, the temporal gradient
∏t′−t

t′′=1 ϵ
L (t′ − t′′) will vanish. This highlights a574

common issue with temporal gradients in the vanilla LIF model, which remains a problem even with575

short timesteps.576

Next, we perform gradient analysis on neurons with a feedback structure. Assume the structure of the577

feedback is φ, which includes PM and CM.578

Hl(t+ 1) =

(
1− 1

τ

)(
Hl(t)− ϑSl(t)

)
+WlSl−1(t+ 1) + φθ(S

l(t)) (105)

Following the above derivation, we similarly define the variable ϵ:579

ϵl(t) ≡ ∂Hl(t+ 1)

∂Hl(t)
+

∂Hl(t+ 1)

∂Sl(t)

∂Sl(t)

∂Hl(t)
+

∂Hl(t+ 1)

∂φθ(Sl(t))

∂φθ(S
l(t))

∂Sl(t)

∂Sl(t)

∂Hl(t)︸ ︷︷ ︸
Feedback gradient

(106)

580

ϵl(t) =

(
1− 1

τ

)
−
(
1− 1

τ

)
ϑ · ∂Sl(t)

∂Hl(t)
+

∂φθ(S
l(t))

∂Sl(t)

∂Sl(t)

∂Hl(t)
(107)

Similarly we have:581

ϵl(t)jj =

{
∂φθ(S

l(t))
∂Sl(t)

, 1
2ϑ < H l

j(t) <
3
2ϑ,

1− 1
τ , otherwise .

(108)

Then, in training, ∂φθ(S
l(t))

∂Sl(t)
is not possible to be zero.582

C Supplementary Results583

C.1 Energy Consumption Calculation of TDFormer584

This section is mainly referenced from [3]. We calculate the number of Synaptic Operations (SOPs)585

of spike before calculating theoretical energy consumption for TDFormer.586

SOP = fr × T × FLOPs (109)
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Table 5: Results averaged across seeds: 0, 42, 2024, 3407 and 114514. Bold results indicate superior
performance compared to the baselines.

Methods Dataset/Time Step Architecture Baseline CM1+V1

SpikeformerV1

CIFAR-10/T = 2 Spikformer-2-384 94.18±0.06 94.07±0.07
CIFAR-10/T = 4 94.84±0.14 94.86±0.05
CIFAR-10/T = 2

Spikformer-4-384

93.65±0.23 94.05±0.14
CIFAR-100/T =2 75.25±0.19 75.99±0.12
CIFAR-10/T = 4 94.73±0.06 95.13±0.07
CIFAR-100/T = 4 77.56±0.22 77.60±0.26
CIFAR-10/T = 6 95.09±0.08 95.16±0.14
CIFAR-100/T = 6 78.21±0.22 77.99±0.05

CIFAR10-DVS/T = 10 78.08±0.70 78.13±0.72
CIFAR10-DVS/T= 16 79.40±0.36 80.20±0.75

SDTV1

CIFAR-10/T = 4 Spiking
Transformer-2-512

95.76±0.06 95.92±0.02
CIFAR-100/T =4 79.15±0.14 79.35±0.16
CIFAR-10/T = 4

Spiking
Transformer-2-256

94.47±0.11 94.64±0.04
CIFAR-100/T =4 76.15±0.13 76.26±0.13

DVS128 Gesture/T=10 96.79±0.67 96.92±0.29
DVS128 Gesture/T=16 97.98±0.59 99.04±0.28
CIFAR10-DVS/T = 10 75.03±0.67 75.05±0.11
CIFAR10-DVS/T = 16 77.07±0.19 77.45±0.43

where fr is the firing rate of the block and T is the simulation time step of spiking neuron. FLOPS587

refers to floating point operations of block, which is the number of multiply-and-accumulate (MAC)588

operations and SOP is the number of spike-based accumulate (AC) operations.589

ETDFormer = EBaseline + EAC × (SOPPM + SOPCM) (110)

The channel-wise token mixer in TDFormer is highly power-efficient, consisting of only a linear590

layer, a LIF neuron, and a BN layer. The BN parameters can be fused into the linear layer via591

reparameterization, making its power consumption negligible. The linear layer maintains a constant592

channel dimension, resulting in much lower power usage than conventional MLPs. Furthermore, the593

spatial-wsie token mixer in PM has a time complexity of only O(ND), which is much lower than594

the O(N2D) of SSA. In the CM module, although a token mixer is used, the firing rates in both PM595

and CM are very low. In our experiments, we observed that the firing rate in both modules remains596

around 0.05. As a result, the overall power overhead of TDFormer is marginal.597

C.2 Additional Experiments and Visualizations598
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Table 6: Results of different TDFormer variants. The results in bold indicate superior performance
compared to the baseline. The default configuration used in our work is indicated by *. CM1-CM3
denote different strategies for integrating top-down information with bottom-up features. CM1: Std

is fused into the computation of the attention map. CM2: Std is fused into the value of self-attention.
CM3:Std is incorporated into the input of the attention module.

Model Type
SpikeformerV1

(Spikformer-4-384)
SDTV1

(Spiking Transformer-2-256)

Acc (%) FLOPs (G) Param (M) Acc (%) FLOPs (G) Param (M)

Baseline 94.73 3.71 9.33 94.47 1.25 2.57
*CM1+V1 95.14 3.88 9.92 94.77 1.31 2.69
CM1+V2 94.79 3.88 9.92 94.93 1.31 2.69
CM1+V3 94.90 3,88 9.92 94.61 1.31 2.69
CM1+V4 94.94 3.88 9.92 94.88 1.31 2.69
CM2+V1 94.88 3.88 9.92 94.73 1.31 2.69
CM2+V2 94.75 3.88 9.92 94.79 1.31 2.69
CM2+V3 94.70 3.88 9.92 94.75 1.31 2.69
CM2+V4 95.27 3.88 9.92 94.66 1.31 2.69
CM3+V1 94.69 3.90 9.92 94.43 1.32 2.69
CM3+V2 94.89 3.90 9.92 94.69 1.32 2.69
CM3+V3 94.35 3.90 9.92 93.94 1.32 2.69
CM3+V4 94.90 3.90 9.92 94.61 1.32 2.69

Figure 3: This is the histogram of the gradient of the surrogate function for LIF neurons in the
attention module within the PM model. From the figure, we can see that the clamp operation ensures
that the variance in the attention map does not become too large, thus preventing the vanishing
gradient problem.
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Figure 4: Visualization of CIFAR-10C. This figure showcases 19 columns corresponding to 19
different types of corruptions. Each column contains four images: the top image displays the original
CIFAR-10C image; the second image shows the visualization result of the baseline model; the third
image illustrates the first feedforward stage of the TDFormer model; the fourth image depicts the
second feedforward stage of the TDFormer model, demonstrating the model’s dynamic attention
adjustments across stages.
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Figure 5: Visualization of ImageNet-C. This figure showcases 19 columns corresponding to 19
different types of corruptions. The layout and visualization style are similar to those shown in Figure
4.

26



Table 7: Robustness comparison on the CIFAR-10C dataset. The results in bold indicate superior
performance compared to the baseline. Average performance across different distortion types is
indicated by *.

Corruption
Type

SpikformerV1
/TDFormer Time

Step

SpikformerV1
/TDFormer Corruption

Type
Acc (%) Acc (%)

Brightness
91.32/91.27 (-0.05) 1 76.23/76.97 (+0.74)

Motion Blur91.87/91.94 (+0.06) 2 77.00/78.30 (+1.30)
93.14/93.29 (+0.15) 4 79.44/80.01 (+0.57)

Contrast
69.93/70.40 (+0.47) 1 79.31/79.51 (+0.20)

Pixelate70.41/71.25 (+0.84) 2 78.70/78.67 (-0.03)
77.06/76.57 (-0.49) 4 81.14/81.45 (+0.31)

Defocus Blur
80.59/80.83 (+0.24) 1 87.33/87.10 (-0.23)

Saturate81.39/82.15 (+0.76) 2 88.30/88.44 (+0.14)
82.88/82.75 (-0.13) 4 90.58/90.60 (+0.02)

Elastic Transform
84.00/84.05 (+0.05) 1 69.63/70.68 (+1.05)

Shot Noise84.10/84.63 (+0.53) 2 70.96/71.09 (+0.13)
85.54/85.52 (-0.02) 4 73.23/73.32 (+0.09)

Fog
84.29/85.22 (+0.93) 1 84.47/84.71 (+0.24)

Snow85.09/85.75 (+0.66) 2 84.72/84.72 (+0.00)
87.25/87.53 (+0.28) 4 86.90/87.18 (+0.28)

Frost
82.35/82.66 (+0.31) 1 88.20/88.03 (-0.17)

Spatter83.04/83.27 (+0.23) 2 87.58/87.71 (+0.13)
85.46/85.70 (+0.24) 4 89.14/89.02 (-0.12)

Gaussian Blur
73.33/74.05 (+0.72) 1 71.77/72.66 (+0.89)

Speckle Noise74.79/75.84 (+1.05) 2 72.66/72.64 (-0.02)
76.08/76.25 (+0.17) 4 75.10/75.37 (+0.27)

Gaussian Noise
61.35/62.71 (+1.36) 1 75.98/76.68 (+0.70)

Zoom Blur63.05/62.71 (-0.34) 2 77.60/78.75 (+1.15)
64.34/64.89 (+0.55) 4 78.68/79.14 (+0.46)

Impulse Noise
67.84/68.10 (+0.26) 1 57.86/58.26 (+0.40)

Glass Blur65.83/65.36 (-0.47) 2 56.09/55.81 (-0.28)
65.98/66.93 (+0.95) 4 59.43/60.46 (+1.03)

JPEG Compression
83.32/83.53 (+0.21) 1 78.11/78.55 (+0.44)

* Avg83.93/84.00 (+0.07) 2 78.52/78.84 (+0.32)
84.60/84.76 (+0.16) 4 80.53/80.78 (+0.25)

D Limitations, Future Work, and Broader Impacts599

D.1 Limitations600

Despite the promising enhancements introduced by our proposed TDFormer with top-down feedback601

structure for spiking neural networks, several limitations remain. First, the current feedback mecha-602

nism is specifically designed for Transformer-based architectures and may not be directly applicable603

to CNN-based SNNs, limiting its architectural generalizability. Second, our evaluation has so far604

been limited to image classification tasks, which may not fully reflect the method’s effectiveness in605

other domains such as object detection[42], semantic segmentation[43], and NLP tasks[44].606

D.2 Future Work607

Future work could focus on generalizing the proposed TDFormer architecture to other network back-608

bones, such as CNN-based spiking neural networks, thereby improving its architectural compatibility609
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and deployment flexibility. In addition, extending the evaluation of TDFormer to tasks such as object610

detection, semantic segmentation, and natural language processing would provide deeper insights611

into its generalization capacity across diverse domains and data modalities. Moreover, we observe612

that the proposed top-down feedback structure increases the diversity of spike patterns[10], which613

may contribute to the observed performance gains. Investigating the underlying relationship between614

spike diversity and task performance remains an important direction for future research.615

D.3 Broader Impacts616

This paper focuses on the fundamental research of spiking neural networks, introducing a top-down617

feedback structure that aims to enhance their performance. Generally, there are no negative societal618

impacts in this work.619
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NeurIPS Paper Checklist620

The checklist is designed to encourage best practices for responsible machine learning research,621

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove622

the checklist: The papers not including the checklist will be desk rejected. The checklist should623

follow the references and follow the (optional) supplemental material. The checklist does NOT count624

towards the page limit.625

Please read the checklist guidelines carefully for information on how to answer these questions. For626

each question in the checklist:627

• You should answer [Yes] , [No] , or [NA] .628

• [NA] means either that the question is Not Applicable for that particular paper or the629

relevant information is Not Available.630

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).631

The checklist answers are an integral part of your paper submission. They are visible to the632

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it633

(after eventual revisions) with the final version of your paper, and its final version will be published634

with the paper.635

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.636

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a637

proper justification is given (e.g., "error bars are not reported because it would be too computationally638

expensive" or "we were unable to find the license for the dataset we used"). In general, answering639

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we640

acknowledge that the true answer is often more nuanced, so please just use your best judgment and641

write a justification to elaborate. All supporting evidence can appear either in the main paper or the642

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification643

please point to the section(s) where related material for the question can be found.644

IMPORTANT, please:645

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",646

• Keep the checklist subsection headings, questions/answers and guidelines below.647

• Do not modify the questions and only use the provided macros for your answers.648

1. Claims649

Question: Do the main claims made in the abstract and introduction accurately reflect the650

paper’s contributions and scope?651

Answer: [Yes]652

Justification:The abstract and introduction clearly state our contributions in the field of653

spiking neural networks, including the discovery of limitation caused by SNN dynamics and654

the inspired improvement methods.655

Guidelines:656

• The answer NA means that the abstract and introduction do not include the claims657

made in the paper.658

• The abstract and/or introduction should clearly state the claims made, including the659

contributions made in the paper and important assumptions and limitations. A No or660

NA answer to this question will not be perceived well by the reviewers.661

• The claims made should match theoretical and experimental results, and reflect how662

much the results can be expected to generalize to other settings.663

• It is fine to include aspirational goals as motivation as long as it is clear that these goals664

are not attained by the paper.665

2. Limitations666

Question: Does the paper discuss the limitations of the work performed by the authors?667

Answer: [Yes]668
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Justification: We discussed the limitations of the proposed method in the appendix.669

Guidelines:670

• The answer NA means that the paper has no limitation while the answer No means that671

the paper has limitations, but those are not discussed in the paper.672

• The authors are encouraged to create a separate "Limitations" section in their paper.673

• The paper should point out any strong assumptions and how robust the results are to674

violations of these assumptions (e.g., independence assumptions, noiseless settings,675

model well-specification, asymptotic approximations only holding locally). The authors676

should reflect on how these assumptions might be violated in practice and what the677

implications would be.678

• The authors should reflect on the scope of the claims made, e.g., if the approach was679

only tested on a few datasets or with a few runs. In general, empirical results often680

depend on implicit assumptions, which should be articulated.681

• The authors should reflect on the factors that influence the performance of the approach.682

For example, a facial recognition algorithm may perform poorly when image resolution683

is low or images are taken in low lighting. Or a speech-to-text system might not be684

used reliably to provide closed captions for online lectures because it fails to handle685

technical jargon.686

• The authors should discuss the computational efficiency of the proposed algorithms687

and how they scale with dataset size.688

• If applicable, the authors should discuss possible limitations of their approach to689

address problems of privacy and fairness.690

• While the authors might fear that complete honesty about limitations might be used by691

reviewers as grounds for rejection, a worse outcome might be that reviewers discover692

limitations that aren’t acknowledged in the paper. The authors should use their best693

judgment and recognize that individual actions in favor of transparency play an impor-694

tant role in developing norms that preserve the integrity of the community. Reviewers695

will be specifically instructed to not penalize honesty concerning limitations.696

3. Theory assumptions and proofs697

Question: For each theoretical result, does the paper provide the full set of assumptions and698

a complete (and correct) proof?699

Answer: [Yes]700

Justification: The paper provides a complete proof of the proposed viewpoint and method.701

Guidelines:702

• The answer NA means that the paper does not include theoretical results.703

• All the theorems, formulas, and proofs in the paper should be numbered and cross-704

referenced.705

• All assumptions should be clearly stated or referenced in the statement of any theorems.706

• The proofs can either appear in the main paper or the supplemental material, but if707

they appear in the supplemental material, the authors are encouraged to provide a short708

proof sketch to provide intuition.709

• Inversely, any informal proof provided in the core of the paper should be complemented710

by formal proofs provided in appendix or supplemental material.711

• Theorems and Lemmas that the proof relies upon should be properly referenced.712

4. Experimental result reproducibility713

Question: Does the paper fully disclose all the information needed to reproduce the main ex-714

perimental results of the paper to the extent that it affects the main claims and/or conclusions715

of the paper (regardless of whether the code and data are provided or not)?716

Answer: [Yes]717

Justification: The method section provides a detailed introduction to the method proposed in718

this paper, which can be reproduced by referring to the experiment section and submitted719

code.720

Guidelines:721
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• The answer NA means that the paper does not include experiments.722

• If the paper includes experiments, a No answer to this question will not be perceived723

well by the reviewers: Making the paper reproducible is important, regardless of724

whether the code and data are provided or not.725

• If the contribution is a dataset and/or model, the authors should describe the steps taken726

to make their results reproducible or verifiable.727

• Depending on the contribution, reproducibility can be accomplished in various ways.728

For example, if the contribution is a novel architecture, describing the architecture fully729

might suffice, or if the contribution is a specific model and empirical evaluation, it may730

be necessary to either make it possible for others to replicate the model with the same731

dataset, or provide access to the model. In general. releasing code and data is often732

one good way to accomplish this, but reproducibility can also be provided via detailed733

instructions for how to replicate the results, access to a hosted model (e.g., in the case734

of a large language model), releasing of a model checkpoint, or other means that are735

appropriate to the research performed.736

• While NeurIPS does not require releasing code, the conference does require all submis-737

sions to provide some reasonable avenue for reproducibility, which may depend on the738

nature of the contribution. For example739

(a) If the contribution is primarily a new algorithm, the paper should make it clear how740

to reproduce that algorithm.741

(b) If the contribution is primarily a new model architecture, the paper should describe742

the architecture clearly and fully.743

(c) If the contribution is a new model (e.g., a large language model), then there should744

either be a way to access this model for reproducing the results or a way to reproduce745

the model (e.g., with an open-source dataset or instructions for how to construct746

the dataset).747

(d) We recognize that reproducibility may be tricky in some cases, in which case748

authors are welcome to describe the particular way they provide for reproducibility.749

In the case of closed-source models, it may be that access to the model is limited in750

some way (e.g., to registered users), but it should be possible for other researchers751

to have some path to reproducing or verifying the results.752

5. Open access to data and code753

Question: Does the paper provide open access to the data and code, with sufficient instruc-754

tions to faithfully reproduce the main experimental results, as described in supplemental755

material?756

Answer: [Yes]757

Justification: The dataset used in this article is publicly available, and the code will be made758

public to ensure that others can reproduce the experimental results.759

Guidelines:760

• The answer NA means that paper does not include experiments requiring code.761

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/762

public/guides/CodeSubmissionPolicy) for more details.763

• While we encourage the release of code and data, we understand that this might not be764

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not765

including code, unless this is central to the contribution (e.g., for a new open-source766

benchmark).767

• The instructions should contain the exact command and environment needed to run to768

reproduce the results. See the NeurIPS code and data submission guidelines (https:769

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.770

• The authors should provide instructions on data access and preparation, including how771

to access the raw data, preprocessed data, intermediate data, and generated data, etc.772

• The authors should provide scripts to reproduce all experimental results for the new773

proposed method and baselines. If only a subset of experiments are reproducible, they774

should state which ones are omitted from the script and why.775
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• At submission time, to preserve anonymity, the authors should release anonymized776

versions (if applicable).777

• Providing as much information as possible in supplemental material (appended to the778

paper) is recommended, but including URLs to data and code is permitted.779

6. Experimental setting/details780

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-781

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the782

results?783

Answer: [Yes]784

Justification: The appendix of the paper provides detailed experimental settings.785

Guidelines:786

• The answer NA means that the paper does not include experiments.787

• The experimental setting should be presented in the core of the paper to a level of detail788

that is necessary to appreciate the results and make sense of them.789

• The full details can be provided either with the code, in appendix, or as supplemental790

material.791

7. Experiment statistical significance792

Question: Does the paper report error bars suitably and correctly defined or other appropriate793

information about the statistical significance of the experiments?794

Answer: [Yes]795

Justification: The paper accurately presents error bars for the execution speed benchmark.796

Notably, our experiments involved comparing our method’s optimal performance with other797

approaches798

Guidelines:799

• The answer NA means that the paper does not include experiments.800

• The authors should answer "Yes" if the results are accompanied by error bars, confi-801

dence intervals, or statistical significance tests, at least for the experiments that support802

the main claims of the paper.803

• The factors of variability that the error bars are capturing should be clearly stated (for804

example, train/test split, initialization, random drawing of some parameter, or overall805

run with given experimental conditions).806

• The method for calculating the error bars should be explained (closed form formula,807

call to a library function, bootstrap, etc.)808

• The assumptions made should be given (e.g., Normally distributed errors).809

• It should be clear whether the error bar is the standard deviation or the standard error810

of the mean.811

• It is OK to report 1-sigma error bars, but one should state it. The authors should812

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis813

of Normality of errors is not verified.814

• For asymmetric distributions, the authors should be careful not to show in tables or815

figures symmetric error bars that would yield results that are out of range (e.g. negative816

error rates).817

• If error bars are reported in tables or plots, The authors should explain in the text how818

they were calculated and reference the corresponding figures or tables in the text.819

8. Experiments compute resources820

Question: For each experiment, does the paper provide sufficient information on the com-821

puter resources (type of compute workers, memory, time of execution) needed to reproduce822

the experiments?823

Answer: [Yes]824

Justification: The article provides the resource cost required for conducting experiments,825

further detailed information is provided in the code.826
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Guidelines:827

• The answer NA means that the paper does not include experiments.828

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,829

or cloud provider, including relevant memory and storage.830

• The paper should provide the amount of compute required for each of the individual831

experimental runs as well as estimate the total compute.832

• The paper should disclose whether the full research project required more compute833

than the experiments reported in the paper (e.g., preliminary or failed experiments that834

didn’t make it into the paper).835

9. Code of ethics836

Question: Does the research conducted in the paper conform, in every respect, with the837

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?838

Answer: [Yes]839

Justification: The research in this paper adheres to the NeurIPS Code of Ethics.840

Guidelines:841

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.842

• If the authors answer No, they should explain the special circumstances that require a843

deviation from the Code of Ethics.844

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-845

eration due to laws or regulations in their jurisdiction).846

10. Broader impacts847

Question: Does the paper discuss both potential positive societal impacts and negative848

societal impacts of the work performed?849

Answer: [NA]850

Justification: This paper focuses on the fundamental research of spiking neural networks,851

there are no negative societal impacts in this work.852

Guidelines:853

• The answer NA means that there is no societal impact of the work performed.854

• If the authors answer NA or No, they should explain why their work has no societal855

impact or why the paper does not address societal impact.856

• Examples of negative societal impacts include potential malicious or unintended uses857

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations858

(e.g., deployment of technologies that could make decisions that unfairly impact specific859

groups), privacy considerations, and security considerations.860

• The conference expects that many papers will be foundational research and not tied861

to particular applications, let alone deployments. However, if there is a direct path to862

any negative applications, the authors should point it out. For example, it is legitimate863

to point out that an improvement in the quality of generative models could be used to864

generate deepfakes for disinformation. On the other hand, it is not needed to point out865

that a generic algorithm for optimizing neural networks could enable people to train866

models that generate Deepfakes faster.867

• The authors should consider possible harms that could arise when the technology is868

being used as intended and functioning correctly, harms that could arise when the869

technology is being used as intended but gives incorrect results, and harms following870

from (intentional or unintentional) misuse of the technology.871

• If there are negative societal impacts, the authors could also discuss possible mitigation872

strategies (e.g., gated release of models, providing defenses in addition to attacks,873

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from874

feedback over time, improving the efficiency and accessibility of ML).875

11. Safeguards876

Question: Does the paper describe safeguards that have been put in place for responsible877

release of data or models that have a high risk for misuse (e.g., pretrained language models,878

image generators, or scraped datasets)?879
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Answer: [NA]880

Justification: This paper focuses on the fundamental research of spiking neural networks,881

which does not involve the development or release of data or models that have a high risk882

for misuse.883

Guidelines:884

• The answer NA means that the paper poses no such risks.885

• Released models that have a high risk for misuse or dual-use should be released with886

necessary safeguards to allow for controlled use of the model, for example by requiring887

that users adhere to usage guidelines or restrictions to access the model or implementing888

safety filters.889

• Datasets that have been scraped from the Internet could pose safety risks. The authors890

should describe how they avoided releasing unsafe images.891

• We recognize that providing effective safeguards is challenging, and many papers do892

not require this, but we encourage authors to take this into account and make a best893

faith effort.894

12. Licenses for existing assets895

Question: Are the creators or original owners of assets (e.g., code, data, models), used in896

the paper, properly credited and are the license and terms of use explicitly mentioned and897

properly respected?898

Answer: [Yes]899

Justification: The creators or original owners of the assets (such as code, data, and models)900

used in this paper have been properly credited. Their contributions have been explicitly901

mentioned in an appropriate manner. Additionally, the license and terms of use for each asset902

have been explicitly stated and adhered to, including obtaining any necessary permissions or903

authorizations.904

Guidelines:905

• The answer NA means that the paper does not use existing assets.906

• The authors should cite the original paper that produced the code package or dataset.907

• The authors should state which version of the asset is used and, if possible, include a908

URL.909

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.910

• For scraped data from a particular source (e.g., website), the copyright and terms of911

service of that source should be provided.912

• If assets are released, the license, copyright information, and terms of use in the913

package should be provided. For popular datasets, paperswithcode.com/datasets914

has curated licenses for some datasets. Their licensing guide can help determine the915

license of a dataset.916

• For existing datasets that are re-packaged, both the original license and the license of917

the derived asset (if it has changed) should be provided.918

• If this information is not available online, the authors are encouraged to reach out to919

the asset’s creators.920

13. New assets921

Question: Are new assets introduced in the paper well documented and is the documentation922

provided alongside the assets?923

Answer: [Yes]924

Justification: The experimental code will be made openly accessible, along with the neces-925

sary documents to facilitate reproducibility of the experimental results and utilization of the926

code for future work.927

Guidelines:928

• The answer NA means that the paper does not release new assets.929

• Researchers should communicate the details of the dataset/code/model as part of their930

submissions via structured templates. This includes details about training, license,931

limitations, etc.932
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• The paper should discuss whether and how consent was obtained from people whose933

asset is used.934

• At submission time, remember to anonymize your assets (if applicable). You can either935

create an anonymized URL or include an anonymized zip file.936

14. Crowdsourcing and research with human subjects937

Question: For crowdsourcing experiments and research with human subjects, does the paper938

include the full text of instructions given to participants and screenshots, if applicable, as939

well as details about compensation (if any)?940

Answer: [NA]941

Justification: This paper does not involve crowdsourcing experiments or research with942

human subjects.943

Guidelines:944

• The answer NA means that the paper does not involve crowdsourcing nor research with945

human subjects.946

• Including this information in the supplemental material is fine, but if the main contribu-947

tion of the paper involves human subjects, then as much detail as possible should be948

included in the main paper.949

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,950

or other labor should be paid at least the minimum wage in the country of the data951

collector.952

15. Institutional review board (IRB) approvals or equivalent for research with human953

subjects954

Question: Does the paper describe potential risks incurred by study participants, whether955

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)956

approvals (or an equivalent approval/review based on the requirements of your country or957

institution) were obtained?958

Answer: [Yes]959

Justification: The paper does not involve crowdsourcing nor research with human subjects.960

Guidelines:961

• The answer NA means that the paper does not involve crowdsourcing nor research with962

human subjects.963

• Depending on the country in which research is conducted, IRB approval (or equivalent)964

may be required for any human subjects research. If you obtained IRB approval, you965

should clearly state this in the paper.966

• We recognize that the procedures for this may vary significantly between institutions967

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the968

guidelines for their institution.969

• For initial submissions, do not include any information that would break anonymity (if970

applicable), such as the institution conducting the review.971

16. Declaration of LLM usage972

Question: Does the paper describe the usage of LLMs if it is an important, original, or973

non-standard component of the core methods in this research? Note that if the LLM is used974

only for writing, editing, or formatting purposes and does not impact the core methodology,975

scientific rigorousness, or originality of the research, declaration is not required.976

Answer: [NA]977

Justification: The LLM was only used for translation purposes and did not affect the core978

scientific methodology, analysis, or originality of the research.979

Guidelines:980

• The answer NA means that the core method development in this research does not981

involve LLMs as any important, original, or non-standard components.982

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)983

for what should or should not be described.984
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