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ABSTRACT

Continual Learning addresses the challenge of learning a number of different distri-
butions sequentially. The goal of maintaining knowledge of earlier distributions
without re-accessing them starkly conflicts with standard SGD training for artificial
neural networks. An influential method to tackle this are so-called regularisation
approaches. They measure the importance of each parameter for modelling a given
distribution and subsequently protect important parameters from large changes.
In the literature, three ways to measure parameter importance have been put for-
ward and they have inspired a large body of follow-up work. Here, we present
strong theoretical and empirical evidence that these three methods, Elastic Weight
Consolidation (EWC), Synaptic Intelligence (SI) and Memory Aware Synapses
(MAS), are all related to the Fisher Information. Only EWC intentionally relies
on the Fisher, while the other two methods stem from rather different motivations.
We find that for SI the relation to the Fisher — and in fact its performance — is due
to a previously unknown bias. Altogether, this unifies a body of regularisation
approaches. It provides better explanations for the effectiveness of SI- and MAS-
based algorithms and offers more justified versions of these algorithms. From a
practical viewpoint, our insights uncover conditions needed for different algorithms
to work and allow predicting their relative performance in some situations as well
as offering improvements.

1 INTRODUCTION

Despite considerable progress, many gaps between biological and machine intelligence remain.
Animals, for example, flexibly learn new tasks throughout their lives, while at the same time
maintaining robust memories of previous knowledge. This ability conflicts with traditional training
procedures for artificial neural networks, which overwrite previous skills when optimizing new tasks
(McCloskey & Cohen, |1989; Goodfellow et al.,|2013). The field of continual learning is dedicated to
mitigate this crucial shortcoming of machine learning. It exposes neural networks to a sequence of
distinct tasks. During training new tasks, the algorithm is not allowed to revisit old data, but should
retain previous skills while remaining flexible enough to also acquire new knowledge.

An influential line of work to approach this challenge was introduced by |Kirkpatrick et al.| (2017),
who proposed the first regularisation-algorithm, Elastic Weight Consolidation (EWC). After training
a task, EWC measures the importance of each parameter and introduces an auxiliary loss penalising
large changes in important parameters. Naturally, this raises the question of how to measure this
‘importance’. While EWC uses the diagonal Fisher Information, two alternatives have been proposed:
Synaptic Intelligence (SI, Zenke et al.|(2017)) aims to attribute the decrease in loss during training
to individual parameters and Memory Aware Synapses (MAS, |Aljundi et al.| (2018))) introduces a
heuristic measure of output sensitivity. Together, these three approaches have inspired many further
regularisation-based approaches, including combinations of them (Chaudhry et al.|[2018), refinements
(Huszar, 2018} Ritter et al., 2018} |(Chaudhry et al., 2018} |Yin et al., [2020), extensions (Schwarz et al.,
2018; Liu et al.| 2018} [Park et al.l 2019} [Lee et al |2020) and applications in different continual
learning settings (Aljundi et al.,[2019) as well as different domains of machine learning (Lan et al.,
2019). Almost every new continual learning method compares to at least one of EWC, SI and MAS.

Despite their popularity and influence, basic practical and theoretical questions regarding these
algorithms had previously been unanswered. Notably, it was unkown how similar these importance
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measures are. Additionally, for ST and MAS (and their follow-ups) there was no solid theoretical
understanding of their effectiveness. Here, we close both these gaps through a theoretical analysis
confirmed by a series of carefully designed experiments on standard continual learning benchmarks.
Our main findings can be summarised as follows:

(a) We show that MAS is almost identical to the ‘Absolute Fisher’, a quantity similar to the
Fisher Information.

(b) We show that SI’s importance approximation is biased, that the bias is responsible for SI’s
performance and that the bias, like MAS, is tightly linked to the Absolute Fisher.

(c) Our fine-grained analysis leads to new baselines, including more justified versions of MAS
and SIL.

(d) Together, (a) and (b) show that all three regularisation approaches (and their follow-ups) are
closely linked to the Fisher Information. This unifies a large body of regularisation literature.
It also gives a more solid theoretical justification for the effectiveness of SI- and MAS-based
algorithms.

(e) Our precise understanding of SI allows predicting and improving its performance in different
situations and offers a better performing alternative.

2 RELATED WORK

The problem of catastrophic forgetting in neural networks has been studied for many decades
(McCloskey & Cohenl, |1989; [Ratcliff,|1990; French, |1999). In the context of deep learning, it received
more attention again (Goodfellow et al.l 2013} Srivastava et al.l [2013)). All previous work we are
aware of proposes new or modified algorithms to tackle continual learning. No attention has been
directed towards understanding or unifying existing methods and we hope that our work will not
remain the only effort of this kind. We now review the broad body of continual learning algorithms.
Following (Parisi et al., 2019)), they are often categorised into regularisation-, replay- and architectural
approaches. Most regularisation methods will be reviewed more closely in the next section. There
we cover regularisation for standard neural nets, but the same idea has also been applied to bayesian
neural networks (Nguyen et al.| 2017; Swaroop et al.| 2019). An alternative approach (Mirzadeh
et al., [2020) does not penalize deviating from important parameters, but rather modifies training
so that the network is robust to such deviations. Replay methods refer to algorithms which either
store a small sample or generate data of old distributions and use this data while training on new
methods (Rebuffi et al., 2017 [Lopez-Paz & Ranzatol 2017} |Shin et al |2017; Kemker & Kananl
2017). These approaches can be seen as investigating how far standard i.i.d.-training can be relaxed
towards the (highly non-i.i.d.) continual learning setting without losing too much performance. They
are interesting, but usually circumvent the original motivation of continual learning to maintain
knowledge without accessing old distributions. Intriguingly, the most effective way to use old data
appears to be simply replaying it, i.e. mimicking training with i.i.d. batches sampled from all tasks
simultaneously (Chaudhry et al., 2019). Architectural methods extend the network as new tasks
arrive (Fernando et al., 2017 |Li et al., 2019; Schwarz et al.,[2018} |Golkar et al.| 2019; [von Oswald
et al.l2019). This can be seen as a study of how old parts of the network can be effectively used to
solve new tasks and touches upon transfer learning. Typically, it avoids the challenge of integrating
new knowledge into an existing networks. Finally, van de Ven & Tolias| (2019); Hsu et al.| (2018);
Farquhar & Gal|(2018)) point out that different continual learning scenarios and assumptions with
varying difficulty were used across the literatureﬂ

3 REVIEW OF EXISTING REGULARISATION METHODS

3.1 FORMAL DESCRIPTION OF CONTINUAL LEARNING

In continual learning we are given K datasets D, ..., D sequentially. When training a neural net
with N parameters 6 € RY on dataset Dy, we have no access to the previously seen datasets D1.;_1.
However, at test time the algorithms is tested on all K tasks, usually the average accuracy is taken as
measure of the algorithms performance, but see also|Chaudhry et al.|(2018)).

'In the appendix, we critically review and question some of their experimental results.
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3.2 COMMON FRAMEWORK FOR REGULARISATION METHODS

Regularisation based approaches introduced in [Kirkpatrick et al.[ (2017); [Huszar (2018)) protect
previous memories by modifying the loss function Ly related to dataset Dy. Let us denote the
parameters obtained after finishing training on task & by (*) and let w(®*) € RN be the parameters’
importances. When training on task %, regularisation methods use the loss

N
Ly=Li+c- wakfl) (ei _ 05,6,1))2
i=1

where ¢ > 0 is a hyperparameter. The first term Ly, is the standard (e.g. cross entropy) loss of task k.

The second term ensures that the parameters do not move away too far from their previous values.
(k)

Usually, w;” = wgk_l) + w;, where wj is the importance for the most recently learned task ..

3.3 REVIEW OF EWC, MAS, SI AND FOLLOW-UPS

Elastic Weight Consolidation (Kirkpatrick et al.,|2017) uses the diagonal of the Fisher Information
as importance measure. It is evaluated at the end of training a given task. To define the Fisher
Information Matrix F', we omit the task index &k and simply consider a dataset X'. For each datapoint
X € X the network predicts a probability distribution q x over the set of labels L, where we suppress
dependence of gx on 6 for simplicity of notation. We denote the predicted probability of class y by
qx (y) foreach y € L. Let us assume that we minimize the negative log-likelihood log q x (y) and

write g(X,y) = —2leedxW) loganX(y)

for its gradient. Then the Fisher Information F is given by
F =ExoxByuqy [9(X,9)9(X,9)"] = Excx Y ax®) - 9(X,9)9(X,y)" (1
yeL

Taking only the diagonal Fisher means w;(EWC) = ExxEyq, [9:(X,9)?] .

The Empirical Fisher Information replaces the expectation over y ~ q by the (deterministic) label
y given by the labels of the dataset. We also define the Predicted Fisher Information as taking the
maximum-likelihood predicted label, i.e. the argmax of q  (-). When the network classifies images
correctly and confidently, these three versions clearly become increasingly similar.

Under the assumption that the learned label distribution q y is the real label distribution the Fisher
equals the Hessian of the loss (Martens} [2014; |Pascanu & Bengiol[2013). Its use for continual learning
has a bayesian, theoretical interpretation (Kirkpatrick et al.,[2017; Huszar, 2018)).

Memory Aware Synapses (Aljundi et al., |2018) heuristically argues that the sensitivity of the func-
tion output with respect ot a parameter should be used as the parameter’s importance. This sensitivity
is evaluated after training a given task. The formulation in the paper suggests using the predicted
probability distribution to measure parameter sensitivity. The probability distribution is the output of
the neural network and the quantity that one aims to conserve during continual learning. Below we
describe the precise importance this leads to. It was however brought to our attention that the MAS
codebase seems to interpret the logits rather then the probability distribution as output of the neural
network. In Appendix [D|we show that the resulting version of MAS has the same performance as the
one described here, and, crucially, is also related to the Fisher Information.

Denoting, as before, the final layer of learned probabilities by qx, the MAS importance is imple-
mented as (using a euclidean norm)

|\

Synaptic Intelligence (Zenke et al. |2017) approximates the contribution of each parameter to
the decrease in loss and uses this contribution as importance. To formalise the ‘contribution of a
parameter’, let us denote the parameters at time ¢ by 6(¢) and the loss by L(t). If the parameters
follow a smooth trajectory in parameter space, we can write the decrease in loss from time O to 7" as

Illax|?

wl(MAS) :EXNX H 80

N

Mo, "M oL,
L(0) — L(T) _—/9(0) —g ()t = —;/&(0) 7; 0! (t)dt. 2)
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The i-th summand in (2)) can be interpreted as the contribution of parameter 6; to the decrease in loss.
While we cannot evaluate the integral precisely, we can use a first order approximation to obtain the
importances. To do so, we write A;(t) = (0;(t + 1) — 0;(t)) for an approximation of 6. (t)dt and get

— OL(t)

w;(SI) = 20,

Aq(t). 3)

=0
Thus, we have ) . @©;(ST) =~ L(0) — L(T). In addition, SI rescales its importances as follow
max {0, @;(SI)}

w;(SI) = (0;(T) — 0,(0))% + €

“4)

Zenke et al.| (2017) use additional assumptions to justify this importance. One of the them — using
full batch gradient descent — is violated in practice and we will show that this has an important effect.

Follow up work. We presented a version of EWC due to|Huszar (2018)) and tested in (Chaudhry et al.}
2018} |Schwarz et al.,|2018)). It is theoretically more sound and was shown to perform better. Chaudhry
et al.| (2018)) combine EWC with a ‘KL-rescaled’-SI. Ritter et al. (2018)) use a block-diagonal (rather
than diagonal) approximation of the Fisher;|Yin et al.|(2020) use the full Hessian matrix for small
networks. [Liu et al.| (2018) rotate the network to diagonalise the most recent Fisher Matrix, |Park et al.
(2019) modify the loss of SI and|Lee et al.|(2020) aim to account for batch-normalisation.

4 MEMORY AWARE SYNAPSES (MAS) APPROXIMATES ABSOLUTE FISHER

Here, we explain why — despite its different motivation — MAS is almost linearly dependent of the
diagonal Absolute Fisher, a variant of the diagonal Fisher taking absolute values of gradients rather
than squares. We first present the theory and then carry out careful empirical confirmations of the
underlying assumptions. For a summary of the definitions of algorithms and baselines see Table
In Appendix [D] we present analogous results for MAS based on logits rather than the predicted
probability distribution, showing that it performs equally and, crucially, is also related to the Fisher.

4.1 THEORETICAL RELATION OF MAS AND ABSOLUTE FISHER

We take a closer look at the definition of the importance of MAS. Recall that we use the predicted
probability distribution of the network to measure sensitivity rather than logits. With linearity of
derivatives, the chain rule and writing yo = arg max qx, we see (omitting expectation over X ~ X’)

dlall*| aqy)| _ dq(yo)
o0 | =2 ;/Q(y)w ~ 2 |q(yo) o0

dlogq(yo)
00

MAS: ’ — 2¢%(y0) 5)

Here we made the assumption that the sum is dominated by its maximum-likelihood label yq, which
should be the case if the network classifies its images confidently, i.e. q(yo) > q(y) for y # yo.
Recall that the importance is measured at the end of training, so that our assumption is justified if the
task has been learned successfully. Using the same assumption for the Absolute Fisher we obtain

dlog q(yo)
00 '

This shows the similarity between MAS and the Absolute Fisher. The only difference is a factor
of 2q (yo), which we can assume to be approximately constant as the model learned to classify
training images confidently. Even with a pessimistic guess that q y (o) is in a range of 0.5 (rather
inconfident) and 1.0 (absolutely confident), the two measures would be highly correlated.

Abs. Fisher: E,.q. [|9(X,9)|] = 4(y0)9(X, vo)| = a(yo) (6)

4.2 EMPIRICAL RELATION OF MAS AND ABSOLUTE FISHER

Our theoretical derivation used two approximations, both of which we now explicitly check empiri-
cally on standard benchmarks; see Section|/|for a summary of our experimental setup.

“Note that the max(0, -) is not part of the description in (Zenke et al.,[2017). However, we needed to include
it to reproduce their results. A similar mechanism can be found in the official SI code.
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Figure 1: Empirical Relation between MAS and baselines MASX, Absolute Fisher. Left: Sum-
mary of Pearson Correlations (top: CIFAR, bottom: MNIST), error bars represent std over 4 runs.
Mid & Right: Example scatter plots of importance measures. Each point in the scatter plot corre-
sponds to one weight of the net. A straight line through the origin corresponds to two importance
measures being multiples of each other as was predicted by our theoretical analysis.

Max-Likelihood Approximation First, in equation [5| we assumed that sum over the labels is dom-
inated by its maximum likelihood label y,. To assess the validity of this, we directly compare the
entire sum (MAS) with the part only using the max-likelihood label (MASX). The results in Figure|[T]
show scatter plots and a summary of the pearson correlations between MAS and MASX on each task.
On P-MNIST the correlations range from 0.95 to 0.99, on CIFAR they are always above 0.99. This
shows that MAS and MASX are nearly equal as claimed.

Absolute Fisher Approximation Second, we assumed that the factor 2q (o) distinguishing MASX
(RHS of equation [5)) and Absolute Fisher is roughly constant. Recall that even if qy (yo) varied
between 0.5 and 1.0, the two measures would have large correlations. Figure|l|shows that we are far
above this pessimistic regime with correlations between MASX and AF always above 0.98, showing
that MASX approximates AF. The data also shows that the resulting correlation between MAS and
AF is large (between 0.9-0.97 on MNIST, >0.99 on CIFAR), confirming that MAS approximates AF.

Continual Learning Performance Experiment As an additional check of our hypothesis, we
implemented continual learning baselines based on MAS, MAS-MAX, AF and compared their
performances. The results in Table[T[(1) show that all baselines have the same performance, further
supporting the claim that MAS is effective because it approximates the Absolute Fisher.

5 SYNAPTIC INTELLIGENCE APPROXIMATES (ONLINE) ABSOLUTE FISHER

Here, we explain why the importance of SI is related to the Absolute Fisher, despite the apparent
contrast between SI’s path integral and the Fisher Information. The theoretical part first identifies the
bias of SI when approximating the path integral. It then relates the bias to the Absolute Fisher. As
before, we carefully design baselines to validate each assumption of our analysis empirically.

5.1 BIAS OF SYNAPTIC INTELLIGENCE

To calculate w(SI) (equation , we need to calculate the product p = agét) - A(t) for each t.

Evaluating the full gradient ‘Z—é is too expensive, so SI uses a stochastic minibatch gradient. The

estimate of p is biased since the same minibatch is used for the update A and the estimate of 9L /6.
We now give the calculations detailing this argument. For ease of exposition, let us assume vanilla
SGD with learning rate 1 is used. Given a minibatch, denote its gradient estimate by g + o, where
g = OL/00 denotes the full gradient and o the noise. The update is A = g + o. Thus, p should be
p=g-(g+ o). However, using g + o, which was used for the parameter update, to estimate g results
in ppias = (g + o)?. Thus, the gradient noise introduces a bias of E[o? + og] = E[o?].

Unbiased SI. Having understood the bias, we can design an unbiased estimate by using two
independent minbatches to calculate A and estimate g. We get A = g + o and an estimate g + o’ for
¢ with independent noise o’. We obtain p,,, pias = (¢ + 0’) - (¢ + o) which in expectation equals
p =g - (g + o). Based on this we define an unbiased importance measure

T-1

Gi(STU) = Y (g +0p) - A1)

t=0
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Bias-Only version of SI. To isolate the bias, we can take the difference between biased and
unbiased estimate. Concretely, this gives an importance which only measures the bias of SI

T—1

Gi(SIB) = > ((g+0) = (g+01) - A1)

t=0
Observe that this estimate multiplies the parameter-update A(¢) with nothing but stochastic gradient
noise. From the perspective of the SI path-integral, this should be meaningless and perform poorly.
Our theory, detailed below, predicts differently.

5.2 RELATION OF BIAS OF SI TO ABSOLUTE FISHER

The bias of SI depends on the optimizer used. The original SI-paper (and we) uses Adam (Kingma
& Ba, [2014) and we now analyse the influence of this choice in detail. We discuss the effects other
optimizers, including SGD+momentum, in Appendix [F the theoretical and empirical findings are
analogous to the ones presented here. Recall that w(ST) is a sum over terms 65—&” - A(t), where

A(t) = 0(t + 1) — (¢) is the parameter update at time ¢. Both terms, 85? as well as A(t),

are computed using the same mini-batch. Given a stochastic gradient g; + 0;, Adam keeps an
exponential average of the gradient m; = (1 — 081)(g: + o) + S1m—1 as well as the squared gradient
ve = (1—P52)(ge + Jt)2 + Bov¢—1. Ignoring minor normalisations and the learning rate, the parameter
update is A(t) = m¢/(\/v¢ + €), with 31 = 0.9 and 55 = 0.999. Thus,

8L(t) _ (1 - 51)(9t + Ut)2 51(% + O—t)mtfl N (gt + Ut)2
WA(t)— N + NG N(l_ﬁl)ﬁ @)

Here, we made Assumption 1 that the gradient noise is larger than the gradient, or more precisely:
(1 — B1)o? > Bimy_19: (we ignore oymy_; since E[oym;_1] = 0 and since we average SI over
many time steps). Assumption 1 is equivalent to the bias of SI being larger than its unbiased part as
detailed in Appendix Experiments in Section [5.3] provide strong support for this assumption.

Next, consider v;. It is a slowly moving exponential average of (g; + 0;)? and is thus approximately
E[(g: + 0+)?]. It is reasonable to expect that /vy is roughly equal to |g; + o¢|. This clearly does
not hold for all possible distributions of g; + o, but is unlikely to be violated by non adversarially
chosen, realistic noise distribution. With equationand Assumption 2 that |/v; ~ lgt + o4, we get

a(SI)zzangu)w—mzwzu—ﬁl>z|gt+at|. ®)

An alternative way to arrive at equation[§]is following the analysis of Balles & Hennig| (2018)), who
show that the update of Adam often depends on the sign of the moment m; rather than its magnitude.

Summary. equation [§] shows that SI approximates the Online Absolute Fisher, which averages
the (empirical) Absolute Fisher ‘online’ along the training trajectory of the parameters rather than
evaluating it only at the final parameter-point. We point out one subtle difference between equation
and AF, namely that equation [§]takes absolute values of mini-batch gradients rather than single-image
gradients (like AF). In Appendix [G.2] we show why this is negligible under our Assumption 1 of large
gradient noise. Empirically, we also find it to be negligible, as we show below that a version of EWC
based on the batched empirical Fisher has the same performance as EWC itself.

Relation of OnAF to AF. To see if SI, like MAS, is related to the Absolute Fisher (AF), it remains to
explore the relation of OnAF and AF. If the latter two are similar, it is clear from the above that SI is
similar to AF. Theoretically, in the limit of small learning rates or small Hessian (of the loss), OnAF
and AF become equal. While neither of these assumption strictly hold in practice, we empirically
observed - to a possibly surprising extend - strong correlations between AF and OnAF (Figure [J.2)).
This observation still raises the question whether OnAFs relation to AF is not decreased by gradients
early in training. Indeed, we present two experiments in line with this intuition in Appendix
showing that putting more weight on later gradients can improve performance.

Influence of Regularisation The derivation above assumes that the parameter update A(¢) is given
by the gradients of the current task, ignoring the auxiliary regularisation loss. The latter will change
update direction and momentum of the optimizer. Thus, strong regularisation will make the relation
between SI and OnAF noisy, but not abolish it. This will be confirmed empirically in Section[5.3]
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Table 1: Test accuracies on Permuted-MNIST and Split CIFAR 10/100. (Mean and std of average
accuracy over 3 resp. 10 runs for MNIST resp. CIFAR) Each part compares known algorithms to
baselines, explaining algorithms’ performances (1-3), or showing speed-ups at equal performance (4).

No. Algo. P-MNIST CIFAR | | No. Algo. P-MNIST  CIFAR
MAS 97.3£0.1  73.7£0.5 SI 97.24£0.1  74.4%0.5
(1) MAS-MAX 974402 73.7£0.2 3) OnAF 97.3+0.1 74.4%0.6
AF 97.4+0.1 73.4+04 AF 97.4+0.1 73404
SI 97.24+0.1  74.4%+0.5 Fisher (EWC) 97.1+0.3  73.1+0.7

2) SI-Bias 97.2+£0.1  75.1+04
SI-Unbiased  96.3+0.1  72.5£0.8

(4)  Emp. Fisher (EF) 97.1£0.1  73.0£0.5
Batch-EF 97.1£0.1  73.04+0.8

5.3 EMPRICAL INVESTIGATION OF SI, ITS BIAS AND ABSOLUTE FISHER

Bias dominates SI & checking Assumption 1. According to the motivation of SI the sum of impor-
tances (over parameters) », @; (SI) should track the decrease in loss L(0) — L(T'), see equation[2}
Therefore, we investigated the summed importances for SI, its unbiased version SIU and for an
approximation of the path integral based on the full training set gradient (rather than approximating
it). The results, Figure [2] (left) show: (1) the bias is 5-6 times larger than the unbiased part; (2)
using an unbiased gradient estimate and the full gradient gives almost identical sums, supporting the
validity of the unbiased estimator. Note that even the unbiased first order approximation of the path
integral overestimates the decrease in loss. This is consistent with previous studies showing that the
loss has positive curvature (Jastrzebski et al.,[2018; |Lan et al., 2019). We emphasise that the bias
(difference between SI and SIU) in Figure (left) is due to the term (1 — Bl)of and that this bias
is considerably larger than the unbiased part. This is direct, strong evidence of Assumption 1 (see
Appendix [G.T]for full calculation). Additionally, a detailed analysis of the gradient noise in Appendix
gives further support for Assumption 1. Results on CIFAR are analogous (Appendix Figure[J.6]).

Bias explains SI’s performance. We saw that the bias is much larger than the unbiased part. But
how does it influence ST’s performance? To quantify this, we compared SI to its unbiased version
SIU and the bias-only version SIB. Note that SIB is completely independent of the path integral
motivating SI, only measures gradient noise and therefore should perform poorly according to SI's
original motivation. However, the results in Table [T(2), reveal the opposite: Removing the bias
reduces performance of SI (SIU is worse), whereas isolating the bias does not affect or slightly
improve performance (difference between SIB and SI on CIFAR is statistically significant, p < 0.005
two-sided t-test). This demonstrates that SI relies on its bias for its continual learning performance.

Bias and Fisher & Checking Assumption 2. As additional experiment, we checked how much the
relation of SI to the Fisher depends on the bias. Our theory predicts that the relation between SI and
OnAF is mostly based on the bias. Figure[2](mid) confirms this, showing a strong correlation between
SI, SIB and OnAF and a weaker correlation between SIU and OnAF. Note that the correlation of
OnAF and SI clearly supports Assumption 2; results on CIFAR are similar (c.f. Figure[J.T), but with
a stronger influence of regularisation as seen in Figure [2| (right) and full text below.

Relation of SI, OnAF to AF. Next, we investigated the relation between OnAF and AF, finding
strong correlations: between 0.73-0.87 on MNIST and 0.86-0.95 on CIFAR, see Figure[.2] Figure[Z]
(mid panel for MNIST, right panel for CIFAR, blue) shows that this carries over to relating SI and AF.
An additional control in Appendix shows that this observation is not an artefact of long training
times. These results confirm that SI is closely related to AF.

We clarify that here we used SI importances before the division in equation ). We show in Appendix
[l that the division has close to no effect on the correlations of SI with AF.

We also show in Appendix [E]that putting more weight on latter summands of SI, limiting the influence
of early gradients, slightly improves performance, indicating that making SI more similar to AF at
the final parameter point is beneficial.

Effect of Regularisation on SI. Next, we assessed our derivation that large regularisation will
diminish the correlation between SI and OnAF. To this end, we compared standard SI to two variants
of it which have less strong regularisation. The first control simply sets regularisation strength to
¢ = 0. The second control refrains from re-initialising the network weights after each task (exactly as
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Figure 2: Effect of Bias and Regularisation on SI. Left: Summed Importances for SI and its
unbiased version, showing that the bias dominates SI and that Assumption 1 holds. Mid: Pearson
Correlations of SI, its bias (SIB), and unbiased version (SIU) on MNIST, showing that relation
between SI and (On)AF is due to bias. Right: Relation between standard-SI (blue) and OnAF and
two Sl-controls: ‘no init’ (turquoise) does not re-initialise network weights after each task; ‘c = 0’
(purple) has regularisation strength 0. This shows that strong regularisation weakens the tie between
SI and (On)AF as explained by our theory.

in original SI, albeit with slightly worse validation performance than the version with re-initialisation).
In the second setting the current parameters # never move too far from their old value #* =1 implying
smaller gradients from the quadratic regularisation loss, and also meaning that a smaller value of
¢ = 0.5 is optimal. We see that for both controls with weak regularisation the relation to OnAF is
larger than for standard-SI with strong regularisation (Figure 2] (right)), consistent with our theory.

Empirical, batched Fisher We demonstrated that SI is related to the OnAF and pointed out that
OnAF uses the Empirical Fisher and averages across batches before taking absolute values. Here, we
investigate replacing the Fisher Information in EWC by the Empirical Fisher and averaging it across a
mini-batch. We refer to this algorithm Batch-EF. A theoretical analysis (Appendix [G.2)) suggests that
with moderate batch size, Batch-EF is close to EF. Empirically, we find that EF, Batch-EF and EWC
have the same performance, see Table |I| (4), confirming the theoretical prediction. In this context,
we note that on P-MNIST the number of samples used to approximate the Fisher and analogous
quantities has some surprising effects on performance. See[C.I.1|for details.

6 RELATION BETWEEN ABSOLUTE FISHER AND REAL FISHER

It remains to investigate the relation of Absolute and Real Fisher. Recall that (taking expectations
over inputs and predicted labels) the diagonal Fisher is defined as F = E[|g + ¢|?] while the diagonal
Absolute Fisher is defined as AF = E[|g + o|], where g 4 o is the (stochastic) gradient.

Empirically, we see that AF and F are highly correlated, see Figure [3]left.

Theoretically, the exact relationship of Fisher and Absolute Fisher depends on the gradient distribution.
If, for example, gradients are distributed normally (g+ o) ~ N (1, X) with X; ; > p; (corresponding
to the observation that the noise is much bigger than the gradients), we obtain F; ~ J; ; and (since
|g + o| follows a folded normal distribution) we also have AF; ~ ¢\/3;; with ¢ = /2/m. Thus, in
the case of a normal distribution with large noise, we have F X (AF)?2. The relationship F o< (AF)?
is in fact what we empirically observe on Split CIFAR, where correlations between (AF)? and F are
> 0.98 for all tasks and repetitions, and partly on P-MNIST, where correlations between (AF)? and
F are between 0.86 and 0.96.

—+ AF-EWC CIFAR Task 1 MNIST Task 1 MNIST Task 10

flx)=a-x2
(least squares)

)=a-x?
(least squares)

flx)=a-x?
(least squares)

) 3 i 5
Task (Split CIFAR)

] . o oozs { s
$08] — AFEWC ® SM 00000 { j

0000 0025 0050 0075 o100 0500 0g01 0002 0603 0600 0605 0d10
5 Absolute Fisher Absolute Fisher Absolute Fisher

Fisher (EWC)
Fisher (EWC)
Fisher (EWC)

Task (P-MNIST)
Figure 3: Empirical Relation between Absolute Fisher and Real Fisher. Left: Note y-axis range.
Summary of Pearson Correlations (top: CIFAR, bottom: MNIST), error bars represent std over 4
runs. Mid - Right: Example scatter plots. Relation on Split CIFAR is nearly quadratic across tasks
and repetitions. There is more variation on P-MNIST (two extremes shown). Yellow lines show
least-squares fit of the model f(x) = ax? with parameter a.
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7 EXPERIMENTAL SETUP

We outline the experimental setup, see Appendix [C|for details. We closely follow SI’s setting (Zenke
et al., 2017): In domain-incremental Permuted MNIST (Goodfellow et al.,|2013)) each of 10 tasks
consists of a random (but fixed) pixel-permutation of MNIST and a fully connected ReL U network
is used. The task-incremental Split CIFAR 10/100 (Zenke et al., 2017) consists of six 10-way
classification tasks, the first is CIFAR 10, and the other ones are extracted from CIFAR 100. The
keras default CIFAR 10 convolutional architecture (with dropout and max-pooling) is used |keras.
The only difference to Zenke et al.|(2017)) is that like Swaroop et al.|(2019)), we usually re-initialise
network weights after each task, observing better performance. Code is available on github. For
brevity, we partly showed plots for only one benchmark, see appenidx for analogous plots.

8 DISCUSSION

We have investigated regularisation approaches for continual learning, which are the method of choice
for continual learning without replaying old data or expanding the model. We have provided strong
theoretical and experimental evidence that the three most influential methods in this domain are
surprisingly similar. This does not only unify these three methods, but also their many follow ups.
While the Absolute Fisher has no clear theoretical interpretation itself, its similarity to the Fisher
provides a more plausible explanation of the effectiveness of MAS- and SI based algorithms.

Moreover, our algorithm SIU to approximate SI’s path integral can used for the (non continual learn-
ing) algorithm LCA (Lan et al.,|2019), which relies on a computationally expensive approximation of
the same integral. This opens up new opportunities to apply LCA to larger models and datasets.

Practical Relevance and Experimental Predictions. Some may wonder what the use of under-
standing algorithms is. On top of the intrinsic theoretical benefit of understanding similarities between
methods, our framework allows to predict in which situations algorithms will perform well and how
they can be improved. Let us give one concrete example, that is relevant as distributed large batch
training becomes more widespread: Our analysis reveals that SI is related to the Fisher through its
bias, which is caused by gradient noise. Thus, increasing the batchsize, which decreases noise, will
harm SI’s performance according to our theory. We tested this specific prediction and found it to be
true: With a batchsize of 2048 on P-MNIST, SI's performance degrades to 95.6 £ 0.1, while OnAF
(with the same, large batchsize) retains 97.0 4= 0.1. On Split CIFAR, SI degrades to 70.0 £ 0.9, while
OnAF retains 74.5 = 0.6. We emphasise that this phenomenon is not simply explained by the change
in ‘training regime’ (see e.g. [Mirzadeh et al.| (2020)), since SI, as predicted by our theory, is affected
much more than OnAF by the increase in batch size. To summarise, our theory not only predicts
degradation of SI correctly but also offers a well-performing alternative.

We now describe other predictions to exemplify the use of our framework and leave testing these
and discovering further ones to future work. A commonly used optimisation technique is learning
rate decay. Its effect on SI is that it puts more weights on those summands of SI’s importance (see
equation [3), which correspond to larger learning rates. Large learning rates occur early in training,
thus making ST’s sum less similar to the AF at the end of training Thus, we predict that learning
rate decay has a negative effect on SI. In fact, we present two experiments in Appendix [E]showing
that putting more weight on the latter summands of SI is beneficial, in line with our prediction.
Interestingly, learning rate decay may be the reason that a recent empirical large-scale comparison of
regularisation methods (De Lange et al.l|2019) tended to observe worse performance of SI than MAS.
Another somewhat puzzling observation made by De Lange et al.|(2019) is that SI is more sensitive
than other methods to the order in which datasetsets are presented, in cases where dataset sizes
vary. In these experiments, smaller datasets are trained for fewer iterations (due to a fixed number of
epochs), meaning that the sum of SI (think of OnAF) contains few summands, and is systematically
smaller than for larger datasets. Thus, when first learning small datasets, SI will likely forget these
since they have small importances. Starting with large datasets will not have this effect and we would
expect SI to perform better. This is precisely the empirical finding in (De Lange et al.,[2019).

So far, studies providing a better understanding of regularisation algorithms and their similarities had
been neglected. Our contribution fills this gap and, as exemplified above, proves to be a useful tool to
predict, understand and improve these algorithms.

3In the original framework of SI this is intended, while our framework predicts that it is harmful.



Under review as a conference paper at ICLR 2020

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pp. 265-283, 2016.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 139-154, 2018.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11254-11263,
2019.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pp. 404413, 2018.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 532-547, 2018.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’ Aurelio Ranzato. Continual learning with tiny episodic
memories. arXiv preprint arXiv:1902.10486, 2019.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. Continual learning: A comparative study on how to defy forgetting
in classification tasks. arXiv preprint arXiv:1909.08383, 2019.

Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. arXiv preprint
arXiv:1805.09733, 2018.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734, 2017.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128-135, 1999.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256, 2010.

Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual learning via neural pruning. arXiv
preprint arXiv:1903.04476, 2019.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual learning
scenarios: A categorization and case for strong baselines. arXiv preprint arXiv:1810.12488, 2018.

Ferenc Huszar. Note on the quadratic penalties in elastic weight consolidation. Proceedings of the
National Academy of Sciences, pp. 201717042, 2018.

Stanistaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623,
2017.

Stanislaw Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos
Storkey. On the relation between the sharpest directions of dnn loss and the sgd step length. arXiv
preprint arXiv:1807.05031, 2018.

10



Under review as a conference paper at ICLR 2020

Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learning.
arXiv preprint arXiv:1711.10563, 2017.

keras. Official keras cnn example. https://github.com/keras-team/keras/blob/
master/examples/cifarl0_cnn.py. Accessed: 2020-09-25.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521-3526, 2017.

Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical fisher approxima-
tion. arXiv preprint arXiv:1905.12558, 2019.

Janice Lan, Rosanne Liu, Hattie Zhou, and Jason Yosinski. Lca: Loss change allocation for neural
network training. In Advances in Neural Information Processing Systems, pp. 3614-3624, 2019.

Janghyeon Lee, Hyeong Gwon Hong, Donggyu Joo, and Junmo Kim. Continual learning with
extended kronecker-factored approximate curvature. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9001-9010, 2020.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A
continual structure learning framework for overcoming catastrophic forgetting. arXiv preprint
arXiv:1904.00310, 2019.

Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez, and Andrew D
Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting. In
2018 24th International Conference on Pattern Recognition (ICPR), pp. 2262-2268. IEEE, 2018.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467-6476, 2017.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193,2014.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation - Advances in Research and
Theory, 24(C):109-165, January 1989. ISSN 0079-7421. doi: 10.1016/S0079-7421(08)60536-8.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Understand-
ing the role of training regimes in continual learning, 2020.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
arXiv preprint arXiv:1710.10628, 2017.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 2019.

Dongmin Park, Seokil Hong, Bohyung Han, and Kyoung Mu Lee. Continual learning by asymmetric
loss approximation with single-side overestimation. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 3335-3344, 2019.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001-2010, 2017.

11


https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py
https://github.com/keras-team/keras/blob/master/examples/cifar10_cnn.py

Under review as a conference paper at ICLR 2020

Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approximations for
overcoming catastrophic forgetting. In Advances in Neural Information Processing Systems, pp.
3738-3748, 2018.

Nicolas L Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gradient
algorithm. In Advances in neural information processing systems, pp. 849-856, 2008.

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. arXiv preprint arXiv:1805.06370, 2018.

Hanul Shin, Jung Kwon Lee, Jaechong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990-2999, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Rupesh K Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, and Jiirgen Schmid-
huber. Compete to compute. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 26, pp.
2310-2318. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/
5059-compete-to-compute.pdf.

Siddharth Swaroop, Cuong V Nguyen, Thang D Bui, and Richard E Turner. Improving and under-
standing variational continual learning. arXiv preprint arXiv:1905.02099, 2019.

Valentin Thomas, Fabian Pedregosa, Bart Merriénboer, Pierre-Antoine Manzagol, Yoshua Bengio, and
Nicolas Le Roux. On the interplay between noise and curvature and its effect on optimization and
generalization. In International Conference on Artificial Intelligence and Statistics, pp. 3503-3513.
PMLR, 2020.

Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Johannes von Oswald, Christian Henning, Jodo Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

Dong Yin, Mehrdad Farajtabar, and Ang Li. Sola: Continual learning with second-order loss
approximation, 2020.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3987—
3995. IMLR. org, 2017.

12


http://papers.nips.cc/paper/5059-compete-to-compute.pdf
http://papers.nips.cc/paper/5059-compete-to-compute.pdf

Under review as a conference paper at ICLR 2020

A APPENDIX

This appendix has several components:

1. A tabular overview over algorithms and baselines described in the paper, [B]

[\

. Full experimental details including hyperparameter seraches and values, as well as full
details about Batch-EF, Appendix [C|

. Performance and Relation to Fisher of MAS based on logits, Appendix

. Two improvements of SI, Apprendix [E]

. A more detailed account of the influence of the optimizer on SI, Apprendix
. Details for two calculations omitted in the main paper, Appendix

~N N D kW

. We empirically investigate the gradient noise in Appendix [Hl This experiment is not specific
to continual learning.

8. We critically review experimental claims from previous work about regularisation methods
in Appendix

9. We include additional experiments and plots in Appendix[J] including investigations how
rescaling SI affects its relation to AF.

B OVERVIEW OVER ALGORITHMS AND BASELINES

Table B.1: Summary of Regularisation Methods and Related Baselines. Details: Algorithms on
the left calculate importance ‘online’ along the parameter trajectory during training. Algorithms on
the right calculate importance at the end of training a task by going through (part of) the training set
again. Thus, the sum is over timesteps ¢ (left) or datapoints X (right). IV is the number of images
over which is summed. All the algorithms on the left rescale their final importances as in equation
equation 4] for fair comparison. A(t) = 6(t + 1) — 6(t) refers to the parameter update at time ¢, which
depends on both the current task’s loss and the auxiliary regularisation loss. Moreover, (g; + o¢)
refers to the stochastic gradient estimate of the current task’s loss (where ¢, is the full gradient and o
the noise) given to the optimizer to update parameters. In contrast, (g; + o} ) refers to an independent
stochastic gradient estimate. For a datapoint X, q denotes the predicted label distribution and
g(X, y) refers to the gradient of the negative log-likelihood of (X, y).

N Paramater N Paramater
ame importance w(-) ame importance w(-)
. 1
SI > (ge + o)A Fisher (EWC) ¥ 3 Eyay [9(X,)7]
t X
SIU (SI-Unbiased) > (g: + 1) A(t) AF (Absolute Fisher) % > Eymay [l9(X,9)]]
t X
. ’ 1 dllax| ‘2
SIB (SI Bias-only)  » (ov — o})A(t) MAS ¥ > 59
t X
2
OnAF (Online AF) Y " |g: + o] MASX (MAS-Max) % > ‘(XH%%‘]X)’
t X

C EXPERIMENTAL DETAILS

C.1 DETAILS, VARIANTS OF EWC, MAS AND AF.

For EWC we calculate the ‘real’ Fisher Information as defined in the main article[] For P-MNIST,
we randomly sample 2000 training images (rather than iterating through the entire training set, which
is prohibitively expensive). For Split CIFAR we use 500 random training images.

*We use a ‘naive’ implementation to calculate the Fisher, which simply iterates over all potential labels.
Theoretically, this implementation could be improved, but in practice this is infeasible since the necessary
computations are currently not well-supported by standard deep-learning libraries; see |Kunstner et al.| (2019),
Appendix B for details.
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Similarly, the Empirical Fisher is based on 2000 (500) samples.

For Batch-EF, we also use 2000 (resp 500) samples and split them into 20 (resp 5) mini-batches of
size 100. We compute the average gradient for each mini-batch, square it and average the squares
over the mini-batches. We also multiply the result by the mini-batch size (100) for normalisation. For
a theoretical justification see|G.2

MAS, MAS-X and AF algorithms are based on 1000 resp 500 random samples. When comparing
these algorithms, we use the same set of samples for each algorithm.

When calculating the correlation between SI and AF, we use 30000 (MNIST) resp 500 (CIFAR)
samples to evaluate AF. This is because we observed a higher variance on MNIST for AF, see Figure
[L2]and subsection below.

C.1.1 EFFECT OF SAMPLE SIZES USED TO CALCULATE FISHER

On P-MNIST, we observed for EWC that using more samples to approximate the Fisher could make
performance more unstable. We believe that this is due to the following: When passing one image
through a fully connected ReL.U network, there will be some ‘dead’ neurons with zero activations.
All weights connected to these neurons will have gradients equal to 0, and thus Fisher Information
(for this single image) equal to 0. When more samples are used, less neurons will be ‘dead” and less
weights will have Fisher Information equal to 0. While this leads to a better approximation of the
Fisher, changing importances to non-zero values takes away flexibility of the network for latter tasks.
Empirically, this flexibility seems to help performance on P-MNIST.

We explicitly checked how the number of weights with O importance depends on the number of
samples used: With 1000, 2000, 4000 resp 8000 samples the number of zero importances after the
first task was approximately 2M, 1.8M, 1.5M resp 1.3M (out of a total 5.6M weights). We confirmed
that this result is consistent across random seeds.

We note that with convolutional nets, this phenomenon of zero-importance is much less likely to
appear since each weight is applied to many different neurons, which are unlikely to all be ‘dead’.
In line with this, we found that AF varies much less with sample size on the CIFAR task (with
convolutional net) than MNIST (with fully connected net), see green line in

The fact that for EWC, MAS(X), AF there are many weights with O importance is likely the reason
that for these methods the optimal hyperparametrisations do not re-initialise network weights after
each task (see Table [C.2)), unlike for all other settings

If the importance of a weight is zero, re-initialising it, will move it far from its original value with no
reason to return. If instead, it is not re-initialised it is more likely to not move as far away during
training consecutive tasks (even if there’s no direct incentive from the loss function to avoid this).

C.2 BENCHMARKS

In Permuted MNIST (Goodfellow et al.,|2013)) each task consists of predicting the label of a random
(but fixed) pixel-permutation of MNIST. We use a total of 10 tasks. As noted, we use a domain
incremental setting, i.e. a single output head shared by all tasks.

In Split CIFAR10/100 the network first has to classify CIFAR10 and then is successively given
groups of 10 (consecutive) classes of CIFAR100. As in (Zenke et al., 2017, we use 6 tasks in
total. Preliminary experiments on the maximum of 11 tasks showed very little difference. We use a
task-incremental setting, i.e. each task has its output head and task-identity is known during training
and testing.

C.3 PRE-PROCESSING

Following Zenke et al.| (2017), we normalise all pixel values to be in the interval [0, 1] (i.e. we
divide by 255) for MNIST and CIFAR datasets and use no data augmentation. We point out that
pre-processing can affect performance, e.g. differences in pre-processing are part of the reason why
results for SI on Permuted-MNIST in (Hsu et al., 2018)) are considerably worse than reported in
(Zenke et al.,[2017) (the other two reasons being an unusually small learning rate of 10~—* for Adam
in (Hsu et al., 2018) and a slightly smaller architecture).
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C.4 ARCHITECTURES AND INITIALIZATION

For P-MNIST we use a fully connected net with ReLu activations and two hidden layers of 2000
units each. For Split CIFAR10/100 we use the default Keras CNN for CIFAR 10 with 4 convolutional
layers and two fully connected layers, dropout (Srivastava et al., 2014)) and maxpooling, see Table
@ We use Glorot-uniform (Glorot & Bengio| |2010) initialization for both architectures.

C.5 OPTIMIZATION

We use the Adam Optimizer (Kingma & Bal 2014} with tensorflow (Abadi et al.l 2016) default
settings (Ir = 0.001, 31 = 0.9, B3 = 0.999, ¢ = 10~®) and batchsize 256 for both tasks like |Zenke
et al.[(2017). On Permuted-MNIST we train each task for 20 epochs, on Split CIFAR we train each
task for 60 epochs, also following Zenke et al.|(2017). We reset the optimizer variables (momentum
and such) after each task.

For the two experiments confirming our prediction regarding the effect of batchsize on SI, we made
two changes on top of using a batch size Of 2048 (and, naturally, re-tuned hyperparameters): On
P-MNIST we increased the learning rate by a factor of 8, since the ratio of batchsize and learning rate
is thought to influence the flatness of minima (e.g. Jastrzgbski et al.|(2017); Mirzadeh et al.|(2020)).
We did not tune or try other learning rates. On CIFAR, we tried the same learning rate adjustment but
found that it led to divergence and resorted back to the default. We observed that with a batch size of
2048, already on task 2, the network did not converge during 60 epochs (for tasks 2-6, one epoch
corresponds to only 5 parameter updates with this batch size). We therefore increased the number of
epochs to 600 on tasks 2-6, to match the number of parameter updates of Task 1 (CIFAR10).

C.6 SI & ONAF DETAILS

Recall that we applied the operation max(0, -) (i.e. a ReLU activation) to the importance measure of
each individual task (equation 4] of main paper), before adding it to the overall importance. In the
original SI implementation, this seems to be replaced by applying the same operation to the overall
importances (after adding potentially negative values from a given task). No description of either of
these operations is given in the SI paper. In light of our findings, our version seems more justified.

Somewhat naturally, the gradient ‘3—5 usually refers to the cross-entropy loss of the current task and

not the total loss including regularisation. For CIFAR we evaluated this gradient without dropout (but
the parameter update was of course evaluated with dropout)E]

For OnAF, similarly to SI, we used the gradient evaluated without dropout on the cross-entropy loss
of the current task for our importance measure.

When evaluated on benchmarks, SI, SIU, SIB and OnAF are all rescaled according to equation to
make the comparison as fair as possible. Scatter plots and correlations use values before this division,
unless noted otherwise.

C.7 HYPERPARAMETERS

For all methods and benchmarks, we performed grid searches for the hyperparameter ¢ and over the
choice whether or not to re-initialise model variables after each task.

The grid of ¢ included values a - 10* where a € {1,2,5} and i was chosen in a suitable range (if a
hyperparameter close to a boundary of our grid performed best, we extended the grid).

For CIFAR, we measured validation set performance based on at least three repetitions for good
hyperparameters. We then picked the best HP and ran 10 repetitions on the test set. For MNIST, we
measured HP-quality on the test set based on at least 3 runs for good HPs.

Additionally, SI and consequently SIU, SIB as well as OnAF have rescaled importance (c.f. equation
equation 4] from main paper). The damping term § in this rescaling was set to 0.1 for MNIST and to
0.001 for CIFAR following |Zenke et al.[(2017) without further HP search.

SWe did not check the original SI code for what’s done there and the paper does not describe which version
is used.
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Table C.1: CIFAR 10/100 architecture. Following Zenke et al.| (2017)) we use the keras default
architecture for CIFAR 10. Below, ‘Filt.” refers to the number of filters of a convolutional layer, or
respectively the number of neurons in a fully connected layer. ‘Drop.’ refers to the dropout rate.
‘Non-Lin.” refers to the type of non-linearity used.

Table reproduced and slightly adapted from (Zenke et al.l 2017).

Layer \ Kernel Stride Filt. Drop. Non-Lin.

3x32x32 input
Convolution 3x3 1x1 32 ReLU
Convolution 3x3 1x1 32 RelLU
MaxPool 2x2 2x2 0.25
Convolution 3x3 1x1 64 ReLU
Convolution 3x3 1x1 64 ReLU
MaxPool 2x2 2x2 0.25
FC 512 0.5 ReLU
Task 1: FC 10 softmax
....FC 10 softmax
Task 6: FC 10 softmax

Table C.2: Hyperparameter values for our experiments. See also maintext.

Algorithm MNIST. . CIFAR. .
c re-init | ¢ re-init
SI| 02 |50
S| 20 |20 @ x
SB| 05 |50
OnAF | 5e-5 V4 Se-4 v
MAS | 500 X 200 N4
MASX | 200 X 1e3 Vv
EWC 1e3 X Se4 Vv
AF | 200 x| le3  /
Emp. Fisher | le6 X 2¢7 Vv
Batch-EF | 5e5 X 2¢7 vV

All results shown are based on the same hyperparameters obtained — individually for each method —
as described above. They can be found in Table ‘We note that the difference between the HPs
for MAS and MASX might seem to contradict our claims that the two measures are almost identical
(they should require the same c in this case), but this is most likely due to similar performance for
different HPs and random fluctuations. For example on CIFAR, MAS had almost identical validation
performance for ¢ = 200 (best for MAS) and ¢ = 1000 (best for MASX) (74.2 £ 0.7 vs 74.1 & 0.5).

Also for the other methods, we observed that usually there were two or more HP-configurations
which performed very similarly. The precise ‘best’ values as found by the HP search and reported in
TableC.2]are therefore subject to random fluctuations in the grid search.

C.8 SCATTER PLOT DATA COLLECTION AND INTENSITY PLOTS

The scatter plots are based on a run of SI, where we in parallel to evaluating the SI importance measure
also evaluated all other importance measures. Figures[I]and[2] show data based on 4 repetitions of
this experiment and confirm that the correlations observed in the scatter plots are representative, it
also shows the effect of sample sizes on AF.

Intensity Plots (as used for some figures in the appendix) Show same kind of data as scatter plots,
but each weight is binned into one of 80x50 equispaced bins. The number of weights per bin is
divided by the maximum number of weights per bin in that column and the resulting value is shown
on a gray scale. Normalisation per column was performed since for ‘global normalisation’ (divide
by total number of weights) only weights in the bottom left are visible (as most weights have small
importances); the number of bins was chosen to match aspect ratio of plots.
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C.9 COMPUTING INFRASTRUCTURE

We ran experiments on one NVIDIA GeForce GTX 980 and on one NVIDIA GeForce GTX 1080 Ti
GPU. We used tensorflow 1.4 for all experiments.

D MAS BASED ON LOGITS

As pointed out in[3.3] there are two versions of MAS. Here, we describe results related to the version
based on logits. We note that this version has the potentially undesirable feature of not being invariant
to reparametrisations: If, for example, we add a constant c to all the logits, this does not change
predictions (or the training process), but it does change the (logit-based) MAS importance.

We found identical performance as for the other version of MAS (of course after re-tuning HPs):
97.2 + 0.1 on P-MNIST and 73.9 4 0.7 on CIFAR for logit based MAS, as compared to 97.3 4+ 0.1
and 73.7 £ 0.5 for the version based on the probability-distribution output. For both benchmarks, the
difference based on 10 repetitions was not statistically significant (p > 0.4, t-test).

Next, we investigated the relation between logit based MAS, MASX and the Absolute Fisher. On
CIFAR we found correlations very close to 1 for all pairs. On MNIST, the correlations between MAS
and MASX (based on logits) to AF are weaker than the ones for the version of MAS based on the
predicted distribution. Nevertheless, they are similar to the correlation of SI and AF we observed
on MNIST and above the correlations between SI and AF we observed on CIFAR. The results are
shown in Figure [D.1]

101 - ———— ==~ -
09

1 6

p 3 3 5
Task (Split CIFAR)

e
MAS-MASX

—4— MASX-AF
MAS-AF

Pearson Corr.

1 2 3 8 9 10

4 5 6 7
Task (P-MNIST)

Figure D.1: Empirical Relation between MAS and baselines MASX, Absolute Fisher. Same as
Figure m left, but using MAS based on logits rather than output distribution.

E IMPROVEMENTS OF SI

As we have argued in the discussion, we expect SI to be a more faithful approximation of AF if more
weight is put on the summands of SI (see equation[3)), which occur later in training. As a consequence,
putting more weight on latter summands could lead to better performance. We tested this prediction
by running two variants of SI. For the first one, we only considered summands occuring in the second
half of training (epochs 10 to 20, of 20). For the second one, we used an exponential moving average
with a deacy of 0.999. Both variants achieved an average accuracy on P-MNIST of 97.5%, which is
better than ST’s 97.2%. This confirms our prediction.

F INFLUENCE OF OPTIMIZER ON SI

As pointed out in the main paper, the bias of SI depends on the optimizer used. For SGD+momentum,
one can follow precisely the same steps as for Adam (simply ignoring the division by its second
moment estimate) to see that in this case SI will resemble the Online Fisher, i.e. (assuming a learning
rate of 1.0)

B(ST) ~ (1= B1) > (g1 +01)°

t
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Analogously to Adam, in this case the relation of SI to the Fisher is due to the bias of SI. Thus,
checking whether in this situation, too, the unbiased version SIU performs worse than SI, is another
validation of our theory. Indeed, on P-MINST, we found that SI with SGD and momentum achieves
an average of 97.4%, while the best run for STU was at 96.1%. We did not test SGD further, due to
instabilities described now: For both SI, SIU using SGD+momentum resulted in unstable behaviour,
with runs occasionally diverging. This is likely due to the fact the the regularisation loss is ill-
conditioned, since the importances span several orders of magnitudes. This suggests that, without
further tricks and efforts, adaptive optimisers are a more suitable choice for regularisation methods.

For other ootmisers, the bias of SI will take different shapes and how this affects performance will have
to be seen. Our theory suggests, that biasing SI to (a version of) the Fisher will help its performance,
while we predict that fundamentally different biases lead to SI having worse performance than e.g.
OnAF. An instructive example in this case is considering an approximation of natural gradient descent,
which preconditions with the inverse diagonal of the empirical fisher (rather than the inverse fisher,
which is expensive to compute). In this case, SI would have constant importances (across parameters)
and would likely perform badly.

G DETAILED CALCULATIONS FOR THE BIAS OF SI, AND FOR CALCULATING
FISHER IN BATCHES

Here we give the details for two calculations omitted in the main text.

G.1 FORMULA OF BIAS OF SI WITH ADAM

Here, we show that the bias, i.e. the expected difference between SI and SIU, is equal to (1 —
B1)o?/(y/vt + €) and that Assumption 1 is equivalent to the bias being larger than the unbiased part
of SI.

Recall that for SI, we approximate agét) by g; + oy, which is the same gradient estimate given to

Adam. So we get

. OL(t) (1= B1)(g: + 01)? | Bilge + o)mis
S =g A0 = VUi te Voite

For SIU, we use an independent mini-batch estimate g; + o} for agét) and therefore obtain

oL@ o (=89 + o) (g +00) | Balge +op)miy
SIU:  — CA() = N e

Taking the difference between these two and ignoring all terms which have expectation zero (note
that E[o;] = E[o}] = 0 and that ¢, o} are independent of m;_; and g;) gives

2
Ot

VTR

SI—SIU:  (1—B))

as claimed.

To see that Assumption 1 is equivalent to the bias being larger than the unbiased part, note that in
expectation SIU equals

2
gy gti—1 mi—19t
1-— + ~
( Bl),/thrE 61\/Ut+e Bl,/thre

The last approximation here is valid because 8ym:—1 > (1 — (1)g: which holds since (1) 8; >
(1= 1) and 2) E[|mi—1]] > E[|g¢]]- (1) follows from 81 = 0.9, and (2) holds since E[m;_1] =~ ¢;
and since m;_1 has a noise component (due to gradient noise), while g; is a deterministic quantity,
implying E[|m;_1|] > E[|g:|] by elementary considerations.

In particular, the two calculations for the bias and the expectation of SIU above imply that Assumption
1, which is (1 — 31)o? > B1m;_19:, is equivalent to the bias of SI being larger than its unbiased
part.
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G.2 EFFECT OF CALCULATING FISHER IN MINI-BATCHES: ANALYSIS OF BATCH-EF

For this subsection, let us slightly change notation and denote the images by X1, ..., Xp and the
gradients (with respect to their labels and the cross entropy loss) by g + o1, ... g + op. Here, again
g is the overall training set gradient and o; is the noise (i.e. Zil o; = 0). Then the Empirical Fisher
is given by

| D
_ 2
EF = D ;:1(9 + ;)

We want to compare this to evaluating the squared gradient over a batch. Let i1, ...,, denote
uniformly random, independent indices from {1,..., D}, so that X;,, ..., X;, is a random mini-
batch of size b. Let g 4 o be the gradient on this mini-batch. We then have, taking expectations over
the random indices,

b

1
Ellg+0)?] = E|x S (g+0i)(g+a1,)
r,s=1
b(b—1 b
- %E[@ +0i)(g + 0i)] + 3 El(g +03,)°]
b—1, 1
= ——g°+ -EF
9t
~ Lpp
T

This conclusion may seem surprising, but recall that it is only based on one assumption, namely that
the gradient noise is considerably bigger than the gradient itself - an assumption for which we have
collected ample evidence.

This conclusion may seem surprising, but it only relies on only two assumptions: (1) We draw a
minibatch with i.i.d. elements (i.e. with replacement) , and (2) the noise is considerably bigger than
the gradient.

(1) If we draw minibatch elements without replacement (on the extreme end would be drawing the
full batch), then our derivation ignores the contribution of E[o;,0;,] < 0. Note that as long as the
batchsize is small (square root of the size of the dataset or smaller) drawing a batch with or without
replacement has almost the same distribution.

(2) Concretely, we assume E[(g + 0;)%] > (b — 1)g*. Note that unlike in other sections of this
manuscript, here o; refers to the gradient noise of individual images (rather than mini-batch noise).
We have seen that even with a batch-size of 256 (i.e. when we reduce then noise by a factor of 256) the
noise is still much bigger than the gradient (recall Figures [J.3] [I.6] [H.2)), so that our assumption
is true with room to spare.

We also point out that the relation between the (diagonal of the) covariance matrix of minibatch
gradients and the Fisher Information has also been described in several other places in the literature,
e.g.Roux et al.[(2008); [Thomas et al.|(2020); Jastrzebski et al.[(2017).

H GRADIENT NOISE

Here, we quantitatively assess the noise magnitude outside the continual learning context. Recall
that Figure 2] (left) from the main paper, as well as Figures [J.5|and [J.6| already show that the noise
dominates the SI importance measure, which indicates that the noise is considerably larger than the
gradient itself.

To obtain an assessment independent of the SI continual learning importance measure, we trained our
network on MNIST as described before, i.e. a ReLu network with 2 hidden layers of 2000 units each,
trained for 20 epochs with batch size 256 and default Adam settings. At each training iteration, on
top of calculating the stochastic mini-batch gradient used for optimization, we also computed the full
gradient on the entire training set and computed the noise — which refers to the squared /5 distance
between the stochastic mini-batch gradient and the full gradient — as well as the ratio between noise
and gradient, measured as the ratio of squared /5 norms. The results are shown in Figure In
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Figure H.1: Gradient noise, measured as squared /5 distance between full training set gradient and the
stochastic mini-batch gradient with a batch size of 256. ‘Full gradient’ magnitude is also measured as
squared {5 norm.

Data obtained by training a ReLu network with 2 hidden layers of 2000 hidden units for 20 epochs
with default Adam settings. Only every 20-th datapoint shown for better visualisation.

Prlratio > x]

Figure H.2: y-value shows fraction of training iterations in which the ratio between mini-batch noise
and full training set gradient was at least z-value. Data obtained as described in main text / Figure [H.T]
in particular the batch-size was 256. ‘Ratio’ refers to the ratio of squared ¢5 norms of the respective
values.

addition, we computed the fraction of iterations in which the ratio between noise and squared gradient
norm is above a certain threshold, see Figure[H.2]

I RELATIVE PERFORMANCE OF REGULARISATION METHODS

Several papers (van de Ven & Tolias} 2019; Hsu et al.l 2018 |Farquhar & Gal, [2018)) played an
important role in recognising that different continual learning algorithms had been evaluated in
settings with varying difficulties. These papers also greatly clarified these setting, making an
important contribution for future work.

Here, we want to point out that some of the results (and thus conclusions) of the experiments in
(Hsu et al.l 2018)) (these were the only ones we investigated more closely) are specific to suboptimal
settings and hyperparameters used there.

For example, it is found there that EWC, MAS, SI perform worse than an importance measure which
assigns the same importance to all parameters (called ‘L2 regularisation’). This is in contrast to results
reported in the EWC paper (Kirkpatrick et al.l[2017), who found the L2 baseline to perform worse
than EWC. We also attempted to reproduce the L2 results and tried two versions of this approach, one
with constant importance for all tasks and one with importance increasing linearly with the number
of tasks. The latter approach worked better, but still considerably underperformed EWC, MAS, SI
on Permuted-MNIST (88% vs 97%). We didn’t run these experiments on CIFAR. An alternative
importance measure based on the weights’ magnitudes after training was better, but still could not
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compete with SI, EWC, MAS (<95% vs >97%) showing that these importance measure are more use-
and meaningful than naive baselines.

Additionally, in other work we found that for domain incremental settings (again, these were the only
ones we investigated), results of baselines EWC and SI, but also of fine-tune (a baseline which takes
no measures to prevent catastrophic forgetting) can be improved, often by more than 10% compared
to previously mentioned reports (Hsu et al., 2018}; ivan de Ven & Tolias, 2019). This also implies
that the difference between well set-up regularisation approaches and for example repaly-methods
is not nearly as big as previously thought. The differences between these results are explained by
different factors (we explicitly tested eeach factor): hyperparameters (for example using Adam with
the standard learning rate 0.001 improves performance over the learning rate 0.0001 used previously),
initialisation (Glorot Uniform Initialisation works considerably better for SI than pytorch standard
initialisation for linear layers, which reveals unexpected defaults upon close investigation), training
duration (regularisation approaches usually notably benefit from longer training, this is reported
in |Swaroop et al.| (2019), and we also found that performance on P-MNIST can be improved to
98% by training for 200 rather than 20 epochs; |Hsu et al.| (2018)) use very short training times),
data-preprocessing (depending on the setting different normalisations have different, non-negligible
impacts).

J MORE EXPERIMENTS AND PLOTS

J.1 PLOTS, DATA ANALOGOUS TO FIGURES/TABLES IN MAIN PAPER

Here, we show data for experiments already partly reported in the main paper, including both
benchmarks and each task of each benchmark.

We start with the magnitude of the bias of SI (Figure 2] left panel): The observation that most of
the SI importance is due to its bias is consistent across datasets and tasks, see Figures and
Intriguingly, on CIFAR we find that the unbiased approximation of SI slightly underestimates the
decrease in loss in the last task, suggesting that strong regularisation pushes the parameters in places,
where the cross-entropy of the current task has negative curvature.

We show correlations between SI, SIB, SIU and AF, OnAF on CIFAR (analogous to Figure@ middle)
in Figure[J.T] The findings are in accordance with the ones on MNIST reported in the main paper.
Note that only the first task of CIFAR (i.e. CIFAR10) shows slightly different behaviour, as STU
and OnAF are more similar than on other tasks: correlation with OnAF is 0.994 + 0.001 for SI;
0.991£0.001 for SIU; 0.979 +0.003 for SIB. The similarity between SIU and OnAF in this situation
is explained by the weights with largest OnAF importance: If we remove the 5% of weights which
have highest OnAF importance, correlation between OnAF, SIU drops to 0.599 + 0.027, but for SI
resp. SIB the same procedure yields 0.977 & 0.002 resp. 0.965 % 0.003. This indicates that for the
first task of CIFAR there is a small fraction of weights with large OnAF importances, which are
dominated by the gradient rather than the noise. The remainder of weights is in accordance with our
previous observations and dominated by noise, recall also Figure [I.6]
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Figure J.1: Effect of Bias on SI. Analogous to Figure 2| (middle) but on CIFAR rather than MNIST.
Drop of correlations for tasks 2-6 is due to strong correlation as predicted in Section[5.2)and confirmed
in Figure [2] (right).
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We did not conduct the analogue of experiment corresponding to Figure 2] right panel, on MNIST
since there the influence of regularisation was already weak there.

J.2  RELATION OF ONAF AND AF

We show summaries of the correlations between OnAF and AF in Figure[J.2] This includes compar-
isons of AF based on different sample sizes. We also investigated the influence of training duration
on AF, OnAF, see next section.
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Figure J.2: Correlations between AF and OnAF. Solid lines show correlations on MNIST, dotted
lines show correlations on CIFAR. *AF’ is based on 30000 (MNIST) resp. 5000 (CIFAR) samples,
while AF_small’ is based on 1000 resp. 500 samples.

J.2.1 INFLUENCE OF TRAINING DURATION ON AF, ONAF

It seems plausible that the correlation between AF and OnAF we observed is due to training on
tasks for a long time — the model might converge quickly so that the sum of OnAF is dominated
by summands which approximate AF close to the final point in training. To test this, we trained
our networks for varying numbers of epochs on the first task of P-MNIST and Split CIFAR10/100
and measured the correlation between OnAF and AF. The results in Tables 2] show that the
correlation between AF, OnAF does not rely on long training duration. On MNIST, we even see
decreasing correlation with longer training time, this may be due to either an actual decrease in
correlation or due to higher variance when estimating AF using 10000 samples (or both).

Table J.1: Correlation between AF and OnAF on CIFAR10 depending on training time. We
show mean and standard deviation of Pearson correlation over 3 runs. AF is based on 500 samples. If
the standard deviation is below 0.005 it is shown as 0.00.

NUMBER OF EPOCHS CORRELATION

1 0.94+ 0.01
2 0.95+ 0.00
4 0.96+ 0.01
8 0.96+ 0.01
15 0.97+ 0.00
30 0.97+ 0.00
60 0.95+ 0.01

J.3 ADDITIONAL SCATTER PLOTS AND INTENSITY PLOTS

We show additional scatter and intensity plots in Figure Note that for both architectures there are
a few million weights. The scatter plots are overcrowded and show the whole range of dependencies
between two measure that can possibly occur. Intensity plots show the dependencies that the majority
of weights adheres to.
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Table J.2: Correlation between AF and OnAF on MNIST depending on training time. We show
mean and standard deviation of Pearson correlation over 3 runs. AF is based on 10000 samples.
Recall that for 30000 samples and 20 epochs correlation is larger.

NUMBER OF EPOCHS CORRELATION

1 0.90+ 0.01
2 0.90+ 0.01
5 0.88+ 0.01
10 0.78+ 0.04
20 0.68+ 0.05

J.4 ALTERNATIVE COMPARISON OF SI, SIU, SIB TO AF, ONAF

Finally, we point out that our comparisons between SI, SIU, SIB and AF, OnAF are usually obtained
after applying a max(0, -) (c.f. equation equation|7_1|of main paper) to the SI (and SIU, SIB) impor-
tances (the algorithms diverge without this operation) and before the division in equation [ (our
theory doesn’t make predictions about this division).

Here, we first show that the division in equation 4] does not affect correlations between SI and AF, see
Figure[l.3]
Next, we present results without the max operation (and without division) in[I:4] further confirming

our analysis that (1) correlation between OnAF and SI is weakened by strong regularisation and (2)
the correlation is due to the bias of SI.
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Figure J.3: Analogous to Figure |2 (middle) from main paper, comparing SI and SIN to AF. SI refers
to the importance after applying the mazx(-, 0) operation, but before the division. SIN also includes
the division (or Normalisation), see equation E}
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Figure J.4: Analogous to Figure (middle) from main paper, comparing SI, SIU, SIB but before the
operation max(+, 0) is applied to importances of SI, SIU, SIB. See fulltext. Data from CIFAR tasks.
On P-MNIST the operation max(-, 0) has close to no effect.
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Analogous to FigureEl (left) from main paper.
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