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ABSTRACT

E(3)-equivariant neural networks have demonstrated success across a wide range
of 3D modelling tasks. A fundamental operation in these networks is the tensor
product, which interacts two geometric features in an equivariant manner to create
new features. Due to the high computational complexity of the tensor product,
significant effort has been invested to optimize the runtime of this operation. Luo
et al. (2024) recently proposed the Gaunt tensor product (GTP) which promises a
significant speedup over the naive implementation of the tensor product. However,
this method is unable to perform antisymmetric operations which are crucial for
tasks involving chirality. In this work, we introduce vector signal tensor product
(VSTP) to solve this issue and show how it generalizes to a class of irrep signal
tensor products (ISTPs). Finally, we investigate why these tensor products are
faster. We find most of the speedup comes at the price of expressivity. Further,
we microbenchmarked the various tensor products and find that the theoretical
runtime guarantees may differ wildly from empirical performance, demonstrating
the need for careful application-specific benchmarking. Our code is linked here.

1 INTRODUCTION

Many complex physical systems possess inherent spatial symmetries, and incorporating these sym-
metries into models has been shown to significantly improve both learning efficiency and robustness
Batzner et al. (2022); Rackers et al. (2023); Frey et al. (2023); Owen et al. (2024). To address the spe-
cific symmetries present in 3D systems, considerable effort has been dedicated to the development
of E(3)-equivariant neural networks (E(3)NNs) (Thomas et al., 2018; Weiler et al., 2018; Kondor,
2018; Kondor et al., 2018). E(3)NNs have delivered strong performance across a wide range of
scientific applications, including molecular force fields (Batzner et al., 2022; Musaelian et al., 2023;
Batatia et al., 2022), catalyst discovery (Liao & Smidt, 2023), generative models (Hoogeboom et al.,
2022), charge density prediction (Fu et al., 2024), and protein structure prediction (Lee et al., 2022;
Jumper et al., 2021).

The group E(3) consists of all rotations, translations and reflections in 3 dimensions; we say a model
is E(3)-equivariant if it satisfies:

f(g · x) = g · f(x) ∀g ∈ E(3), x ∈ X (1)

E(3)-equivariant neural networks work with features that transform as irreducible representations
of O(3), termed ‘irreps’, as described in Appendix A. How these irreps transform under 3D rota-
tion, SO(3) is defined by a positive integer L, which can intuitively be thought of as an angular
frequency. To interact these irreps, a special ‘tensor product’ operation is performed, which replaces
how features are traditionally multiplied with each other in a typical neural network. As described
in Section 2, the well-studied Clebsch-Gordan (Varshalovich et al., 1988) coefficients can be used to
define a tensor product. The most general Clebsch-Gordan tensor product (CGTP) has a time com-
plexity1 of O(L5) as we show in Appendix D, which can quickly become expensive for larger L.

1Note that (Passaro & Zitnick, 2023) claims a runtime of O(L6) for this tensor product. In Appendix D, we
show that this runtime is actually O(L5).

1
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This scaling has limited the direct application of E(3)-equivariant neural networks to larger systems;
and there is now much interest in optimizing several key operations within these neural networks.

One such optimization was identified by (Passaro & Zitnick, 2023) for the special case of when one
of the inputs is derived from the spherical harmonics. Under a suitable rotation, the irreps derived
from spherical harmonics become sparse, allowing for a runtime of O(L3). However, the extreme
reduction in sparsity is not generally true for arbitrary irrep values.

Figure 1: (A) Spherical harmonics are basis functions that transform as specific irreps of O(3).
(B) Gaunt Tensor Products accelerate tensor products using projections on the sphere, however this
eliminates certain paths such as antisymmetric outputs.

For arbitrary irrep values, Luo et al. (2024) proposed the Gaunt Tensor Product (GTP) which they
show has a complexity O(L3). Further, Unke & Maennel (2024) introduced another O(L3) opera-
tion which we call matrix tensor product (MTP). While this represents exciting progress, it raises an
important question:

• What is fundamentally different between these new tensor products and the general CGTP
with O(L5) complexity?

In this paper, we show that these reductions in complexity come from merging independent interac-
tions (what we will call paths) contained within the general tensor product. This leads to two other
questions:

• How do these changes affect the expressivity of tensor product operations?

• How should we compare runtimes when models use different formulations of tensor prod-
ucts?

In Section 4, we give a measure of expressivity of the different tensor products and demonstrate
that by normalizing against expressivity, the original GTP algorithm, MTP, and the sparse version of
CGTP all have the same asymptotic runtime. Therefore the speed up come at the price of freedom
in expressivity.

Based on rigorous benchmarking, GTP seems to scale better than MTP. Further, we identify that
there exists asymptotically faster spherical harmonic transform algorithms (Healy et al., 2003) which
allows the asymptotic runtime of GTP to be faster than the others even when normalized for expres-
sivity. However, GTP is the only tensor product which suffers from an inability to perform anti-
symmetric operations. In fact we demonstrate this prevents identification of chiral tetris pieces in
Section 5.2. This motivates us to propose a new tensor product which leverages the ideas of GTP to
retain the speed yet allows antisymmetry.

Therefore in Section 3.2 we propose vector signal tensor products (VSTP). Rather than using scalar
signals and scalar products, VSTP uses vector signals and cross product interactions. We prove that
the selection rules for VSTP only eliminate the trivial scalar 0⊗ 0 interaction. In addition, we show
that VSTP has the same asymptotic runtime as GTP. Further, we describe in Section 3.4 how our
approach generalizes to arbitrary irrep signal types to form an entire class of tensor products we call
irrep signal tensor products (ISTPs).

We summarize our core contributions as follows:

• Proposal of VSTP (and generalization of ISTPs) solving the antisymmetry problem of GTP

• Systematic analysis of theoretical runtimes and expressivity of various tensor products

2
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• Rigorous benchmarking of different tensor product implementations

We organize this paper by first introducing the existing tensor products in Section 2 and our new
vector signal tensor product (VSTP) and irrep signal tensor products (ISTP) in section Section 3.
We then discuss how to measure the expressivity of different tensor products and summarize the
results in Section 4. Finally we benchmark the various tensor products showing that asymptotics do
not always correspond with practical performance.

We assume familiarity with group representations. For a brief introduction to representations (reps)
and irreducible representations (irreps), we refer the reader to Appendix A.

2 TENSOR PRODUCTS

We begin by motivating why tensor products between irreps are an important operation. First, irreps
are a key component of many equivariant architectures Geiger & Smidt (2022); Unke & Maennel
(2024). In particular, Schur’s lemma states that equivariant linear maps between 2 irreps consist
of either scaling if the irreps are the same, or must be 0 (Dresselhaus et al., 2007). Hence if the
input and outputs of a linear layer are irreps, Schur’s lemma directly gives the constraints needed
for the layer to be equivariant. This is why identifying features in terms of irreps is so prevalent in
equivariant architectures.

However, Schur’s lemma prevents interactions between different irreps in linear layers. This is the
motivation for tensor product operations. Given two spaces V and W and a desired output space
Z, the most natural interaction is a bilinear mapping. This can also be viewed as a linear mapping
from the tensor product space V ⊗W → Z. Since we are trying to construct equivariant networks,
if there are actions of group G on spaces V,W,Z, we would like our bilinear map to be equivariant.
Further, because irreps are so useful for constructing linear layers, we want the input and output
reps of our bilinear maps to explicitly be written as direct sums of irreps. Note that requiring the
output to explictly be written as a sum of irreps is precisely what makes tensor products expensive.
In the context of this paper, a tensor product operation refers to a fixed equivariant bilinear map
V ×W → Z where V,W,Z have been explicitly decomposed into a direct sum of irreps.

2.1 CLEBSCH-GORDAN TENSOR PRODUCT

Suppose we have 2 reps in spaces V,W . The most natural map is V ×W → V ⊗W constructed
by taking an outer product of the inputs. If the inputs are explicitly written as a direct sum of irreps,
we can write the tensor product as

x⊗ y =
⊕

x(ℓ1)∈x
y(ℓ2)∈y

(x(ℓ1) ⊗ y(ℓ2)) (2)

a new basis which is the sum of tensor product reps.

The key idea of a Clebsch-Gordan tensor product is we can explicitly reduce the tensor product reps
back into a direct sum of irreps with a change of basis. This change of basis is the definition of the
Clebsch-Gordan coefficients, giving us

x(ℓ1) ⊗ y(ℓ2) =
⊕
ℓ3

(x(ℓ1) ⊗CG y(ℓ2))(ℓ3) (3)

where
(x(ℓ1) ⊗CG y(ℓ2))(ℓ3)m3

=

ℓ1∑
m1=−ℓ1

ℓ2∑
m2=−ℓ2

Cℓ3,m3

ℓ1,m1,ℓ2,m2
x(ℓ1)
m1

y(ℓ2)
m2

. (4)

Therefore the original tensor product can also be rewritten as a direct sum of irreps. This defines the
Clebsch-Gordan tensor product (CGTP)

x⊗CG y =
⊕

x(ℓ1)∈x
y(ℓ2)∈y

(x(ℓ1) ⊗CG y(ℓ2)). (5)

3
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Note that full CGTP is really just a change of basis from a sum of tensor product reps to a sum of
irreps. Hence we do not lose any information.

The change of basis of tensor product reps into irreps is well studied. There are selection rules,
which tell us the only ℓ3 in Equation 4 that can be non-zero Varshalovich et al. (1988).

Proposition 2.1 (Selection rules for CGTP). We have nonzero values of (x(ℓ1) ⊗CG x(ℓ2))(ℓ3) only
if ℓa ≤ ℓb + ℓc for all distinct choices of a, b, c (equivalently |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2).

We will refer to any triple [ℓ1, ℓ2, ℓ3] satisfying the selection rules as a valid path.

2.2 GAUNT TENSOR PRODUCT

The Gaunt tensor product (GTP) as introduced by Luo et al. (2024) uses the intimate connection
between spherical harmonics, irreps, and spherical signals. We define this relation more precisely in
Appendix B. The key idea is that any rep of form (0, 1, . . . , L) can be interpreted as coefficients for
the spherical harmonics and hence corresponds to a function on S2.

Figure 2: Schematic of the process in taking a Gaunt tensor product. We interpret input irreps as
scalar SH coefficients to create spherical signals. We then take pointwise products of the two signals
to create a new signal which we decompose back into scalar SH coefficients.

In particular, given two (0, 1, . . . , L) reps x and y, let fx = ToSphere(x) and fy = ToSphere(y)
be the associated signals on S2. Taking the pointwise product of fx and fy on S2 gives us a new
function fx · fy, also on S2. Then, converting back to irreps gives us the Gaunt tensor product:

x⊗GTP y = FromSphere(fx · fy) (6)

Note that the outputs have only single copies of irreps. Hence GTP merges outputs of different paths
such as [ℓ1, ℓ2, ℓ2] and [ℓ′1, ℓ

′
2, ℓ2] and loses information. In addition, note that GTP is a symmetric

operation. Hence, antisymmetric paths cannot appear. For example, GTP cannot be used to compute
cross products, because u × v = −v × u. We can characterize this with selection rules for GTP
derived from the Gaunt coefficients (Gaunt, 1929).
Proposition 2.2 (Selection rules for GTP). We have nonzero values of (x(ℓ1) ⊗GTP x(ℓ2))(ℓ3) only
if the following are satisfied:

1. ℓa ≤ ℓb + ℓc for any distinct a, b, c (equivalently |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2)

2. ℓ1 + ℓ2 + ℓ3 is even

Note in particular a cross product corresponds to the [1, 1, 1] path which fails rule 2. In Section 5.2,
we show that this implies that the Gaunt tensor product is incapable of solving a simple task of
classifying chiral 3D structures.

2.3 MATRIX TENSOR PRODUCT

While this paper focuses on tensor products using spherical signals, we also mention another inter-
action introduced in the new e3x framework in the FusedTensor class (Unke & Maennel, 2024;
Maennel et al., 2024). The main motivation for this interaction is that a tensor product rep is a matrix
and we can interact 2 tensor product reps through matrix multiplication.

Hence, matrix tensor products (MTP) first takes each input and embeds the irreps in a single large
enough tensor product rep using Clebsch-Gordan coefficients. After doing so, we can matrix mul-

4
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Figure 3: Schematic of the process in taking a matrix tensor product. We embed input irreps into a
tensor product rep. We then interact using matrix multiplication before decomposing the resulting
tensor product rep back into a direct sum of irreps.

tiply the tensor product reps. Finally, we can decompose the resulting tensor product rep back into
irreps. Details are provided in Section D.3.

Similar to GTP, MTP only outputs one copy of each possible output irrep. Hence, the output irreps of
the same irreps get weighted and summed together and MTP loses information in the same way as
GTP. However in contrast to GTP, MTP is not a symmetric operation so we can have antisymmetric
tensor product terms.

3 VECTOR SIGNAL TENSOR PRODUCT

The key idea of GTP is the connection between irreps and scalar spherical signals, which can lead
to improvements in asymptotic runtime. However, the symmetry of GTP introduces an additional
selection rule which eliminates antisymmetric tensor products. Here, we introduce vector signal
tensor products (VSTP) which solves the antisymmetry issue while retaining the asymptotic benefits.
We derive the selection rules for VSTP and prove they do not eliminate any paths except for the
trivial 0 ⊗ 0. In addition, we note that in principle we can generalize GTP and VSTP to using
arbitrary tensor signals which we call irreps signal tensor product (ISTP).

3.1 VECTOR SPHERICAL HARMONICS

Analogous to scalar spherical harmonics, one can define a set of vector spherical harmonics which
forms an orthonormal basis for vector signals on a sphere.
Definition 3.1 (Vector spherical harmonics). For integers j, ℓ,m where |j − 1| ≤ ℓ ≤ j + 1 and
|m| ≤ j, we define the functions Ym

j,ℓ : S
2 → R3 as

(Ym
j,ℓ(r̂))i =

∑
m′

√
2j + 1

2ℓ+ 1
Cℓ,m′

j,m,1,iY
m′

ℓ (r̂).

We refer to these functions as the vector spherical harmonics.
Remark 3.2. One may often see different definitions of vector spherical harmonics. Our definition
is the one which makes the most sense from a representation theory perspective and is discussed in
Appendix C.

Similar to scalar SH, vector SH also forms a complete orthonormal basis for vector signals on a
sphere.
Proposition 3.3 (Orthonormal basis). We have∫

S2

Ym
j,ℓ ·Ym′

j′,ℓ′dΩ = δmm′δjj′δℓℓ′ .

Further, the functions Ym
j,ℓ : S

2 → R3 form a complete orthonormal basis of functions S2 → R3.

In addition, collections of our vector SH satisfy a similar equivariance property as scalar SH do.
Proposition 3.4 (Equivariance). The set of functions Ym

j,ℓ : S
2 → R3 for a given j, ℓ are equivari-

ant. More precisely for any g ∈ SO(3) we have that∑
m′

Dj
m,m′(g)Y

m′

j,ℓ (r̂) = D1(g)Ym
j,ℓ(D

1(g)r̂).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 VECTOR TENSOR PRODUCT

Figure 4: Schematic of the process in taking a vector signal tensor product. We interpret input irreps
as vector SH coefficients to create vector spherical signals. We then take pointwise cross products
of the two signals to create a new signal which we decompose back into vector SH coefficients.

Because our vector SH basis transform as irreps of type j, we can interpret input irreps as coefficients
for these basis functions. Note however that (with the exception of j = 1), there are now 3 sets of
basis functions which transform as an irrep of type j. These are the Ym

j,ℓ for ℓ = j − 1, j, j + 1.
Hence we need 3 irreps for each j to specify a vector signal which we label as x(j,ℓ). Similar to the
scalar case, given a (0, 1, 1, 1, 2, 2, 2, . . . , j, j, j) representation x, we can define ToSphereVec as

ToSphereVec[x](r̂) =
∑
j,ℓ,m

x(j,ℓ)
m Ym

j,ℓ(r̂)

which converts these irreps to a vector spherical signal. Let fx and fy be the resulting signals from
x and y.

After converting the input irreps into vector signals, we can interact two signals through a point-
wise cross product operation. We can then take the resulting vector signal and decompose it back
into vector SH coefficients which extracts our output irreps. Hence, our output irreps are given by
FromSphereVec[fx × fy].

Importantly, note that since encoding irreps into vector SH signals could be asymmetric and that
pointwise cross products are antisymmetric operations, we do not automatically eliminate antisym-
metric tensor products.

3.3 SELECTION RULES AND COMPLETENESS

Similar to GTP, we can derive a set of selection rules for VSTP. For up to j = 20, we have tested
that these selection rules are not only necessary, but also sufficient. However, proving whether these
rules are sufficient is likely a hard problem as accidental zeros of the Clebsch-Gordan coefficients
are still not well understood Heim et al. (2009).
Theorem 3.5 (Selection rules for VSTP). We have

(x(j1,ℓ1) ⊗ y(j2,ℓ2))(j3,ℓ3)

is nonzero only if the following are satisfied:

1. |ji − 1| ≤ ℓi ≤ |ji + 1| for i = 1, 2, 3

2. ja ≤ jb + jc for any distinct a, b, c (equivalently |j1 − j2| ≤ j3 ≤ j1 + j2)

3. ℓa ≤ ℓb + ℓc for any distinct a, b, c (equivalently |ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2)

4. ℓ1 + ℓ2 + ℓ3 is even

5. There is no choice of distinct a, b, c such that ja = ℓa and (jb, ℓb) = (jc, ℓc)

In contrast to GTP, VSTP selection rules allow all the possible paths except for multiplication of
scalars.
Theorem 3.6. Suppose [j1, j2, j3] is a valid path (are such that |j1 − j2| ≤ j3 ≤ j1 + j2) and not
all 0. Then there exists ℓ1, ℓ2, ℓ3 which satisfies the selection rules for VSH.

6
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3.4 GENERALIZATION: IRREP SIGNAL TENSOR PRODUCTS (ISTPS)

A natural extension is to use signals of arbitrary irrep types. We label our irrep type by s in analogy
to spin.
Definition 3.7 (Tensor spherical harmonics). For integers j, ℓ, s,m where |j − 1| ≤ ℓ ≤ j + 1 and
|m| ≤ j, we define the functions Ym

j,ℓ,s : S
2 → R2s+1 as

(Ym
j,ℓ,s(r̂))ms =

∑
m′

√
2j + 1

2ℓ+ 1
Cℓ,m′

j,m,s,ms
Y m′

ℓ (r̂).

We refer to these functions as the tensor spherical harmonics.

Similar to the scalar and vector SH, these form a complete orthonormal basis and satisfy equivari-
ance properties. We can similarly interpret input irreps as coefficients of these basis functions and
obtain tensor harmonic signals fs1x1

: S2 → R2s1+1 and fs2x2
: S2 → R2s2+1.

In general, given 2 irrep signals fs1x1
and fs2x2

we can perform pointwise CGTP operations to extract
an output irrep signal of type s3. This is

fs3(r̂) = (fs1x2
(r̂)⊗CG fs2x2

(r̂))(s3).

Decomposing the output irrep signal into coefficients of the corresponding tensor harmonics gives
the output of our operation. We call this generalization irrep signal tensor products (ISTPs) and we
label them with a triple (s1, s2, s3) to denote the input and output signal types. In this formulation,
GTP corresponds to the (0, 0, 0) case and our VSTP corresponds to (1, 1, 1). Note that we can also
have (1, 1, 0) which corresponds to taking a dot product of vector signals.

4 ASYMPTOTIC RUNTIMES AND EXPRESSIVITY

We would like to characterize not only how expensive, but also how expressive any particular tensor
product is. To do so, we consider the construction of equivariant bilinear maps

B : (0⊕ . . .⊕ L)× (0⊕ . . .⊕ L)→ (0⊕ . . .⊕ 2L)

given some existing tensor product operation T : V ×W → Z. Since we assume the input and
outputs of T are explicitly a direct sum of irreps, it is cheap to create equivariant linear layers

LθV : 0⊕ . . .⊕ L→ V

LθW : 0⊕ . . .⊕ L→W

LθZ : Z → 0⊕ . . .⊕ 2L

parameterized by θ = (θV , θW , θZ). It is not hard to see from Schur’s lemma the number of
parameters in θV , θW , θZ is the number of irreps of degree up to L in V,W,Z respectively. Using
these linear maps and T , we get a bilinear map

Bθ(x,y),T = T (LθV x, LθW y)LθZ .

The space BT = {Bθ,T : ∀θ} then defines all bilinear maps we can construct in this way. We can
then define the dimension of B as a measure of the expressivity of T . Importantly, we note the
degrees of freedom of θ is Nirreps in(T )+Nirreps out(T ) but that there is a 2-fold redundancy in the
overall scaling of the map. Hence for a given tensor product T , we can define

β(T ) = Nirreps in(T ) +Nirreps out(T )− 2

which is an upper bound for our expressivity measure. However, further the number α of irreps
in the tensor product space (0 ⊗ . . . ⊗ L) ⊗ (0 ⊗ . . . ⊗ L) is the theoretical maximum dimension
possible. Note this also happens to be Nirreps out for CGTP so

α = Nirreps out(CGTP).

Hence,
γ(T ) = min(β(T ), α)

7
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Table 1: Asymptotic runtimes and expressivity of various tensor product implementations. Note that
when normalized for expressivity, most tensor products have the same asymptotics as sparse CGTP.
The only true speed up comes from a fast spherical transform algorithm by Healy et al. (2003).

Tensor Product # Input Irreps # Output Irreps Runtime Runtime / Expressivity

Clebsch-Gordan (Naive) O(L) O(L3) O(L6) O(L3)
Clebsch-Gordan (Sparse) O(L) O(L3) O(L5) O(L2)

Gaunt (Fourier) O(L) O(L) O(L3) O(L2)
Gaunt (Grid) O(L) O(L) O(L3) O(L2)

Gaunt (S2FFT) O(L) O(L) O(L2 log2 L) O(L log2 L)
Matrix (Naive) O(L) O(L) O(L4) O(L3)
Matrix (Sparse) O(L) O(L) O(L3) O(L2)

Vector Signal (Grid) O(L) O(L) O(L3) O(L2)
Vector Signal (S2FFT) O(L) O(L) O(L2 log2 L) O(L log2 L)

ISTP (Naive Grid) (s1, s2, s3) O((s1 + s2)L) O(s3L) O(s̃2L2 + s̃L3) O(s̃L+ L2)
ISTP (S2FFT) (s1, s2, s3) O((s1 + s2)L) O(s3L) O(s̃2L2 + s̃L2 log2 L) O(s̃L+ L log2 L)

gives an upper bound for expressivity of each tensor product.

In Appendix D we analyzed the asymptotic runtimes and in Appendix E we analyzed the expressivity
of implementations of the various tensor products and. The results are summarized in Table 1.

From this table, we can see that the asymptotic speedup in the faster tensor products comes from
a loss of expressivity. In particular, when normalizing for our expressivity measure, the only true
asymptotic speedup comes from implementations leveraging a fast algorithm for spherical harmonic
transforms which we refer to as a S2FFT (Healy et al., 2003).

5 EXPERIMENTS

5.1 MICROBENCHMARKING TENSOR PRODUCTS

Overview. To test the analysis in Table 1, we microbenchmark some of the tensor products derived
using NVIDIA’s Nsight Compute profiler. We report total GPU wall time and also normalized GPU
walltime according to the number of degrees of freedom defined in Section 4. We analyze the
total FLOPs computed by every tensor product and notice that higher wall times don’t necessarily
correspond to higher FLOPs and vice-versa. We further dive into this discrepancy by reporting the
peak GFLOPs/s out of all of kernels executed as part of the tensor product. This summarizes the
GPU utilization achieved by every tensor product.

Setup. We implemented all of the tensor products in JAX Bradbury et al. (2018), including a un-
weighted implementation of the matrix tensor product from e3x and a more GPU-friendly imple-
mentation of Clebsch-Gordan (Sparse) 1. All of the experiments were performed on an NVIDIA
A5500 with 24 GB. Our inputs are randomly generated and batch size refers to number of samples
used at once. Additional evaluation details, including benchmarks for CPU and other input settings
(SISO, SIMO) can be found in Appendix I.

Walltime ̸= FLOPs. The first trend we report is a discrepancy between the FLOPs computed by the
tensor products and their GPU wall times with Clebsch-Gordan (Sparse) having the lowest FLOPs
yet a high GPU walltime. We report low peak throughput (GFLOPs/s) despite having a more GPU-
friendly implementation 1. Overall, the various gaunt tensor products and matrix tensor product
are able to better saturate the GPU compared to the Clebsch-Gordan tensor products. We also
notice different wall time scaling with Lmax for different tensor products, even those having similar
asymptotic runtimes. For Gaunt (Fourier), our code does not leverage sparsity when transforming to
a 2D Fourier basis, potentially causing the slowdown.

Clebsch-Gordan tensor products do less compute per path. After normalizing by γ(T ) defined in
Section 4, we report the Clebsch-Gordan tensor products being the fastest both in terms of walltime
and FLOPs.
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Figure 5: Analysis of tensor products compute scaling by Lmax on RTX A5500 for MIMO: (Left)
Total Walltime, Total GFLOPs, and Peak Throughput (GFLOPs/s)
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Figure 6: Analysis of tensor products compute scaling per path on RTX A5500 for MIMO (Left)
Total Walltime / γ(T ) and (Right) Total GFLOPs / γ(T )

5.2 AN EXAMPLE WITH ANTISYMMETRY: CLASSIFYING 3D TETRIS PIECES

We consider a simple task of classifying 8 different 3D Tetris-like pieces, shown in 7a. Note
that the first two pieces are non-superimposable mirror reflections of each other; they are chiral.
Given a randomly oriented 3D structure, the network needs to predict which of the 8 tetris pieces it
corresponds to.

We use a simple message-passing neural network, described in Appendix H, using either the Gaunt
and Clebsch-Gordan tensor products. Our network architecture is almost identical to that of NequIP
(Batzner et al., 2022).

The pieces are normalized such that the side length of each cube is 1. When represented as a
graph, the center of each cube is a node. We instantiate the network with dmax = 1.1 so that
the centers are connected only to its immediately adjacent centers. The networks finally outputs
x = 7× 0e+1× 0o irreps. (As a reminder, 0e are scalars and 0o are pseudoscalars). The logits and
predicted probabilities are then computed by:

l0 = x(0o) × x(0e)0 l1 = −x(0o) × x(0e)0 li = x(0e)i for i ≥ 2

pi = softmax(li)
It is clear that defining the logits in this manner preserves the rotational and reflection symmetries.
The predictions are clearly invariant under rotations (as they are ℓ = 0 irreps), and under reflections:
x(0o) → −x(0o) but x(0e)i → x(0e)i .

We set the number of message-passing steps T to be 3, to allow the interactions 1o⊗ 1o → 1e and
then 1e ⊗ 1o → 0o, so the pseudoscalar can be created. The degree of spherical harmonics is kept
as ℓ = 4. The irreps of the hidden layers are restricted to some cutoff L, which is varied from 1 to 4

9
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Figure 7: (a) The 8 different 3D Tetris pieces, with the first two pieces being mirror images of each
other. (b) Training curves of networks trained with different tensor products on the 3D Tetris task.
The maximum L is varied from 1 to 4. All of the Clebsch-Gordan networks attain 100% accuracy
while none of the Gaunt networks do.

to vary the expressivity of the network. We train the model with the Adam optimizer with learning
rate 0.01 to minimize the standard cross-entropy loss to one-hot encoded labels for the 8 pieces.

As shown in Figure 7, the network is very easily able to solve this task with CGTP, but the same
network parametrized with GTP is unable to distinguish between the two chiral pieces. Adding
more channels or incorporating the pseudo-spherical harmonics (which have the opposite parity of
the spherical harmonics under reflection) did not help. The fundamental failure is the inability to
create the 1e term via 1o⊗1o→ 1e because this is the cross product, ie an antisymmetric operation.
Indeed, there is no way to create a pseudoscalar using the GTP in this setting.

6 CONCLUSION

In this work, we investigate the distinction between different O(3) equivariant tensor products that
exist in the literature and analyze their asymptotic behavior, empirical runtimes, and expressivity.
While there is much focus on improving how runtimes scale with L, we show that this speedup
comes at the cost of expressivity.

This broader investigation was inspired by the observation that specific antisymmetric paths were
missing in GTP and that paths which result in the same output irrep type are merged together. We
identify selection rules to characterize whether certain paths are missing and formulate a measure for
how merging of paths can affect expressivity. This framing lets us more easily evaluate the balance
between expressivity and efficiency of new versions tensor products, which we hope others find
useful. We use our framing to evaluate the asymptotic runtime and expressivity of various tensor
product algorithms, including our new VSTP and the more general class of ISTPs.

Finally, we microbenchmarked different implementations of CGTP, GTP, MTP, and VSTP. As ex-
pected, the absolute walltimes of GTP, MTP, and VSTP are faster than CGTP past some Lmax, but
when normalized for expressivity CGTP is the fastest.

However, more empirical work is needed to understand how much the loss of expressivity affects
actual performance of E(3)NNs. If we need the extra expressivity then clearly CGTP is the better
choice, but if not, we may benefit from the absolute speed up of the other tensor products. Our
work highlights the need to carefully analyze the tradeoffs between expressivity and walltime when
deciding which tensor product operation to use in practice. There are many opportunities for creative
design of equivariant operations. The best solution may depend heavily on the task and dataset at
hand.
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A IRREDUCIBLE REPRESENTATIONS OF E(3)

A representation ρ of a group G maps each group element g to a bijective linear transformation
ρ(g) ∈ GL(V ), where V is some vector space. Representations must preserve the group multipli-
cation property:

ρ(g · h) = ρ(g) ◦ ρ(h) ∀g, h ∈ G (7)
Thus, the representation ρ defines a group action on a vector space V . The dimension of the repre-
sentation ρ is simply defined as the dimension of the vector space V .

There may be subspaces W ⊂ V which are left invariant under actions of ρ(g) for all g ∈ G. If
this is the case, then restricting to W also gives a representation ρ|W (g) ∈ GL(W ). If there is no
nontrivial W , then we say the representation ρ is an irreducible representation (irrep).

To build E(3)-equivariant neural networks, the irreducible representations of E(3) play a key role.
Because E(3) is not a compact group, the usual approach has been to consider irreducible repre-
sentations of the group SO(3) of 3D rotations, and compose them with the representation in which
translations act as the identity:

ρ(R, T ) = ρ′(R) (8)
This is why translations are often handled in E(3)-equivariant neural networks by centering the
system or only using relative vectors.

The ‘scalar’ representation ρscalar representation of SO(3) is defined as:
ρscalar(R) = id ∀R ∈ SO(3) (9)

and is of dimension 1 over V = R. Elements of R are unchanged by any rotation R. We call such
elements ‘scalars’ to indicate that they transform under the ‘scalar’ representation of SO(3). An
example of a ‘scalar’ element could be mass of an object, which does not change under rotation of
coordinate frames.

Let T (R) ∈ R3×3 be the rotation matrix corresponding to a rotation R ∈ SO(3). Then, the ‘vector’
representation of SO(3) is defined as:

ρvector(R) = T (R) ∀R ∈ SO(3) (10)
and is of dimension 3 over V = R3. The name arises from the way vectors in R3 transform under
a rotation of the coordinate frame. We call such elements ‘vectors’ to indicate that they transform
under the ‘vector’ representation of SO(3). For example, the velocity and position of an object in a
certain coordinate frame are ‘vectors’.

Weyl’s theorem for the Lie group SO(3) states that all finite-dimensional representations of SO(3)
are equivalent to direct sums of irreducible representations. The irreducible representations of
SO(3) are indexed by an integer ℓ ≥ 0, with dimension 2ℓ + 1. ℓ = 0 corresponds to the ‘scalar’
representation, while ℓ = 1 corresponds to the ‘vector’ representation above. We will often use m,
where −ℓ ≤ m ≤ ℓ, to index of each of the 2ℓ+ 1 components.

We say that a quantity x ∈ R2ℓ+1 is a ℓ irrep, if it transforms as the irreducible representation
(‘irrep’) of SO(3) indexed by ℓ. If x1 is a ℓ1 irrep and x2 is an ℓ2 irrep, we say that (x1,x2) is a
direct sum of ℓ1 and ℓ2 irreps, which we call a (ℓ1, ℓ2) ‘rep’. Weyl’s theorem states that all reps are
a direct sum of ℓi irreps, possibly with repeats over ℓi: x = ⊕ℓix

(ℓi). The multiplicity of an irrep in
a rep is exactly the number of repeats.

An important lemma for constructing equivariant linear layer is Schur’s lemma (Dresselhaus et al.,
2007).
Lemma A.1 (Schur’s Lemma). Suppose V1, V2 are irreps of a Lie group over any algebraically
closed field (such as SO(3)). Let ϕ : V1 → V2 be an equivariant linear map.

Then ϕ is either 0 or an isomorphism.

Further, if V1 = V2 then ϕ is a multiple of identity.

Finally for any two ϕ1, ϕ2 : V1 → V2 we must have ϕ1 = λϕ2.

This tells us that to construct equivariant linear layers between reps written as a direct sum of irreps,
we can only have weights between input and output irreps of the same type and that those weights
must be tied together so they give multiples of the identity transformation.
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B SPHERICAL HARMONICS

The spherical harmonics are intimately connected to the representations of SO(3) and play a key
role in the Gaunt tensor product.

We define the spherical coordinates (r, θ, φ) as:[
x
y
z

]
=

[
r sin θ cosφ
r sin θ sinφ

r cos θ

]
(11)

for θ ∈ [0, π), φ ∈ [0, 2π).

The spherical harmonics Yℓ,m are a set of functions S2 → R indexed by (ℓ,m), where again ℓ ≥
0,−ℓ ≤ m ≤ ℓ. Here, S2 = {(r, θ, ϕ) | r = 1} denotes the unit sphere.

Indeed, as suggested by the notation, the spherical harmonics are closely related to the irreducible
representations of SO(3). Let Yℓ be the concatenation of all Yℓ,m over all m for a given ℓ:

Yℓ(θ, ϕ) =

 Yℓ,−ℓ(θ, ϕ)
Yℓ,−ℓ+1(θ, ϕ)

. . .
Yℓ,ℓ(θ, ϕ)

 (12)

When we transform the inputs to Yℓ(θ, ϕ), the output transforms as a ℓ irrep.

The spherical harmonics satisfy orthogonality conditions:∫
S2

Yℓ1,m1
· Yℓ2,m2

dS2 = δℓ1ℓ2δm1m2
(13)

where: ∫
S2

f · g dS2 =

∫ π

θ=0

∫ 2π

φ=0

f(θ, φ)g(θ, φ) sin θdθdφ (14)

The orthogonality property allows us to treat the spherical harmonics as a basis for functions on S2.
We can linearly combine the spherical harmonics using irreps to approximate arbitrary functions
on the sphere. Given a (0, 1, . . . , L) rep x = (x(0),x(1), . . . ,x(L)), we can associate the function
fx : S2 → R as:

fx(θ, φ) =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m Yℓ,m(θ, φ) (15)

The function fx is uniquely determined by x. In particular, by the orthogonality of the spherical
harmonics (Equation 13), we can recover the x

(ℓ)
m component:

x(ℓ)
m =

∫
S2

fx · Yℓ,m dS2 (16)

Thus, we can define the operations ToSphere and FromSphere:

x
ToSphere−−−−−−→ fx

FromSphere−−−−−−−→ x (17)

C TENSOR SPHERICAL HARMONICS

C.1 INTUITION

Rather than considering scalar signals on a sphere, we can in general consider signals which trans-
form as arbitrary representations of SO(3). Since arbitrary representations are direct sums of irreps,
it suffices to only consider signals which transform as irreps of SO(3). Let us specify the sig-
nal irrep with an integer s which we will interpret as “spin”. Then we are considering functions
f : S2 → R2s+1.
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Now in general, we know that the usual scalar spherical harmonics form a complete orthonormal for
scalar functions on a sphere. Hence to form an orthonormal basis for a tensor function of irrep s, we
can use 2s+1 copies of the spherical harmonics, one for each component of the 2s+ 1 dimensional
output. Hence we have a total of (2ℓ+ 1)× (2s+ 1) coefficients for the degree ℓ harmonics which
we can naturally form into an 2D array.

Now recall that spherical harmonics naturally correspond to SO(3) irreps. In particular, we note
that the coefficients of scalar spherical harmonics transform by Dℓ when rotating a scalar signal.
However for tensor harmonics, the output is not just a set of scalars but rather an irrep which also
transforms when we rotate the signal. So, we have a transformation of Dℓ along the (2ℓ + 1)
dimensional axis and a transformation of Ds(r) along the (2s + 1) dimension axis. Hence, the 2D
array of coefficients would transform as a ℓ⊗ s tensor product representation.

However, we know that all representations can be reduced into a direct sum of irreps with a change
of basis. We label these irreps by j, drawing analogy to the quantum mechanics conventions of total
angular momentum from an orbital (spherical harmonics ℓ) and spin (signal output representation s)
components. The new set of basis functions we label as Y mj ,ms

j,ℓ,s which can be defined in terms of
the scalar spherical harmonics. We detail this correspondence next.

C.2 SCALAR SPHERICAL HARMONICS AS EQUIVARIANT FUNCTIONS

Lemma C.1. Let R2ℓ+1 be the vector space of an SO(3) representation of order ℓ. Then there is a
SO(3)-equivariant f : S2 → R2ℓ+1 which is unique up to scaling.

First, the scalar spherical harmonics of degree ℓ can in fact be understood as equivariant functions
Yℓ : S2 → R2ℓ+1 where the output transforms as an SO(3) irrep of order ℓ. Borrowing bra-ket
notation from quantum mechanics, we may label the output basis as |ℓ,mℓ⟩ where mℓ ranges from
−ℓ to ℓ. Then we obtain

Yℓ(r̂) =
∑
mℓ

Y mℓ

ℓ (r̂) |ℓ,mℓ⟩

where Y mℓ

ℓ (r̂) are the usual spherical harmonics. When specifying coefficients of a scalar spherical
harmonic, we can interpret these as cmℓ

ℓ |ℓ,mℓ⟩ so that they also transform under the irrep ℓ. We
then obtain a signal by taking inner products giving

f(r̂) =
∑
ℓ,mℓ

⟨ℓ,mℓ| c̄mℓ

ℓ Y mℓ

ℓ (r̂) |ℓ,mℓ⟩ =
∑
ℓ,mℓ

c̄mℓ

ℓ Y mℓ

ℓ (r̂).

C.3 TENSOR HARMONICS AS SCALAR HARMONICS

For tensor harmonics, we would similarly like to specify a set of irreps as coefficients c
mj

j |j,mj⟩
which then maps onto a tensor signal through taking an inner product. Note that the output signal has
irrep s, so rather than considering equivariant functions S2 → R2ℓ+1 we now consider equivariant
functions f : S2 → R(2j+1)×(2s+1) where the output transforms as a tensor product representation
j ⊗ s. However, we can always transform the tensor product representation into a sum of irreps⊕j+1

ℓ=|j−s| ℓ. However, by Lemma C.1 the equivariant functions from S2 onto irreps are precisely
the scalar spherical harmonics up to scaling. So any equivariant f must be of form∑

mj ,ms

fmj ,ms(r̂) |j,mj , s,ms⟩ =
∑
ℓ,mℓ

nℓY
m
ℓ (r̂) |ℓ,mℓ⟩

=
∑
ℓ,mℓ

∑
mj ,ms

nℓY
mℓ

ℓ (r̂) |j,mj , s,ms⟩ ⟨j,mj , s,ms| |ℓ,mℓ⟩

=
∑

mj ,ms

∑
ℓ,mℓ

nℓ ⟨j,mj , s,ms|ℓ,mℓ⟩Y mℓ

ℓ (r̂) |j,mj , s,ms⟩

=
∑

mj ,ms

∑
ℓ,mℓ

nℓC
ℓ,mℓ

j,mj ,s,ms
Y mℓ

ℓ (r̂) |j,mj , s,ms⟩ .
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It is now clear that we can specify a tensor harmonic in terms of scalar spherical harmonics. In
particular, we can always choose exactly one of the nℓ to be nonzero, giving a basis of form∑

mj ,ms

Y
mj ,ms

j,ℓ,s (r̂) |j,mj , s,ms⟩ =
∑

mj ,ms

∑
mℓ

nj,ℓC
ℓ,mℓ

j,mj ,s,ms
Y mℓ

ℓ (r̂) |j,mj , s,ms⟩ .

By construction, these are orthogonal. All that remains is to ensure proper normalization.

We note any particular tensor harmonic is Ymj

j,ℓ,s(r̂) so we would like to evaluate∫
S2

⟨Ymj

j,ℓ,s(r̂),Y
mj

j,ℓ,s(r̂)⟩dA =

∫
S2

∑
ms

Y
mj ,ms

j,ℓ,s (r̂), Y
mj ,ms

j,ℓ,s (r̂)dA

=

∫
S2

∑
ms

∑
m,m′

nj,ℓC
ℓ,m
j,mj ,s,ms

Ȳ m
ℓ (r̂)nj,ℓC

ℓ,m′

j,mj ,s,ms
Y m′

ℓ (r̂)dA

=
∑
ms

∑
m,m′

n2
j,ℓC

ℓ,m
j,mj ,s,ms

Cℓ,m′

j,mj ,s,ms

∫
S2

∑
ms

Ȳ m
ℓ (r̂)Y m′

ℓ (r̂)dA

=
∑
ms

∑
m,m′

n2
j,ℓC

ℓ,m
j,mj ,s,ms

Cℓ,m′

j,mj ,s,ms
δm,m′

=
∑
ms

∑
m

n2
j,ℓ(C

ℓ,m
j,mj ,s,ms

)2

=n2
j,ℓ

2ℓ+ 1

2j + 1

where we used the fact that scalar SH are orthonormal and identities of Clebsch-Gordan coefficients.
Hence to have a normalization of 1, we see we can set

nj,ℓ =

√
2j + 1

2ℓ+ 1
. (18)

This gives the conversion formula

Y
mj ,ms

j,ℓ,s (r̂) =
∑
mℓ

√
2j + 1

2ℓ+ 1
Cℓ,mℓ

j,mj ,s,ms
Y mℓ

ℓ (r̂). (19)

This gives Definition 3.7.

C.4 TENSOR HARMONIC INTERACTION

Given two tensor valued signals f1 : S2 → R2s1+1 and f2 : S2 → R2s2+1, the most general way
to interact them is through the usual tensor product giving a signal f3 : S2 → R(2s1+1)×(2s2+1).
Of course we can always take this tensor product output representation and decompose back into
a direct sum of irreps, giving f3 : S2 →

⊕s1+s2
s3=|s1−s2| R

2s3+1. We can then decompose the final
output signal back into coefficients for the tensor harmonics.

C.5 VECTOR SPHERICAL HARMONICS CONVENTIONS

The case of s = 1 for equation 19 corresponds to vector spherical harmonics Definition 3.1. How-
ever, one commonly sees a different convention. These are the functions

Ym
ℓ (r̂) =Y m

ℓ (r̂)r̂

Ψm
ℓ (r̂) =r∇Y m

ℓ (r̂)

Φm
ℓ (r̂) =r̂×∇Y m

ℓ (r̂).

This other convention corresponds to the radial, curl-less, and divergence-less components and is
commonly used in electrodynamics. A conversion between the conventions can be found in Chapter
14.3 of Brown (2007).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D RUNTIME ANALYSIS

Here, we provide a detailed asymptotic analysis of runtimes for different tensor products. We con-
sider 3 different settings.

• Single Input, Single Output (SISO):
Here we are computing only one path [ℓ1, ℓ2, ℓ3] where ℓi ∈ O(L).

ℓ1 × ℓ2 → ℓ3

• Single Input, Multiple Output (SIMO):
Here we fix ℓ1, ℓ3 but allow all possible irreps generated by the respective tensor products.

ℓ1 × ℓ2 → Z

• Multiple Input, Multiple Output (MIMO):
Here we only bound the L that the tensor products use but allow full capacity for the input
and output irreps. In the case of CGTP, we can have an arbitrary number of copies of each
irrep but we assume we only use single copies of each irrep in the input.

Z ×W → Z

In the SISO and SIMO settings, the asymptotic runtimes of different tensor products are directly
comparable. However, in the MIMO setting, we lose expressivity in some tensor products. This is
discussed more in Appendix E. Note the MIMO setting is what one would typically want to use in
practice.

D.1 CLEBSCH-GORDAN TENSOR PRODUCT

The tensor product operation is defined as:

⊗CGx
(ℓ2))(ℓ3)m3

=

l1∑
m1=−l1

l2∑
m2=−l2

C
(ℓ3,m3)
ℓ1,m1,ℓ2,m2

x(ℓ1)
m1

x(ℓ2)
m2

(20)

where C denotes the Clebsch-Gordan (CG) coefficients which can be precomputed.

D.1.1 NAIVE RUNTIME

Let L = max(ℓ1, ℓ2, ℓ3). From Equation 20, for each m3, we would need to sum over m1,m2 which
range from −ℓ1 to ℓ1 and −ℓ2 to ℓ2 respectively. Hence, we expect O(L2) operations. To compute
the values for all m which range from−ℓ3 to ℓ3, we see that computing a single ℓ1⊗ ℓ2 → ℓ3 tensor
product requires O(L3) operations.

D.1.2 OPTIMIZED RUNTIME WITH SPARSITY

However, the CG coefficients are sparse. In the complex basis for the irreps, C(ℓ3,m)
ℓ1,m1,ℓ2,m2

is nonzero
only if m1 + m2 = m3. Transforming to the real basis for the irreps, this condition becomes
±m1 ±m2 = m3. In either case for a fixed m1 and m3, we only ever need to sum over a constant
number of m2’s rather than O(L) of them as naively expected. Therefore an implementation taking
this sparsity into account gives us a runtime of O(L2). This optimization was noted in Cobb et al..

D.2 GAUNT TENSOR PRODUCT

The Gaunt Tensor Product (GTP) is based on the decomposition of a product of spherical harmonic
functions back into spherical harmonics Luo et al. (2024). In particular, suppose one of our inputs
x(ℓ1) transforms as a direct sum of irreps up to some cutoff L (ie. ℓ1 ranges from 0, . . . , L). We can
view these irreps as coefficients of spherical harmonics which gives a spherical signal F1(θ, φ) =∑

ℓ1,m1
x
(ℓ1)
m1 Yℓ1,m1

(θ, φ). We similarly construct F2(θ, φ) =
∑

ℓ2,m2
x
(ℓ2)
m2 Yℓ2,m2

(θ, φ).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Taking the product of these spherical signals gives a new signal F3(θ, φ) = F1(θ, φ)F2(θ, φ). This
new signal can be decomposed into spherical harmonics which we use to define the GTP. This results
in

F3(θ, φ) =
∑
ℓ3,m3

(x(ℓ1) ⊗GTP x(ℓ2))(ℓ3)m3
Yℓ3,m3

(θ, φ). (21)

D.2.1 2D FOURIER BASIS

Luo et al. (2024) describe an implementation which decomposes spherical harmonics into a 2D
Fourier basis in their original paper introducing GTP. This also turns out to be the same implemen-
tation in Xin et al. (2021). We describe their procedure here.

Note that for any ℓ ≤ L we can always write the spherical harmonics in the 2D Fourier basis:

Yℓ,m(θ, φ) =
∑

−L≤u,v≤L

yℓ,mu,v e
i(uθ+vφ) (22)

for some coefficients yℓ,mu,v .

Hence, any signal x(ℓ)
m can be encoded as

F1(θ, φ) =

L∑
ℓ=0

ℓ∑
m=−ℓ

∑
−L≤u,v≤L

x(ℓ)
m yℓ,mu,v e

i(uθ+vφ) =
∑

−L≤u,v≤L

(
L∑

ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m yℓ,mu,v

)
ei(uθ+vφ).

(23)
We identify the encoding

xu,v =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m yℓ,mu,v . (24)

One can observe that the yℓ,mu,v are sparse and only nonzero when m = ±v. Therefore, finding xu,v

if we have a set of irreps is O(L) and it is O(1) if we only want one irrep. Because there are O(L2)
possible values for u, v, encoding into the 2D Fourier is O(L3) if we encode all irreps up to L or
O(L2) if encoding a single irrep.

For 2 functions of θ, φ encoded using a 2D Fourier basis x1
u,v,x

2
u,v , we can compute their product

using a standard 2D FFT in O(L2 logL) time. This gives some output encoded as yu,v where now
u, v range from −2L, . . . , 2L to capture all information.

Finally, we decode the resulting function in the 2D Fourier basis back into a spherical harmonic
basis to extract the output irreps. Suppose −L ≤ u, v ≤ L. We can always write

ei(uθ+vφ) = F⊥
u,v(θ, φ) +

L∑
ℓ=0

ℓ∑
m=−ℓ

zℓ,mu,v Yℓ,m(θ, φ) (25)

where F⊥
u,v(θ, φ) is some function in the space orthogonal to that spanned by the spherical harmon-

ics. By construction, our output signal is always in the space spanned by the spherical harmonics so
the orthogonal parts cancel. Hence we can write∑

−2L≤u,v≤2L

yu,ve
i(uθ+vφ) =

∑
−2L≤u,v≤2L

yu,v

L∑
ℓ=0

ℓ∑
m=−ℓ

zℓ,mu,v Yℓ,m(θ, φ) (26)

=

L∑
ℓ=0

ℓ∑
m=−ℓ

 ∑
−2L≤u,v≤2L

yu,vz
ℓ,m
u,v

Yℓ,m(θ, φ) (27)

Hence we identify:

yℓ
m =

∑
−2L≤u,v≤2L

yu,vz
ℓ,m
u,v . (28)

Once again, we can note that zℓ,mu,v must be sparse and is only nonzero when v = ±m. Hence,
evaluating the above takes O(L) time since we sum over O(L) values of u paired with constant
number of v’s. If we only extract one irrep, then we range over O(L) values of m giving O(L2)
runtime. If we extract all irreps up to 2L this becomes O(L3).
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D.2.2 GRID TENSOR PRODUCT

Rather than use a 2D Fourier basis, we can instead represent the signal by directly giving its value
for a set of points on the sphere. Quadrature on the sphere is a well-studied topic (Beentjes, 2015;
Lebedev, 1976); in general, O(L2) points are needed to exactly integrate spherical harmonics upto
degree L (McLaren, 1963). For this section, consider a product grid on the sphere formed by the
Cartesian product of two 1D grids for θ and φ with O(L) points each, for a total of O(L2) points.

We can write:

F1(θj , φk) =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m Yℓ,m(θj , φk) =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m Nℓ,mPm

ℓ (cos(θj))csm(φk) (29)

where Nℓ,m is some normalization factor, Pm
ℓ are the associated Legendre polynomials, and

csm(φ) =


sin(|m|φ) m < 0

1 m = 0

cos(mφ) m > 0

. (30)

We note that we can first evaluate

gm(θj) =

L∑
ℓ=0

x(ℓ)
m Nℓ,mPm

ℓ (cos(θj)) (31)

where we set Pm
ℓ = 0 if m > ℓ. If we have a set of irreps up to L then we do the summation and

this takes O(L) time. If we only have one irrep to encode then this takes O(1) time. But we also
have O(L) values of θj on the grid and O(L) values of m to evaluate. This gives O(L3) runtime to
encode onto the grid for irreps up to L and O(L2) for a single irrep. Finally evaluating

F1(θj , φk) =

ℓ∑
m=−ℓ

gm(θj)csm(φk) (32)

for a set of φk can be done through a FFT in O(L logL) time for each θj giving O(L2 logL) total.
Hence we see encoding onto the sphere takes O(L3) time for irreps up to L and O(L2 logL) time
for a single irrep.

For the multiplication of signals, we just have elementwise multiplication F3(θk, φk) = F1(θk, φk)·
F2(θk, φk). Since there are O(L2) grid points this takes O(L2) time.

Finally, we decode the signal back into irreps. To do so we use the fact that

f (ℓ)m =
∑
j,k

ajF (θj , φk)Yℓ,m(θj , φk) (33)

for some coefficients aj . This is essentially performing numerical integration of our signal against a
spherical harmonic. Once again using the factorization of the spherical harmonics we get

f (ℓ)m =
∑
j

(∑
k

F (θj , φk)csm(φk)

)
ajNℓ,mPm

ℓ (cos(θj)). (34)

The inner sum in parentheses can be computed in O(L) time and we need to compute it for O(L2)
values of θj ,m pairs giving a runtime of O(L3). Of course, we note that cs really is just sines and
cosines so alternatively we can use FFT which takes O(L2 logL) total. Computing the outer sum
takesO(L) since we sum overO(L) values of j. For a single irrep there areO(L) values of j giving
O(L2) for the outer sum. For irreps up to ℓ there are O(L2) pairs of ℓ,m giving O(L3) runtime for
the outer sum. In total, we see going from the grid to the coefficients takes O(L2 logL) for a single
irrep and O(L3) for all irreps.

However, it turns out that the associated Legendre polynomials have recurrence properties which
can be exploited to make transforming a set of irreps up to L to the grid and a set of irreps up to L
back from the grid asymptotically more efficient Healy et al. (2003). The runtime for this algorithm
which we will call S2FFT is O(L2 log2 L).
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D.3 MATRIX TENSOR PRODUCT

Here we describe and analyze the time complexity of matrix tensor product. Let L1, L2 be the max
ℓ’s of the inputs and L3 be the max ℓ of the outputs. We pick some ℓ̃ = ⌈max(L1, L2, L3)/2⌉ so
that ℓ̃ ⊗ ℓ̃ when decomposed into irreps can contain all irreps of the inputs and outputs. Note in
principle we could always choose larger ℓ̃.

In the following runtime analysis, we assume L1 = L2 = L, l̃ = L, and L3 = 2L.

D.3.1 NAIVE RUNTIME

The first step of MTP is to convert our input irreps into a tensor product rep using Clebsch-Gordan
coefficients as

X(ℓ)
m1,m2

=

ℓ∑
m3=−ℓ

Cℓ3,m3

ℓ̃,m1,ℓ̃,m2
x(ℓ)
m3

(35)

Y(ℓ)
m1,m2

=
ℓ∑

m3=−ℓ

Cℓ3,m3

ℓ̃,m1,ℓ̃,m2
y(ℓ)
m3

. (36)

Naively we sum over O(L) values of m3 and need to do the computation for O(L2) possible pairs
of m1,m2. This gives O(L3) naive runtime for converting a single irrep into a tensor product rep.
To do so for all irreps up to L the takes O(L4) time.

We can then sum over tensor product reps to create

X =
∑
ℓ

X(ℓ) Y =
∑
ℓ

Y(ℓ). (37)

There are O(L) matrices to sum over if we have irreps up to L. Summing matrices takes O(L2)
time since our matrices are size O(L) × O(L). Hence, this takes O(L3) time if we have irreps up
to L. If we have a single irrep then we do not need to do anything.

We then multiply the matrices giving Z = XY. Using the naive matrix multiplication algorithm
requires O(L3) runtime.

Finally we can use Clebsch-Gordan to extract individual irreps giving

(x⊗FTP y)(ℓ3)m3
=

ℓ1∑
m1=−ℓ1

ℓ2∑
m2=−ℓ2

C
(ℓ3,m3)
ℓ1,m1,ℓ2,m2

Zm1,m2
. (38)

Again, naively we sum over O(L2) pairs of m1,m2 and need to evaluate O(L) values of m3 for
O(L3) conversion for single irrep. If we want all irreps up to 2L then we need O(L4).

D.3.2 OPTIMIZED RUNTIME WITH SPARSITY

Similar to the CGTP, we can take sparsity of the Clebsch-Gordan coefficients into account. We have
nonzero values only if ±m1 ± m2 = m3. Hence in the encoding step, for fixed m1,m2 we only
need to sum over constant number of m3 instead of O(L). This gives a reduction of L in encoding
to tensor product rep. Similarly in the decoding step, we see for fixed m3 we only need to sum over
O(L) pairs of m1,m2. This gives a reduction of L as well in decoding back into irreps.

D.4 IRREP SIGNAL TENSOR PRODUCTS

Suppose we want to interpret our input irreps as coefficients for irrep signals of type s. Then for any
given irrep of type j, it can be coefficients of any Y

mj

j,ℓ,s where |j−s| ≤ ℓ ≤ j+s. At most there can
be up to 2s+1 choices of ℓ. We can flip this condition and see that we also have |ℓ− s| ≤ j ≤ ℓ+ s
so for given ℓ there are only up to 2s + 1 choices of input irrep j which work. Hence, if we use
scalar SH up to degree L, we can input O(sL) irreps into our signal.
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Next, for encoding we can first convert the input irreps into coefficients of scalar spherical harmon-
ics. Using the definition of our tensor harmonics, we have∑

mj

x(j,ℓ)
mj

Y
mj ,ms

j,ℓ,s (r̂) =
∑
mj

∑
mℓ

√
2j + 1

2ℓ+ 1
Cℓ,mℓ

j,mj ,s,ms
x(j,ℓ)
mj

Y mℓ

ℓ (r̂)

=
∑
mℓ

√2j + 1

2ℓ+ 1

∑
mj

Cℓ,mℓ

j,mj ,s,ms
x(j,ℓ)
mj

Y mℓ

ℓ (r̂)

=
∑
mℓ

A(j,ℓ)
ms,mℓ

Y mℓ

ℓ (r̂)

where A
(j,ℓ)
ms,mℓ are coefficients of the scalar SH. To compute these coefficients, naively we have

to perform a summation over mj taking O(j) for each pair of mℓ,ms giving runtime of O(jsℓ).
However, leveraging sparsity reduces this to O(sℓ). Finally, we can use the same method as Sec-
tion D.2.2 to convert into spherical signals for each component which takes O(ℓ2 log ℓ) for single
components giving O(sℓ2 log ℓ) = O(sL2 logL) for all components.

If we now allow all irreps, we need to compute O(sL) coefficients for O(s2L2) time. Next, we can
compute

Bℓ
ms,mℓ

=
∑
j

A(j,ℓ)
ms,mℓ

.

There are O(s) values of valid j for given ℓ and each A has O(sL) components for O(s2L2) time
to compute the B’s. Finally, for each ms we can use the B’s to compute the signal values as in
Section D.2.2 for a runtime of O(L3) for each component. Hence we have O(sL3) to compute all
components. This gives O(s2L2 + sL3) runtime for converting all input irreps into an irrep signal
on a grid.

Next, recall our grid has O(L2) points. At each point, we perform a CGTP operation and
extract an irrep s3 from s1 ⊗ s2. From our analysis of CGTP, leveraging sparsity this takes
O(min(s1s2, s1s3, s2s3)) = O(s1s2s3/max(s1, s2, s3)) time. We do this for O(L2) points for
a total runtime of O(s1s2s3L2/max(s1, s2, s3)) for the interaction.

Finally, we decompose the resulting signal back into tensor harmonic coefficients. First, we can
componentwise decompose into scalar SH coefficients. From Section D.2.2 this takes O(L3) time
for each component for a total of O(s3L3). If we do this for a single ℓ it takes O(s3L2 logL).
Hence, we now have some Bℓ

mℓ,ms
. To extract the individual components, we use orthogonality of

the Clebsch-Gordan coefficients. That is,∑
mℓ,ms

Cℓ,mℓ

j,mj ,s,ms
Cℓ,mℓ

j,m′
j ,s,ms

= (2s+ 1)δmj ,m′
j
.

Hence we obtain

z(j3,ℓ3)mj3
=
∑

mℓ,ms

1

2s3 + 1

√
2ℓ+ 1

2j + 1
Cℓ,mℓ

j3,mj3
,s3,ms

Bℓ
mℓ,ms

.

Leveraging sparsity of the Clebsch-Gordan coefficients, this takes O(s3L) time to extract a sin-
gle irrep. To extract all irreps, we just repeat giving O(s23L2) time. Hence, decoding back takes
O(s23L2 + s3L

3) time.

Letting s̃ = max(s1, s2, s3) we the following table which summarizes the runtimes of the various
components.

Now we can always use the asymptotically fast version of S2FFT which effectively just changes the
L3 terms to L2 log2 L.

We see that when the s’s are fixed constants, the runtimes correspond exactly to those of GTP. Hence
our VSTP with s1 = s2 = s3 has the same asymptotic runtime as GTP. We also note that at large
L, MIMO scales with s̃. However, we can also use O(s̃) more irreps so in this limit, the additional
cost is balanced by performing more tensor products. However, if L is small, we see that runtime
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Table 2: Asymptotic runtimes of ISTPs assuming a naive grid implementation.

SISO SIMO MIMO

Encode O((s1 + s2)L
2 logL) O((s1 + s2)L

2 logL) O((s21 + s22)L
2 + (s1 + s2)L

3)
Interact O(s1s2s3L2/s̃) O(s1s2s3L2/s̃) O(s1s2s3L2/s̃)
Decode O(s3L2 logL) O(s23L2 + s3L

3) O(s23L2 + s3L
3)

Total O(s1s2s3L2/s̃+ s̃L2 logL) O((s1 + s2)L
2 logL+ s23L

2 + s3L
3) O(s̃2L2 + s̃L3)

Table 3: Asymptotic runtimes of ISTPs assuming asymptotically fast S2FFT grid implementation.

SISO SIMO MIMO

Encode O((s1 + s2)L
2 logL) O((s1 + s2)L

2 logL) O((s21 + s22)L
2 + (s1 + s2)L

2 log2 L)
Interact O(s1s2s3L2/s̃) O(s1s2s3L2/s̃) O(s1s2s3L2/s̃)
Decode O(s3L2 logL) O(s23L2 + s3L

2 log2 L) O(s23L2 + s3L
2 log2 L)

Total O(s1s2s3L2/s̃+ s̃L2 logL) O((s1 + s2)L
2 logL+ s23L

2 + s3L
2 log2 L) O(s̃2L2 + s̃L2 log2 L)

scales as O(s̃2L2) as we increase s̃. Hence, it still makes sense to minimize the s̃ we use. Note that
GTP has s̃ = 0 but prevents antisymmetric tensor products, while VSTP has s̃ = 1 and the selection
rules do not prevent any tensor product paths except the trivial 0 ⊗ 0. Therefore VSTP with s̃ = 1
should make the most sense in practice.

D.5 ASYMPTOTIC RUNTIMES IN DIFFERENT SETTINGS

Table 4: Asymptotic runtimes of various tensor products for different output settings. The best
performing tensor products for each output settings are highlighted in green. In the MIMO setting,
the Clebsch-Gordan tensor products are highlighted in red to indicate that they can output irreps
with multiplicity > 1 , unlike the Gaunt tensor products.

Tensor Product SISO SIMO MIMO

Clebsch-Gordan (Naive) O(L3) O(L4) O(L6)
Clebsch-Gordan (Sparse) O(L2) O(L3) O(L5)

Gaunt (Original) O(L2 logL) O(L3) O(L3)
Gaunt (Naive Grid) O(L2 logL) O(L3) O(L3)
Gaunt (S2FFT Grid) O(L2 logL) O(L2 log2 L) O(L2 log2 L)

Vector Signal (Naive Grid) O(L2 logL) O(L3) O(L3)
Vector Signal (S2FFT) O(L2 logL) O(L2 log2 L) O(L2 log2 L)

ISTP (Naive grid) (s1, s2, s3) O(s1s2s3L2/s̃+ s̃L2 logL) O((s1 + s2)L
2 logL+ s23L

2 + s3L
3) O(s̃2L2 + s̃L3)

ISTP (S2FFT) (s1, s2, s3) O(s1s2s3L2/s̃+ s̃L2 logL) O((s1 + s2)L
2 logL+ s23L

2 + s3L
2 log2 L) O(s̃2L2 + s̃L2 log2 L)

E EXPRESSIVITY

Here, we analyze the expressivity, as defined in Section 4, of the various tensor products in the
MIMO setting. As a reminder, we can use a tensor product to construct bilinear maps

B : (0⊕ . . .⊕ L)× (0⊕ . . .⊕ L)→ (0⊕ . . .⊕ 2L)

by inserting equivariant linear layers before and after the tensor product. By Schur’s lemma, the
total number of input and output irreps gives the degrees of freedom for paramterizing the lin-
ear layers. There is an additional 2-fold redundancy in overall scaling so #Input irreps +
#Ouput irreps− 2 gives an upper bound on expressivity.

E.1 CLEBSCH-GORDAN TENSOR PRODUCT

In the case of CGTP, we assume input which is a single copy of each irrep up to order L for O(L)
irreps in the input. In general, tensor products of single pairs of irreps gives O(L) output irreps.
There are O(L2) pairs for a total of O(L3) output irreps.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E.2 GAUNT TENSOR PRODUCT

In the case of GTP, we note that coefficients of spherical harmonics corresponds to single copies of
each irrep. Hence, we have O(L) input irreps. Similarly, in the output there is only one copy of
each irrep we obtain from the spherical harmonic coefficients. By selection rules, the highest order
harmonic we could obtain is of order 2L. Hence the number of output irreps is also O(L).

E.3 MATRIX TENSOR PRODUCT

In the case of FTP, we encode single copies of irreps into a tensor product rep (L/2)⊗(L/2). Hence
there are O(L) inputs. We then perform matrix multiplication which results into a (L/2) ⊗ (L/2)
tensor product rep. But this decomposes into 0⊕ . . .⊕ L giving O(L) output irreps.

E.4 IRREP SIGNALS TENSOR PRODUCT

In the case of ISTP (s1, s2, s3), we note that spherical signals to vector spaces of R2s+1 for a given
spin s can be thought of as 2s+ 1 copies of scalar spherical harmonics. In fact, it turns out we need
O(sL) irreps to specify a irrep signal of spin s. Hence, the number of input irreps is O((s1 + s2)L)
and number of resulting output irreps is O(s3L).
Since VSTP corresponds to a constant choice of s1, s2, s3, it ends up having the same asymptotic
number of input and output irreps as for GTP.

F CGTP SPARSE ALGORITHM

While leveraging sparsity of the Clebsch-Gordan coefficients will improve asymptotic runtime, in
practice we would like an implementation which is GPU friendly. Here we present an algorithm
which uses the sparsity to create a constant number of generalized convolution operations.

G SIMULATING THE FULLY-CONNECTED CLEBSCH-GORDAN TENSOR
PRODUCT WITH GAUNT TENSOR PRODUCTS

One way to increase the expressivity of GTP is to first reweight the inputs x,y. That is, we first
create

x′(ℓ) = aℓx
(ℓ) (39)

y′(ℓ) = bℓy
(ℓ). (40)

where aℓ and bℓ are learnable weights. We then perform GTP after this reweighting and extract some
output irrep(s) ℓ3. That is we get

(x′ ⊗GTP y′)(ℓ3). (41)

The analogous operation is fully connected CGTP. There may be multiple pairs of irreps which give
a ℓ3 output. We can always weight and sum these to get∑

ℓ,ℓ′

wℓ,ℓ′(x
(ℓ) ⊗CG y(ℓ′))(ℓ3) (42)

where wℓ,ℓ′ are learnable weights.

However, even if we only care about symmetric tensor products, the weighted GTP operation is
strictly less expressive than fully connected CGTP.

More concretely, suppose we have nontrivial ℓ = 2 and ℓ = 4 data in our inputs. From CGTP and
the selection rules we see that

(x(2) ⊗CG y(2))(2) (x(2) ⊗CG y(4))(2) (43)

(x(4) ⊗CG y(2))(2) (x(4) ⊗CG y(4))(2) (44)
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Algorithm 1 CGTP sparse

Require: Irrep 1 x(ℓ1), Irrep 2 y(ℓ2), Clebsch-Gordan coefficients Cℓ3,m3

ℓ1,m1,ℓ2,m2

for m3 = −ℓ3, . . . , ℓ3 do:
for m1 = −ℓ1, . . . , ℓ1 do:

Aℓ3,m3

ℓ1,m1,ℓ2
← Cℓ3,m3

ℓ1,m1,ℓ2,m1+m3

Cℓ3,m3

ℓ1,m1,ℓ2,m1+m3
← 0

for m3 = −ℓ3, . . . , ℓ3 do:
for m1 = −ℓ1, . . . , ℓ1 do:

Bℓ3,m3

ℓ1,m1,ℓ2
← Cℓ3,m3

ℓ1,m1,ℓ2,m1−m3

Cℓ3,m3

ℓ1,m1,ℓ2,m1−m3
← 0

for m3 = −ℓ3, . . . , ℓ3 do:
for m1 = −ℓ1, . . . , ℓ1 do:

Cℓ3,m3

ℓ1,m1,ℓ2
← Cℓ3,m3

ℓ1,m1,ℓ2,−m1+m3

Cℓ3,m3

ℓ1,m1,ℓ2,−m1+m3
← 0

for m3 = −ℓ3, . . . , ℓ3 do:
for m1 = −ℓ1, . . . , ℓ1 do:

Dℓ3,m3

ℓ1,m1,ℓ2
← Cℓ3,m3

ℓ1,m1,ℓ2,−m1−m3

Cℓ3,m3

ℓ1,m1,ℓ2,−m1−m3
← 0

for m3 = −ℓ3, . . . , ℓ3 do
for m1 = −ℓ1, . . . , ℓ1 do

z
(ℓ3)
m3 ← z

(ℓ3)
m3 +Aℓ3,m3

ℓ1,m1,ℓ2
x
(ℓ1)
m1 y

(ℓ2)
m1+m3

for m3 = −ℓ3, . . . , ℓ3 do
for m1 = −ℓ1, . . . , ℓ1 do

z
(ℓ3)
m3 ← z

(ℓ3)
m3 +Bℓ3,m3

ℓ1,m1,ℓ2
x
(ℓ1)
m1 y

(ℓ2)
m1−m3

for m3 = −ℓ3, . . . , ℓ3 do
for m1 = −ℓ1, . . . , ℓ1 do

z
(ℓ3)
m3 ← z

(ℓ3)
m3 + Cℓ3,m3

ℓ1,m1,ℓ2
x
(ℓ1)
m1 y

(ℓ2)
−m1+m3

for m3 = −ℓ3, . . . , ℓ3 do
for m1 = −ℓ1, . . . , ℓ1 do

z
(ℓ3)
m3 ← z

(ℓ3)
m3 +Dℓ3,m3

ℓ1,m1,ℓ2
x
(ℓ1)
m1 y

(ℓ2)
−m1−m3

return z(ℓ3)

are all nonzero. In particular, it is possible to create a ℓ = 2 output of

(x(2) ⊗CG y(2))(2) + (x(4) ⊗CG y(4))(2)

with a fully connected CGTP. However, GTP instead gives a single ℓ = 2 output of form

c22,2(x
′(2) ⊗CG y′(2))(2) + c22,4(x

′(2) ⊗CG y′(4))(2) + c24,2(x
′(4) ⊗CG y′(2))(2) + c24,4(x

′(4) ⊗CG y′(4))(2)

(45)

where the c’s are nonzero coefficients. Note that in order to have nonzero (x(2) ⊗CG y(2))(2) and
(x(4) ⊗CG y(4))(2) contributions, a2, b2, a4, b4 must all be nonzero. However, that means we must
have nonzero (x(2) ⊗CG y(4))(2) and (x(4) ⊗CG y(2))(2) contributions. Therefore weighted GTP is
not expressive enough to output (x(2) ⊗CG y(2))(2) + (x(4) ⊗CG y(4))(2), as it will necessarily mix
additional terms.

H DETAILS OF MESSAGE-PASSING NETWORK

In 2, we create learnable (ie, parametrized) variants of the purely functional tensor products. For
the Clebsch-Gordan tensor product ⊗CG, we simply add a linear layer to its output. For the Gaunt
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Algorithm 2 LEARNABLETENSORPRODUCT

Require: Tensor Product ⊗, Number of Channels C (for Gaunt tensor product).
procedure LEARNABLETP(x1,x2)

if ⊗ = ⊗CG then
return LINEAR(x1 ⊗CG x2)

if ⊗ = ⊗GTP then
for i = 1, 2, . . . , C do

x
(i)
1 ← LINEAR

(i)
1 (x1)

x
(i)
2 ← LINEAR

(i)
2 (x2)

x
(i)
o ← LINEAR(i)

o (x
(i)
1 ⊗GTP x

(i)
2 )

return CONCATENATE({x(i)
o | i ∈ {1, 2, . . . , C}})

return LearnableTP

Algorithm 3 Operation of our Message Passing Neural Network

Require: Graph G, Message Passing Iterations T , Cutoff dmax, Spherical Harmonic Degree ℓ, Ten-
sor Product ⊗
Compute neighbor lists for each node in G:

(u, v) ∈ E ⇐⇒ ∥ru − rv∥ ≤ dmax

Create LEARNABLETENSORPRODUCT from ⊗.
for v ∈ V do:

h
(0)
v ← [1]

for t = 1, 2, . . . , T do:
for v ∈ V do:

h
(t)
v ← 1

|N (v)|
∑

u∈N (v) MLP(∥ru − rv∥)×LEARNABLETENSORPRODUCT(h
(t−1)
u , Yℓ(ru−

rv))

h
(t)
v ← GATE(h

(t)
v )

h
(t)
v ← CONCATENATE([h

(t−1)
v , h

(t)
v ])

h
(t)
v ← LINEAR(h

(t)
v )

return {h(T )
v }v∈V

tensor product ⊗GTP, we create multiple channels, perform the tensor product channel-wise and
then concatenate all irreps. This allows the output to have irreps of multiplicity > 1, even with the
Gaunt tensor product. We set the number of channels C as 4 in all experiments with the Gaunt tensor
product.

In 3, we use these learnable tensor products in a simple message-passing network, very similar to
NequIP (Batzner et al., 2022).

I ADDITIONAL BENCHMARKS

Wall-Clock Time: The elapsed time after compiling using jax.jit. To enable accurate measure-
ments we calculate the mean wall-clock time for 100 rounds while performing 10 warmup rounds.

Bandwidth and Throughput: We used Nsight Compute 2024.2.0.0 build
34181891 for profiling and reported Average GB/s and GFLOP/s from the individual ker-
nel measurments using Roofline Hierarchical Analysis Yang (2020).

GPU: We gathered the GPU plots on an NVIDIA RTX A5500, running the CUDA driver version
550.90.07 and CUDA toolkit version 12.5. We use version 0.4.30 for jax and jaxlib.
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Figure 8: Analysis of SISO, SIMO and MIMO performance for different tensor products on RTX
A5500 : Total walltime (top row), Total normalized walltime (second row), Total GFLOPs (third
row) and Total normalized GFLOPs (bottom row). We had to skip some SISO Lmax values due to
profiling errors.
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J PROOFS

J.1 PROOF OF THEOREM 2.2

Proof. It is known that

Y m1

ℓ1
· Y m2

ℓ2
∝
∑
j,ℓ

Cℓ,0
ℓ1,0,ℓ2,0

Cj,m
j1,m1,j2,m2

Y m
ℓ

Gaunt (1929). Hence, we see that

(x(ℓ1) ⊗GTP y(ℓ2))(ℓ) ∝ Cℓ,0
ℓ1,0,ℓ2,0

Cj,m
j1,m1,j2,m2

(x(ℓ1) ⊗CG y(ℓ2))(ℓ).

For selection rule 1, this is inherited from the selection rules of CGTP. For selection rule 2, this
follows from the selection rules for the Cℓ,0

ℓ1,0,ℓ2,0
term which is nonzero only when ℓ1 + ℓ2 + ℓ is

even.

J.2 PROOF OF THEOREM 3.5

Proof. It is known that

Ym1

j1,ℓ1
×Ym2

j2,ℓ2
∝
∑
j,ℓ

{
j1 ℓ1 1
j2 ℓ2 1
j ℓ 1

}
Cℓ,0

ℓ1,0,ℓ2,0
Cj,m

j1,m1,j2,m2
Ym

j,ℓ

where

{
j1 ℓ1 1
j2 ℓ2 1
j ℓ 1

}
is a Wigner 9j symbol (James, 1976; Varshalovich et al., 1988). Hence, we

see that

(x(j1,ℓ1) ⊗VSTP y(j2,ℓ2))(j,ℓ) ∝

{
j1 ℓ1 1
j2 ℓ2 1
j ℓ 1

}
Cℓ,0

ℓ1,0,ℓ2,0
(x(j1,ℓ1) ⊗CG y(j2,ℓ2))(j,ℓ).

For selection rule 1, we note that it follows from Definition 3.1. For selection rule 2, this is inherited
from the selection rules of CGTP. For selection rules 3 and 4, this follows from the selection rules
for the Cℓ,0

ℓ1,0,ℓ2,0
term.

For selection rule 5, we use the symmetry properties of the Wigner 9j symbols. Suppose there exists
a permutation a, b, c such that ja = ℓa and (jb, ℓb) = (jc, ℓc). Suppose we swap rows b, c, this is an
odd permutation so the symmetries of the 9j symbol means we pick up a phase factor (−1)S where
S =

∑3
i=1(ji + ℓi + 1). Note that S is odd because each jb + ℓb = jc + ℓc and ja = ℓa. Hence

our phase factor is −1. But swapping b, c does not change the 9j symbol since jb = jc. Hence by
symmetry the 9j symbol must vanish, giving us selection rule 5.

J.3 PROOF OF THEOREM 3.6

Proof. We already satisfy condition 2. Without loss of generality, assume j1 ≤ j2 ≤ j3

Case 1: Suppose j1, j2, j3 are distinct. Condition 5 is already satisfied since the j’s are unique. Since
the j’s are distinct integers, we have j1+1 ≤ j2 ≤ j3−1. If j1+j2+j3 is even, we can set ℓi = ji so
conditions 1, 3, 4 are clearly satisfied. If j1+ j2+ j3 is odd, we can set ℓ1 = j1, ℓ2 = j2, ℓ3 = j−3.
By construction 1, 4 are satisfied. For 3, we have

ℓ3 < j3 ≤ j1 + j2 = ℓ1 + ℓ2

ℓ2 = j2 ≤ j3 − 1 = ℓ3 ≤ ℓ3 + ℓ1

ℓ1 = j1 ≤ j3 − 1 = ℓ3 ≤ ℓ3 + ℓ2.

Hence we can always choose ℓ1, ℓ2, ℓ3 which satisfy the selection rules.

Case 2: Suppose two of j1, j2, j3 are equal. Then we have two subcases.

Subcase 1: j1 = j2 ≤ j3 − 1. Note that j3 − 1 ≥ 0 so j3 ≥ 1. But 1 ≤ j3 ≤ j1 + j2 = 2j1 so
j1 ≥ 1 since j1 is an integer.
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If j1 + j2 + j3 is even, we can set ℓ1 = j1, ℓ2 = j2 +1, and ℓ3 = j3− 1. By construction we satisfy
1, 4. Since ℓ1 ̸= ℓ2 and j1 = j2 ̸= j3 we will satisfy 5. For 3 we find that

ℓ1 = j1 = j2 < j2 + 1 = ℓ2 ≤ ℓ2 + ℓ3

ℓ2 = j2 + 1 ≤ j3 = ℓ3 + 1 ≤ ℓ1 + ℓ3

ℓ3 = j3 − 1 < j1 + j2 = ℓ1 + ℓ2 − 1 < ℓ1 + ℓ2.

Hence we satisfy all the selection rules.

Suppose j1 + j2 + j3 is odd. Then we can set ℓ1 = j1, ℓ2 = j2 + 1, and ℓ3 = j3. By construction
we satisfy 1, 4. Since ℓ1 ̸= ℓ2 and j1 = j2 ̸= j3 we will satisfy 5. For 3 we find that

ℓ1 = j1 = j2 < j2 + 1 = ℓ2 ≤ ℓ2 + ℓ3

ℓ2 = j2 + 1 ≤ j3 = ℓ3 ≤ ℓ1 + ℓ3

ℓ3 = j3 ≤ j1 + j2 = ℓ1 + ℓ2 − 1 < ℓ1 + ℓ2.

Hence we satisfy all the selection rules.

Subcase 2: j1 + 1 ≤ j2 = j3. If j1 + j2 + j3 is even, we can set ℓ1 = j1 + 1, ℓ2 = j2, and
ℓ3 = j3 − 1. By construction we satisfy 1, 4. Since ℓ2 ̸= ℓ3 and j2 = j3 ̸= j1, we satisfy 5. For 3
we find

ℓ1 = j1 + 1 ≤ j2 = ℓ2 ≤ ℓ2 + ℓ3

ℓ2 = j2 ≤ j1 + j3 = (j1 + 1) + (j3 − 1) = ℓ1 + ℓ3

ℓ3 = j3 − 1 ≤ j1 + j2 − 1 < j1 + 1 + j2 = ℓ1 + ℓ2.

Hence we satisfy all the selection rules.

If j1 + j2 + j3 is odd, we can set ℓ1 = j1 +1, ℓ2 = j2, and ℓ3 = j3. By construction we satisfy 1, 4.
Since j1 ̸= ℓ1 and j2 = j3 ̸= j1, we satisfy 5. For 3 we find

ℓ1 = j1 + 1 ≤ j3 = ℓ3 ≤ ℓ2 + ℓ3

ℓ2 = j2 ≤ j1 + j3 < (j1 + 1) + j3 = ℓ1 + ℓ3

ℓ3 = j3 ≤ j1 + j2 < (j1 + 1) + j2 = ℓ1 + ℓ2.

Hence we satisfy all the selection rules.

Case 3: Suppose j1 = j2 = j3 = j. If j > 0 and is even, then j ≥ 2. We can pick ℓ1 = j − 1, ℓ2 =
j, ℓ3 = j + 1. By construction we satisfy 1, 4. Since the ℓ’s are distinct we also satisfy 5. For 3 we
check that

ℓ1 = j − 1 < j + j + 1 = ℓ2 + ℓ3

ℓ2 = j < j − 1 + j + 1 = ℓ1 + ℓ3

ℓ3 = j + 1 = j − 1 + 2 ≤ j − 1 + j = ℓ1 + ℓ2.

Hence we satisfy all the selection rules.

If j is odd then j ≥ 1. We can pick ℓ1 = j − 1, ℓ2 = j, ℓ3 = j. By construction we satisfy 1, 4.
Since ℓ1 ̸= j and ℓ2 = ℓ3 ̸= ℓ1 we also satisfy 5. For 3 we check that

ℓ1 = j − 1 < j + j = ℓ2 + ℓ3

ℓ2 = j ≤ j − 1 + j = ℓ1 + ℓ3

ℓ3 = j ≤ j − 1 + j = ℓ1 + ℓ2.

Hence we satisfy all the selection rules.

The only case which fails is j1 = j2 = j3 = 0 in which case selection rule 1 forces ℓ1 = ℓ2 =
ℓ3 = 1 which breaks rule 4. However, this case just correspond to multiplication of scalars which is
trivial.
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