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Abstract
Neural network trained via empirical risk mini-
mization achieves high accuracy on average but
low accuracy on certain groups, especially when
there is a spurious correlation. To construct the
unbiased model from spurious correlation, we
build a hypothesis that the inference to the sam-
ples without spurious correlation should take rel-
ative precedence over the inference to the spuri-
ously biased samples. Based on the hypothesis,
we propose the relative regularization to induce
the training risk of each group to follow the spe-
cific order, which is sorted according to the de-
gree of spurious correlation for each group. In
addition, we introduce the ordering regularization
based on the predictive confidence of each group
to improve the model calibration, where other
robust models still suffer from large calibration
errors. These result in our complete algorithm, Or-
dered Risk and Confidence regularization (ORC).
Our experiments demonstrate that ORC improves
both the group robustness and calibration perfor-
mances against the various types of spurious cor-
relation in both synthetic and real-world datasets.

1. Introduction
Spurious correlation is a correlation between two factors,
which appear causally related to one another but are not.
Empirical risk minimization achieves the low test error
on average by training a model to minimize the average
loss. However, it incurs high error on certain groups in a
dataset.(Sagawa et al., 2019; Cao et al., 2019; Hashimoto
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Figure 1: (Left) The value ratios of each model, trained on
the Colored-MNIST with imbalance = 10. Imbalance means

# of whole samples
# of samples without spurious correlation . The value ratio means the
ratio of averaged empirical values between samples with
and without spurious correlation. For example, risk ratio
means Averaged risk of samples without spurious correlation

Averaged risk of samples with spurious correlation . (Right) The
test performances of each model on the Colored-MNIST
with different imbalances. As the imbalance increases, Our
model, ORC, beats others with a larger margin.

et al., 2018). One of the reasons for the performance differ-
ences across groups is the presence of spurious correlation.
A classification model has a risk of relying on the back-
ground features in recognizing the objects, which results in
the misclassification of the rare images (e.g. birds on the
grass). The performance degradations from learning the spu-
rious correlation occur in many applications (Gururangan
et al., 2018; McCoy et al., 2019).

To train a robust model from spurious correlations, the ro-
bust optimization (Namkoong & Duchi, 2016; Oren et al.,
2019; Sagawa et al., 2019; Arjovsky et al., 2019) has be-
come a major tool. Robust optimization usually focuses on
optimizing the worst-case risks over the pre-defined groups
of the training dataset. For instance, GroupDRO minimizes
the worst-case risks from pre-defined groups of the dataset
(Sagawa et al., 2019). V-REX minimizes the variance of
risks (Krueger et al., 2020) to limit the risks of whole groups
to a similar level. Although these approaches contributed on
improving the worst-group performances, Figure 1 shows
that they still show performance degradation on a dataset
with extremely spurious correlation.

Figure 1 shows that there is a significant difference in risk
and entropy between data samples with and without spurious
correlation. This implication means that majority samples
are learned in priority with lower risks and higher confidence
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than minority samples, where our model keeps the ratio
relatively closer to one.

These findings motivate us to explicitly model the Order-
liness on training risk and predictive confidence of each
group in our objective. Our paper introduces an algorithm,
Ordered Risk and Confidence regularization (ORC), that rel-
atively regularizes the risks and the predictive confidences
of the groups to follow the specific order, which is sorted
according to the degree of spurious correlation. This reg-
ularization leads to the relatively weaker inference of data
samples with spurious correlation than the samples without
spuriousness. By reflecting the prior knowledge of each
group on the ordering process, ORC provides a general
way to inject the inductive biases or knowledge on the opti-
mization procedure. Our experiments demonstrate that our
method improves both the model robustness and calibration
against the various types of spurious correlation in both
synthetic and real-world datasets.

2. Preliminary
2.1. Problem Setup

Consider a classification task, when the input-label pair
(x, y) ∈ X × Y is from training dataset D. Given n train-
ing samples, we train a classifier fθ : X → Y , which is
parameterized by θ ∈ Θ.

Spurious Correlation from Groups This paper hypothe-
sizes that D consists of data instances belonging to groups
g ∈ G. Also, we assume that the groups have different levels
of biases correlated to a input feature of x and the label of
y, which Sagawa et al. (2020) name as spurious correlation.
Following the convention of previous researches (Sagawa
et al., 2019; Liu et al., 2021), We set each group g ∈ G to be
defined by the combination of the label Y and a correspond-
ing bias attribute A. Hence, g follows G = A× Y , and we
say that there exists spurious correlation between A and Y
(Sagawa et al., 2019; Liu et al., 2021; Nam et al., 2020).

Learning toward spurious correlation would induce the sac-
rifice of the performance in the minority group.1 Therefore,
we may limit learning from the spurious correlation to value
the good performance in the minority group. We formu-
late the group robustness (Sagawa et al., 2019; Liu et al.,
2021), which values a model to obtain balanced and good
performances measured by groups g ∈ G.

Group Robustness Evaluation of the group robustness is
usually conducted via balanced group error, which computes

1We provide the example case of spurious correlation in Ap-
pendix A.

the averaged error across groups as follows:

1

|G|
∑
g∈G

E[ℓ0−1(x, y; θ)|g]. (1)

Here, ℓ0−1(x, y; θ) = 1[fθ(x) ̸= y] is the 0-1 loss. Alterna-
tively, one can check the worst group error (Sagawa et al.,
2019; Liu et al., 2021) as follows:

max
g∈G

E[ℓ0−1(x, y; θ)|g]. (2)

Our objective includes not only robustness but also model
calibration (Guo et al., 2017), please refer to the Appendix
B. for a detailed explanation.

2.2. Previous researches on Group Robustness

Robust optimization (Namkoong & Duchi, 2016; Oren et al.,
2019; Sagawa et al., 2019) is a method to improve the group
robustness by directly optimizing a model’s worst-case risk
over a perturbed dataset. GroupDRO (Sagawa et al., 2019)
minimizes the worst-case risk over the pre-defined groups
in the training dataset. Krueger et al. (2020) introduces Risk
Extrapolation (REX), which provides a robust optimization
for the affine combinations of the perturbed risks. They
also propose V-REX, which is a more stable variant of REX
that reduces the risk differences among |G| = m groups as
follows:

min
θ

1

n

n∑
i=1

ℓ(xi, yi; θ) + λVar(R1(θ), ...,Rm(θ)). (3)

This objective leads to the variance minimization, which
is equivalent to the average pairwise mean squared error
between group risks.

Based on the formulation, can V-REX empirically achieve
the robustness on the groups with heterogeneous character-
istics, i.e. different sample size for each group? As shown
in figure 1, the risk Rg(θ) computed from V-REX diverges
based on the presence or absence of spurious correlation
on each group g. One of the counters for this problem is
reflecting the prior knowledge on each group to determine
the degree of regularization for the design of objective func-
tion. However, the present form of V-REX motivates us
to develop a generalized regularization to utilize the prior
information of each group.

3. ORC : Ordered Risk and Confidence
Regularization

We propose an algorithm, Ordered Risk and Confidence
regularization (ORC), to improve the group robustness and
calibration of a classifier. We hypothesize that the group-
based robustness and calibration can be improved by reg-
ularizing the risk and confidence of each group to follow
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our intended order. The intended order follows the inten-
sity of the spurious correlation of each group, so the most
bias-aligned2 group in G is regularized to have a relatively
higher training risk and lower predictive confidence than
other groups, which leads to the relatively weaker inference
than bias-conflicting groups.

Group Order Setup for ORC ORC needs the sorting of
g ∈ G = A×Y by the intensity of spurious correlation. As-
suming that group annotations are available, we can utilize
human annotations or expertised domain knowledge to spec-
ify the highly biased groups. When they are not available,
we can also utilize the group-wise statistics to check the
bias amplification of each group, following Wang & Rus-
sakovsky (2021); Zhao et al. (2017). We also empirically
found out that it is sufficient to divide whole groups into
two sets: a set of groups with spurious correlation and a
set of groups without spurious correlation, without the need
of sorting all groups to have relative order. However, we
generally provide our formulation assuming m groups.

3.1. Objective Formulation of ORC

Given the access to the set of pre-defined groups G with
|G| = m, we sort the group index in the descending order
by the intensity of the biases. Afterwards, we formulate our
objective as a constrained problem for n samples in training
dataset D as follows:

minimize
θ

1

n

n∑
i=1

ℓ(xi, yi; θ)

subject to H1(θ) ≥ H2(θ) ≥ ... ≥ Hm(θ),

R1(θ) ≥ R2(θ) ≥ ... ≥ Rm(θ)

(4)

where Hg(θ) =
1
ng

∑
xi∈g −

∑
k fθ(xi)k log fθ(xi)k is av-

eraged entropy of model predictions of data samples in
group g. fθ(x) represents the prediction probability and
Rg(θ) is the empirical risk for group g. The entropy is
utilized as a measure of predictive confidence (Vyas et al.,
2018) and the cross entropy3 is used as our loss function ℓ.

3.2. Implementable Objective of ORC

Confidence Ordering In classification tasks, the label
smoothing has been widely utilized for modeling the in-
tended degree of confidence (Szegedy et al., 2016; Müller
et al., 2019; Lukasik et al., 2020) for each data sample. It
also has an advantage in that confidence level can be cal-
ibrated during the training procedure, which enables the
joint learning with other objectives. From this spirit, we
propose a group-aware label smoothing, which utilizes a
smoothed label yg for group g, instead of utilizing one-hot

2We designate groups biased toward spurious correlation as
bias-aligned, otherwise bias-conflicting.

3CE(y,fθ(x)) =
∑K

k=1−yklog fθ(x)k

label y for calculating the cross-entropy loss. yg is defined
as ygk = yk(1 − K

K−1αg) +
αg

K−1 , where K is the number
of classes and αg is the smoothing factor for each group g.

Here, our point is differentiating the smoothed label yg

for each group g. Let the group-wise smoothing factor
αg to satisfy α1 ≥ α2 ≥ ... ≥ αm. Then, the confidence
inequality of each group can be regularized by the intended
order of ORC, see the proof in Appendix C. It also relieves
the over-confidence of bias-aligned groups by inducing
larger αg than the other groups.
Risk Ordering From the group-aware smoothed
label, yg, we additionally define R̃g(θ) =
1
ng

∑
(xi,yi)∈g −ygk log fθ(x)k, which is the subpart

of the cross entropy only utilizing the true class part of yg

and fθ(x). We derive that the risk ordering can be approxi-
mated by regularizing the equality between {R̃g(θ)}mg=1.
Let’s assume a case when the equality between {R̃g(θ)}mg=1

is satisfied. Assuming cross-entropy as a loss function,
R̃g(θ) can be transformed as (1−αg)Rg(θ), see Appendix
C for the derivation. By then, we can re-formulate the
equality between {R̃g(θ)}mg=1 as follows:

(1− α1)R1(θ) = ... = (1− αm)Rm(θ). (5)

As αg is pre-defined to satisfy α1 ≥ α2 ≥ ... ≥ αm, it
leads to the inequality of true training risks as R1(θ) ≥
R2(θ) ≥ ... ≥ Rm(θ). Similar to V-REX, we choose to
regularize the equality between {R̃g(θ)}mg=1 by minimizing
Var(R̃1(θ), R̃2(θ), ..., R̃m(θ)). Afterward, the final objec-
tive is provided as below:

min
θ

1

n

n∑
i=1

ℓ(xi, y
g
i ; θ) + λVar(R̃1(θ), ..., R̃m(θ)). (6)

This optimization only requires the loss computation from
the smoothed label, without any need of further computation
for two different constraints. Thus pre-defined smoothing
factors {αg}mg=1 decide the margins on the risk and confi-
dence order. When we divide whole dataset into two sets,
the set with spurious correlation and without it, smoothing
factors {αg}mg=1 collapses into two. When {αg}mg=1 are all
set to 0, our objective is equal to V-REX, which implies that
ORC is a generalized version of V-REX with injection of
prior knowledge. We also present ORC*, which is variants
of ORC for group-unknown setting in Appendix D with
corresponding experimental results.

4. Experiments
This section demonstrates the effectiveness of ORC by com-
paring the performances with other baselines based on vari-
ous datasets with spurious correlation. We also provide the
analyses with ablation on each module of our algorithm. We
provide the details of evaluation metrics on Appendix E.
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Model
90% of bias-aligned samples 95% of bias-aligned samples 98% of bias-aligned samples

Unb Acc ↑ Worst Acc ↑ G-ECE ↓ Unb Acc ↑ Worst Acc ↑ G-ECE ↓ Unb Acc ↑ Worst Acc ↑ G-ECE ↓

ERM 86.79±0.76 85.37±0.85 10.74±0.62 78.13±1.07 75.76±1.19 18.74±1.40 64.40±1.39 60.50±1.55 30.13±1.22

GroupDRO (Sagawa et al., 2019) 86.61±0.22 85.2±0.23 11.01±0.14 78.38±0.60 76.05±0.65 17.50±0.41 63.15±0.76 59.11±0.82 31.23±1.29

V-REX (Krueger et al., 2020) 88.01±0.75 86.78±0.88 9.76±0.38 79.99±0.18 77.82±0.18 16.07±0.28 69.27±0.25 65.94±0.29 20.88±3.65

LfF (Nam et al., 2020) 74.79±7.89 73.98±8.32 19.57±5.78 80.25±3.78 79.93±3.91 14.90±2.35 78.28±0.15 77.16±2.81 16.66±0.58

SD (Pezeshki et al., 2020) 88.55±0.05 87.35±0.06 5.44±0.19 80.32±0.44 78.19±0.51 3.26±0.45 61.83±0.32 57.64±0.37 13.37±0.21

JTT (Liu et al., 2021) 87.04±0.81 85.69±0.90 10.73±0.80 80.27±1.53 78.14±1.70 16.22±1.10 63.90±1.19 59.98±1.35 29.67±2.09

ORC 88.55±0.20 87.36±0.23 3.73±0.22 83.17±0.40 81.35±0.43 3.98±0.14 76.46±0.38 73.93±0.41 4.12±0.28

Table 1: The unbiased group accuracy (Unb Acc), worst group accuracy (Worst Acc), and group calibration error (G-ECE)
on Colored-MNIST. Best performing results are marked in bold. We underline results only when ORC is second best.

4.1. Baselines

We utilize the various baselines to verify the performance
of ORC. See Appendix F for the details of each method.

4.2. Experiments on Colored MNIST (Nam et al., 2020)

For evaluation on Colored MNIST, we utilize ResNet-18
(He et al., 2015) as a backbone model for all approaches.
We also utilize the group-based smoothing factors α = 0.1
for bias-aligned groups set and α = 0 for bias-conflicting
groups set, respectively. In Table 1, ORC shows competitive
performances over other baselines for both group robustness
and calibration.

4.3. Ablation Study

Model Unb Acc ↑ Worst Acc ↑ G-ECE ↓

V-REX w/ Upsample 2 82.10±0.98 80.19±1.09 14.70±0.67

V-REX w/ Upsample 8 80.58±1.01 78.49±1.13 16.10±1.19

V-REX w/ Risk Ordering 81.74±0.89 79.79±0.99 14.81±0.78

V-REX w/ Confidence Ordering 82.03±0.27 80.08±0.3 4.96±0.45

ORC 83.17±0.40 81.35±0.43 3.98±0.14

Table 2: The ablation study of ORC
For ablation study, we compared the performances between
the variants of V-REX and ORC on the Colored-MNIST. V-
REX w/ Upsample m denote the model, which upsamples
bias-conflicting m times more than the other samples. We
additionally compare with models which only utilize either
Risk Ordering or Confidence Ordering.

Table 2 shows that the augmentation of each module shows
the consistent improvements from V-REX, which proves the
efficacy of joint modeling with ordered risk and confidence.

4.4. Experiments on GQA-OOD (Kervadec et al., 2021)

GQA-OOD is a dataset for visual question answering task,
which is a protocol for validating models with biased set-
tings. We divide the dataset into two disjoint groups based
on the frequency of answers: head as a majority and tail
as a minority, where Unb is an unbiased version between
them. In Table 3, ORC shows the best performances across
all metrics. Please see Appendix G for experimental results

Model
Accuracy

G-ECE ↓
Head ↑ Tail ↑ Unb ↑

GroupDRO (Sagawa et al., 2019) 48.76 42.14 45.45 34.2
IRMv1 (Arjovsky et al., 2019) 49.91 42.52 46.21 29.29
V-REX (Krueger et al., 2020) 50.84 42.71 46.77 29.16

Rubi (Cadene et al., 2019) 48.18 44.03 46.1 29.46
UpWt (Sagawa et al., 2020) 47.26 39.04 43.15 26.59

lff (Nam et al., 2020) 48.47 38.1 43.28 32.74
SD (Pezeshki et al., 2020) 49.51 43.74 46.62 26.71

ORC 51.07 44.03 47.55 20.8

Table 3: The performances evaluated on the GQA-OOD.

on other datasets.

4.5. Why is ORC Effective?

We introduce two analyses to investigate the reason for the
effectiveness of ORC. In Figure 2, ORC improves the per-
formances of both groups without any performance degrada-
tions. This improvement comes from the relative regulariza-
tion, rather than focusing on the inference of only one group,
i.e. LfF. Also, Figure 3 shows that the larger the smoothing
factor α for the bias-aligned group and the smaller α for
the bias-conflicting, ORC shows better calibration perfor-
mances. This implies that the different smoothing can be
effectively utilized based on the bias-level of each group.

Figure 2: The accuracy dynamics
for bias-aligned (left) and bias-
conflicting samples (right).

Figure 3: Ablation of G-
ECE for smoothing fac-
tors.

5. Conclusion
We introduce a new mechanism, ORC, which relatively reg-
ularizes the risks and the confidences of the groups in the
training dataset. By reflecting the prior knowledge of each
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group (e.g. the intensity of biases) on the ordering process,
ORC allows us to provide the group-based knowledge on
the degree of regularization. By investigating the relative
difference of risks and confidences between groups, we em-
pirically show the effectiveness of our group-heterogeneous
approach with ordered regularization from the various types
of spurious correlation in both synthetic and real-world
datasets.
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A. Examples of Spurious Correlation
Figure 4 illustrates the spurious correlation in the CelebA dataset (Liu et al., 2018). When G is defined by the combination
of the target label Makeup and the attribute Gender, there is a minority group of males with Makeup, and this group
results in a significantly lower performance than the majority group of males without Makeup.

Figure 4: The groups defined by the combination of Gender and Makeup. A majority of training samples, which align
with the spurious correlation, belong to the groups highlighted in green. Minor samples, which conflict with the correlation,
belong to the groups highlighted in yellow. We report the accuracy and expected calibration error based on the ERM model.

B. Group Calibration
Confidence calibration (Cosmides & Tooby, 1996; Niculescu-Mizil & Caruana, 2005) is estimating the classification
probability to match the true correctness likelihood. Let p̂ be the confidence estimate, which is probability of the class with
the highest predicted value. We would like the confidence estimate p̂ to represent a true likelihood of correctness for the
good calibration. This leads to the evaluation of calibration via Expected Calibration Error (ECE) (Guo et al., 2017). By
grouping n predictions into B interval bins with equal size, ECE is defined as follows:

ECE =

B∑
b=1

|Sb|
n

|acc(Sb)− conf(Sb)| (7)

where Sb denotes the set of samples whose prediction output scores fall into Bin-b; and acc(Sb) and conf(Sb) are the averaged
accuracy and predicted confidence of samples in Sb, respectively. In our paper, we additionally introduce Group-ECE, which
is the averaged ECE from each group. Group-ECE becomes evaluation metric for our group calibration, which aims at
obtaining low calibration error from each group, without disparities of ECE in Figure 4.

Group-ECE =
1

G
∑
g∈G

B∑
b=1

|Sg
b |

ng
|acc(Sg

b )− conf(Sg
b )| (8)

ng is # of samples in group g. Group-ECE is equal to ECE, when all groups are with the same size. From the defined
setup, our objective is to learn the model in the direction of achieving the group robustness and calibration when the training
dataset D is provided with the groups G with spurious correlation.

((a)) ERM ((b)) GroupDRO ((c)) V-REX ((d)) ORC

Figure 5: Reliability diagrams of baseline models and ORC trained on Colored-MNIST dataset. In this figure, we report the
Expected Calibration Error (ECE) of the unbiased test dataset as a measurement of confidence calibration performances.
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C. Proof
C.1. Proof of R̃g(θ) = (1− αg)Rg(θ)

Here, R̃g(θ) as R̃g(θ) =
1
ng

∑
(xi,yi∈g) −ygk log fθ(x)k, which is the subpart of the cross entropy only utilizing the true

class k of yg and fθ(x). We recall that the smoothed label yg is defined as ygk = yk(1− K
K−1αg) +

αg

K−1 , when αg is the
smoothing factor for the samples with group g. Then, we can derive R̃g(θ) as follows:

R̃g(θ) =
1

ng

∑
(xi,yi∈g)

−ygk log fθ(x)k

=
1

ng

∑
(xi,yi∈g)

−(1− αg)yk log fθ(x)k

= (1− αg)
1

ng

∑
(xi,yi∈g)

−yk log fθ(x)k

= (1− αg)
1

ng

∑
(xi,yi∈g)

K∑
k′

−yk′ log fθ(x)k′

= (1− αg)Rg(θ)

C.2. Proof of Confidence Ordering

For the intended ordering of predictive confidences for each group, we utilize the group-aware smoothed label yg, which
satisfies ygk = yk(1 − K

K−1αg) +
αg

K−1 , for each group g. Let the group-wise smoothing factor αg to satisfy α1 ≥ α2 ≥
... ≥ αm, when K is # of classes. Then, the target class label probability of each group, ygk , has the following orders as

y1k = (1− α1) ≤ y2k = (1− α2) ≤ ... ≤ ymk = (1− αm)

From the defined smoothed label, we are minimizing following objective function:

min
θ

1

n

n∑
i=1

ℓ(xi, y
g
i ; θ)

=min
θ

1

n

n∑
i=1

K∑
k=1

−ygk log fθ(x)k

As mentioned on the main paper, we utilize cross entropy as a loss function for classification task. Above objective function
get minimized when fθ(xi) = ygi for all xi, yi. As a measurement of confidence, we utilize the maximum class probability
of model prediction, fθ(x)k, where we abusely denote k as true class index. As fθ(x)k get larger, it implies that the model
is confident of its own prediction. Then at that minimization point, we can satisfy the confidence inequality as follows:

1

n1

∑
xi∈g1

fθ(xi)k ≤ 1

n2

∑
xi∈g2

fθ(xi)k... ≤
1

nm

∑
xi∈gm

fθ(xi)k

By injecting the group-aware smoothing factors, we empirically show that the averaged confidence of each group follows
the intended order, which is sorted by the intensity of spurious correlation.

D. ORC* for the Group-unknown Setting
This section provides ORC∗, which is variants of ORC for the case when we do not have knowledge to G. First, we
utilize the observation of (Nam et al., 2020; Liu et al., 2021) that ERM model ferm tends to fit bias-aligned groups, but
not bias-conflicting groups at the early stage of the training. This leads to our assumption that the higher loss in the early
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learning indicates the higher percentage of being bias-conflicting to the unknown spurious correlation. Then, we can divide
the training dataset into arbitrary groups based on the distribution of training risks from the ERM model.

Group Partitioning Following the concepts of Liu et al. (2021), we first train the ERM model ferm a few epochs
before the main training, and we divide the groups depending on whether the ferm correctly classifies the samples
or not. Here, the samples, which were incorrectly classified by ERM model, would show larger loss compared with
the correct ones. Dividing the training dataset based on the classification correctness results in two distinct groups;
error set E = {(xi, yi) s.t. ferm(xi) ̸= yi} which is composed of the samples that ferm misclassify, and correct set
Ec = {(xi, yi) s.t. ferm(xi) = yi}.

Toward input-aware label smoothing From the learning to divide the group, ferm learns the difficulty for each sample,
which is valuable prior information for estimating the bias intensity of each input. Given the partitioned groups E and Ec,
ORC* utilizes the training risks of each sample from ferm to develop the input-aware smoothing factors {αi}ni=1 to reflect
the input-dependent characteristics in modeling. By utilizing the input-dependent smoothing factors with the estimated
groups, it compensates the possible problems caused by group partitioning errors.

After t epochs of training on ferm, we can extract {ℓ(xi, yi; θt)}ni=1, which is a set of training losses for each sample, where
θt is a inferred parameter of ferm after epoch t. As our intention is to induce larger smoothing factors to the samples with
spurious correlation, we calculate the input-aware smoothing factor αi for input xi as follows:

αi = max(α)− max(α)ℓ̂(xi, yi; θt) ∀ i (9)

where max(α) is a the largest possible value of smoothing factor and ℓ̂(xi, yi; θt) is normalized value of ℓ(xi, yi; θt) by
applying max-min normalization to {ℓ(xi, yi; θt)}ni=1, which results in the truncation of {ℓ̂(xi, yi; θt)}ni=1 ∈ [0, 1]. By then,
αi is constructed negatively proportional to the normalized training risk ℓ̂(xi, yi; θt), which results in inducing the higher
smoothing factors for the samples with lower risk. Then, we provide the final objective of ORC* as below:

min
θ

1

n

n∑
i=1

ℓ(xi, ỹi; θ) + λVar(R̃(θt), R̃
c(θt)). (10)

Here, ỹi is smoothed label for xi satisfying ỹi,k = yk(1 − K
K−1αi) +

αi

K−1 . R̃(θt) =
1

|E|
∑

(x,y)∈E −ỹk log fθ(x)k and

R̃c(θt) =
1

|Ec|
∑

(x,y)∈Ec −ỹk log fθ(x)k.

E. Evaluation Metric
We evaluate the group robustness and calibration based on metrics; 1) unbiased test accuracy, which is equal to the balanced
group accuracy reversed from Eq 1, 2) worst group accuracy, whose error corresponds to Eq 2, and 3) group expected
calibration error (Group-ECE) in Eq 8.

F. Baseline
We provide the detailed explanations of baselines, which were utilized for our experiments.

GroupDRO (Sagawa et al., 2019) is distributionally robust optimization method for worst-case generalization. Overpa-
rameterized neural networks perform well on an average dataset by learning spurious correlation, but they fail on rare and
heavy-tailed examples. To increase the performance of rare and atypical examples, GroupDRO focuses on minimizing the
training losses of worst-case group among pre-defined groups. However, (Sagawa et al., 2019) shows that naive application
of GroupDRO still fails on an atypical dataset, and they propose a coupling of GroupDRO and strong regularization such as
L2 norm penalty and early stopping. With strong regularization, GroupDRO shows performance improvement by avoiding
to learn the spurious correlation, which is also called as bias.

IRMv1 (Arjovsky et al., 2019) is designed for learning invariant representation across different multiple training envi-
ronments. Traditional ERM assumes that the training samples are drawn identically distributed, and ERM shows lower
performance on the samples with spurious correlation, and it absorbs the spurious correlation. However, IRM treats the
dataset as the results of multiple environments and learns the correlation to be invariant. The objective of IRM is to learn a
feature extractor such that the optimal linear classifier of every environment is the same. Investigating an optimal feature
extractor and linear classifier requires a bi-level optimization, highly non-convex problem. To approximate the optimization
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problem, they propose an approximated version of IRM, which is called IRMv1, which penalizes the squared norm of
gradient.

REX (Krueger et al., 2020) Under the assumption that the distributional shift at the test time will be much extreme, Krueger
et al. (2020) introduces Risk Extrapolation (REX), which provides a robust optimization for the perturbed set of the affine
combinations from the training risks. The degree of extrapolation can be controlled by the hyperparameter. In addition,
Krueger et al. (2020) showed that this extrapolation of robust optimization aligns with the objective of reducing the risk
differences among different training domains. Accordingly, Krueger et al. (2020) also proposes V-REX, which is more
stable variant of REX that reduces the risk differences among m training domains.

RUBi (Cadene et al., 2019) is a debiasing algorithm specially designed for visual question answering tasks. It multiplies the
output from the main model with sigmoided outputs from the additional biased model, thereby assigning higher loss weights
to samples that cannot be predicted through biases alone.

UpWt (Sagawa et al., 2020) is a algorithm which upweights the samples with minority patterns. In other words, it attempts
to mitigate the spurious correlation by emphasizing the importance of samples from minority groups. Sagawa et al. (2020)
accentuate that UpWt needs sufficient regularizations for validity of the models. Examples of these regularization is training
models with low learning rates or high weight decays.

LfF (Learning from Failure) (Nam et al., 2020) proposes a debiasing scheme by training a debiased classifier based on the
failure of a biased classifier. Lff simultaneously train two neural networks, i.e. one for the biased classifier and the other for
the debiased classifier. The biased network utilizes the generalized cross entropy loss (Zhang & Sabuncu, 2018) to focus on
the easy samples, which is expected to be aligned with bias information. Simultaneously, the debiased network can focus
on the samples, which are hard for the biased network to learn. The samples are expected to be conflicting with the bias
information. Lff ”reweights” training samples using the score based on the loss of each classifier, which represents the
relative difficulty score.

SD (Spectral Decoupling) (Pezeshki et al., 2020) shows that Gradient Starvation, gradient descent updates parameters in the
direction of dominant features but not potentially informative features, happens when cross-entropy loss is minimized. When
strongly-correlated and easy-to-learn features exist in training dataset, gradient descent is biased towards them first. Pezeshki
et al. (2020) linearize and approximate the learning dynamics of neural networks to a dual space using Neural Tangent Kernel
(NTK), and show that the fast learning on dominant features has a detrimental effect on the learning of other features which
are coupled with dominant features. In this context, Spectral Decoupling (SD) is proposed as a possible remedy of Gradient
Starvation. SD shows that simply replacing the weight decay term in the loss function, L = log

(
1 + e−yŷ

)
+ ||θ||22, with

an L2 penalty on the network’s logit, L = log
(
1 + e−yŷ

)
+ ||ŷ||22, probably decouples the fixed points of the dynamics.

G. Experiments on Real-World Datasets
This section provides experimental results for more diverse real-world datasets. Since ORC* was introduced in Appendix D,
the experimental results of this section compare the experimental results by separating the models of group aware setting
and group unknown setting.

G.1. CelebA (Liu et al., 2018)

Group
setting Model

Performance Metrics

Unb Acc ↑ Worst Acc ↑ G-ECE ↓

Known
GroupDRO 74.24±0.22 54.65±0.23 23.7±0.23

V-REX 72.44±1.95 51.35±3.58 22.86±3.7

ORC 74.38±0.98 57.2±2.61 17.94±2.77

Unknown

ERM 71.81±1.2 49.33±1.96 26.18±0.89

LfF 72.97±3.11 55.69±5.57 24.68±2.54

SD 70.33±1.62 47.69±2.8 26.35±0.98

JTT 72.22±0.5 50.19±1.34 25.37±0.7

ORC* 71.55±1.66 51.78±3.21 22.29±1.65

Table 4: The performances evaluated on the CelebA (averaged over three random seeds). The target and bias attribute are
Makeup and Male.
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CelebA (Liu et al., 2018) is a multi-attribute dataset for face recognition. Following Nam et al. (2020), we select Makeup as
target label, Y , and Male as the bias attribute to investigate the spurious correlation between them. We utilize ResNet-50 as
target model and also utilize the prior knowledge of each group with size statistics to find out bias-conflicting groups. Table
4 shows that ORC shows improvements of all performance metrics in the group-known setting. In group-unknown setting,
ORC* shows the second best performances on the worst accuracy metric. Although LfF showed the best performance in
terms of accuracy, it shows to be unstable with high standard deviation. In terms of G-ECE, ORC* surpasses other baselines.

Group
setting Model

Performance Metrics

Unb Acc ↑ Worst Acc ↑ G-ECE ↓

Known
GroupDRO 79.94 66.42 17.22

V-REX 81.91 77.32 14.5
ORC 83.93 79.6 6.75

Unknown

ERM 77.36 59.14 18.9
LfF 75.98 64.01 11.45
SD 80.18 64.92 21.97
JTT 76.75 62.25 20.13

ORC* 82.11 71.08 10.45

Table 5: The performances evaluated on the CivilComments.

G.2. CivilComments-WILD (Borkan et al., 2019)

Our task is to classify whether an online comment input is toxic or non-toxic. Prior works (Dixon et al., 2018; Park et al.,
2018) have shown that toxicity of comments spuriously associate with the mention of certain demographics (e.g. male,
female, black, LGBTQ, etc.). To enable the use of group based approaches, we construct the 4 groups (a, y), where the bias
attribute a ∈ A is a binary indicator of whether any demographics are mentioned and the label y ∈ Y is toxicity (Liu et al.,
2021). We select BERT (Devlin et al., 2019) with pretrained weights for the model architecture. Table 5 shows that ORC
and ORC* overwhelms other baselines with performances on whole metrics in both group known and unknown setting,
respectively.

H. Experimental Setup
We verify the effectiveness of our proposed algorithm on four synthetic and real-world benchmark datasets: Colored-MNIST
(Nam et al., 2020), CelebA (Liu et al., 2018), CivilComments-WILD (Borkan et al., 2019), GQA-OOD (Kervadec et al.,
2021). In this section, we provide the description of each dataset. Furthermore, we provide the detailed explanation of
experimental settings for each dataset.

Figure 6: Examples of bias-aligned samples in Colored-MNIST
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H.1. The Descriptions for the Dataset

H.1.1. COLORED-MNIST (NAM ET AL., 2020)

Dataset Description Colored-MNIST is dataset in which color is injected with random perturbation into the original MNIST
dataset (Deng, 2012). The left side of Figure 6 shows the examples of bias-aligned samples in Colored-MNIST. The dataset
contains images with two attributes: Digit and Color. A set of intended decision rules classify images correctly based
on the Digit. Here, a decision rule based on bias attributes, e.g. Color, is considered as an unintended decision rule. We
follow the provided dataset protocols from Nam et al. (2020), which inject colors to each image as follows:

• Choose ten distinct RGB values by drawing them uniformly at random. These RGB values is used throughout all the
experiments for the Colored-MNIST dataset.

• Generate ten color distributions by assigning chosen RGB values to each color distribution.

– Each color distribution is a 3-dimensional Gaussian distribution with pre-defined covariance σ2I , when σ = 0.05
for our experiments.

• Pair Digit at and Color distribution ab to make a correlation between the two attributes.

– Each bias-aligned sample has a Digit colored by RGB value sampled from paired Color distribution.
– Each bias-conflicting sample has a Digit colored by RGB value sampled from other (nine) Color distributions.
– We control the ratio of bias-aligned samples among (99.0%, 98.0%, 95.0%).

This modification results in the 60,000 training samples and 10,000 test samples. Similar modification has been proposed by
Kim et al. (2019) and Li & Vasconcelos (2019).

Experimental Settings For the Colored-MNIST dataset, we use the MLP (Multi-Layered Perceptron) with three hidden
layers where each hidden layer consists of 100 hidden units. We use Adam (Kingma & Ba, 2015) optimizer throughout all
the experiments in the paper. We use a learning rate of 0.001, a batch size of 256, and epochs of 100 for the Colored-MNIST
dataset. We do not use data augmentation schemes for training the neural network on the Colored-MNIST dataset.

H.1.2. CELEBA (LIU ET AL., 2018)

Dataset Description The CelebA dataset is a multi-attribute dataset for face recognition. It contains 40 attributes for each
image and among those attributes, we consider HeavyMakeup as the target attributes. For both cases, we use Male as
the bias attribute to investigate gender bias in CelebA. The dataset consists of 202,599 face images, and we use the official
train-val split, which results in 162,770 samples for training, 19,867 samples for testing. To evaluate the unbiased accuracy
with an imbalanced evaluation set, we evaluate accuracy via group-wise manner, and compute average accuracy over all
groups.

Experimental Settings Following experimental settings from Nam et al. (2020), we utilize the Pytorch torchvision (Marcel
& Rodriguez, 2010) implementation of the ResNet18 model with ImageNet pretrained weights. We use a learning rate of
0.0001, a batch size of 256, and 50 epochs for model training in CelebA.

H.1.3. CIVILCOMMENTS-WILD (BORKAN ET AL., 2019)

Dataset Description CivilComments is a real-world dataset with user generated text (e.g., detecting toxic comments). The
task is a binary classification task of determining if a comment is toxic. Concretely, the input x is a comment on an online
article (comprising one or more sentences of text) and the label y is whether it is rated toxic or not.

Experimental Settings Following Liu et al. (2021), we capped the number of tokens per example at 300 and used an initial
learning rate of 0.00001. We train all approaches for up to 20 epochs with batch size 32 and ℓ2 regularization strength of
0.01.

H.1.4. GQA-OOD (KERVADEC ET AL., 2021)

Dataset Description GQA-OOD is a real-world dataset of a visual question answering (VQA) task for validating models
in OOD settings. The dataset is based on GQA dataset (Hudson & Manning, 2019), but the validation and test datasets
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are transformed for valid evaluation in OOD setting. It should be noted that the train dataset is same as original GQA
training dataset. They re-organize the GQA validation and test datasets to extract a data group of the most imbalanced
question distribution. Then, they divide the dataset into head and tail based on rareness of the answer appearance. Then, the
validation dataset results in 33,822 questions for 8,664 images in the head group and 17,163 questions for 6,632 images in
the tail group. Also, the test dataset results in 1,733 questions for 365 images in the head group and 1,063 questions for 330
images in the tail group.

Experimental Settings In our experiments, we follow the experiment settings of (Shrestha et al., 2021a). Specifically,
we use the UpDn architecture (Anderson et al., 2018), which is commonly utilized network structure in Visual Question
Answering. For group-known models, head/tail categorization grouping is used to construct groups. For all models, we use
Adam optimizer and a batch size of 128. We also fairly utilize hyperparameter settings from (Shrestha et al., 2021a) for
baseline models. Due to computational constraints, the experiments were performed only once for each model.

H.2. Implementation Details

We follow the code implementation of Nam et al. (2020) for the experiments with Colored-MNIST. In the case of CelebA
and CivilComments, the experiment was conducted by adapting the original code to the following settings. For GQA-OOD,
we utilized the open-sourced code of Shrestha et al. (2021b), which provide the GQA-OOD protocols, codes for each
baseline, and reproducible results. Also, we utilized NVIDIA RTX-3090 GPU machines to train ORC and other baselines.

H.2.1. HYPERPARAMETER SETTING FOR V-REX

For V-REX (Krueger et al., 2020), we only need one hyperparameter λ, which controls the degree of variance minimzation
of training risks. We searched the hyperparameter from λ = [1, 5].

H.2.2. HYPERPARAMETER SETTING FOR LFF

LfF has a hyperparameter q for generalized cross entropy term. We utilized q = 0.7 for the Colored-MNIST, and we tuned
the hyperparamter q by searching it over q ∈ {0.1, 0.3, 0.5, 0.7, 0.9} for the other datasets.

H.2.3. HYPERPARAMETER SETTING FOR SD

We controlled the hyperparameter λ, which adjusts the degree of ℓ2 regularization of the logits. We searched it from the
range of λ = [0.1, 0.3, 0.5, 0.7, 0.9].

H.2.4. HYPERPARAMETER SETTING FOR JTT

JTT needs an learning of ERM-based model with T epochs, which is equal to ORC*. We tuned it with the range of
T = [2, 4, 8]. Additionally, λup, which controls the degree of upweighting the bias-conflicting samples got tuned with the
range of λup = [10, 20, 50, 100].

H.2.5. HYPERPARAMETER SETTING FOR ORC

For experiments with Colored-MNIST dataset and CelebA, we get two disjoint groups, bias-aligned group and bias-
conflicting group. This implies that we need two smoothing factor α for each group. there are two kinds of hyper-parameters
: 1) λ and 2) αalign and αconf , which is smoothing factor for bias-aligned group and bias-conflicting group, respectively.
we set the hyperparameter tuning from the combination of 1) λ = [1, 5], 2) αalign = [0.1, 0.15, 0.2] and αconf = [0, 0.01].
These combinations of αalign and αconf always gaurantee that αalign is larger than αconf , which learns toward our
motivation kept.

For experiments with CivilComments and GQA-OOD datasets, we need similar level of hyper-parameters as the experiments
with Colored-MNIST. we set the hyperparameter tuning from the combination of 1) λ = [0.1, 0.5, 1] and 2) αalign =
[0.1, 0.15, 0.2] and αconf = [0, 0.01].

H.2.6. HYPERPARAMETER SETTING FOR ORC∗

For experiments, there are TWO hyper-parameters : 1) λ 2) max(α). Here, max(α) is a pre-defined value of maximum
possible value of label smoothing. We tune the hyperparameters from the combination of 1) λ = [0.1, 1, 5], 2) max(α) =
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[0.1, 0.15, 0.2]. This setting showed good performances for whole cases.


