
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Mitigating Goal Misgeneralization
via Minimax Regret

Anonymous authors
Paper under double-blind review

Keywords: Goal Misgeneralization, Unsupervised Environment Design, AI Safety, AI Alignment.

Summary
Safe generalization in reinforcement learning requires not only that a learned policy acts ca-

pably in new situations, but also that it uses its capabilities towards the pursuit of the designer’s
intended goal. The latter requirement may fail when a proxy goal incentivizes similar behavior
to the intended goal within the training environment, but not in novel deployment environ-
ments. In this setting, policies may behave as if in pursuit of the proxy goal in deployment—a
phenomenon known as goal misgeneralization. In this paper, we theoretically investigate the
possibility of goal misgeneralization under maximum expected value (MEV) and minimax ex-
pected regret (MMER) objectives, and empirically validate our results. Our findings underscore
minimax expected regret as a promising principle for mitigating goal misgeneralization.

Contribution(s)
1. We introduce a problem setting called a proxy-distinguishing distribution shift, capturing a

class of situations in which goal misgeneralization can be elicited and studied.
Context: Given two reward functions (a true goal and a proxy goal), a proxy-distinguishing
distribution shift involves (1) training primarily in contexts for which optimizing the proxy
goal also optimizes the true goal, then (2) testing primarily in situations in which optimizing
the proxy goal is suboptimal under the true goal (so-called distinguishing levels). We do not
assume training methods have knowledge of the proxy goal.

2. We prove that, under a proxy-distinguishing distribution shift, approximately maximizing
expected value on the training distribution permits a misgeneralizing solution if the propor-
tion of distinguishing levels in the training distribution is low enough (Theorem 1).
Context: As a special case, exactly maximizing expected value on the training distribution
permits a misgeneralizing solution if there are no distinguishing levels in the training dis-
tribution. Note: We model possible goal misgeneralization—actual goal misgeneralization
also depends on the agent’s inductive biases for different approximate solutions.

3. We prove that, under a proxy-distinguishing distribution shift, no approximate solution of
the minimax expected return objective exhibits goal misgeneralization (Theorem 2).
Context: Theorem 2 holds for fully observable environments; we include a generalization
to partially observable environments in the supplementary materials (Theorem 3).

4. We show empirically that, under conditions approximating a proxy-distinguishing distribu-
tion shift in procedurally generated grid-world environments, policies learned using domain
randomization (DR; an MEV-based training method) exhibit goal misgeneralization when
the proportion of distinguishing levels in the training distribution is low enough (§7.1).
Context: Langosco et al. (2022) demonstrated goal misgeneralization with zero distin-
guishing levels, we extend this finding to the case with a small positive proportion.

5. We show empirically that, under the same conditions, existing regret-based unsupervised
environment design (UED) methods, PLR⊥ (Jiang et al., 2022) and ACCEL (Parker-Holder
et al., 2023), (1) can detect rare distinguishing levels and increase their proportion in the
training distribution, and (2) are more robust to goal misgeneralization than DR is (§7.2).
Context: In some cases, less advanced UED methods fail to find MMER policies, and still
exhibit goal misgeneralization (§7.3, §7.4), indicating that more mature UED methods are
needed to achieve the potential of MMER for preventing goal misgeneralization in practice.
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Abstract
Safe generalization in reinforcement learning requires not only that a learned policy1
acts capably in new situations, but also that it uses its capabilities towards the pursuit2
of the designer’s intended goal. The latter requirement may fail when a proxy goal3
incentivizes similar behavior to the intended goal within the training environment, but4
not in novel deployment environments. This creates the risk that policies will behave5
as if in pursuit of the proxy goal, rather than the intended goal, in deployment—a phe-6
nomenon known as goal misgeneralization. In this paper, we formalize this problem7
setting in order to theoretically study the possibility of goal misgeneralization under8
different training objectives. We show that goal misgeneralization is possible under ap-9
proximate optimization of the maximum expected value (MEV) objective, but not the10
minimax expected regret (MMER) objective. We then empirically show that the stan-11
dard MEV-based training method of domain randomization exhibits goal misgeneraliza-12
tion in procedurally-generated grid-world environments, whereas current regret-based13
unsupervised environment design (UED) methods are more robust to goal misgeneral-14
ization (though they don’t find MMER policies in all cases). Our findings suggest that15
minimax expected regret is a promising approach to mitigating goal misgeneralization.16

1 Introduction17

As reinforcement learning (RL) is increasingly applied in complex, open-ended, real-world envi-18
ronments, it is becoming infeasible for training to comprehensively cover all situations an agent19
will face in deployment. We therefore need training methods to produce policies that generalize,20
behaving as intended when faced with a novel scenario (Kirk et al., 2023).21

A particular challenge arises when incomplete coverage of the environment space during training22
creates a proxy goal. A proxy goal is a reward function that, compared to the true goal, induces sim-23
ilar optimal behavior in most situations encountered during training, but induces radically different24
behavior in some novel situations. Proxy goals create the risk of goal misgeneralization—learning25
a policy that retains its capabilities in novel situations, but behaves as if to pursue the proxy goal26
instead of the true goal when the two diverge (Langosco et al., 2022; Shah et al., 2022).27

Goal misgeneralization can arise when such “goal-distinguishing” situations—where the proxy goal28
and the true goal diverge—are rare within training, making policies that pursue the wrong goal ap-29
proximately optimal in terms of the standard RL objective of maximum expected value (MEV). This30
motivates the need for training methods that can somehow identify goal-distinguishing situations31
within a complex environment, and ensure they are adequately covered in the training distribution.32

We observe that favoring the proxy goal in goal-distinguishing situations leads to high expected33
regret, defined as the shortfall of expected return compared to that obtained by an optimal pol-34
icy. An environment selected to maximize a policy’s expected regret will naturally include goal-35
distinguishing situations as long as the policy ignores the true goal. Therefore, we propose mitigat-36
ing goal misgeneralization via the minimax expected regret (MMER; Savage, 1951) objective.37
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Figure 1: Maximum expected value and minimax expected regret vs. goal misgeneralization.
A mouse searches a maze for cheese that is usually located in the top-left corner. There is a proxy
goal (“go to the corner”) that mostly incentivizes the same optimal behavior as the true goal (“go
to the cheese”). (Left): Standard RL methods that approximately maximize expected value/return
could find a policy that behaves as if pursuing the proxy goal rather than the true goal, since layouts
where this policy fails are rare in training. This would lead to incorrect generalization. (Right): If a
policy ignores the cheese, a regret-maximizing adversary can move the cheese away from the corner
until the agent internalizes the correct goal, leading to correct generalization.

In this paper, we conduct a theoretical and empirical investigation of the possibility of goal misgen-38
eralization under the MEV and MMER objectives. An outline of our contributions is as follows.39

1. In Section 4, we introduce a problem setting called a proxy-distinguishing distribution shift,40
formalizing a class of situations in which goal misgeneralization can arise.41

2. In Section 5, we show formally that (1) approximately optimizing MEV is susceptible to goal42
misgeneralization if goal-distinguishing situations are sufficiently rare (Theorem 1), and (2) ap-43
proximately optimizing MMER is provably robust to goal misgeneralization (Theorem 2).44

3. In Sections 6 and 7, we empirically study the robustness to goal misgeneralization of a standard45
MEV-based training method (domain randomization; Tobin et al., 2017), and recent MMER-46
based training methods (regret-based unsupervised environment design; Dennis et al., 2020; Jiang47
et al., 2022; Parker-Holder et al., 2023) under a proxy-distinguishing distribution shift.48

Our theoretical results show that, in the limit of idealized training methods, MMER-based train-49
ing is guaranteed to be robust against goal misgeneralization, whereas MEV-based training is not.50
Our empirical results show that current MMER-based training methods are indeed more robust to51
goal misgeneralization than MEV-based training is, and, while they sometimes still exhibit goal52
misgeneralization, this happens less for more advanced methods. Together, these results establish53
MMER-based training as a promising approach to preventing goal misgeneralization.54

2 Related work55

Goal misgeneralization. Ensuring learned systems generalize as intended in novel situations is a56
perennial challenge for deep learning and deep RL (Kirk et al., 2023). Christiano (2018) distin-57
guishes between benign generalization failures, where an agent fails to behave capably in a novel58
situation, and malign generalization failures, where the agent demonstrates capable behavior towards59
the pursuit of an unintended objective. Langosco et al. (2022) and Shah et al. (2022) demonstrate60
behavioral examples of malign generalization failures in deep RL, introducing the term goal misgen-61
eralization. Goal misgeneralization is similar to shortcut learning in supervised learning (Geirhos62
et al., 2020), but emphasizes shortcut reward functions, rather than shortcut policies.63

Recent work proposes complementary approaches to mitigating the risk of goal misgeneralization.64
Starace (2023) investigates influencing the agent’s inductive bias in favor of correct goal generaliza-65
tion using goal-conditioned RL with natural language task descriptions. Trinh et al. (2024) studies66
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methods for detecting when the agent is in an unfamiliar situation and choosing to ask an expert (at67
a cost) to clarify the optimal action.68

Training in complex environments. The standard technique for RL complex environments is to69
train on situations sampled from a fixed distribution, a technique known as domain randomization70
(e.g., Tobin et al., 2017; Peng et al., 2018). Maximizing expected return over such situations corre-71
sponds to pursuing the MEV objective with respect to the fixed training distribution.72

Dennis et al. (2020) proposed regret-based unsupervised environment design (UED), an RL training73
technique featuring an adversarial environment designer that continually adapts the training distribu-74
tion aiming to maximize the agent’s expected regret. Maximizing expected return on this adversarial75
distribution corresponds to the MMER objective (Dennis et al., 2020). UED has been promoted as76
a technique for (1) improving sample efficiency by creating an emergent curriculum; and (2) im-77
proving capability generalization via adversarial robustness (Dennis et al., 2020; Jiang et al., 2022;78
Parker-Holder et al., 2023). We show that UED also helps to mitigate goal misgeneralization.79

Alternative adversarial approaches, such as maximin expected value (Dennis et al., 2020; Wang80
et al., 2023), maximizing diversity (OpenAI et al., 2019), or maximizing learnability (Rutherford81
et al., 2024), have not been studied in the context of goal misgeneralization. These approaches may82
also mitigate goal misgeneralization to the extent that they promote training in goal-distinguishing83
situations, incentivizing the agent to internalize the true goal. We show that directly optimizing the84
training environment for regret is sufficient. Appendix I shows that minimax expected value can85
exhibit goal misgeneralization when some situations have low maximum expected return.86

3 Preliminaries87

A (reward-free) underspecified Markov decision processes (UMDP) is a tuple M = ⟨Θ,A,S, I, T ⟩88
where Θ is a space of free parameters (also called levels), A is the agent’s action space, S is a89
state space, I : Θ → ∆(S) is an initial state distribution, and T : Θ × S × A → ∆(S) is a90
conditional transition distribution. Given a level θ ∈ Θ we have a fully-specified (reward-free)91
MDP ⟨A,S, I(θ), T (θ,−,−)⟩. We aggregate these MDPs into a single complex environment using92
a level distribution Λ ∈ ∆(Θ). A reward function (or goal) is a function R : S × A × S → R.93
Taken together, M and R define a proper (non-reward-free) UMDP. We define reward functions94
and reward-free UMDPs separately to facilitate considering multiple goals for an otherwise fixed95
environment. We usually denote by R and R̃ the true goal and the proxy goal, respectively.96

An agent’s policy is a conditional action distribution π : Θ × S → ∆(A). Note that we assume97
the policy observes the level (we consider the partially observable case in Appendix C). The set of98
all policies is denoted by Π. We define the expected return (or expected value) of policy π in the99
level θ under goal R as the discounted cumulative reward V R(π; θ) = E[

∑∞
t=0 γ

tR(st, at, st+1) ]100
where γ ∈ (0, 1) is a discount factor and the expectation is over s0 ∼ I(θ), at ∼ π(θ, st), and101
st+1 ∼ T (θ, st, at). We lift this definition to level distributions as V R(π; Λ) = Eθ∼Λ

[
V R(π; θ)

]
.102

A normalized goal is one such that the return has support in [0, 1].103

We define the expected regret of a policy π in the level θ under a goal R as the shortfall of expected104
value achieved by the policy compared to an optimal policy for that level,105

GR(π; θ) = max
π′∈Π

V R(π′; θ)− V R(π; θ). (1)

Once again, we lift this definition to level distributions as GR(π; Λ) = Eθ∼Λ

[
GR(π; θ)

]
. Since the106

policy is conditioned on θ, we also have the following identity (see Appendix B):107

GR(π; Λ) = max
π′∈Π

V R(π′; Λ)− V R(π; Λ). (2)
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4 Problem setting108

Langosco et al. (2022) and Shah et al. (2022) formalize goal misgeneralization and provide case109
studies in which it arises. In order to theoretically study goal misgeneralization, we formalize an110
abstract class of situations in which goal misgeneralization can arise as a problem setting called a111
proxy-distinguishing distribution shift.112

Given an UMDP, consider a pair of reward functions: one true goal and one proxy goal. We classify113
levels by whether the proxy goal incentivizes optimal or suboptimal behavior under the true goal.114

Definition 1 (Ambiguous level). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a true goal R, and a proxy115
goal R̃. A level θ ∈ Θ is (universally, perfectly, goal-) ambiguous with respect to R and R̃ if all116
optimal policies with respect to the proxy goal are also optimal with respect to the true goal, that is117

argmax
π∈Π

V R̃(π; θ) ⊆ argmax
π∈Π

V R(π; θ).

Definition 2 (C-distinguishing level). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a true goal R, a proxy118
goal R̃, and a constant C ≥ 0. A level θ ∈ Θ is (universally goal-) C-distinguishing with respect to119
R and R̃ if all policies optimal with respect to R̃ achieve C-suboptimal expected return with respect120
to R, that is,121

∀π ∈ argmax
π∈Π

V R̃(π; θ), V R(π; θ) < max
π′∈Π

V R(π′; θ)− C.

We note that this classification is not exhaustive: for a given UMDP and pair of reward functions,122
some levels may be neither perfectly ambiguous nor C-distinguishing for any C ≥ 0; the conditions123
must hold for all optimal policies (hence “universally”). However, it is often true that optimizing a124
misspecified goal leads to arbitrarily low return (cf. Zhuang & Hadfield-Menell, 2020).125

We model the shift from training to deployment as a change in level distribution. The training126
distribution represents all levels an RL method can access for training a policy prior to deployment.127
The distribution shift is proxy-distinguishing when the training distribution concentrates mostly on128
ambiguous levels but the deployment distribution concentrates mostly on distinguishing levels.129

Definition 3 (Proxy-distinguishing distribution shift). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a130
true goal R, and a proxy goal R̃. A proxy-distinguishing distribution shift is a tuple131
⟨α, β, C,ΛTrain,ΛDeploy⟩ where α, β are ratios such that 0 ≤ α < β ≤ 1, C ≥ 0 is a constant,132
and ΛTrain,ΛDeploy ∈ ∆(Θ) are level distributions over levels with the following classifications (with133
respect to R and R̃):134

1. ΛTrain has probability α on C-distinguishing levels and probability 1− α on ambiguous levels.135

2. ΛDeploy has probability β on C-distinguishing levels and probability 1− β on ambiguous levels.136

We are mainly interested in the case where α is very close to zero (where goal misgeneralization is137
a particular risk) and β is very close to one (where goal misgeneralization is a particular concern).138

We don’t assume prior knowledge of the proxy goal or distinguishing levels. However, we do assume139
the ability to train in distinguishing levels, once identified. In practice, one can train in a very wide140
space of situations, whether via a simulator (Tobin et al., 2017; Peng et al., 2018; Kumar et al., 2021;141
Makoviychuk et al., 2021; Muratore et al., 2022; Ma et al., 2024), a generative environment model142
(Bruce et al., 2024), or a world model (Ha & Schmidhuber, 2018; Hafner et al., 2019; Schrittwieser143
et al., 2020; Hafner et al., 2023; Valevski et al., 2024). If all levels accessible before deployment are144
ambiguous, we may require alternative assumptions (see, e.g., Trinh et al., 2024).145

Moreover, we assume access to a reliable reward signal in favor of the true goal in distinguishing146
levels. This mirrors assumptions made in work on spurious correlations in supervised learning (e.g.,147
Liu et al., 2021; Zhang et al., 2022). However, in practice, reward functions may be subject to148
misspecification in such corner cases (cf. Hadfield-Menell et al., 2017). Future work could develop149
methods that treat the true goal as underspecified in rare, distinguishing levels and find ways to150
incentivize safe generalization behavior despite this uncertainty.151
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5 Theoretical results152

In this section, we prove that under a proxy-distinguishing distribution shift, the maximum expected153
value (MEV) objective permits an approximately optimal policy that exhibits goal misgeneralization.154
On the other hand, we show that any policy that is approximately optimal with respect to minimax155
expected regret (MMER) must avoid goal misgeneralization. All proofs are in Appendix A.156

We consider approximately optimal policies because, in practice, training uses finite optimization157
power and will not always find policies that are exactly optimal according to the given objective.158
We model approximate optimization by supposing that our optimization methods will instead find159
an arbitrary policy within a small threshold of optimal for the given objective. We use the notation160
arg-ε-maxx∈X f(x) = {x ∈ X | f(x) ≥ maxξ∈X f(ξ)− ε} (likewise arg-ε-min) for approximate161
optimization of a function f : X → R with approximation threshold ε ≥ 0.162

5.1 Approximate maximum expected value is susceptible to goal misgeneralization163

The standard objective used in RL is maximum expected value (MEV) with respect to the fixed164
training distribution. We formalize this objective as follows.165

Definition 4 (Approximate MEV). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, an approxima-166
tion threshold ε ≥ 0, and a fixed level distribution Λ ∈ ∆(Θ). The MEV objective with respect to167
Λ is to maximize V R(π; Λ). The approximate MEV policy set with respect to Λ is then168

ΠMEV
ε (R,Λ) = arg-ε-max

π∈Π
V R(π; Λ).

The MEV objective permits goal misgeneralization under a proxy-distinguishing distribution shift if169
the proportion of distinguishing levels in training is too small. Intuitively, a policy that pursues the170
proxy goal in all levels achieves enough return on ambiguous levels to be approximately optimal.171
Note: rather than modeling inductive bias, we characterize the possibility of goal misgeneralization.172

Theorem 1 (MEV is susceptible to goal misgeneralization). Consider an UMDP ⟨Θ,A,S, I, T ⟩,173
a pair of normalized goals R, R̃, a proxy-distinguishing distribution shift ⟨α, β, C,ΛTrain,ΛDeploy⟩,174
and an approximation threshold ε ≥ 0. If ε ≥ α, then175

∃πMEV ∈ ΠMEV
ε (R,ΛTrain) such that V R(πMEV; ΛDeploy) < max

π∈Π
V R(π; ΛDeploy)− βC.

5.2 Approximate minimax expected regret is robust to goal misgeneralization176

The minimax expected regret (MMER) objective can be defined via an equilibirum of a two-player177
zero-sum game, in which an agent selects a policy and an adversary selects a level distribution. We178
relax this definition by allowing both players to play an approximate best response.179

Definition 5 (Approximate MMER). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, and approx-180
imation thresholds ε, δ ≥ 0. Consider the two-player zero-sum game

〈
⟨Π,∆(Θ)⟩, ⟨−GR, GR⟩

〉
,181

where an agent plays a policy π ∈ Π and an adversary plays a level distribution Λ ∈ ∆(Θ),182
aiming to minimize or maximize GR(π; Λ) respectively. A pair (π,Λ) is an (ε, δ)-equilibrium if183
π ∈ arg-ε-minπ′∈Π GR(π′; Λ) and Λ ∈ arg-δ-maxΛ′∈∆(Θ) G

R(π; Λ′). The approximate MMER184
policy set is then185

ΠMMER
ε,δ (R) =

{
π ∈ Π

∣∣ ∃Λ ∈ ∆(Θ) such that (π,Λ) is an (ε, δ)-equilibrium
}
.

The MMER objective does not permit goal misgeneralization under any distribution shift within the186
adversary’s strategy space. Intuitively, if the agent’s policy pursues the proxy goal on distinguishing187
levels, the adversary can exploit the high regret until the agent’s policy pursues the true goal.188

Theorem 2 (MMER is robust to goal misgeneralization). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a189
pair of goals R, R̃, a proxy-distinguishing distribution shift ⟨α, β, C,ΛTrain,ΛDeploy⟩, and approxi-190
mation thresholds ε, δ ≥ 0. Then191

∀πMMER ∈ ΠMMER
ε,δ (R), we have V R(πMMER; ΛDeploy) ≥ max

π∈Π
V R(π; ΛDeploy)− ε− δ.
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CHEESE IN THE CORNER CHEESE ON A DISH KEYS AND CHESTS
Ambiguous Distinguishing Ambiguous Distinguishing Ambiguous Distinguishing

Figure 2: Example procedurally-generated ambiguous/distinguishing levels. The agent’s observa-
tion is a 15× 15× c Boolean grid (where c is an environment-dependent number of channels).

A slightly modified bound holds for partially observable environments after accounting for the min-192
imum expected regret realizable by a fixed policy (see Appendix C).193

6 Experimental methods194

In this section, we outline our methods for investigating the robustness to goal misgeneralization of195
MEV-based and MMER-based training methods. We construct three custom procedurally-generated196
grid-world environments approximating proxy-distinguishing distribution shifts (Section 6.1). We197
compare a standard MEV-based training method and two recently proposed MMER-based methods198
with adversaries of varying flexibility (Section 6.2), paired with regret estimators that leverage vary-199
ing amounts of domain knowledge (either using the ground truth maximum return, or estimating it200
from samples; Section 6.3). Section 7 presents the results of our experiments.201

6.1 Procedurally-generated grid-world environments202

Langosco et al. (2022) exhibited goal misgeneralization in several environments from OpenAI Proc-203
gen (Cobbe et al., 2020), suitably modified to implement a proxy-distinguishing distribution shift204
with α = 0. We implement three similar procedurally-generated grid-world environments in JAX205
(Bradbury et al., 2018), allowing us to more easily implement custom level generation and analysis.206

For each environment, we construct two procedural level generators ΛAmbig.,ΛDistg. ∈ ∆(Θ), ap-207
proximately concentrated on ambiguous and distinguishing levels, respectively. From these, we208
define training distributions ΛTrain

α = (1 − α)ΛAmbig. + αΛDistg. where α is the proportion of distin-209
guishing levels. In our experiments, we vary α between 10−5 to 10−1, with α ∈ {0, 1} as baselines.210
We evaluate on ΛDeploy = ΛDistg., approximating a proxy-distinguishing distribution shift.211

The three environments are as follows. Figure 2 illustrates example levels (note we use Boolean212
observations). Appendix D comprehensively documents each environment, including the details of213
classifying levels as ambiguous or distinguishing and procedural level generation.214

1. CHEESE IN THE CORNER. A mouse navigates a maze. The true goal assigns +1 reward for215
reaching a piece of cheese, while a proxy goal assigns +1 reward for reaching the top left corner216
for the first time. Levels with the cheese in the top left corner are ambiguous and levels with the217
cheese away from the corner are mostly distinguishing.218

2. CHEESE ON A DISH. This time the mouse navigates a maze containing cheese and also a dish.219
The true goal assigns +1 reward for reaching the cheese, while a proxy goal assigns +1 reward220
for reaching the dish. Levels with the cheese and dish co-located are ambiguous, and levels with221
the cheese and dish separated are mostly distinguishing.222

3. KEYS AND CHESTS. A more complex, multi-stage task, in which the mouse navigates a maze223
collecting keys and spending them to open chests. Levels with 3 keys and 10 chests are approxi-224
mately ambiguous. Levels with 10 keys and 3 chests are mostly distinguishing—a misgeneraliz-225
ing policy would overprioritize key collection beyond what is necessary for opening chests.226
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6.2 Training methods227

For both MEV-based and MMER-based training, we follow Langosco et al. (2022) and use an agent228
network architecture based on that of IMPALA (Espeholt et al., 2018) with a dense feed-forward229
layer replacing the LSTM block. We perform policy updates with PPO (Schulman et al., 2017) and230
GAE (Schulman et al., 2015). We document hyperparameters and compute usage in Appendix E.231

For MEV, we use a standard method for training in UMDPs given a fixed level distribution.232

1. Domain randomization (DR; Tobin et al., 2017). For each iteration of PPO, we sample (pro-233
cedurally generate) a new batch of levels from the fixed training level distribution ΛTrain

α , collect234
experience in this batch of levels, and then train on the collected experience.235

For MMER, we use two methods of regret-based unsupervised environment design (UED; Dennis236
et al., 2020). UED methods implement the two-player zero-sum game from Definition 5 by training237
the policy on levels selected from a distribution chosen by a regret-maximizing adversary. The first238
UED method is a regret-based form of prioritized level replay (Jiang et al., 2021).239

2. Robust prioritized level replay (PLR⊥; Jiang et al., 2022). The adversary parametrizes its240
level distribution using a fixed-size level buffer. Throughout training, the adversary refines the241
buffer by either (1) sampling a new batch of levels from the underlying training distribution ΛTrain

α242
and estimating the expected regret of the current policy on these levels; or (2) sampling from the243
current buffer, conducting a PPO training step with the chosen levels, and updating their expected244
regret estimates; keeping the highest-regret levels in the buffer.245

PLR⊥ has the advantage of being domain-agnostic, but has the disadvantage of only being able to246
replay levels once they have been sampled from the underlying distribution. We also consider a247
more advanced adversary with an independent means of exploring the space of level distributions.248

3. Adversarially compounding complexity by editing levels (ACCEL; Parker-Holder et al.,249
2023). The adversary continually refines a level buffer with steps (1) and (2) from PLR⊥, and ad-250
ditionally by (3) applying stochastic edits to the levels used for PPO training to generate similar251
levels, and estimating the expected regret of the current policy on these new levels.252

ACCEL additionally requires an edit distribution. We edit levels by sampling a sequence of random253
elementary level modifications, none of which change whether the level is ambiguous or distinguish-254
ing. Appendix H details this edit distribution and compares it to edit distributions with more or less255
ability to introduce distinguishing levels.256

6.3 Expected regret estimation methods257

Both UED methods require an (expected) regret estimator for deciding which levels to keep in the258
buffer. To represent the current capabilities of UED methods, we use the following domain-agnostic259
estimator, similar to the MaxMC estimator proposed by Jiang et al. (2022).260

1. Max-latest estimator. We estimate the expected regret of policy π in level θ under goal R as261

ĜR
max-latest(π; θ) = V̂ R

max(θ)− V̂ R
latest(π; θ) (3)

where V̂ R
max(θ) is the highest empirical return ever achieved for this level throughout training; and262

V̂ R
latest(π; θ) is the empirical average return achieved by the current policy.263

To simulate a more advanced regret estimator than is currently available in practice, we also consider264
a domain-specific estimator that solves each procedurally-generated level using a graph algorithm265
to compute the exact maximum expected return (details in Appendix D).266

2. Oracle-latest estimator. We estimate the expected regret of policy π in level θ under goal R as267

ĜR
oracle-latest(π; θ) = max

π′
V R(π′; θ)− V̂ R

latest(π; θ) (4)

where maxπ′ V R(π′; θ) is the maximum expected return for the level; and V̂ R
latest(π; θ) is as above.268
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Figure 3: Distribution shift performance for various training distributions. Average return over
512 steps for an evaluation batch of 256 distinguishing levels sampled from ΛDeploy = ΛDistg.. High
performance indicates policies generalizing as intended; low performance indicates goal misgener-
alization. Each policy is trained on T environment steps using the indicated training method with
underlying training distribution ΛTrain

α = (1 − α)ΛAmbig. + αΛDistg.. Mean over N seeds, shaded to
one standard error. Note the split in the horizontal axis used to show zero on the log scale.

7 Experimental results269

In this section, we report the results of our main experiments. Consistent with Theorem 1, MEV-270
based training is susceptible to goal misgeneralization unless the proportion of distinguishing levels271
in the training distribution is sufficiently high (Section 7.1). Consistent with Theorem 2, MMER-272
based training methods are typically capable of identifying and increasing the proportion of rare,273
high-regret, distinguishing levels, thereby preventing goal misgeneralization in many situations274
where MEV-based training misgeneralizes (Section 7.2). In some cases, UED methods fail to find275
MMER policies, and exhibit goal misgeneralization. We see generally that the more advanced UED276
methods are more robust to goal misgeneralization (Section 7.3). In KEYS AND CHESTS, MEV277
outperforms ACCEL with max-latest regret estimation, underscoring reliable regret estimation as a278
particular challenge for future work on MMER-based training (Section 7.4).279

7.1 Domain randomization exhibits goal misgeneralization with rare distinguishing levels280

Theorem 1 says that if the proportion of distinguishing levels in the fixed training distribution is281
small enough, then approximately optimizing MEV possibly leads to goal misgeneralization. Our282
experiments show that DR, an MEV-based training method, indeed exhibits goal misgeneralization283
when the proportion of distinguishing levels in the training distribution is small enough. Figure 3284
shows end-of-training performance on distinguishing levels. There is a threshold below which DR285
performance on distinguishing levels falls. DR achieves high return on ambiguous levels and high286
proxy return on distinguishing levels (see Appendix F), indicating a case of goal misgeneralization.287

In CHEESE IN THE CORNER and KEYS AND CHESTS, DR exhibits goal misgeneralization until there288
is around α = 1e-1 (10%) mass on distinguishing levels. For CHEESE ON A DISH, DR is robust to289
goal misgeneralization from as low as α = 1e-2 (1%) (see also Appendix L). Appendix J shows that290
training for substantially longer slightly increases DR’s robustness in CHEESE ON A DISH.291

We note that Langosco et al. (2022) previously demonstrated goal misgeneralization while training292
without distinguishing levels in similar environments. Moreover, Langosco et al. (2022) demon-293
strated that for a modified version of OpenAI ProcGen’s COINRUN environment (Cobbe et al., 2019;294
2020), training with α = 2e-2 (2%) prevents goal misgeneralization. They did not experiment with295
smaller proportions of distinguishing levels. We show that with small but nonzero proportions of296
distinguishing levels, domain randomization can still exhibit goal misgeneralization.297
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Figure 4: Rate at which distinguishing levels are played by adversary. We classify levels played
by the adversary as either ambiguous or distinguishing. We plot the proportion of distinguishing lev-
els across training for T environment steps. The diagonal represents the proportion of distinguishing
levels sampled from the underlying training distribution ΛTrain

α = (1 − α)ΛAmbig. + αΛDistg. (these
levels are used for training in DR). Points above the diagonal indicate the adversary increasing the
proportion of distinguishing levels relative to the underlying training distribution. Mean over N
seeds, shaded to one standard error. Note the splits in both axes used to show zero on the log scales.

7.2 Regret-based prioritization amplifies distinguishing levels, mitigating misgeneralization298

Theorem 2 says that, at an approximate equilibrium of the MMER game, the agent will play a299
policy that always pursues the true goal. Otherwise, the adversary could play a distribution of dis-300
tinguishing levels, leading to high regret. Figure 4 shows the average proportion of distinguishing301
levels played by the adversary throughout training, showing that, with the exception of max-latest302
estimation in the KEYS AND CHESTS environment, the adversary plays distinguishing levels dispro-303
portionately often compared to sampling from the underlying distribution.304

Figure 3 shows that this increase in the proportion of training levels is, in most cases, enough to lead305
to a policy that pursues the intended goal. In each environment, MMER-based training methods306
are robust to goal misgeneralization at α values for which DR exhibits goal misgeneralization. For307
example, in CHEESE IN THE CORNER, all UED methods are robust to goal misgeneralization at308
α = 1e-2 (1%), and some remain robust for even lower α. Note that some evaluation levels are309
unsolvable—the highest return to be expected is given by the agents trained with α = 1.310

7.3 Increasingly advanced UED methods are more robust to goal misgeneralization311

Theorem 2 says that MMER-based training should be robust to goal misgeneralization regardless of312
the distribution shift. In contrast, in our experiments, the proportion of distinguishing levels played313
by the adversary decreases as we decrease α (Figure 4), and each UED method exhibits a threshold314
below which it fails to converge to an MMER policy, and exhibits goal misgeneralization (Figure 3).315

This performance trend reflects how the adversaries construct level distributions. When distinguish-316
ing levels are very rare (or never arise), the adversary is hindered (prevented) from increasing the317
number of distinguishing levels in the buffer. Compared to PLR⊥, ACCEL can replicate similar lev-318
els throughout its buffer through edits, but we used edits that don’t create new distinguishing levels.319
Appendix H investigates ACCEL variants with different edit distributions, showing that ACCEL can320
prevent goal misgeneralization even when α = 0 if edits can introduce distinguishing levels.321

Overall, robustness correlates with how advanced the adversaries are. The most flexible adversary322
(ACCEL) paired with the most powerful expected regret estimator (oracle-latest) is remarkably ro-323
bust to goal misgeneralization in all environments for all positive α tested. The less flexible PLR⊥324
using the less powerful max-latest expected regret estimator is the least robust.325
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DR PLR⊥ ACCEL
α max-latest oracle-latest max-latest oracle-latest

1e-4

1e-2

0 10.2 0.4 0.6 0.8
Average return

Figure 5: Performance on CHEESE IN THE CORNER levels with varying cheese position. For
each training configuration, we evaluate the trained policy (first of 8 seeds) on a batch of 122 levels
with shared wall layout and mouse spawn position but different cheese positions. We indicate av-
erage return on levels with different cheese positions by the color of the corresponding grid square.
We see a progression whereby for more advanced algorithms or higher α, the agent is robust to a
greater proportion of cheese positions. See Appendix G for more details and full range of α values.

7.4 Biased regret estimation can undermine UED in more complex environments326

The poor performance of ACCEL with max-latest the estimator in the KEYS AND CHESTS environ-327
ment underscores the challenge of expected regret estimation. Estimating maximum return from328
samples is particularly challenging in this environment, where high return is unlikely to be achieved329
in distinguishing levels by chance, since chests are substantially rarer than in ambiguous levels. It330
appears that the increased flexibility of ACCEL in this case works as a disadvantage, leading to the331
adversary being led astray by biased regret estimates even more so than PLR⊥.332

The challenges of regret estimation are known, and are an active area of research (cf. Rutherford333
et al., 2024). Our results highlight the importance of future work on reliable regret estimation meth-334
ods, towards achieving the improved performance shown by our domain-specific oracle-latest esti-335
mator. Such work could investigate using a separate policy network to estimate the maximum return336
(cf. Dennis et al., 2020), or incorporating the predictions of a value network (cf. Jiang et al., 2022).337

8 Conclusion338

In this paper, we introduce the setting of a proxy-distinguishing distribution shift, and offer a the-339
oretical and empirical investigation of the robustness of MEV-based and MMER-based training to340
goal misgeneralization. We show theoretically and empirically that MEV-based training on a fixed341
training distribution can lead to goal misgeneralization. In contrast, we show that MMER-based342
training is provably robust against goal misgeneralization in the limit of idealized training meth-343
ods, and regret-based unsupervised environment design methods are empirically more robust than344
MEV-based training. Current UED methods do not find MMER policies and prevent goal misgener-345
alization in all the cases we studied, indicating there is still room for improvement between current346
methods and the theoretical ideal. These findings highlight MMER-based training as a promising347
approach to preventing goal misgeneralization.348
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A Proofs for theoretical results from Section 5349

Theorem 1 (MEV is susceptible to goal misgeneralization). Consider an UMDP ⟨Θ,A,S, I, T ⟩,350
a pair of normalized goals R, R̃, a proxy-distinguishing distribution shift ⟨α, β, C,ΛTrain,ΛDeploy⟩,351
and an approximation threshold ε ≥ 0. If ε ≥ α, then352

∃πMEV ∈ ΠMEV
ε (R,ΛTrain) such that V R(πMEV; ΛDeploy) < max

π∈Π
V R(π; ΛDeploy)− βC.

Proof. Construct policies π⋆, π̃⋆ ∈ Π that are optimal in all levels under R and R̃, respectively.353
Assume ε ≥ α. We will put πMEV = π̃⋆. It remains to show (1) π̃⋆ ∈ ΠMEV

ε (R,ΛTrain) and (2)354
V R(π̃⋆; ΛDeploy) < maxπ∈Π V R(π; ΛDeploy) − βC. For (1), let ΛTrain

Distg.,Λ
Train
Ambig. ∈ ∆(Θ) be ΛTrain355

conditioned on the level being C-distinguishing or ambiguous, respectively. Then356

V R(π̃⋆; ΛTrain) = αV R(π̃⋆; ΛTrain
Distg.) + (1− α)V R(π̃⋆; ΛTrain

Ambig.) (by Definition 3)

= αV R(π̃⋆; ΛTrain
Distg.) + (1− α)V R(π⋆; ΛTrain

Ambig.) (by Definition 1)

≥ α · 0 + (1− α)V R(π⋆; ΛTrain
Ambig.) (since V R ≥ 0)

= V R(π⋆; ΛTrain)− αV R(π⋆; ΛTrain
Distg.) (by Definition 3)

≥ V R(π⋆; ΛTrain)− ε · 1. (since α ≤ ε; V R ≤ 1)

For (2), let ΛDeploy
Distg. ,Λ

Deploy
Ambig. ∈ ∆(Θ) be defined similarly, from ΛDeploy conditioned on the level being357

C-distinguishing or ambiguous, respectively. Then358

V R(π̃⋆; ΛDeploy) = βV R(π̃⋆; ΛDeploy
Distg. ) + (1− β)V R(π̃⋆; ΛDeploy

Ambig.) (by Definition 3)

= βV R(π̃⋆; ΛDeploy
Distg. ) + (1− β)V R(π⋆; ΛDeploy

Ambig.) (by Definition 1)

< β
(
V R(π⋆; ΛDeploy

Distg. )− C
)
+ (1− β)V R(π⋆; ΛDeploy

Ambig.) (by Definition 2)

= V R(π⋆; ΛDeploy)− βC. (by Definition 3)

Theorem 2 (MMER is robust to goal misgeneralization). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a359
pair of goals R, R̃, a proxy-distinguishing distribution shift ⟨α, β, C,ΛTrain,ΛDeploy⟩, and approxi-360
mation thresholds ε, δ ≥ 0. Then361

∀πMMER ∈ ΠMMER
ε,δ (R), we have V R(πMMER; ΛDeploy) ≥ max

π∈Π
V R(π; ΛDeploy)− ε− δ.

Proof. Suppose πMMER ∈ ΠMMER
ε,δ (R). Let ΛMMER ∈ ∆(Θ) such that (πMMER,ΛMMER) is an362

(ε, δ)-equilibrium (Definition 5). Then we have the following bound on expected regret:363

GR(πMMER; ΛDeploy) ≤ max
Λ∈∆(Θ)

GR(πMMER; Λ) (ΛDeploy ∈ ∆(Θ))

≤ GR(πMMER; ΛMMER) + δ (ΛMMER ∈ arg-δ-max
Λ∈∆(Θ)

GR(πMMER; Λ))

≤ min
π∈Π

GR(π; ΛMMER) + ε+ δ. (πMMER ∈ arg-ε-min
π∈Π

GR(π; ΛMMER))

We can convert this upper bound on expected regret to a lower bound on expected return:364

V R(πMMER; ΛDeploy) = max
π∈Π

V R(π; ΛDeploy)−GR(πMMER; ΛDeploy) (by equation 2)

≥ max
π∈Π

V R(π; ΛDeploy)−min
π∈Π

GR(π; ΛMMER)− ε− δ. (by above bound)

The theorem follows, since, for any Λ ∈ ∆(Θ), minπ∈Π GR(π; Λ) vanishes by equation (2):365

min
π∈Π

GR(π; Λ) = min
π∈Π

(
max
π′∈Π

V R(π′; Λ)− V R(π; Λ)

)
(by equation 2)

= max
π′∈Π

V R(π′; Λ)−max
π∈Π

V R(π; Λ) (max term is constant wrt. π)

= 0.
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Broader impact statement366

Ngo et al. (2023) casts goal misgeneralization as a key risk mechanism for advanced deep learning367
systems, noting that techniques that improve capability robustness without preventing goal misgen-368
eralization could worsen outcomes, since the system’s greater capabilities would then be devoted to369
the pursuit of an incorrect goal. Preventing this dangerous mode of generalization failure is a key370
challenge in assuring the safety of advanced RL agents.371

In this section, we briefly note that minimax expected regret appears to be well-suited in principle to372
mitigating goal misgeneralization as deep learning systems become increasingly capable. This is be-373
cause more generally capable deep learning systems should also be more capable regret-maximizing374
adversaries in particular. A more capable adversary will, in turn, be better at detecting or synthesiz-375
ing rare, high-regret training situations, and then amplifying the training signal from these situations376
so as to induce correct generalization in an advanced deep RL agent.377

Our work highlights training with the minimax expected regret (MMER) objective as a promising378
avenue for preventing goal misgeneralization. This objective has desirable theoretical properties, and379
we have found promising initial empirical results, though current MMER-based training techniques380
are not mature enough to prevent goal misgeneralization in all cases. However, as MMER-based381
training methods improve and as goal misgeneralization leads to more severe consequences, the382
ability of MMER-based training to mitigate goal misgeneralization should also improve.383

Ultimately, we are hopeful that our work will instigate further research on the problem of goal384
misgeneralization, which remains a critical, open problem in the alignment and safe generalization385
of future advanced reinforcement learning agents.386
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B Expected regret identity for UMDPs530

In this section, we prove equation (2) for UMDPs. Recall the following definitions from Section 3.531

V R(π; θ) = Es0∼I(θ),at∼π(θ,st),st+1∼T (θ,st,at)

[ ∞∑
t=0

γtR(st, at, st+1)

]
(5)

V R(π; Λ) = Eθ∼Λ

[
V R(π; θ)

]
(6)

GR(π; θ) = max
π′∈Π

V R(π′; θ)− V R(π; θ) (7)

GR(π; Λ) = Eθ∼Λ

[
GR(π; θ)

]
(8)

In Section 3 we observe that, for UMDPs, we have the additional basic identity532

GR(π; Λ) = max
π′∈Π

V R(π′; Λ)− V R(π; Λ). (this is equation 2)

This is a nontrivial identity that does not hold for partially observable underspecified environments533
in which the level is not observable to the policy (see Appendix C.1). However, for policies that are534
conditioned on the level, the identity holds, as we now prove.535

Proposition 1 (Expected regret identity for UMDPs). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal536
R, and a level distribution Λ ∈ ∆(Θ). Let Π be the set of all policies of the form π : Θ×S → ∆(A).537
Then we have538

GR(π; Λ) = max
π′∈Π

V R(π′; Λ)− V R(π; Λ).

Proof.539 GR(π; Λ) = Eθ∼Λ

[
GR(π; θ)

]
(by equation 8)

= Eθ∼Λ

[
max
π′∈Π

V R(π′; θ)− V R(π; θ)

]
(by equation 7)

= max
π′∈Π

Eθ∼Λ

[
V R(π′; θ)

]
− Eθ∼Λ

[
V R(π; θ)

]
(by Proposition 2, below)

= max
π′∈Π

V R(π′; Λ)− V R(π; Λ). (by equation 6)

The above proof relies on Proposition 2, which says we can exchange expectation and maximization540
for the expected return since the policy is conditioned on the level.541

Proposition 2 (Expectation and maximization of expected return commute for UMDPs). Consider542
an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, and a level distribution Λ ∈ ∆(Θ). Let Π be the set of all543
policies of the form π : Θ× S → ∆(A). Then we have544

Eθ∼Λ

[
max
π∈Π

V R(π; θ)

]
= max

π∈Π
Eθ∼Λ

[
V R(π; θ)

]
.

Proof. (≥): Note that this direction holds regardless of whether we condition policies on the level.545
Let π⋆ ∈ argmaxπ∈Π Eθ∼Λ

[
V R(π; θ)

]
. Then we have546

max
π∈Π

Eθ∼Λ

[
V R(π; θ)

]
= Eθ∼Λ

[
V R(π⋆; θ)

]
≤ Eθ∼Λ

[
max
π∈Π

V R(π; θ)

]
.

(≤): Observe that, per equation (5), V R(π; θ) depends only on π through π(θ,−) : S → ∆(A), that547
is, through the policy conditioned on the fixed level θ. Therefore we can construct a single policy that548
achieves the maximum expected return under all levels. For θ ∈ Θ, let π⋆

θ ∈ argmaxπ∈Π V R(π; θ).549
Then define π⋆ : Θ×S → ∆(A) such that for θ ∈ Θ, s ∈ S, and a ∈ A, π⋆(a | θ, s) = π⋆

θ(a | θ, s).550
By construction, we have π⋆

θ ∈ argmaxπ∈Π V R(π; θ) for all θ ∈ Θ. It follows that551

Eθ∼Λ

[
max
π∈Π

V R(π; θ)

]
= Eθ∼Λ

[
V R(π⋆; θ)

]
≤ max

π∈Π
Eθ∼Λ

[
V R(π; θ)

]
.
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C Partially observable environments552

In this section, we generalize equation (2) and Theorem 2 to partially observable environments, with553
a slight modification of the bound to account for the fact that it may no longer be possible for any554
policy to achieve zero expected regret on a given distribution of levels.555

Rather than defining underspecified partially observable MDPs in detail, we consider an arbitrary556
subset of the space of policies Φ ⊆ Π. We can model partial observability by restricting to policies557
with tied outputs within any given partition of Θ× S into information sets.558

We define the expected restricted regret of a policy π ∈ Φ in a level θ ∈ Θ under a goal R based559
on the return of the best available policy within such a subset of policies:560

GR
Φ(π; θ) = max

π′∈Φ
V R(π′; θ)− V R(π; θ). (9)

As before, we lift this definition to a level distribution Λ by taking the expectation561

GR
Φ(π; Λ) = Eθ∼Λ

[
GR

Φ(π; θ)
]
. (10)

C.1 Generalizing the expected regret identity to partially observable environments562

Proposition 3 (Expected regret identity for partially observable environments). Consider an UMDP563
⟨Θ,A,S, I, T ⟩, a goal R, a level distribution Λ ∈ ∆(Θ), and a subset of policies Φ ⊆ Π. Then564

GR
Φ(π; Λ) = max

π′∈Φ
V R(π′; Λ)− V R(π; Λ) + min

π′∈Φ
GR

Φ(π
′; Λ).

Proof. Equivalently,565

GR
Φ(π; Λ)− min

π′∈Φ
GR

Φ(π
′; Λ)

= Eθ∼Λ

[
GR

Φ(π; θ)
]
− min

π′∈Φ
Eθ∼Λ

[
GR

Φ(π
′; θ)

]
(by equation 10)

= Eθ∼Λ

[
max
π′∈Φ

V R(π′; θ)

]
− V R(π; Λ)− min

π′∈Φ

(
Eθ∼Λ

[
max
π′′∈Φ

V R(π′′; θ)

]
− V R(π′; Λ)

)
(by equations 9 and 6)

= Eθ∼Λ

[
max
π′∈Φ

V R(π′; θ)

]
− V R(π; Λ)− Eθ∼Λ

[
max
π′′∈Φ

V R(π′′; θ)

]
+max

π′∈Φ
V R(π′; Λ)

= max
π′∈Φ

V R(π′; Λ)− V R(π; Λ).

Compared to equation (2) (Proposition 1), Proposition 3 includes the term minπ∈Φ GR
Φ(π; Λ). This566

extra term represents the irreducible (restricted expected) regret for the level distribution Λ.567
Proposition 3 essentially says that the restricted expected regret for a level distribution can be de-568
composed into two components: (1) the shortfall in expected return compared to the optimal policy569
for the level distribution (as in equation 2, cf. the definition of regret for individual levels); plus570
(2) this irreducible regret.571

Irreducible regret can arise when the level is partially observable to the policy. For example, consider572
a mixture of two levels with two disjoint sets of optimal policies. Suppose the level is not observed573
by the policy, so the policy has to choose actions without knowing whether it is in the first level574
or the second level. In each individual level, we define expected regret based on the performance575
of optimal policies for that level (these policies will naturally be the ones that assume they are in576
the appropriate level). However, since no single policy can perform optimally in both levels, the577
expected regret with respect to the mixture is always nonzero. This nonzero minimum expected578
regret is exactly the irreducible regret.579
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C.2 Generalizing Definition 5 and Theorem 2 to partially observable environments580

We are now in position to generalize the results of Section 5.2 to partially observable environments.581

Definition 6 (Approximate MMER for partially observable environments). Consider an UMDP582
⟨Θ,A,S, I, T ⟩, a goal R, approximation thresholds ε, δ ≥ 0, and a subset of policies583
Φ ⊆ Π. Consider the two-player zero-sum game

〈
⟨Φ,∆(Θ)⟩, ⟨−GR

Φ , G
R
Φ⟩

〉
(cf. Definition 5).584

A pair (π,Λ) is a restricted (ε, δ)-equilibrium if π ∈ arg-ε-minπ′∈Φ GR(π′; Λ) and Λ ∈585
arg-δ-maxΛ′∈∆(Θ) G

R(π; Λ′). The restricted approximate equilibrium set is then586

EMMER
ε,δ (R) =

{
(π,Λ) ∈ Φ×∆(Θ)

∣∣ (π,Λ) is a restricted (ε, δ)-equilibrium
}
.

Theorem 3 (MMER is robust to goal misgeneralization in partially observable environments). Con-587
sider an UMDP ⟨Θ,A,S, I, T ⟩, a pair of goals R, R̃, a proxy-distinguishing distribution shift588
⟨α, β, C,ΛTrain,ΛDeploy⟩, approximation thresholds ε, δ ≥ 0, and a subset of policies Φ ⊆ Π. Then589
for all restricted (ε, δ)-equilibria (πMMER,ΛMMER) ∈ EMMER

ε,δ (R), we have590

V R(πMMER; ΛDeploy) ≥ max
π∈Φ

V R(π; ΛDeploy)− ε− δ − g(ΛMMER,ΛDeploy)

where g(ΛMMER,ΛDeploy) = minπ∈Φ GR
Φ(π; Λ

MMER)−minπ∈Φ GR
Φ(π; Λ

Deploy) is the difference in591
irreducible expected restricted regret between ΛMMER and ΛDeploy.592

Proof. Let (πMMER,ΛMMER) be a restricted (ε, δ)-equilibrium. Following analogous steps to the593
proof of Theorem 2, we have an upper bound on the restricted expected regret by Definition 6,594

GR
Φ(π

MMER; ΛDeploy) ≤ min
π∈Φ

GR
Φ(π; Λ

MMER) + ε+ δ.

Once again, we can convert this upper bound on expected regret to a lower bound on expected return:595

V R(πMMER; ΛDeploy)

= max
π∈Φ

V R(π; ΛDeploy)−GR
Φ(π

MMER; ΛDeploy) + min
π∈Φ

GR
Φ(π; Λ

Deploy) (by Proposition 3)

≥ max
π∈Φ

V R(π; ΛDeploy)− ε− δ −min
π∈Φ

GR
Φ(π; Λ

MMER) + min
π∈Φ

GR
Φ(π; Λ

Deploy) (by above bound)

= max
π∈Φ

V R(π; ΛDeploy)− ε− δ − g(ΛMMER,ΛDeploy).

Compared to Theorem 2, the performance bound in Theorem 3 has the additional term596

g(ΛMMER,ΛDeploy) = min
π∈Φ

GR
Φ(π; Λ

MMER)−min
π∈Φ

GR
Φ(π; Λ

Deploy). (11)

We make the following remarks:597

1. The term g(ΛMMER,ΛDeploy) represents how much higher the irreducible regret of the MMER598
distribution is compared to the irreducible regret of the deployment distribution. This difference599
comes out of the performance guarantee because, in the MMER game, the agent has no incentive600
to improve regret on the deployment distribution once it is below the irreducible regret of the601
MMER distribution. This is a limitation of standard MMER that can be addressed by lexico-602
graphic refinement of the decision rule along the lines of Beukman et al. (2024).603

2. Note minπ∈Φ GR
Φ(π; Λ

MMER) ∈ [GMMER
Φ − ε,GMMER

Φ ] where GMMER
Φ = GR

Φ(π
MMER; ΛMMER).604

We can estimate GMMER
Φ at the end of MMER-based training by evaluating the agent’s final policy605

in the agent’s final level distribution. Thus we can estimate minπ∈Φ GR
Φ(π; Λ

MMER) in practice.606

3. The bound holds for all restricted equilibria involving πMMER. If one has access to multiple607
suitable ΛMMER, one can take the best version of the performance bound.608
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D Additional environment details609

In this appendix, we provide additional details about each environment, including details about pro-610
cedurally generating ambiguous and distinguishing levels, edit distributions, computation of maxi-611
mum level value for the oracle-latest estimator, and the origin of each environment.612

D.1 The CHEESE IN THE CORNER environment613

Environment. In this environment, levels are parameterized by a 13 × 13 wall layout, a mouse614
spawn position within this grid, and a cheese position within the grid. We require that the cheese615
position and the mouse spawn position are not equal, and moreover that they are not obstructed by616
walls. We do not require that there is an unobstructed path between them.617

In the initial state, the mouse begins in the spawn position. The actions available to the agent are618
to attempt to move the mouse up, left, down, or right, which succeeds if the respective position is619
not obstructed by a wall or the edge of the grid. If the mouse position equals the cheese position,620
the mouse collects the cheese. The episode terminates when the cheese has been collected or after a621
maximum of 128 steps.622

Observations. We represent states to the agent as a 15 × 15 × 3 Boolean grid. The first of the623
three channels encodes the maze layout, including a border of width 1. The second channel one-hot624
encodes the position of the mouse. The third channel one-hot encodes the position of the cheese (if625
it has not been collected). All of the relevant information about the level and the state are encoded626
into this observation, therefore this environment is fully observable.627

True goal and proxy goal. The training goal is for the mouse to collect the cheese. The reward628
function assigns +1 reward to transitions in which the mouse collects the cheese.629

We also consider a proxy goal of navigating to the top left corner of the maze. This could be630
formulated as a reward function that assigns +1 reward the first time the mouse steps into the top631
left corner (this reward can be made Markovian by augmenting the state with a flag for whether the632
corner has previously been reached). Note that we never train with this proxy goal as the reward633
function.634

Level classification. Given this environment and this pair of goals, we can classify levels according635
to the definitions in Section 4. Assume the discount factor is strictly between 0 and 1.636

1. Consider a level for which the cheese is in the top-left corner of the maze, and this corner is reach-637
able from the mouse spawn position. Such a level is ambiguous: optimally pursuing the proxy638
goal implies following a shortest path to the corner, which is also a shortest path to collecting the639
cheese.640

2. Consider a level for which the cheese is not in the top-left corner, but (1) the cheese is reachable641
from the mouse spawn position, (2) the top-left corner is reachable from the mouse spawn po-642
sition (other than via the cheese position), and (3) the top-left corner is not on any shortest path643
to the cheese from the mouse spawn position. Such a level is C-distinguishing for some positive644
C: Optimally pursuing the proxy goal must begin by taking a shortest path to the top-left corner,645
avoiding the cheese (to avoid early termination), which exists by (1). Thereafter, assuming the646
policy can condition on whether it has already visited the corner, any behavior is equally optimal647
under the proxy goal, and in particular such a policy may proceed to the cheese (which is reach-648
able from the top-left corner by (1) and (2)). However, by (3) the collection of the cheese will be649
delayed compared to taking a shortest path to the cheese position directly from the mouse spawn650
position. The extent of the delay and the discount factor determine C.651

Other levels are not as straight-forward to classify. For example, if the top-left corner is on a shortest652
path to the cheese from the mouse spawn position, then some policies that are optimal for the proxy653
goal will be optimal for the true goal, but this will not be the case for all policies that are optimal654
for the proxy goal. Moreover, if the walls are configured such that the top-left corner is unreachable655
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from the mouse spawn position, then technically all policies are optimal according to the proxy goal656
(some or all of which may be optimal with respect to the true goal). Similarly, if the walls are657
configured such that the cheese is unreachable, then technically all policies are optimal with respect658
to the true goal (including all policies that are optimal with respect to the proxy goal). Note for659
determining reachability one should account for the episode termination conditions.660

In practice, we normally use the simpler, approximately correct approach of checking whether the661
cheese is in the corner to determine whether a level is ambiguous or distinguishing. For example,662
this is the approach used in defining the proportion of distinguishing levels in the buffer. We note663
that all UED algorithms rapidly replace levels in which the cheese is unreachable with solvable664
levels in their buffer during the initial steps of training.665

Procedural level generation. We construct two procedural level generators, ΛAmbig.,ΛDistg. ∈666
∆(Θ), that are (approximately) concentrated on ambiguous and distinguishing levels, respectively.667

• Ambiguous level distribution (ΛAmbig.). We procedurally generate ambiguous levels as follows.668
For each position (except the top-left corner), we place a wall independently with probability669
25%. We position the cheese in the top-left corner. We position the mouse spawn somewhere670
where there is not a wall, other than the top-left corner (we assume there is at least one such671
position).672

All of the generated levels are ambiguous. However, we note that for many generated levels, the673
top-left corner is unreachable from the mouse spawn position. These levels are technically am-674
biguous (because all policies are optimal), and while this is not exactly the spirit of the definition,675
it is at least true that they do not not provide a training signal in favor of the true goal over the676
proxy goal, which is enough for practical purposes.677

• Distinguishing level distribution (ΛDistg.). We procedurally generate mostly distinguishing levels678
as follows. For each position, we place a wall independently with probability 25%. We position679
the cheese somewhere where there is not a wall. We position the mouse spawn somewhere where680
there is not a wall, different from the cheese position.681

The generated levels are mostly distinguishing levels (for varying ranges of C). It may arise that682
the cheese position is in the top-left corner, or moreover on a shortest path to the top-left corner683
from the mouse spawn position or vice versa, or that either the cheese position or the top-left684
corner or both are not reachable from the mouse spawn position. In such cases, the level may685
technically be either ambiguous or neither ambiguous nor distinguishing. Note that the effect of686
these pathological levels is only to reduce the training signal in favor of the true goal available687
during training (in the setting of a proxy-distinguishing distribution shift with low α).688

Elementary edit distributions. The ACCEL training method additionally requires specifying an689
edit distribution used to sample “similar” levels for potential entry into the level buffer. In Ap-690
pendix H, we discuss how we build our edit distributions from elementary edit distributions of three691
types: ambiguity preserving edits (used in ACCEL in the main text), biased ambiguity transforming692
edits, and unrestricted ambiguity transforming edits. For CHEESE IN THE CORNER, these elemen-693
tary edit distributions are configured as follows.694

1. Ambiguity preserving edits. Each ambiguity preserving edit either removes an existing wall,695
positions a new wall, or moves the mouse spawn position to a random unobstructed position696
(other than the cheese position). These edits don’t change the cheese position (they may change697
whether the cheese position is reachable from the mouse spawn position, or change whether the698
corner is on a shortest path to the cheese from the mouse spawn position).699

2. Biased ambiguity transforming edits. Given a probability α, a biased ambiguity transforming700
edit randomizes the cheese position with probability α or places the cheese in the top-left corner701
with probability 1 − α. Note that when randomizing the cheese position, it’s possible that the702
cheese will be positioned in the top-left corner.703
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3. Unrestricted ambiguity transforming edits. An unrestricted ambiguity transforming edit ran-704
domizes the cheese position with probability 1. It’s possible that the cheese will be positioned in705
the top-left corner.706

Oracle maximum return. Recall that the oracle-latest estimator (4) requires computing the max-707
imum expected return in a given level (under the true reward function). In this environment, an708
optimal policy follows any shortest path from the mouse spawn position to the cheese position in the709
graph representation of the maze layout. We compute the length of a shortest path using the Floyd–710
Warshall algorithm. Given a level θ ∈ Θ. Let R be the true reward function (+1 for collecting the711
cheese). If the shortest path has length d ∈ N∪ {∞}, then assuming a discount factor of γ ∈ (0, 1),712
we have713

max
π

V R(π; θ) = γd−1. (12)

This includes the possibility that the cheese position is unreachable from the mouse spawn position,714
in which case d = ∞. Note that given mazes of this size, paths of length greater than the 128 are715
impossible, so we don’t have to consider the episode timeout.716

Origin. CHEESE IN THE CORNER is an interpretation of the MAZE I environment from Langosco717
et al. (2022). Langosco et al. (2022) originally implemented the environment as a modification of the718
MAZE environment from OpenAI ProcGen (Cobbe et al., 2020), such that the cheese position could719
be restricted to a region surrounding the top-right corner (in Appendix K, we train on a distribution720
of levels with the cheese confined to top-left regions of varying size). Hubinger (2019) originated721
the idea of creating a navigation task with a location proxy as a potential means of inducing goal722
misgeneralization. Our environment uses an original implementation in JAX, and includes several723
changes from MAZE I including using a fixed size mazes and replacing the maze layout algorithm724
with a simpler algorithm based on random block placement.725

D.2 The CHEESE ON A DISH environment726

Environment. In this environment, levels are parameterized by a 13×13 wall layout, and positions727
within this grid for the mouse spawn, the dish, and the cheese. We require that the cheese position728
and the mouse spawn position are not equal, and that the dish position and the mouse spawn position729
are not equal, though the dish can be co-located with the cheese. Moreover, we require that none730
of the three positions are obstructed by walls. We do not require that there is an unobstructed path731
between the positions.732

In the initial state, the mouse begins in the spawn position. The actions available to the agent are to733
attempt to move the mouse up, left, down, or right, which succeeds if the respective position is not734
obstructed by a wall or the edge of the grid. If the mouse position equals the cheese position, the735
mouse collects the cheese, and likewise for the dish. The episode terminates when the cheese or the736
dish has been collected or after a maximum of 128 steps.737

Observations. We represent states to the agent as a 15× 15× (3+D) Boolean grid where D ∈ N.738
The first of the channels encodes the maze layout, including a border of width 1. The second739
channel one-hot encodes the position of the mouse. The third channel one-hot encodes the position740
of the cheese (if it has not been collected). The remaining D channels each one-hot encode the dish741
position (if the dish has not been collected). Redundantly coding the dish encourages the agent to742
learn a policy that is based on the dish position, eliciting a clearer case of goal misgeneralization.743
In our main experiments, D = 6. In Appendix L, we consider alternative values of D. All of the744
relevant information about the level and the state are encoded into this observation, therefore this745
environment is fully observable.746

True goal and proxy goal. The training goal is for the mouse to collect the cheese. The reward747
function assigns +1 reward to transitions in which the mouse collects the cheese. We also consider748
a proxy goal of collecting the dish. This reward function assigns +1 reward to transitions in which749
the mouse collects the dish. Note that we never train with this proxy goal as the reward function.750
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Level classification. Given this environment and this pair of goals, we can classify levels according751
to the definitions in Section 4. Assume the discount factor is strictly between 0 and 1.752

1. Consider a level for which the cheese and the dish are in the same position, and this position is753
reachable from the mouse spawn position. Such a level is ambiguous: optimally pursuing the754
proxy goal implies following the shortest path to collecting the dish, which is also the shortest755
path to collecting the cheese.756

2. Consider a level for which (1) the cheese and the dish are not in the same position, (2) the757
cheese position and the dish position are both reachable from the mouse spawn position, includ-758
ing accounting for termination conditions. Such a level is C-distinguishing for some positive C:759
Optimally pursuing the proxy goal must involve taking the shortest path to the dish position that760
avoids the cheese (since collecting the cheese would terminate the episode before reaching the761
dish). This policy forfeits all available reward from the true goal, the amount of which depends762
on the length of the shortest path to the cheese position, avoiding the dish.763

Other levels are not as straight-forward to classify. If the walls and the cheese are configured such764
that the dish position is not reachable from the mouse spawn position, then all policies are optimal765
according to the proxy goal (some or all of which may be optimal with respect to the true goal).766
Similarly, if the walls and the dish are configured such that the cheese position is not reachable from767
the mouse spawn position, then all policies are optimal according to the true goal (including all768
policies that are optimal with respect to the proxy goal).769

In practice, we normally use the simpler, approximately correct approach of checking whether the770
cheese position equals the dish position to determine whether a level is ambiguous or distinguishing.771
For example, this is the approach used in defining the proportion of distinguishing levels in the772
buffer. We note that all UED algorithms rapidly replace levels in which the cheese is unreachable773
with solvable levels in their buffer during the initial steps of training.774

Procedural level generation. We construct two procedural level generators, ΛAmbig.,ΛDistg. ∈775
∆(Θ), that are (approximately) concentrated on ambiguous and distinguishing levels, respectively.776

• Ambiguous level distribution (ΛAmbig.). We procedurally generate ambiguous levels as follows.777
For each position, we place a wall independently with probability 25%. We position the mouse778
spawn somewhere where there is not a wall. We position the cheese and the dish somewhere779
where there is not a wall, other than the mouse spawn position (we assume there are at least two780
positions without walls).781

All of the generated levels are ambiguous. However, we note that for some generated levels, the782
cheese position (which is also the dish position) is unreachable from the mouse spawn position.783
These levels are technically ambiguous (because all policies are optimal for both goals), and while784
this is not exactly the spirit of the definition, it is at least true that they do not not provide a training785
signal in favor of the true goal over the proxy goal, which is enough for practical purposes.786

• Distinguishing level distribution (ΛDistg.). We procedurally generate mostly distinguishing levels787
as follows. For each position, we place a wall independently with probability 25%. We position788
the mouse spawn somewhere where there is not a wall. We position the cheese and the dish,789
independently, somewhere where there is not a wall, different from the mouse spawn position.790

The generated levels are mostly distinguishing levels (for varying ranges of C). It may arise that791
the cheese position equals the dish position, or that either the cheese position or the dish position792
or both are not reachable from the mouse spawn position. In such cases, the level may technically793
be either ambiguous or neither ambiguous nor distinguishing. Note, like for CHEESE IN THE794
CORNER, that the effect of these pathological levels is only to reduce the training signal in favor795
of the true goal available during training (in the setting of a proxy-distinguishing distribution shift796
with low α).797

Elementary edit distributions. The ACCEL training method additionally requires specifying an798
edit distribution used to sample “similar” levels for potential entry into the level buffer. In Ap-799
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pendix H, we discuss how we build our edit distributions from elementary edit distributions of three800
types: ambiguity preserving edits (used in ACCEL in the main text), biased ambiguity transforming801
edits, and unrestricted ambiguity transforming edits. For CHEESE ON A DISH, these elementary edit802
distributions are configured as follows.803

1. Ambiguity preserving edits. Each ambiguity preserving edit either removes an existing wall,804
positions a new wall, or moves the mouse spawn position to a random unobstructed position805
(other than the cheese position or the dish position). These edits don’t change the cheese position806
or the dish position. They may technically change whether these positions are reachable from the807
mouse spawn position.808

2. Biased ambiguity transforming edits. Given a probability α, a biased ambiguity transforming809
edit randomizes the dish position, and then either independently randomizes the cheese position810
(with probability α) or positions the cheese at the new dish position (with probability 1 − α).811
Note that when independently randomizing the cheese position, it’s possible that the cheese will812
be co-located with the dish.813

3. Unrestricted ambiguity transforming edits. An unrestricted ambiguity transforming edit inde-814
pendently randomizes the cheese position and the dish position with probability 1. It’s possible815
that the cheese and the dish will be co-located.816

Oracle maximum return. Recall that the oracle-latest estimator (4) requires computing the max-817
imum expected return in a given level (under the true reward function). In this environment, an818
optimal policy follows any shortest path from the mouse spawn position to the cheese position in the819
graph representation of the maze layout. If the dish position is not equal to the cheese position, the820
graph representation should treat the dish as an obstruction, since collecting the dish will terminate821
the episode before the cheese can be collected.822

We compute the length of a shortest path in this graph using the Floyd–Warshall algorithm. Given a823
level θ ∈ Θ. Let R be the true reward function (+1 for collecting the cheese). If the shortest path824
has length d ∈ N ∪ {∞}, then assuming a discount factor of γ ∈ (0, 1), we have825

max
π

V R(π; θ) = γd−1. (13)

This includes the possibility that the cheese position is unreachable from the mouse spawn position826
without collecting the dish, in which case d = ∞. Note that given mazes of this size, paths of length827
greater than the 128 are impossible, so we don’t have to consider the episode timeout.828

Origin. This environment has a similar origin to that of CHEESE IN THE CORNER. It is an interpre-829
tation of the MAZE II environment from Langosco et al. (2022). Langosco et al. (2022) originally830
implemented the environment as a modification of the MAZE environment from OpenAI ProcGen831
(Cobbe et al., 2020), such that the cheese is replaced by a yellow diamond during training, and sub-832
sequently by a pair of objects (a red diamond and a yellow diagonal line) during evaluation. In their833
setup, the yellow diamond is rewarding because of its shape (diamond), rather than its color (yellow),834
so the intended extrapolation of the goal is for the policy to pursue the red diamond. However, Lan-835
gosco et al. (2022) found that learned policies tend to pursue the yellow line instead. Since we are836
using Boolean grid observations rather than colored images, we redundantly code the dish to break837
the symmetry between the dish and the cheese, inducing a clearer case of goal misgeneralization.838

D.3 The KEYS AND CHESTS environment839

Environment. In this environment, levels are parameterized by a 13×13 wall layout, and positions840
within this grid for the mouse spawn, k ≤ 10 keys, and c ≤ 10 chests. We require that the mouse841
spawn position and the key and chest positions are distinct and are not obstructed by walls. We do842
not require that there are unobstructed paths between the positions.843

In the initial state, the mouse begins in the spawn position. The actions available to the agent are844
to attempt to move the mouse up, left, down, or right, which succeeds if the respective position is845
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not obstructed by a wall or the edge of the grid. If the mouse position equals a key position, it846
collects the key, removing it from the maze and adding it to the mouse’s inventory. If the mouse847
position equals a chest position, assuming it has at least one key in its inventory, it collects the chest,848
removing it from the maze and removing the key from its inventory. The mouse can occupy the849
same position as a chest if it has an empty inventory. In a level with k keys and c chests, the episode850
terminates when the min(k, c) chests have been collected, or after a maximum of 128 steps.851

Observations. We represent states to the agent as a 15 × 15 × 5 Boolean grid . The first of852
the channels encodes the maze layout, including a border of width 1. The second channel one-853
hot encodes the position of the mouse. The third channel encodes the positions of all the as-yet-854
uncollected chests. The fourth channel encodes the positions of all as-yet-uncollected keys. The855
fifth channel encodes the mouse’s inventory, with one cell along the top row of the channel for each856
key. All of the relevant information about the level and the state are encoded into this observation,857
therefore this environment is fully observable.858

True goal and proxy goal. The training goal is for the mouse to collect chests. The reward function859
assigns +1 reward to transitions in which the mouse collects a chest. Note that this reward function860
is not normalized like the ones we consider in the theory sections of the paper, but it is bounded and861
could easily be normalized.862

Under this goal, collecting keys has no intrinsic value, but since collecting a chest requires collecting863
a key, keys have instrumental value. We also consider proxy goal that assign reward for collecting864
keys as well as chests. This goal could be modeled as a reward function that assigns, for example,865
1− η reward for collecting each key and η reward for collecting each chest, where η ∈ (0, 1). Note866
that we never train with such a proxy goal as the reward function.867

Level classification. Compared to the other environments, describing this environment in terms of868
the definitions in Section 4 is not as straight forward.869

Optimal behavior in this environment involves collecting keys and chests in an order that depends870
on subtle tradeoffs driven by the exponential discounting. For the true goal, the optimal behavior871
is to collect as many chests as fast as possible, but it may make sense to make a brief detour to872
collect multiple keys if it slightly delays the collection of the first chest, as long as this sufficiently873
accelerates the collection of subsequent chests. The effect of switching to the proxy goal, which874
rewards key collection for its own sake, is to increase the incentive for the policy to take larger and875
larger detours to collect keys, and to incentivize collecting even more keys than there are reachable876
chests.877

In our experiments, we mainly consider the following kinds of levels.878

1. Consider a level in which there are k ≈ 3 reachable keys, and c ≈ 10 reachable chests. These879
levels are approximately ambiguous, in the sense that while the proxy goal incentivizes collecting880
keys earlier than optimal, it still incentivizes eventually collecting chests. For many key/chest881
layouts, pursuing the proxy goal entails similar behavior to pursing the true goal.882

2. Consider a level in which there are k ≈ 10 reachable keys, and c ≈ 3 reachable chests. These883
levels are mostly distinguishing, because, for many key/chest layouts, pursuing the proxy goal884
will usually involve a long detour to collect all reachable keys, delaying the collection of chests885
longer than is optimal.886

These classifications depend on the exact key/chest layout. We note that keys and chests that are887
unreachable from the mouse spawn position have no influence on optimal behavior. However, as for888
the other environments, if there are no reachable keys or chests, this may affect the classification. In889
practice, we consider the total number of keys and chests in the level to classify it as ambiguous (3890
keys and 10 chests) or distinguishing (10 keys and 3 chests), without accounting for reachability or891
the exact details of the key/chest layout.892

Procedural level generation. We construct two procedural level generators, ΛAmbig.,ΛDistg. ∈893
∆(Θ), that are (approximately) concentrated on ambiguous and distinguishing levels, respectively.894
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• Ambiguous level distribution (ΛAmbig.). We procedurally generate mostly ambiguous levels as895
follows. For each position, we place a wall independently with probability 25%. We then position896
the mouse spawn, 3 keys, and 10 chests in distinct, unobstructed positions (assuming there are897
enough positions). The generated levels are usually approximately ambiguous in the sense of the898
classification system described above. It is possible that fewer than 3 keys and 10 chests will be899
reachable from the mouse spawn position, and it is possible that the exact layout will lead to a900
significant disadvantage for a policy that over-prioritizes key collection.901

• Distinguishing level distribution (ΛDistg.). We procedurally generate mostly distinguishing levels902
in the same fashion, but with 10 keys and 3 chests instead. The generated levels are usually903
distinguishing, along the lines of the classification system described above. It is possible that fewer904
than 10 keys and 3 chests will be reachable from the mouse spawn position, and it is possible that905
the exact layout will not sufficiently disincentivize key collection (for example, all keys positioned906
on shortest paths to chests).907

Elementary edit distributions. Once again, the ACCEL training method requires specifying an908
edit distribution used to sample “similar” levels for potential entry into the level buffer. In Ap-909
pendix H, we discuss how we build our edit distributions from elementary edit distributions of three910
types: ambiguity preserving edits (used in ACCEL in the main text), biased ambiguity transforming911
edits, and unrestricted ambiguity transforming edits. For KEYS AND CHESTS, these elementary edit912
distributions are configured as follows.913

1. Ambiguity preserving edits. Each ambiguity preserving edit either removes an existing wall,914
positions a new wall, or moves the mouse spawn position or the position of one key or chest915
to a random unobstructed, unoccupied position. These edits don’t change the number of keys916
or chests. They may technically change whether these positions are reachable from the mouse917
spawn position.918

2. Biased ambiguity transforming edits. Given a probability α, a biased ambiguity transforming919
edit sets the number of keys and chests to that of the distinguishing level generator (10 and 3)920
with with probability α, or that of the ambiguous level generator (3 and 10) with probability921
1− α.922

3. Unrestricted ambiguity transforming edits. An unrestricted ambiguity transforming edit is a923
biased ambiguity transforming edit with α set fo 50%.924

Oracle maximum return. Recall, once more, that the oracle-latest estimator (4) requires comput-925
ing the maximum expected return in a given level (under the true reward function). As described926
above, an optimal policy in this environment collects keys and chests in the some order so as so927
collect as many chests as fast as possible. In particular, noting that at most m = min(k, c) chests928
can be collected in a given level (due to the requirement that a key must be expended to collect a929
chest), and supposing that they are collected after steps s1, s2, . . . , sm ∈ N ∪ {∞}, the return is930
given by931

R(s1, s2, . . . , sm) =

m∑
i=1

γsi−1 (14)

where γ ∈ (0, 1) is the discount factor.932

Our approach to computing the optimal value is a to enumerate a subset of paths through the network933
of key/chest/mouse spawn positions that must contain an optimal path, to brute-force evaluate a934
lower bound on the return of these paths, and to identify the greatest return lower bound as the935
optimal return for the level. We explain the procedure in detail as follows.936

1. We begin by enumerating a set of so-called viable collection sequences. Each collection se-937
quences comprising an m-permutation of the k keys, an m-permutation of the c chests, and a938
Dyck path of order m (a permutation of m keys and m chests such that each chest is preceded by939
a corresponding key, cf. balanced parentheses). These three combinatorial objects jointly identify940
a sequence in which particular keys and chests could be collected.941
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For example, suppose k = 3 and c = 10 and number the keys k1, . . . , k3 and the chests942
c1, . . . , c10. Suppose the key 3-permutation is (3 1 2), the chest 3-permutation is (1 6 4), and the943
Dyck path is (k c k k c c). Then the corresponding collection sequence is k3, c1, k1, k2, c6, c4.944

We note that the total number of viable collection sequences is945 (
k

m

)
·m!︸ ︷︷ ︸

key m-permutations

×
(
c

m

)
·m!︸ ︷︷ ︸

chest m-permutations

× 1

m+ 1

(
2m

m

)
︸ ︷︷ ︸
order m Dyck paths

. (15)

Since, in our setup, either k = 3 and c = 10 or vice versa, m = 3 and (15) evaluates to 21,600.946

2. We evaluate a lower bound on the return of each viable collection sequence as follows. First we947
compute all-pairs shortest path distances for the mouse spawn position, each key position, and948
each chest position, using the Floyd–Warshall algorithm. We represent unreachable pairs with949
a distance of ∞. We then simulate each sequence, computing the step counts required for each950
collection as the cumulative sum of pairwise shortest path distances for each transition along the951
sequences, starting at the mouse spawn position. We round any distances above 128 up to ∞.952
We then use the step counts of each of the m chest collections in the expression (14).953

For example, consider the collection sequence described earlier, k3, c1, k1, k2, c6, c4. Let D(p, q)954
represent the shortest path distance between the positions of objects p and q. Then we set sc1 =955
D(spawn, c1), sk3

= sc1 + D(c1, k3), and so on until sc4 = sc6 + D(c6, c4). (If any of these956
step counts pass the timeout of 128, we round them up to ∞ to account for termination.) Finally,957
we compute the lower bound on the return of this sequence as γsc1−1 + γsc6−1 + γsc4−1.958

We note that if a viable collection sequence ever involves collecting a key or chest that is unreach-959
able from the mouse spawn position, then the step count for this collection and all subsequent960
collections will be infinite and thus this neither this collection nor subsequent collections will961
contribute to the return lower bound.962

3. We take the greatest return lower bound across all viable collection sequences as the maximum963
return achievable in the level. We argue that this equals the maximum return as follows. Fol-964
lowing a shortest path between a given pair of positions may involve crossing over other keys965
and chests. This can have any of several effects that invalidate the collection sequence, including966
(1) collecting keys or chests that appear later in the sequence earlier than planned, (2) expending967
keys before they are intended to be spent to collect a chest later in the sequence, or (3) terminating968
the episode early due to collecting the maximum available number of chests before finishing the969
sequence. However, such disruptions only ever increase the return. Moreover, for each disrupted970
sequence, there is a viable collection sequence that represents the actual order of keys and chests,971
except for accounting for the case where more than 3 keys are collected (which has no affect on972
the return as long as they are on the shortest paths to the necessary chests). It follows that for the973
viable collection sequence with the highest return, there are no such disruptions, and the return974
lower bound is tight.975

We note that the set of viable collection sequences could be further filtered by eliminating (or never976
enumerating) sequences involving unreachable keys or chests. However, we use the above approach977
for simplicity and uniformity. In particular, since the above approach yields a fixed computational978
graph given values of k, c, we can enumerate the 21,600 viable sequences once at compile time and979
accelerate the brute-force evaluation step for a particular level (or batch of levels) using JAX. To980
handle a mixture of levels with (k, c) = (3, 10) and levels with (k, c) = (10, 3), we simply evaluate981
both ways and then dynamically keep the appropriate result for each level.982

Origin. This environment is an interpretation of the KEYS AND CHESTS environment from Lan-983
gosco et al. (2022). Langosco et al. (2022) originally implemented the environment as a modification984
of the HEIST environment from OpenAI ProcGen. Barnett (2019) originated the idea of creating a985
distribution shift from a navigation environment in which keys are scarce to one in which keys are986
not scarce. We implemented this environment in JAX, making several changes similar to those for987
the other environments.988
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E Additional training details989

E.1 Hyperparameters990

Table E.1: Hyperparameters used for all methods and environments.

Parameter Value Notes/exceptions

Rollouts
# parallel environments 256
Rollout length 128
# environment steps per cycle 32,768 (# parallel environments × rollout length)
Discount factor, γ 0.999

GAE
λGAE 0.95

PPO loss function
Clip range 0.1
Value clipping yes
Critic coefficient 0.5
Entropy coefficient 1e-3 Or, 1e-2 for KEYS AND CHESTS

PPO updates
Epochs per cycle 5
Minibatches per epoch 4
Max gradient norm 0.5
Adam learning rate 5e-5
Learning rate schedule constant

UED configuration N/A for DR
Replay rate

PLR⊥ 0.33 On average, 1 replay cycle per 2 generate cycles
ACCEL 0.5 On average, 1 replay cycle per 1 generate cycle

(1 edit cycle immediately follows each replay cycle)
Buffer size 4096
Prioritization method rank
Temperature 0.1
Staleness coefficient 0.1
# elementary edits per level, n 12 N/A for PLR⊥

E.2 Compute991

We perform each training run on a single NVIDIA A100 80GB GPU. For CHEESE IN THE COR-992
NER and CHEESE ON A DISH, each training run takes around 40 minutes (DR) or 80 minutes (UED993
methods). For KEYS AND CHESTS, each training run takes around 60 minutes (DR) or 110 minutes994
(UED methods). UED methods take longer than DR because UED methods require sampling addi-995
tional rollouts for refining the buffer (the number of environment steps used for PPO updates is held996
constant across all methods). KEYS AND CHESTS runs are longer than others because we trained997
each method for 400 million steps instead of 200 million steps in this environment.998

The experiments discussed in Section 7 took a total of 1.2k GPU hours. The additional experiments999
discussed in Appendices H, I, J, K, and L took, respectively, totals of 1.2k GPU hours; 500 GPU1000
hours; 400 GPU hours (not counting the first 200 million environment steps used for training, which1001
we counted with Section 7); 210 GPU hours; and 350 GPU hours.1002
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F Performance on ambiguous levels and with respect to the proxy goal1003

In Section 7, we investigate which training distributions and methods led to good performance on1004
distinguishing levels. We claim that when the performance is low, this is an instance of goal misgen-1005
eralization, and therefore when the performance is high, goal misgeneralization has been prevented.1006

In order to justify this claim, we also check that the poor performance is explained primarily by1007
the policy pursuing a proxy goal on distinguishing environments, rather than the policy behaving1008
incapably in ambiguous or distinguishing environments. Figure F.1 shows (1) return on ambiguous1009
levels and (2) proxy return on distinguishing levels for each training configuration.1010

Figure F.1(top row) shows that the learned policies perform capably in ambiguous levels. For1011
CHEESE IN THE CORNER and CHEESE ON A DISH, all training methods achieve high return on1012
ambiguous levels for all training distributions. For KEYS AND CHESTS, this is the case for all train-1013
ing distributions except in α = 1 baseline. Note that in this edge case, ambiguous levels (with few1014
keys and many chests) are never seen in training (cf. the case α = 0 on distinguishing levels).1015

Figure F.1(bottom row) shows the proxy return achieved by learned policies on distinguishing levels.1016
Note that we never use the proxy goal for training. Here we simply evaluate the policies according1017
to each environment’s respective proxy reward function. In particular, for CHEESE IN THE CORNER,1018
we use a reward function that assigns +1 reward the first time the mouse reaches the corner. For1019
CHEESE ON A DISH, we use a reward function that assigns +1 reward if the mouse collects the dish.1020
For KEYS AND CHESTS, it’s difficult to define a proxy goal (see Appendix D.3), here we report the1021
average number of keys in the mouse’s inventory throughout the rollouts (note that distinguishing1022
levels have at most 3 reachable chests, and so carrying more than three keys suggests the agent is1023
over-prioritizing key collection). The trends in proxy return mirror the trends in true return displayed1024
in Figure 3, suggesting that our learned policies retain enough capabilities in distinguishing levels1025
to pursue the proxy goal—a case of goal misgeneralization.1026

CHEESE IN THE CORNER CHEESE ON A DISH KEYS AND CHESTS
Seeds N=8, steps T=200M Seeds N=3, steps T=200M Seeds N=5, steps T=400M
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Figure F.1: Performance on ambiguous levels and with respect to the proxy goal. Each policy
is trained on T environment steps using the indicated training method with underlying training
distribution ΛTrain

α . (1st row): Average return over 512 steps for an evaluation batch of 256 ambiguous
levels. (2nd row): Average proxy return over 512 steps for an evaluation batch of 256 distinguishing
levels. Note that the proxy goal is never used for training. (Both): Mean over N seeds, shaded
region is one standard error. Note the split axes used to show zero on the log scale.
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G Visualizing performance on levels with different cheese positions1027

For each training configuration (training distribution, training method) studied in the main text for1028
CHEESE IN THE CORNER, we save the policy from the end of training for the first of 8 training seeds.1029
In order to visualize the robustness of these policies to varying changes in the cheese position, we1030
create a batch of 122 levels with a shared wall layout and a fixed mouse position, but where each level1031
in the batch has a different cheese position. For each level, we sample 512 environment steps from1032
each policy and compute the average per-episode return as a measure of the policy’s performance in1033
that level. This gives us a vector of 122 average return values for each policy (one for each level),1034
which we visualize in a policy-specific heatmap such that the average return of the policy in a level1035
with the cheese in position (i, j) is indicated by the color of the cell (i, j) in the heatmap. For context1036
we overlay the wall layout and the mouse spawn position (note that we do not consider levels with1037
cheese positions that would coincide with a wall or with the mouse spawn position).1038

Heatmaps for each method and training distribution follow in Figures G.1 and G.2. We see a rough1039
progression whereby for more advanced algorithms or higher α, the agent is robust to a greater1040
proportion of cheese positions. There are also instances of “blind spots” indicating cheese positions1041
for which certain methods are not robust, indicating that these training methods do not produce1042
perfectly robust policies.1043

DR PLR⊥ ACCEL
α max-latest oracle-latest max-latest oracle-latest

0

1e-5

3e-5

1e-4

0 10.2 0.4 0.6 0.8
Average return

Figure G.1: Heatmap visualizations (part 1 of 2). See Figure 5 and Appendix G for details.
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DR PLR⊥ ACCEL
α max-latest oracle-latest max-latest oracle-latest
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Figure G.2: Heatmap visualizations (part 2 of 2). See Figure 5 and Appendix G for details.
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H Experiments with different edit distributions1044

As discussed in Section 6.2, ACCEL requires additionally specifying an edit distribution for mu-1045
tating levels in the buffer. In this appendix, we explore the effect of different edit ditributions on the1046
ability for ACCEL to mitigate goal misgeneralization.1047

H.1 Elementary edits1048

We assemble our edit distributions by sampling a sequence of elementary edits of the following1049
three kinds.1050

• Ambiguity preserving edits. These edits change the level without changing whether the level1051
is ambiguous or distinguishing. For example, in CHEESE IN THE CORNER, such an edit may1052
randomly toggle a wall or move the mouse’s starting position, but would not change the location1053
of the cheese.1054

• Biased ambiguity transforming edits. These edits transform the level into a distinguishing level1055
with probability α or an ambiguous level with probability 1−α, where α is the proportion of distin-1056
guishing levels in the underlying training distribution. For example, in CHEESE IN THE CORNER,1057
a biased ambiguity transforming edit may randomize the cheese position with probability α or1058
move it to the corner with probability 1− α.1059

• Unrestricted ambiguity transforming edits. These edits transformers the position of the cheese1060
or the number of keys and chests uniformly at random given the level parameterization. For1061
CHEESE IN THE CORNER and CHEESE ON A DISH, the cheese moves to a random position in the1062
maze, which usually results in a distinguishing level. For KEYS AND CHESTS, we flip a coin to1063
make either keys or chests sparse, and the other type of object dense.1064

We document the elementary edit distributions for each environment in full detail in Appendix D.1065

H.2 ACCEL variants1066

In these terms, we list the ACCEL variant considered in the main text along with three additional1067
variants of ACCEL with different edit distributions. We fix a hyperparameter n, the number of1068
elementary edits to apply to each level (we use n = 12).1069

1. Identity ACCEL (ACCELidentity, simply “ACCEL” in main text). We make a sequence of n1070
random edits, all of which are ambiguity preserving, resulting in the sequence of edits itself1071
being ambiguity preserving.1072

2. Constant ACCEL (ACCELconstant). We make n−1 random ambiguity preserving edits, followed1073
by one biased ambiguity transforming edit. Applying this operation to any distribution of levels1074
results in a distribution with the same proportion of ambiguous and distinguishing levels as the1075
underlying training distribution.1076

3. Binomial ACCEL (ACCELbinomial). We make a sequence of n random edits, each independently1077
chosen to be either ambiguity preserving (with probability 1 − 1/n) or else biased ambiguity1078
transforming. If the sequence has only ambiguity preserving edits (probability (1− 1/n)n) then1079
it is ambiguity preserving (like ACCELidentity), otherwise the output is ambiguous with the same1080
probability as a level sampled from the underlying training distribution (like ACCELconstant).1081

4. Unrestricted ACCEL (ACCELunrestricted). We make a sequence of n− 1 random ambiguity pre-1082
serving edits, followed by one unrestricted ambiguity transforming edit. Applying this operation1083
to any distribution of levels results in a distribution with a proportion of distinguishing levels that1084
is independent of the parameter α that restricts access to distinguishing levels in the underlying1085
training distribution.1086

ACCELconstant simulates restricted access to distinguishing levels. This variant is able to introduce1087
new distinguishing levels through edit operations, however, its ability to replicate existing distin-1088
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guishing levels is limited, since every time it edits a level, the mutated level reverts to an ambiguous1089
level with probability 1− α.1090

ACCELidentity (the variant studied in the main text) simulates a different kind of restriction, whereby1091
we don’t allow edits to turn ambiguous levels into distinguishing levels. However, we do allow edits1092
to create new distinguishing levels by making similar copies of existing distinguishing levels in the1093
buffer. Through this mechanism, ACCELidentity can rapidly populate the buffer with distinguish-1094
ing levels, providing this variant with additional capacity to amplify the small training signal from1095
distinguishing levels (beyond simply curating levels, like in PLR⊥ or ACCELconstant).1096

ACCELbinomial samples elementary edits in a different way. The number of biased ambiguity trans-1097
forming edits included in the sequence follows a binomial distribution. This means that with around1098
35% probability, no biased ambiguity transforming edits will be applied, and the edit will resemble1099
an edit from ACCELidentity. Otherwise, with around 65% probability, at least one biased ambiguity1100
transforming edit will be applied, and the overall edit will resemble one from ACCELconstant. We1101
thus expect the performance of this variant to be somewhere between that of ACCELconstant and1102
ACCELidentity.1103

ACCELunrestricted is a baseline that simulates a situation where the edit distribution can be designed1104
to explore the space of levels completely independently of the training distribution. We expect this1105
variant to be able to obtain much stronger performance comparable to using α = 1 in the training1106
distribution, even when training with α = 0.1107

H.3 Experimental results1108

We train with the three new variants and compare performance to DR and ACCELidentity (from1109
the main text). We report the results in Figure H.1 (oracle-latest regret estimator) and Figure H.21110
(max-latest regret estimator). Note that we did not run ACCELconstant with the oracle-latest regret1111
estimator for CHEESE ON A DISH, or ACCELconstant with the max-latest regret estimator for KEYS1112
AND CHESTS.1113

Our results are in line with our central claim, that more advanced UED methods are more capable1114
of mitigating goal misgeneralization.1115

• As predicted, ACCELconstant achieves lower performance than ACCELidentity. This could be ex-1116
plained by the greater flexibility with which ACCELidentity can amplify distinguishing levels1117
through edits.1118

• Moreover, ACCELbinomial achieves performance somewhere between that of ACCELconstant and1119
ACCELidentity.1120

• As predicted, ACCELunrestricted is able to populate the buffer with distinguishing levels regardless1121
of the training distribution, even when α = 0, both with the oracle-latest regret estimator and with1122
the max-latest regret estimator.1123

ACCELbinomial with max-latest estimation achieves the same low performance as ACCELidentity in1124
KEYS AND CHESTS (as observed for ACCELidentity in Section 7).1125
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Figure H.1: ACCEL variants with oracle-latest estimator. Each policy is trained on T environment
steps, using the indicated algorithm, with underlying training distribution ΛTrain

α . (1st row): Average
return over 512 steps for an evaluation batch of 256 distinguishing levels (cf. Figure 3). (2nd row):
The proportion of distinguishing levels sampled from the adversary’s buffer across training (cf. Fig-
ure 4). (Both): Mean over N seeds, shaded region is one standard error. Note the split axes used to
show zero on the log scale.
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Figure H.2: ACCEL variants with max-latest estimator. Each policy is trained on T environment
steps, using the indicated algorithm, with underlying training distribution ΛTrain

α . (1st row): Average
return over 512 steps for an evaluation batch of 256 distinguishing levels (cf. Figure 3). (2nd row):
The proportion of distinguishing levels sampled from the adversary’s buffer across training (cf. Fig-
ure 4). (Both): Mean over N seeds, shaded region is one standard error. Note the split axes used to
show zero on the log scale.
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I The maximin expected value objective is susceptible to goal1126

misgeneralization1127

In this section, we discuss an alternative strategy to minimax expected regret for selecting robust1128
policies. Namely, we consider the maximin expected value (MMEV) training objective, whereby1129
one seeks a policy that achieves the highest possible expected value (return) on a worst-case level1130
distribution ΛMMEV ∈ argminΛ′∈∆(Θ) V

R(π; Λ′).1131

Dennis et al. (2020) argues that the MMEV objective fails to induce robustness in an environment1132
where the optimal value of each level varies within the level space. This is because the agent has1133
no incentive to improve performance in any level above the maximum performance in worst-case1134
levels. This same obstacle prevents MMEV from inducing robustness to goal misgeneralization,1135
even though a policy that pursues a proxy goal is distinguishing levels will achieve low return in1136
these levels.1137

In this appendix, we show theoretically that MMEV-based methods allow for goal misgeneralization1138
in environments with levels with low maximum value. Moreover, we show empirically that MMEV-1139
based training methods fail to mitigate goal misgeneralization in our environments. Indeed, they fail1140
to produce policies that perform capably in any levels.1141

I.1 Theoretical results1142

Definition 7 (Approximate MMEV). Consider an UMDP ⟨Θ,A,S, I, T ⟩, a goal R, and approx-1143
imation thresholds ε, δ ≥ 0. Consider the two-player zero-sum game

〈
⟨Π,∆(Θ)⟩, ⟨V R,−V R⟩

〉
,1144

where an agent plays a policy π ∈ Π and an adversary plays a level distribution Λ ∈ ∆(Θ),1145
aiming to maximize or minimize V R(π; Λ) respectively. A pair (π,Λ) is an (ε, δ)-equilibrium if1146
π ∈ arg-ε-maxπ′∈Π V R(π′; Λ) and Λ ∈ arg-δ-minΛ′∈∆(Θ) V

R(π′; Λ′). The approximate MMEV1147
policy set is then1148

ΠMMEV
ε,δ (R) =

{
π ∈ Π

∣∣ ∃Λ ∈ ∆(Θ) such that (π,Λ) is an (ε, δ)-equilibrium
}
,

and the approximate MMEV level distribution set is1149

∆(Θ)MMEV
ε,δ (R) =

{
Λ ∈ ∆(Θ)

∣∣ ∃π ∈ Π such that (π,Λ) is an (ε, δ)-equilibrium
}
.

Crucially, the MMEV adversary only cares to minimize the return of the agent. Given this, the1150
equilibrium achieved is the one where the adversary plays levels in which any agent would achieve1151
the minimum return possible.1152

Let’s first define some additional machinery we will need:1153

Definition 8 (α-minimum achievable return). Given a level θ ∈ Θ and a threshold α, define1154

c(θ, α) = minV R
α (θ)

where V R
α (θ) = {x ∈ R | ∃π ∈ Π, such that V R(π; θ) ≥ α and V R(π; θ) = x}.1155

Theorem 4 (MMEV is susceptible to goal misgeneralization). Consider an UMDP ⟨Θ,A,S, I, T ⟩,1156
a pair of normalized goals R, R̃, a proxy-distinguishing distribution shift ⟨α, β, C,ΛTrain,ΛDeploy⟩,1157
and approximation thresholds ε, δ ≥ 0. For all ΛMMEV ∈ ∆(Θ)MMEV

ε,δ (R), there exists πMMEV ∈1158
ΠMMEV

ε,δ (R), such that (πMMEV,ΛMMEV) is a (ε, δ)-equilibrium, and we have1159

V R(πMMEV; ΛDeploy) = c(ΛDeploy, α− δ)

where α = V R(π∗; ΛMMEV) and c(ΛDeploy, α) = Eθ∼ΛDeploy [ c(θ, α) ]1160

Proof. Consider π⋆ as the optimal policy across all levels θ ∈ Θ. At equilibrium, the adversary will1161
play a strategy1162

ΛMMEV ∈ arg-δ-min
Λ′∈∆(Θ)

V R(π⋆; Λ′)
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Note it must be the case that |V R(π⋆; θ) − V R(π⋆; θ′)| ≤ δ for all θ, θ′ in the support of ΛMMEV.1163
Also, ∀θ ∈ Θ, and θ′ in the support of ΛMMEV, we have1164

V R(π⋆; θ)− V R(π⋆; θ′) ≥ −δ

Considering an arbitrary distribution Λ′, it also holds that1165

V R(π⋆; Λ′)− V R(π⋆; ΛMMEV) ≥ −δ

In words, the adversary will play levels in which the lowest possible score is achieved by the optimal1166
policy.1167

We now need to construct our policy πMMEV. Take the policy such that1168

V R(πMMEV; θ) =

{
V R(π∗; θ), if θ ∈ supportΛMMEV,

c(θ, α− δ), if θ /∈ supportΛMMEV.

We note that we always have c(θ, α − δ) ≥ V R(π∗; θ′), where θ ∈ Θ, θ′ ∈ supportΛMMEV by1169
our definitions. In words, take the MMEV policy such that it achieves the maximum return possible1170
on levels played by the adversary, and the smallest available return which is greater than or equal1171
to the value achieved on the levels at equilibrium. A policy that achieves this return is clearly in an1172
(ε, δ) equilibrium with the adversary we defined at the beginning. The above clearly holds also if1173
we consider an arbitrary distribution of levels, i.e. ∃πMMEV such that, for all Λ′ ∈ ∆(Θ)1174

V R(πMMEV; Λ′) = c(Λ′, α− δ).

Taking Λ′ = ΛDeploy we get1175

V R(πMMEV; ΛDeploy) = c(ΛDeploy, α− δ).

as desired.1176

In our theorem, we proved that an MMEV agent will possibly achieve returns that are at most (close1177
to) the ones achievable in levels played by the adversary. If very low return levels exists, this policy1178
would then possibly goal misgeneralize at test time if evaluated on levels where a high return is1179
possible.1180

Let’s consider an additional small assumptions, i.e. that given a level with highest achievable return1181
αθ, we assume that for all θ ∈ Θ any return in [0, αθ] could also be attained.1182

Corollary 1. Given a level with highest achievable return αθ, we assume that for all θ ∈ Θ any1183
return in [0, αθ] could also be attained. Additionaly consider all the conditions of Theorem 4. Then,1184

V R(πMMEV; ΛDeploy) ≤ V R(π∗; ΛMMEV)− δ.

Proof. See that if every return is attainable (up to the maximum) in each level, we then have1185
c(ΛDeploy, α− δ) = V R(π∗; ΛMMEV)− δ1186
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I.2 Training methods and experimental results1187

In this section, we outline our empirical evaluation of MMEV-based training methods for mitigating1188
goal misgeneralization. We adapt three UED methods: PLR⊥ along with two ACCEL variants1189
(ACCELidentity and ACCELbinomial, see Appendix H). These UED methods were originally designed1190
for MMER training, but we can convert their regret-maximizing adversaries into return-minimizing1191
adversaries simply by replacing the regret estimator used to refine the buffer with a negative expected1192
return estimator,1193

M̂R
latest(π; θ) = −V̂ R

latest(π; θ), (16)

where V̂ R
latest(π; θ) is the empirical average return achieved on θ in the latest batch of rollouts with1194

the current policy π.1195

Figure I.1 show the performance of trained policies in CHEESE IN THE CORNER and KEYS AND1196
CHESTS for ambiguous and distinguishing levels. As expected, these training methods fail to miti-1197
gate goal misgeneralization, and even fail to induce robust performance in ambiguous levels.1198

We observe that these adversaries rapidly fill their buffers with levels with zero estimated value,1199
indicating that the adversaries are working as expected. We hypothesize that the training failure1200
is primarily due to the adversary finding levels in which the policy not only receives low expected1201
value, but never receives any nonzero reward and thus obtains no training signal.1202

In the extreme case, the adversary could populate the buffer with levels that have zero maximum1203
value, preventing any policy from obtaining nonzero reward. In CHEESE IN THE CORNER, levels1204
in which the cheese position is unreachable from the mouse spawn position have zero maximum1205
value. In Figure I.2, we plot the average proportion of such “unsolvable” levels in the adversary’s1206
buffer over training for CHEESE IN THE CORNER. We find that this proportion is around 80% for1207
most training distributions, which is much higher than the baseline value of around 18% of levels1208
sampled from ΛAmbig. that are unsolvable. As the proportion of distinguishing levels increases, the1209
average proportion of unsolvable levels decreases slightly, to around 50% for α = 0. Note that the1210
baseline value for ΛDistg. is also lower (around 7%) since it’s easier for walls to obstruct the cheese1211
when it’s in the corner than when it is in an arbitrary position in the interior of the grid. Therefore we1212
hypothesize that the adversaries have a slightly harder time finding unsolvable levels as α increases.1213
However, unsolvable levels still occupy a majority of the buffer.1214
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Figure I.1: Maximin training methods. Each policy is trained on T environment steps, using the
indicated algorithm, with underlying training distribution ΛTrain

α . Average return over 512 steps for
an evaluation batch of 256 levels (top row: distinguishing levels, bottom row: ambiguous levels).
Mean over N seeds, shaded region is one standard error. Note the split axes used to show zero
on the log scale. Note the drop in performance for DR in ambiguous KEYS AND CHESTS levels
at α = 1 can be explained by noting that ambiguous levels are now out of distribution given this
training distribution.
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J Experiments with increased training length1215

In most of our experiments, we compare the performance of algorithms after a fixed amount of1216
training time, and find that MMER-based training methods typically outperform MEV-based train-1217
ing methods for a fixed training budget. We have shown that this is because a regret-maximizing1218
adversary can amplify the proportion of distinguishing levels compared to sampling from a fixed1219
underlying training distribution.1220

Another method of increasing the agent’s experience in distinguishing levels is to train for longer.1221
In this appendix, we extend training times in the CHEESE ON A DISH training environment (where1222
DR was most robust to goal misgeneralization).1223

Figure J.1 shows the results. We find that training for more than 200 million environment steps with1224
a fixed training method slightly mitigates goal misgeneralization. In particular, for α = 1e-3, DR1225
gradually stops misgeneralizing after 200 million steps. The result is qualitatively with Theorem 1,1226
since increasing training time should have the effect of decreasing the optimization threshold.1227

However, for lower α values, further training shows diminishing returns, and even 1,500 million1228
steps of DR training is insufficient to mitigate goal misgeneralization to the extent achieved by most1229
UED methods within 200 million steps. This suggests that current UED methods are both more effi-1230
cient and also qualitatively more effective at mitigating goal misgeneralization in this environment.1231
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Figure J.1: Training for more environment steps in CHEESE ON A DISH. Each policy is trained for
500M environment steps (1,500M for DR), using the indicated algorithm, with underlying training
distribution ΛTrain

α . Every 100M steps, we evaluate the average return over 512 steps for an evaluation
batch of 256 distinguishing levels (cf. Figure 3). Mean over 3 seeds, shaded region is one standard
error. Note the split axes used to show zero on the log scale.
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K Experiments with a different distinguishing level generator1232

In this section, we consider an alternative procedural level generator for distinguishing levels in the1233
CHEESE IN THE CORNER environment. Our main experiments use a distinguishing level generator1234
that places the cheese anywhere in the maze.1235

We consider a restricted distinguishing level generator that positions the cheese only within a region1236
of size c × c surrounding the top-left corner, for varying c (the ambiguous generator would be re-1237
covered with c = 1, and the original, unrestricted distinguishing level generator would be recovered1238
with c = 13).1239

Figure K.1 shows the return is evaluated on unrestricted distinguishing levels, where the cheese is1240
positioned anywhere in the maze. We find that the UED methods are able to amplify the proportion1241
of restricted distinguishing levels and in some cases mitigate goal misgeneralization. DR achieves1242
low return across all corner sizes c.1243

CHEESE IN THE CORNER, restricted training distribution
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Figure K.1: Training with varying distinguishing level generators. Each policy is trained on
200 million environment steps, using the indicated algorithm, with underlying training distribution
ΛTrain
α,c = (1 − α)ΛAmbig. + αΛc

Distg., where Λc
Distg. is a procedural level generator that positions the

cheese in the top-left c × c region of the maze. (1st row): Average return over 512 steps for an
evaluation batch of 256 distinguishing levels (cf. Figure 3). (2nd row): The proportion of distin-
guishing levels sampled from the adversary’s buffer across training (cf. Figure 4). (Both): Mean
over N seeds, shaded region is one standard error. Note the split vertical axis used to show zero on
the log scale.
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L Experiments with different observations1244

In this section, we vary the way we encode observations for the policy in CHEESE ON A DISH and1245
explore its effect on goal misgeneralization.1246

As discussed in Appendix D.2, the proxy goal and the true goal are symmetric in this environment,1247
other than the fact that the position of the dish is redundantly represented across multiple channels in1248
the Boolean grid observation. In the main text, we use D = 6 channels to encode the dish position1249
(compared to 1 channel for the cheese position). The additional channels break a symmetry and1250
create a slight inductive bias in favor of a policy that pursues the proxy goal.1251

We conduct an experiment where we vary the number of channels and see what affect it has on goal1252
misgeneralization. Figure L.1 shows the results. We see that with D = 1 channel coding the dish1253
position, all methods (including DR) are somewhat robust to goal misgeneralization, even at small1254
α values. Additional channels significantly increase DR’s susceptibility to goal misgeneralization.1255
On the other hand, UED methods remain able to identify and amplify the training signal from rare1256
distinguishing levels, while UED methods retain comparably similar performance.1257

The extent of amplification remains essentially constant with D. We hypothesize that the number of1258
channels does not stop the adversary from noticing high-regret distinguishing levels, though it may1259
affect how the policy responds.1260

CHEESE ON A DISH, varying observations
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Figure L.1: Training with observations with varying emphasis on the dish. Each policy is trained
on 200 million environment steps, using the indicated algorithm, with underlying training distribu-
tion ΛTrain

α . We vary the number of channels (features) encoding the dish position, D. (1st row):
Average return over 512 steps for an evaluation batch of 256 distinguishing levels (cf. Figure 3).
(2nd row): The proportion of distinguishing levels sampled from the adversary’s buffer across train-
ing (cf. Figure 4). (Both): Mean over N seeds, shaded region is one standard error. Note the split
vertical axis used to show zero on the log scale.
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