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ABSTRACT

Creating 4D fields of Gaussian Splatting from images or videos is a challenging
task due to its under-constrained nature. While the optimization can draw pho-
tometric reference from the input videos or be regulated by generative models,
directly supervising Gaussian motions remains underexplored. In this paper, we
introduce a novel concept, Gaussian flow, which connects the dynamics of 3D
Gaussians and pixel velocities between consecutive frames. The Gaussian flow
can be efficiently obtained by splatting Gaussian dynamics into the image space.
This differentiable process enables direct dynamic supervision from optical flow.
Our method significantly benefits 4D dynamic content generation and 4D novel
view synthesis with Gaussian Splatting, especially for contents with rich motions
that are hard to be handled by existing methods. The common color drifting issue
that happens in 4D generation is also resolved with improved Guassian dynam-
ics. Superior visual quality on extensive experiments demonstrates our method’s
effectiveness. As shown in our evaluation, Gaussian Flow can drastically improve
both quantitative and qualitative results for 4D Generation and 4D novel view
synthesis.

1 INTRODUCTION

4D dynamic content creation from monocular or multi-view videos has garnered significant attention
from academia and industry due to its wide applicability in virtual reality/augmented reality, digital
games, and movie industry. Studies (Li et al., 2022; Pumarola et al., 2021; Park et al., 2021a;b)
model 4D scenes by 4D dynamic Neural Radiance Fields (NeRFs) and optimize them based on input
multi-view or monocular videos. Once optimized, the 4D field can be viewed from novel camera
poses at preferred time steps through volumetric rendering. A more challenging task is generating
360 degree 4D content based on uncalibrated monocular videos or synthetic videos generated by
text-to-video or image-to-video models. Since the monocular input cannot provide enough multi-
view cues and unobserved regions are not supervised due to occlusions, studies (Singer et al., 2023;
Jiang et al., 2023; Zhao et al., 2023) optimizes 4D dynamic NeRFs by leveraging generative models
to create plausible and temporally consistent 3D structures and appearance. The optimization of
4D NeRFs requires volumetric rendering which makes the process time-consuming. And real-time
rendering of optimized 4D NeRFs is also hardly achieved without special designs. A more efficient
alternative is to model 4D Radiance Fields by 4D Gaussian Splatting (GS) (Wu et al., 2023; Luiten
et al., 2023), which extends 3D Gaussian Splatting (Kerbl et al., 2023) with a temporal dimension.
Leveraging the efficient rendering of 3D GS, the lengthy training time of a 4D Radiance Field can be
drastically reduced (Yang et al., 2023c; Ren et al., 2023) and rendering can achieve real-time speed
during inference.

The optimization of 4D Gaussian fields takes photometric loss as major supervision. As a result,
the scene dynamics are usually under-constraint. Similarly to 4D NeRFs (Li et al., 2023; Park et al.,
2021a; Pumarola et al., 2021), the radiance properties and the time-varying spatial properties (lo-
cation, scales, and orientations) of Gaussians are both optimized to reduce the photometric Mean
Squared Error (MSE) between the rendered frames and the input video frames. The ambiguities of
appearance, geometry, and dynamics have been introduced in the process and become prominent
with sparse-view or monocular video input. Per-frame Score Distillation Sampling (SDS) (Tang
et al., 2023) reduces the appearance-geometry ambiguity to some extent by involving multi-view
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supervision in latent domain. However, both monocular photometric supervision and SDS supervi-
sion do not directly supervise scene dynamics.

To avoid temporal inconsistency brought by fast motions, Consistent4D (Jiang et al., 2023) lever-
ages a video interpolation block, which imposes a photometric consistency between the interpolated
frame and generated frame, at a cost of involving more frames as pseudo ground truth for fitting.
Similarly, AYG (Ling et al., 2023) uses text-to-video diffusion model to balance motion magnitude
and temporal consistency with a pre-set frame rate. 4D NeRF model (Li et al., 2023) has proven
that optical flows on reference videos are strong motion cues and can significantly benefit scene
dynamics. However, for 4D GS, connecting 4D Gaussian motions with optical flows has following
two challenges. First, a Gaussian’s motion is in 3D space, but it is its 2D splat that contributes to
rendered pixels. Second, multiple 3D Gaussians might contribute to the same pixel in rendering,
and each pixel’s flow does not equal to any one Gaussian’s motion.

To overcome these challenges, we introduce a novel concept, Gaussian flow, bridging the dynamics
of 3D Gaussians and pixel velocities between consecutive frames. Specifically, we assume the
optical flow of each pixel in image space is influenced by the Gaussians that cover it. The Gaussian
flow of each pixel is considered to be the weighted sum of these Gaussian motions in 2D. To obtain
the Gaussian flow value on each pixel without losing the speed advantage of Gaussian Splatting,
we splat 3D Gaussian dynamics, including scaling, rotation, and translation in 3D space, onto the
image plane along with its radiance properties. As the whole process is end-to-end differentiable,
the 3D Gaussian dynamics can be directly supervised by matching Gaussian flow with optical flow
on input video frames. We apply such flow supervision to both 4D content generation and 4D novel
view synthesis to showcase the benefit of our proposed method, especially for contents with rich
motions that are hard to be handled by existing methods. The flow-guided Guassian dynamics also
resolve the color drifting artifacts that are commonly observed in 4D Generation. We summarize
our contributions as follows:

• We introduce a novel concept, Gaussian flow, that first time bridges the 3D Gaussian dy-
namics to resulting pixel velocities, enabling flow supervision for Gaussian Splatting based-
representations. Matching Gaussian flows with optical flows, 3D Gaussian dynamics can
be directly supervised.

• The Gaussian flow can be obtained by splatting Gaussian dynamics into the image space.
Following the tile-based design by original 3D Gaussian Splatting, we implement the dy-
namics splatting in CUDA with minimal overhead. The operation to generate dense Gaus-
sian flow from 3D Gaussian dynamics is highly efficient and end-to-end differentiable.

• With Gaussian flow to optical flow matching, our model drastically improves over existing
Gaussian Splatting based-methods, especially on scene sequences of fast motions. Color
drifting is also resolved with our improved Gaussian dynamics.

2 RELATED WORKS

3D Generation. 3D generation has drawn tremendous attention with the progress of various 2D
or 3D-aware diffusion models (Liu et al., 2023b; Rombach et al., 2022; Shi et al., 2023b; Liu et al.,
2023c) and large vision models Radford et al. (2021); Jun & Nichol (2023); Nichol et al. (2022).
Thanks to the availability of large-scale multi-view image datasets (Deitke et al., 2023; Yu et al.,
2023; Downs et al., 2022), object-level multi-view cues can be encoded in generative models and
are used for generation purpose. Pioneered by DreamFusion (Poole et al., 2022) that firstly proposes
Score Distillation Sampling (SDS) loss to lift realistic contents from 2D to 3D via NeRFs, 3D
content creation from text or image input has flourished. This progress includes approaches based
on online optimization (Tang et al., 2023; Lin et al., 2023; Wang et al., 2024; Raj et al., 2023) and
feedforward methods (Hong et al., 2023; Liu et al., 2023a; 2024; Xu et al., 2023; Wang et al., 2023c)
with different representations such as NeRFs Mildenhall et al. (2021), triplane (Chan et al., 2022;
Chen et al., 2022; Gao et al., 2023) and 3D Gaussian Splatting (Kerbl et al., 2023). 3D generation
becomes more multi-view consistent by involving multi-view constraints (Shi et al., 2023b) and 3D-
aware diffusion models (Liu et al., 2023b) as SDS supervision. Not limited to high quality rendering,
studies (Sun et al., 2023; Long et al., 2023) also explore enhancing the quality of generated 3D
geometry by incorporating normal cues.
4D Novel View Synthesis and Reconstruction. By adding timestamp as an additional variable,
recent 4D methods with different dynamic representations such as dynamic NeRF (Park et al.,
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Figure 1: Between two consecutive frames, a pixel xt1 will be pushed towards xt1 → xi,t2 by the
2D Gaussian i’s motion it1 → it2 . We can track xt1 in Gaussian i by normalizing it to canonical
Gaussian space as x̂i and unnormalize it to image space to obtain xi,t2 . Here, we denote this shift
contribution from Gaussian i as flowG

i,t1,t2
. The Gaussian flow flowG

t1,t2(xt1) on pixel xt1 is defined
as the weighted sum of the shift contributions from all Gaussians covering the pixel (i and j in our
example). The weighting factor utilizes alpha composition weights. The Gaussian flow of the entire
image can be obtained efficiently by splatting 3D Gaussian dynamics and rendering with alpha
composition, which is implemented along with the CUDA pipeline of the original 3DGS Kerbl et al.
(2023).

2021a;b; Li et al., 2021; Wang et al., 2023a; Li et al., 2022; Tretschk et al., 2021; Gao et al., 2021),
dynamic triplane Fridovich-Keil et al. (2023); Cao & Johnson (2023); Shao et al. (2023) and 4D
Gaussian Splatting Wu et al. (2023); Yang et al. (2023c); Lin et al. (2024) are proposed to achieve
high quality 4D motions and scene contents reconstruction from either calibrated multi-view or un-
calibrated RGB monocular video inputs. There are also some works (Newcombe et al., 2011; 2015;
Zollhöfer et al., 2014) reconstruct rigid and non-rigid scene contents with RGB-D sensors, which
help to resolve 3D ambiguities by involving depth cues. Different from static 3D reconstruction
and novel view synthesis, 4D novel view synthesis consisting of both rigid and non-rigid deforma-
tions is notoriously challenging and ill-posed with only RGB monocular inputs. Some progress (Li
et al., 2021; Gao et al., 2021; Tretschk et al., 2021; Wang et al., 2021) involve temporal priors and
motion cues (e.g. optical flow) to better regularize temporal photometric consistency and 4D mo-
tions. One of recent works (Wang et al., 2023a) provides an analytical solution for flow supervision
on deformable NeRF without inverting the backward deformation function from world coordinate
to canonical coordinate. Several works (Yang et al., 2021a;b; 2023a;b) explore object-level mesh
recovery from monocular videos with optical flow.

4D Generation. Similar to 3D generation from text prompts or single images, 4D generation from
text prompts or monocular videos also relies on frame-by-frame multi-view cues from pre-trained
diffusion models. Besides, 4D generation methods yet always rely on either video diffusion models
or video interpolation block to ensure the temporal consistency. Animate124 (Zhao et al., 2023),
4D-fy (Bahmani et al., 2023) and one of the earliest works Singer et al. (2023) use dynamic NeRFs
as 4D representations and achieve temporal consistency with text-to-video diffusion models, which
can generate videos with controlled frame rates. Instead of using dynamic NeRF, Align Your Gaus-
sians (Ling et al., 2023) DreamGaussian4D (Ren et al., 2023) and L4GM Ren et al. (2024) generate
vivid 4D contents with 3D Gaussian Splatting, but again, relying on text-to-video diffusion model
for free frame rate control. Without the use of text-to-video diffusion models, Consistent4D (Jiang
et al., 2023) achieves coherent 4D generation with an off-the-shelf video interpolation model (Huang
et al., 2022). Our method benefits 4D Gaussian representations by involving flow supervision and
without the need of specialized temporal consistency networks.

3 METHODOLOGY

To better illustrate the relationship between Gaussian motions and corresponding pixel flow in image
space, we first recap the rendering process of 3D Gaussian Splatting and then investigate its 4D case.
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3.1 PRELIMINARY

3D Gaussian Splatting. From a set of initialized 3D Gaussian primitives, 3D Gaussian Splat-
ting aims to recover the 3D scene by minimizing photometric loss between input m images {I}m
and rendered images {Ir}m. For each pixel, its rendered color C is the weighted sum of multiple
Gaussians’ colors ci in depth order along the ray by point-based α-blending as in Eq. 1,

C =

N∑
i=1

Tiαici, (1)

with weights specifying as

αi = oie
− 1

2 (x−µi)
TΣ−1

i (x−µi) and Ti =

i−1∑
j=1

(1− αi). (2)

where oi ∈ [0, 1], µi ∈ R2×1, and Σi ∈ R2×2 are the opacity, 2D mean, and 2D covariance matrix
of i-th 2D Gaussian projected from 3D space, respectively. And x is the intersection between a
pixel ray and i-th Gaussian. As shown in Eq. 1, the relationship between a rendered pixel and 3D
Gaussians is not bijective.

3D Gaussian Splatting in 4D. Modeling 4D motions with 3D Gaussian Splatting can be done
frame-by-frame via either directly multi-view fitting (Luiten et al., 2023) or moving 3D Gaus-
sians with a time-variant deformation field (Ling et al., 2023; Ren et al., 2023) or parameterize
3D Gaussians with time (Yang et al., 2023c). While with monocular inputs, Gaussian motions are
under-constrained because different Gaussian motions can lead to the same rendered color, and thus
long-term persistent tracks are lost (Luiten et al., 2023). Though Local Rigidity Loss (Luiten et al.,
2023; Ling et al., 2023) is proposed to reduce global freedom of Gaussian motions, it sometimes
brings severe problems due to poor or challenging initialization and lack of multi-view supervision.
As shown in Fig. 6, 3D Gaussians initialized with the skull mouth closed are hard to be split when
the mouth open with Local Rigidity Loss.

3.2 GAUSSIANFLOW

We consider the full freedom of each Gaussian motion in a 4D field, including 1) scaling, 2) rotation,
and 3) translation at each time step. As the time changes, Gaussians covering the queried pixel at
t = t1 will move to other places at t = t2, as shown in Fig. 1. To specify new pixel location xt2
at t = t2, we first project all the 3D Gaussians into 2D image plane as 2D Gaussians and calculate
their motion’s influence on pixel shifts.

Flow from Single Gaussian. To track pixel shifts (flow) contributed by Gaussian motions, we let
the relative position of a pixel in a deforming 2D Gaussian stay the same. This setting preserves
the mahalanobis distance between the pixel locations under two consecutive time steps and the
2D Gaussian unchanged. According to Eq. 2, this preservation will grant the pixel with the same
radiance and α contribution from the 2D Gaussian, albeit the 2D Gaussian is deformed.

The pixel shift (flow) is the image space distance of the same pixel at two time steps. We first
calculate the pixel shift influenced by a single 2D Gaussian that covers the pixel. We can find a
pixel x’s location at t2 by normalizing its image location at t1 to canonical Gaussian space and
unnormalizing it to image space at t2:

1) normalize. A pixel xt1 following i-th 2D Gaussian distribution can be written as xt1 ∼
N(µi,t1Σi,t1). And in i-th Gaussian coordinate system with 2D mean µi,t1 ∈ R2×1 and 2D
covariance matrix Σi,t1 ∈ R2×2. After normalizing the i-th Gaussian into the standard normal
distribution, we denote the pixel location in canonical Gaussian space as

x̂t1 = B−1
i,t1

(xt1 − µi,t1), (3)

which follows Σi,t1 = Bi,t1B
T
i,t1

, x̂t1 ∼ N(0, I) and I ∈ R2×2 is identity matrix.

2) unnormalize. When t = t2, the new location along with the Gaussian motion denotes xi,t2 on
the image plane.

xi,t2 = Bi,t2 x̂t1 + µi,t2 , (4)
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and Σi,t2 = Bi,t2B
T
i,t2

, xt2 ∼ N(µi,t2 ,Σi,t2). Eq. 3 and Eq. 4 preserve Mahalanobis distance
between the tracked pixel and the 2D Gaussian leading to consistent α value (see Eq.2) for this pixel
across consecutive time steps. The pixel shift contribution from each Gaussian therefore can be
calculated as:

flowG
i,t1t2 = xi,t2 − xt1 (5)

Flow Composition. In the original 3D Gaussian Splatting, a pixel’s color is the weighted sum of
the 2D Gaussians’ radiance contribution. Similarly, we define the Gaussian flow value at a pixel as
the weighted sum of the 2D Gaussians’ contributions to its pixel shift, following alpha composition.
With Eq. 3 and Eq. 4, the Gaussian flow value at pixel xt1 from t = tt1 to t = tt2 is

flowG
t1t2 =

K∑
i=1

wiflow
G
i,t1t2 (6)

=

K∑
i=1

wi

[
Bi,t2B

−1
i,t1

(xt1 − µi,t1) + µi,t2 − xt1)
]
, (7)

where K is the number of Gaussians along each camera ray sorted in depth order and each Gaussian
has weight wi = Tiαi

ΣiTiαi
according to Eq. 1, but normalized to [0,1] along each pixel ray. The

intuition behind the using of the same weight as α-blending is that, if a pixel color is contributed
by a weighted sum of a set of Gaussians, then its corresponding pixel shift i.e. pixel-wised optical
flow should also be contributed by the same set of Gaussians with the same weights by nature, since
optical flow is calculated based on the pixel-wised correspondences as well.

In some cases Ling et al. (2023); Keetha et al. (2023); Yugay et al. (2023); Matsuki et al. (2023),
each Gaussian is assumed to be isotropic, and its scaling matrix S = σI, where σ is the scaling
factor. And its 3D covariance matrix RSSTRT = σ2I. If the scaling factor of each Gaussian
doesn’t change too much across time, Bi,t2B

−1
i,t1

≈ I. Therefore, to pair with this line of work, the
formulation of our Gaussian flow as in Eq. 7 can be simplified as

flowG
t1t2 =

K∑
i=1

wi(µi,t2 − µi,t1). (8)

In other words, for isotropic Gaussian fields, Gaussian flow between two different time steps can be
approximated as the weighted sum of individual translation of 2D Gaussian.

Following either Eq. 7 or Eq. 8, the Gaussian flow can be densely calculated at each pixel. The flow
supervision at pixel xt1 from t = t1 to t = t2 can then be specified as

Lflow = ||flowo
t1t2(xt1)− flowG

t1t2 ||, (9)

where optical flow flowo
t1t2 can be calculated by off-the-shelf methods as pseudo ground-truth.

Our method also allows for camera motions, please refer to the our experiments on NeRF-DS
dataset (Yan et al., 2023) and the supplementary material D for more details.

3.3 4D CONTENT GENERATION

As shown in Fig. 2, 4D content generation with Gaussian representation takes an uncalibrated
monocular video either by real capturing or generating from text-to-video or image-to-video models
as input and output a 4D Gaussian field. 3D Gaussians are initialized from the first video frame
with photometric supervision between rendered image and input image and a 3D-aware diffusion
model (Liu et al., 2023b) for multi-view SDS supervision. In our method, 3D Gaussian initializa-
tion can be done by One-2-3-45 (Liu et al., 2024) or DreamGaussian (Tang et al., 2023). After
initialization, 4D Gaussian field is optimized with per-frame photometric supervision, per-frame
SDS supervision, and our flow supervision as in Eq. 9. The loss function for 4D Gaussian field
optimization can be written as:

L = Lphotometric + λ1Lflow + λ2Lsds + λ3Lother, (10)

where λ1, λ2 and λ3 are hyperparameters. Lother is optional and method-dependent. Though not
used in our method, we leave it for completeness.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025
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Figure 2: Overview of our 4D content generation pipeline. An uncalibrated monocular video or
video generated from an image is taken as the input. We optimize a 3D Gaussian field initialized
by the first frame with both photometric and SDS supervision (Liu et al., 2023b) (for 4D generation
only). Then, we optimize the dynamics of the 3D Gaussians with the same two losses for each
frame. Most importantly, we calculate Gaussian flows with our novel design on reference view for
each consecutive two time steps and match it with a pre-computed optical flow of the input video.
The gradients from the flow matching will propagate back through dynamics splatting and rendering
process, resulting in a 4D Gaussian field with natural and smooth motions.

3.4 4D NOVEL VIEW SYNTHESIS

Unlike 4D content generation that has multi-view object-level prior from 3D-aware diffusion model,
4D novel view synthesis takes only multi-view or monocular input video frames for photometric
supervision without any scene-level prior. 3D Gaussians are usually initialized by sfm (Snavely
et al., 2006; Schonberger & Frahm, 2016) from input videos. After initialization, 4D Gaussian field
is then optimized with per-frame photometric supervision and our flow supervision. We adopt the
4D Gaussian Fields from (Yang et al., 2023c). The loss function for 4D Gaussian field optimization
can be written as:

L = Lphotometric + λ1Lflow + λ2Lother, (11)

where Lother is optional and method-dependent (please refer to Yang et al. (2023c)).

4 EXPERIMENTS

In this section, we first provide implementation details of the proposed method and then valid our
method on 4D Gaussian representations with (1) 4D novel view synthesis and (2) 4D generation. We
test on the Plenoptic Video Datasets (Li et al., 2022) and the Consistent4D Dataset (Jiang et al., 2023)
for both quantitative and qualitative evaluation. Our method achieves state-of-the-art results on both
tasks. To obtain dense Gaussian flow, we efficient splatting the Gaussian dynamics along with the
original 3DGS(Kerbl et al., 2023) CUDA pipeline. Please refer to our supplemental materials for
implementation details.

4.1 DATASET

Plenoptic Video Dataset. A high-quality real-world dataset consists of 6 scenes with 30FPS and
2028 × 2704 resolution. There are 15 to 20 camera views per scene for training and 1 camera view
for testing. The cameras are distributed to face the frontal part of scenes from different angles.

NeRF-DS Dataset. This dataset (Yan et al., 2023) consists of 8 scenes in everyday environments
with various types of moving or deforming specular objects. Each scene contains two videos cap-
tured by two forward-facing cameras rigidly mounted together.

6
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Consistent4D Dataset. This dataset (Jiang et al., 2023) includes 14 synthetic and 12 in-the-wild
monocular videos. All the videos have only one moving object with a white background. 7 of the
synthetic videos are provided with multi-view ground-truth for quantitative evaluation. Each input
monocular video with a static camera is set at an azimuth angle of 0◦. Ground-truth images include
four distinct views at azimuth angles of -75◦, 15◦, 105◦, and 195◦, respectively, while keeping
elevation, radius, and other camera parameters the same with input camera.

4.2 RESULTS AND ANALYSIS

4D Novel View Synthesis. We visualize rendered images and depth maps of a very recent state-
of-the-art 4D Gaussian method RT-4DGS (Yang et al., 2023c) with (yellow) and without (red) our
flow supervision in Fig. 3. According to zoom-in comparisons, our method can consistently model
realistic motions and correct structures. These regions are known to be challenging (Verbin et al.,
2022; Liu et al., 2023d) for most methods, even under adequate multi-view supervision. Our method
can reduce ambiguities in photometric supervision by involving motion cues and is shown to be con-
sistently effective across frames. By using an off-the-shelf optical flow algorithm (Shi et al., 2023a),
we found that only a small portion of image pixels from Plenoptic Video Dataset have optical flow
values larger than one pixel. Since our method benefits 4D Gaussian-based methods more on the
regions with large motions, we report PSNR numbers on both full scene reconstruction and dynamic
regions (optical flow value > 1) in Tab. 1. With the proposed flow supervision, our method shows
improved performance on all scenes and the gains are prominent on dynamic regions. Consequently,
our 4D novel view synthesis results achieves state-of-the art quality. More comparisons are shown
in the Fig. 11-13 and the video of the supplemental material.

Both qualitative and quantitative comparisons on NeRF-DS dataset in Fig. 4 and Tab. 2 show the
effectiveness of the proposed method on scenes with complex camera motions, where we refer to
our supplementary material D for more details in terms of implementations.

Table 1: Quantitative evaluation between ours and other methods on the DyNeRF dataset Li et al.
(2022). We report PSNR numbers on both full-scene novel view synthesis and dynamic regions
where the ground-truth optical flow value is larger than one pixel. “Ours” denotes RT-4DGS with
the proposed flow supervision. We also achieve the best results on D-SSIM and LPIPS (see the Tab.
5 and 4 in the supplemental material).

Method Coffee Martini Spinach Cut Beef Flame Salmon Flame Steak Sear Steak Mean

HexPlane Cao & Johnson (2023) - 32.04 32.55 29.47 32.08 32.39 31.70
K-Planes Fridovich-Keil et al. (2023) 29.99 32.60 31.82 30.44 32.38 32.52 31.63
MixVoxels Wang et al. (2023b) 29.36 31.61 31.30 29.92 31.21 31.43 30.80
NeRFPlayer Song et al. (2023) 31.53 30.56 29.35 31.65 31.93 29.12 30.69
HyperReel Attal et al. (2023) 28.37 32.30 32.92 28.26 32.20 32.57 31.10
4DGS Wu et al. (2023) 27.34 32.46 32.90 29.20 32.51 32.49 31.15
RT-4DGS Yang et al. (2023c) 28.33 32.93 33.85 29.38 34.03 33.51 32.01
Ours 28.42 33.68 34.19 29.37 34.22 34.06 32.32

Dynamic Region Only

RT-4DGS Yang et al. (2023c) 27.36 27.47 34.48 23.16 26.04 29.52 28.00
Ours 28.02 28.71 35.18 23.36 27.53 31.14 28.99

Table 2: Quantitative comparisons on NeRF-DS dataset. Note that our method is effective and robust
under both complex camera motions and object motions.

PSNR ↑ SSIM ↑ LPIPS↓
3DGS (Kerbl et al., 2023) 20.79 0.78 0.29
TiNeuVo (Fang et al., 2022) 21.60 0.83 0.30
HyperNeRF (Park et al., 2021b) 23.45 0.85 0.19
NeRF-DS (Yan et al., 2023) 23.40 0.84 0.18
Deformable-3DGS (Yang et al., 2024) 23.61 0.83 0.21
Deformable-3DGS (with flow) 24.12 0.86 0.17

4D Generation. We evaluate and compare DreamGaussian4D (Ren et al., 2023), which is a re-
cent 4D Gaussian-based state-of-the-art generative model with open-sourced code, and dynamic
NeRF-based methods in Tab. 3 on Consistent4D dataset with ours. Scores on individual videos are
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Figure 3: Qualitative comparisons on DyNeRF dataset (Li et al., 2022). The left column shows the
novel view rendered images and depth maps of RT-4DGS (Yang et al., 2023c), which suffers from
artifacts in the dynamic regions. The right column shows the results of RT-4DGS optimized with
our flow supervision during training. We refer to our supplementary material (Fig. 11-13, including
the video) for more visual comparisons.

sieve 

Basin 

Plate 

Sheet 

Bell 

Cup 

Press 

Figure 4: Qualitative comparisons on NeRF-DS dataset.

calculated and averaged over four novel views mentioned above. Note that flow supervision is ef-
fective and helps with 4D generative Gaussian representation. Compared to DreamGaussian4D, our
method shows better quality as shown in Fig. 6 after the same number of training iterations. For the
two hard dynamic scenes shown in Fig. 6, our method benefit from flow supervision and generate
desirable motions, while DG4D shows prominent artifacts on the novel views. Additionally, flow
supervision helps our method avoid color drifting, compared with dynamic NeRF-based method
Consistent4D(Jiang et al., 2023) (Fig. 5). Our results are more consistent in terms of texture and
geometry. We also show more generation results in the Fig. 8 of the supplemental material.
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Table 3: Quantitative comparisons between ours and others on Consistent4D dataset.

Method
Pistol Guppie Crocodile Monster Skull Trump Aurorus Mean

LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑ LPIPS↓ CLIP↑
D-NeRF Pumarola et al. (2021) 0.52 0.66 0.32 0.76 0.54 0.61 0.52 0.79 0.53 0.72 0.55 0.60 0.56 0.66 0.51 0.68
K-planes Fridovich-Keil et al. (2023) 0.40 0.74 0.29 0.75 0.19 0.75 0.47 0.73 0.41 0.72 0.51 0.66 0.37 0.67 0.38 0.72
Consistent4D Jiang et al. (2023) 0.10 0.90 0.12 0.90 0.12 0.82 0.18 0.90 0.17 0.88 0.23 0.85 0.17 0.85 0.16 0.87
DG4D Ren et al. (2023) 0.12 0.92 0.12 0.91 0.12 0.88 0.19 0.90 0.18 0.90 0.22 0.83 0.17 0.86 0.16 0.87
Ours 0.10 0.94 0.10 0.93 0.10 0.90 0.17 0.92 0.17 0.92 0.20 0.85 0.15 0.89 0.14 0.91

𝑡=𝑡1

𝑡=𝑡2

𝑡=𝑡3

Con4D OursInputs Con4D OursInputs

Figure 5: Comparisons between Consistent4D (Jiang et al., 2023) (a dynamic NeRF-based method)
and ours. The flow supervision help us avoid the “bubble like” texture and non-consistent geometry
on novel views.

𝑡=𝑡1

𝑡=𝑡2

Ours (no flow) Ours-r Ours

𝑡=𝑡1

𝑡=𝑡2

view 1 view 2 view 1 view 2 view 1 view 2view 0

Input DG4D

view 1 view 2

Figure 6: Qualitative comparisons among DreamGaussian4D (Ren et al., 2023), our method without
flow loss, our method without flow loss but with Local Rigidity Loss (Ours-r) and ours.

5 ABLATION STUDY

We validate our flow supervision through qualitative comparisons shown in Fig. 6. Compared with
Ours (no flow) and Ours, the proposed flow supervision shows its effectiveness on moving parts.
For the skull, 3D Gaussians on the teeth region initialized at t = t1 are very close to each other
and are hard to split apart completely when t = t2. Because the Gaussians can move freely as long
as they look photometrically correct from view 0, while SDS supervision applied from novel views
works on latent domains and cannot provide pixel-wised supervision. This problem becomes more
severe when involving Local Rigidity Loss (comparing Ours-r and Ours) because the motions of 3D
Gaussians initialized at t = t1 are constrained by their neighbors and the Gaussians are harder to
split apart at t = t1. Similarly, for bird, regions consisting of thin structures such as the bird’s beak
cannot be perfectly maintained across frames without our flow supervision. While originally utilized
in 4D Gaussian fields (Luiten et al., 2023) to maintain the structure consistency during motion, Local
Rigidity Loss as a motion constraint can incorrectly group Gaussians and is less effective than our
flow supervision.
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Input Video

𝑡=𝑡1 𝑡=𝑡2

Ours (no flow) Ours (flow)

𝑓𝑙𝑜𝑤𝑡1𝑡2
𝐺 𝑓𝑙𝑜𝑤𝑡1𝑡2

𝐺𝑓𝑙𝑜𝑤𝑡1𝑡2
𝑜 𝑓𝑙𝑜𝑤𝑡1𝑡2

𝑜 𝑓𝑙𝑜𝑤𝑡1𝑡2
𝑜𝑓𝑙𝑜𝑤𝑡1𝑡2

𝑜

novel view novel viewinput viewinput view input viewinput viewinput view

#1 #2 #3 #4 #5 #6

Figure 7: Visualization of optical and Gaussian flows on the input view and a novel view. “Ours (no
flow)” denotes our model without flow supervision while “Ours” is our full model. The optical flow
values of the background should be ignored because dense optical flow algorithms calculate corre-
spondences among background pixels. We calculate optical flow flowo

t1t2 on rendered sequences
by autoflow (Sun et al., 2021). From column #1 and #4, we can see that both rendered sequences
from input view have high-quality optical flow, indicating correct motions and appearance. Com-
paring Gaussian flow flowG

t1,t2 at column #2 and #5 , we can see that the underlining Gaussians
move inconsistently without flow supervision. It is due to the ambiguity of appearance and motions
while only being supervised by photometric loss on a single input view. Aligning Gaussian flow to
optical flow can drastically improve irregular motions(column #3) and create high-quality dynamic
motions (column #6) on novel views.

We also visualize optical flow flowo
t1t2 and Gaussian flow flowG

t1t2 with and without our flow
supervision in Fig. 7. In both cases, the optical flow flowo

t1t2 between rendered images on the
input view are very similar to each other (shown in #1 and # 4 column) and align with ground-
truth motion because of direct photometric supervision on input view. However, comparing optical
flows on novel view as shown in #3 and #6, without photometric supervision on novel views,
inconsistent Gaussian motions are witnessed without our flow supervision. Gaussian flow flowG

t1t2
in #2 column also reveals the inconsistent Gaussian motions. Incorrect Gaussian motion can still
hallucinate correct image frames on input view. However, this motion-appearance ambiguity can
lead to unrealistic motions from novel views (the non-smooth flow color on moving parts in #3).
While #5 shows consistent Gaussian flow, indicating the consistent Gaussian motions with flow
supervision.

6 LIMITATION

By aligning with the optical flow, our Gaussian flow effectively optimizes Gaussian splats’ motion.
However, if the optical flow cannot be reliably estimated, our method cannot provide beneficial
signal for optimization. For similar reason, this supervision is less helpful for modeling dynamic
objects with constantly changing textures, which remains a challenge for current 4D generation
methods.

7 CONCLUSION AND FUTURE WORK

We present GaussianFlow, an analytical solution to supervise 3D Gaussian dynamics including scal-
ing, rotation, and translation with 2D optical flow. Extensive qualitative and quantitative compar-
isons demonstrate that our method is general and beneficial to Gaussian-based representations for
both 4D generation and 4D novel view synthesis with motions. In this paper, we only consider the
short-term flow supervision between every two neighbor frames in our all experiments. Long-term
flow supervision across multiple frames is expected to be better and smoother, which we leave as fu-
ture work. Another promising future direction is to explore view-conditioned flow SDS to supervise
Gaussian flow on novel view in the 4D generation task.
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Christian Theobalt. Non-rigid neural radiance fields: Reconstruction and novel view synthesis
of a dynamic scene from monocular video. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 12959–12970, 2021.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srini-
vasan. Ref-nerf: Structured view-dependent appearance for neural radiance fields. in 2022 ieee.
In CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5481–5490, 2022.

Chaoyang Wang, Ben Eckart, Simon Lucey, and Orazio Gallo. Neural trajectory fields for dynamic
novel view synthesis. arXiv preprint arXiv:2105.05994, 2021.

Chaoyang Wang, Lachlan Ewen MacDonald, Laszlo A Jeni, and Simon Lucey. Flow supervision for
deformable nerf. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21128–21137, 2023a.

Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, and Huaping Liu. Mixed neural vox-
els for fast multi-view video synthesis. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 19706–19716, 2023b.

Peng Wang, Hao Tan, Sai Bi, Yinghao Xu, Fujun Luan, Kalyan Sunkavalli, Wenping Wang, Zexi-
ang Xu, and Kai Zhang. Pf-lrm: Pose-free large reconstruction model for joint pose and shape
prediction. arXiv preprint arXiv:2311.12024, 2023c.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation.
Advances in Neural Information Processing Systems, 36, 2024.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528, 2023.

Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi, Kalyan Sunkavalli,
Gordon Wetzstein, Zexiang Xu, et al. Dmv3d: Denoising multi-view diffusion using 3d large
reconstruction model. arXiv preprint arXiv:2311.09217, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhiwen Yan, Chen Li, and Gim Hee Lee. Nerf-ds: Neural radiance fields for dynamic specular ob-
jects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8285–8295, 2023.

Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic, Forrester Cole, Huiwen Chang, Deva
Ramanan, William T Freeman, and Ce Liu. Lasr: Learning articulated shape reconstruction from
a monocular video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15980–15989, 2021a.

Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic, Forrester Cole, Ce Liu, and Deva
Ramanan. Viser: Video-specific surface embeddings for articulated 3d shape reconstruction.
Advances in Neural Information Processing Systems, 34:19326–19338, 2021b.

Gengshan Yang, Chaoyang Wang, N Dinesh Reddy, and Deva Ramanan. Reconstructing animatable
categories from videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16995–17005, 2023a.

Gengshan Yang, Shuo Yang, John Z Zhang, Zachary Manchester, and Deva Ramanan. Ppr: Physi-
cally plausible reconstruction from monocular videos. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 3914–3924, 2023b.

Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic dynamic
scene representation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642,
2023c.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20331–20341, 2024.

Xianggang Yu, Mutian Xu, Yidan Zhang, Haolin Liu, Chongjie Ye, Yushuang Wu, Zizheng Yan,
Chenming Zhu, Zhangyang Xiong, Tianyou Liang, et al. Mvimgnet: A large-scale dataset of
multi-view images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9150–9161, 2023.

Vladimir Yugay, Yue Li, Theo Gevers, and Martin R Oswald. Gaussian-slam: Photo-realistic dense
slam with gaussian splatting. arXiv preprint arXiv:2312.10070, 2023.

Yuyang Zhao, Zhiwen Yan, Enze Xie, Lanqing Hong, Zhenguo Li, and Gim Hee Lee. Animate124:
Animating one image to 4d dynamic scene. arXiv preprint arXiv:2311.14603, 2023.
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A IMPLEMENTATION DETAILS

We take t2 as the next timestep of t1 and calculate optical flow between every two neighbor frames
in all experiments. In our CUDA implementation of Gaussian dynamics splatting, though the num-
ber of Gaussians K along each pixel ray is usually different, we use K = 20 to balance speed
and effectiveness. A larger K means more number of Gaussians and their gradient will be counted
through backpropagation. For video frames with size H × W × 3, we track the motions of Gaus-
sians between every two neighbor timesteps t1 and t2 by maintaining two H ×W ×K tensors to
record the indices of top-K Gaussians sorted in depth order, top-K Gaussians’ rendered weights
wi for each pixel and an another tensor with size H × W × K × 2 denotes the distances between
pixel coordinate and 2D Gaussian means xt1 − µi,t1 , respectively. Besides, 2D mean µi,t1 and 2D
covariance matrices Σi,t1 and Σi,t2 of each Gaussian at different two timesteps are accessible via
camera projection (Kerbl et al., 2023).

Algorithm 1: Detailed pseudo code for GaussianFlow
Input:
flowo

tk,tk+1
: Pseudo ground-truth optical flow from off-the-shelf optical flow algorithm;

Igttk : ground-truth images , where k = 0, 1, ..., T ;
renderer: A Gaussian renderer;
Gaussianstk , Gaussianstk+1

: n Gaussians with learnable parameters at tk and tk+1;
camtk and camtk+1

: Camera parameters at tk and tk+1;
# Loss init
L = 0
for timestep k ≤ T − 1 do

// renderer outputs at tk
renderertk = renderer(Gaussianstk , camtk);
Irendertk

= renderertk [“image”]; # H ×W × 3
idxtk = renderertk [“index”]; # H ×W ×K, Gaussian indices that cover each pixels
wtk = renderertk [“weights”]; # H ×W ×K
wtk = wtk/sum(wtk , dim = −1); # H ×W ×K, weight normalization
x µtk = renderertk [“x mu”]; # H ×W ×K × 2, denotes xtk − µtk
µtk = renderertk [“2D mean”]; # n× 2
Σtk = renderertk [“2D cov”]; # n× 2× 2

Btk = Σ
1
2
tk

;
# renderer outputs at tk+1

renderertk+1
= renderer(Gaussianstk+1

, camtk+1
);

µtk+1
= renderertk+1

[“2D mean”]; # n× 2
Σtk+1

= renderertk+1
[“2D cov”]; # n× 2× 2

Btk+1
= Σ

1
2
tk

;
# Eq.8 while ignoring resize operations for simplicity
flowG

tk,tk+1
=

wtk ∗
(
Btk+1

[idxtk ] ∗ inv(Btk)[idxtk ] ∗ x µtk + (µtk+1
[idxtk ]− µtk [idxtk ]− x µtk)

)
# Eq.10
Lflow = norm(flowo

tk,tk+1
, sum(flowG

tk,tk+1
, dim = 0))

# (1) Loss for 4D novel view synthesis
L = L+ Lphotometric(I

render
tk

, Igttk ) + λ1Lflow + λ3Lother

# (2) Loss for 4D generation
L = L+ Lphotometric(I

render
tk

, Igttk ) + λ1Lflow + λ2Lsds + λ3Lother

end
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A detailed pseudo code for our flow supervision can be found at Algorithm 1. We extract the pro-
jected Gaussian dynamics and obtain the final Gaussian flow by rendering these dynamics. Variables
including the weights and top-K indices of Gaussians per pixel (as mentioned in implementation de-
tails of our main paper) are calculated in CUDA by modifying the original CUDA kernel codes of
3D Gaussian Splatting (Kerbl et al., 2023). And Gaussian flow flowG is calculated by Eq.8 with
PyTorch.

In our 4D generation experiment, we run 500 iterations static optimization to initialize 3D Gaussian
fields with a batch size of 16. The Tmax in SDS is linearly decayed from 0.98 to 0.02. For dynamic
representation, we run 600 iterations with batch size of 4 for both DG4D (Ren et al., 2023) and ours.
The flow loss weight λ1 in Eq. 11 of our main paper is 1.0.

Our method slightly decreases speed and increases memory only on training stage but not for in-
ference stage because our flow supervision is only for training a better/robust deformation field or
other 4DGS designs and then will be no needed in inference stage. The training speed for DG4D
is around 1.4it/s while it then becomes around 2.2it/s with our flow supervision. And the differ-
ence between training speeds with (around 2.5s/it) and without (around 2.2s/it) our flow supervision
for RT-4DGS is marginal. Even with more memory footprint by tracking per-pixel gradients for
Gaussians, a single 30GB GPU is adequate for reproducing all our results. In our 4D novel view
synthesis experiment, we follow RT-4DGS(Yang et al., 2023c) except that we add our proposed flow
supervision for all cameras. The flow loss weight λ1 in Eq. 11 of our main paper is 0.5.

B MORE RESULTS

B.1 MORE VISUALIZATION AND COMPARISON IN 4D GENERATION.

More comparisons between Gaussian flow flowG and optical flow flowo on rendered images are
shown in Fig. 9. The first row of each example is the rgb frames rendered from a optimized 4D
Gaussian field. We rotate our cameras for each time steps so that the object can move as optimized
and the camera is moving at the same time to show the scene from different angles. The second
row of each example shows the visualized Gaussian flows. These Gaussian flows are calculated by
the rendered images of consecutive time steps at each camera view, therefore, containing no camera
motion in the flow values. The third row is the estimated optical flows between the rendered images
of consecutive time steps at each camera view. We use off-the-shelf AutoFlow (Sun et al., 2021) for
the estimation. We can see that enhanced by the flow supervision from the single input view, our 4D
generation pipeline can model fast motion such as the explosive motion of the gun hammer (see the
last example in Fig. 9).

Figure 8: Qualitative results on Consistent4D dataset.
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Figure 9: Visualization of Gaussian flow flowG and optical flow flowo on rendered sequences from
different views.

B.2 MORE QUANTITATIVE RESULTS ON THE DYNERF DATASET.

We show SSIM, MSSIM, D-SSIM and LPIPS of our methods on the DyNeRF dataset (Li et al.,
2022) breakdown by scenes in Tab. 4. We also show the comparisions of our methods and other
methods on PSNR, D-SSIM, LPIPS averaged over all scenes of the DyNeRF dataset (Li et al., 2022)
in Tab. 5.

Table 4: The SSIM, MSSIM, D-SSIM and LPIPS of our methods on the DyNeRF dataset breakdown
by scenes.

Coffee Martini Spinach Cut Beef Flame Salmon Flame Steak Sear Steak Mean
SSIM ↑ 0.9185 0.9578 0.9598 0.9248 0.9643 0.9645 0.9483
MSSIM ↑ 0.9544 0.9786 0.9808 0.9597 0.9816 0.9808 0.9726
D-SSIM ↓ 0.0228 0.0107 0.0096 0.0202 0.0092 0.0096 0.0137
LPIPS ↓ 0.0708 0.0389 0.0378 0.0639 0.0337 0.0354 0.0468
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Table 5: Overall quantitative comparisions between ours and other methods on the DyNeRF dataset
(Li et al., 2022). We report PSNR, D-SSIM, LPIPS averaged over all scenes. “Ours” denotes RT-
4DGS with the proposed flow supervision.

Mean PSNR ↑ Mean D-SSIM ↓ Mean LPIPS ↓
HexPlane Cao & Johnson (2023) 31.70 0.014 0.075
K-Planes Fridovich-Keil et al. (2023) 31.63 0.018 -
MixVoxels Wang et al. (2023b) 30.80 0.02 0.126
NeRFPlayer Song et al. (2023) 30.69 0.034 0.111
HyperReel Attal et al. (2023) 31.10 0.036 0.096
4DGS Wu et al. (2023) 31.15 0.016 0.150
RT-4DGS Yang et al. (2023c) 32.01 0.014 0.055
Ours 32.32 0.014 0.047

B.3 MORE QUALITATIVE RESULTS ON THE DYNERF DATASET.

More qualitative results on DyNeRF dataset Li et al. (2022) can be found in Fig. 10, Fig. 11, Fig. 12
and our video.

C FLOW VISUALIZATION IN DYNAMIC GAUSSIAN FIELDS

Note that dynamic 3D Gaussian (Luiten et al., 2023) provided a way to visualize 3D scene motions
between consecutive frames, however, by tracking one “most influential” 3D Gaussian per pixel.
This is neither efficient nor effective to be used in flow supervision, because the “most influential”
3D Gaussian for each pixel is determined by searching the nearest 3D Gaussian’s center from tens
of thousands of 3D Gaussian candidates with a virtual 3D point along pixel ray lifted with corre-
sponding rendered depth. Also, the “most influential” Gaussian of a pixel might not even cover the
same pixel but still be considered just because this Gaussian’s center is the nearest one to the virtual
point among all 3D Gaussians. We have also applied flow supervision in this way, but we find it
has no observable benefit for rendering quality while resulting in slower training speed due to the
per-pixel nearest search. On the other hand, RT-4DGS showed “render flow” in their paper only for
visualization purpose and the detail was not clarified and the function was not enabled, please refer
to their code, issue 1 and issue 2.

D CAMERA MOTION AND OBJECT MOTION

When considering the cases with both camera motions and object motions, we have the relationship
flowo = flowG+flowcam, where flowcam is one portion of optical flow cased by camera motion
and flowG is still the foreground object Gaussian dynamics. And the original flow supervision in
our Eq.9 is rewritten as:

Lflow = ||flowo
t1t2(xt1)− flowcam

t1t2 − flowG
t1t2 ||, (12)
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(a) Flame Steak

(b) Cut Spinach

Figure 10: Qualitative comparisons on DyNeRF dataset (Li et al., 2022). The left column shows the
novel view rendered images and depth maps of a 4D Gaussian method Yang et al. (2023c), which
suffers from artifacts in the dynamic regions. The right column shows the results of the same method
while optimized with our flow supervision during training.
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(a) Sear Steak

(b) Cut Beef

Figure 11: Qualitative comparisons on DyNeRF dataset Li et al. (2022). The left column shows the
novel view rendered images and depth maps of a 4D Gaussian method (Yang et al., 2023c). While
The right column shows the results of the same method while optimized with our flow supervision
during training.
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Figure 12: Flame Salmon

Figure 13: Qualitative comparisons on DyNeRF dataset (Li et al., 2022). Since the details of depth
maps on Flame Salmon are hard to be recognized, we only compare the rendered images. The left
column shows the novel view rendered images of a 4D Gaussian method (Yang et al., 2023c). While
The right column shows the results of the same method while optimized with our flow supervision
during training.
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