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Abstract

The number of states in a dynamic process is
exponential in the number of objects, making re-
inforcement learning (RL) difficult in complex,
multi-object domains. For agents to scale to the
real world, they will need to react to and reason
about unseen combinations of objects. We argue
that the ability to recognize and use local factor-
ization in transition dynamics is a key element
in unlocking the power of multi-object reasoning.
To this end, we show that (1) known local struc-
ture in the environment transitions is sufficient for
an exponential reduction in the sample complex-
ity of training a dynamics model, and (2) a locally
factored dynamics model provably generalizes
out-of-distribution to unseen states and actions.
Knowing the local structure also allows us to pre-
dict which unseen states and actions this dynamics
model will generalize to. We propose to lever-
age these observations in a novel Model-based
Counterfactual Data Augmentation (MOCODA)
framework. MOCODA applies a learned locally
factored dynamics model to an augmented distri-
bution of states and actions to generate counter-
factual transitions for RL. MOCODA works with
a broader set of local structures than prior work
and allows for direct control over the augmented
training distribution. We show that MOCODA en-
ables RL agents to learn policies that generalize
to unseen states and actions. We use MOCODA
to train an offline RL agent to solve an out-of-
distribution robotics manipulation task on which
standard offline RL algorithms fail.1
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1 Introduction

Modern reinforcement learning (RL) algorithms have
demonstrated remarkable success in several different do-
mains such as games (Mnih et al., 2015; Silver et al.,
2017) and robotic manipulation (Kalashnikov et al., 2018;
Andrychowicz et al., 2020). By repeatedly attempting a sin-
gle task through trial-and-error, these algorithms can learn
to collect useful experience and eventually solve the task of
interest. However, designing agents that can generalize in
off-task and multi-task settings remains a open and challeng-
ing research question. This is especially true in the offline
and zero-shot settings, in which the training data might be
unrelated to the target task, and may lack sufficient coverage
over possible states.

One way to enable generalization in such cases is through
structured representations of states, transition dynamics or
task spaces. These representations can be directly learned,
sourced from known or learned abstractions over the state
space, or derived from causal knowledge of the world. Sym-
metries present in such representations enable compositional
generalization to new configurations of states or tasks, either
by building the structure into the function approximator or
algorithm (Kipf et al., 2020; Veerapaneni et al., 2020; Goyal
et al., 2021; Nangue Tasse et al., 2020), or by using the
structure for data augmentation (Andrychowicz et al., 2017;
Laskin et al., 2020; Pitis et al., 2020b).

In this paper, we extend past work on structure-driven data
augmentation by using a locally factored model of the tran-
sition dynamics to generate counterfactual training distribu-
tions. This enables agents to generalize beyond the support
of their original training distribution, including to novel
tasks where learning the optimal policy requires access to
states never seen in the experience buffer. Our key insight is
that a learned dynamics model that accurately captures local
causal structure (a “locally factored” dynamics model) will
predictably exhibit good generalization performance outside
the empirical training distribution. We propose Model-based
Counterfactual Data Augmentation (MOCODA), which gen-
erates an augmented state-action distribution where its lo-
cally factored dynamics model is likely to perform well,
then applies its dynamics model to generate new transition
data. By training the agent’s policy and value modules on
this augmented dataset, they too learn to generalize well out-
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Figure 1: Out-of-Distribution Generalization using MOCODA:
A US driver can use MOCODA to quickly adapt to driving in the
left lane during a UK trip. Their prior experience PEMP(τ) (top
left) contains mostly right-driving experience (e.g. 1 , 2 ) and a
limited amount of left-driving experience after renting the car in the
UK (e.g. 3 ). A locally factored model that captures the transition
structure (bottom left) allows the agent to accurately sample coun-
terfactual experience from PMOCODA(τ) (bottom center), including
novel left-lane city driving maneuvers (e.g. 4 ). This enables fast
adaptation when learning an optimal policy for the new task (UK
driving). Our framework MOCODA draws single-step transition
samples from PMOCODA(τ) given PEMP(τ) and knowledge of the
causal structure; several realizations of this framework are de-
scribed in Section 4.

of-distribution. To ground this in an example, we consider
how a US driver might use MOCODA to adapt to driving
on the left side of the road while on vacation in the UK
(Figure 1). Given knowledge of the target task, we can even
focus the augmented distribution on relevant areas of the
state-action space (e.g., states with the car on the left side
of the road).

Our main contributions are:

A. Our proposed method, MOCODA, leverages a masked
dynamics model for data-augmentation in locally-
factored settings, which relaxes strong assumptions
made by prior work on factored MDPs and counter-
factual data augmentation.

B. MOCODA allows for direct control of the state-action
distribution on which the agent trains; we show that
controlling this distribution in a task relevant way can
lead to improved performance.

C. We demonstrate “zero-shot” generalization of a policy
trained with MOCODA to states that the agent has never
seen. With MOCODA, we train an offline RL agent to
solve an out-of-distribution robotics manipulation task
on which standard offline RL algorithms fail.

2 Preliminaries

We model the environment as an infinite-horizon, reward-
free Markov Decision Process (MDP), described by tuple

⟨S,A, P, γ⟩ consisting of the state space, action space, tran-
sition function, and discount factor, respectively (Puter-
man, 2014; Sutton and Barto, 2018). We use lowercase
for generic instances and uppercase for variables (e.g.,
s ∈ range(S) ⊆ S, though we also abuse notation and
write S ∈ S). A task is defined as a tuple ⟨r, P0⟩, where
r : S × A → R is a reward function and P0 is an initial
distribution over S. The goal of the agent given a task
is to learn a policy π : S → A that maximizes value
EP,π

∑
t γ

tr(st, at). Model-based RL (MBRL) is one ap-
proach to solving this problem, in which the agent learns
a model Pθ of the transition dynamics P . The model is
“rolled out” to generate “imagined” trajectories, which are
used either for direct planning (De Boer et al., 2005; Chaslot
et al., 2008), or as training data for the agent’s policy and
value functions (Sutton, 1991; Janner et al., 2019).

Factored MDPs. A factored MDP (FMDP) is a type of
MDP that assumes a globally factored transition model,
which can be used to exponentially improve the sample
complexity of RL (Guestrin et al., 2003; Kearns and Koller,
1999; Osband and Van Roy, 2014). In an FMDP, states and
actions are described by a set of variables {Xi}, so that
S×A = X 1×X 2×. . .×Xn, and each state variable Xi ∈
X i (X i is a subspace of S) is dependent on a subset of state-
action variables (its “parents” Pa(Xi)) at the prior timestep,
Xi ∼ Pi(Pa(Xi)). We call a set {Xj} of state-action
variables a “parent set” if there exists a state variable Xi

such that {Xj} = Pa(Xi). We say that Xi is a “child” of its
parent set Pa(Xi). We refer to the tuple ⟨Xi,Pa(Xi), Pi(·)⟩
as a “causal mechanism”.

Local Causal Models. Because the strict global factor-
ization assumed by FMDPs is rare, recent work on data
augmentation for RL and object-oriented RL suggests that
transition dynamics might be better understood in a local
sense, where all objects may interact with each other over
time, but in a locally sparse manner (Goyal et al., 2021;
Kipf et al., 2020). Our work uses an abridged version of the
Local Causal Model (LCM) framework (Pitis et al., 2020b),
as follows: We assume the state-action space decomposes
into a disjoint union of local neighborhoods: S ×A =
L1 ⊔ L2 ⊔ · · · ⊔ Ln. A neighborhood L is associated with
its own transition function PL, which is factored according
to its graphical model GL (Koller and Friedman, 2009). We
assume no two graphical models share the same structure
(i.e., the structure of GL uniquely identifies L). Then, analo-
gously to FMDPs, if (st, at) ∈ L, each state variable Xi

t+1

at the next time step is dependent on its parents PaL(Xi
t+1)

at the prior timestep, Xi
t+1 ∼ PL

i (PaL(Xi
t+1)). We define

mask function M : S ×A → {Li} that maps (s, a) ∈ L to
the adjacency matrix of GL. This formalism is summarized
in Figure 2, and differs from FMDPs in that each L has its
own factorization.



Figure 2: Locally Factored Dynamics: The state-action space S × A is divided into local subsets, L1,L2,L3, which each have
their own factored causal structure, GL. The local transition model PL is factored according to GL; e.g., in the example shown,
PL(xt, yt, at) = [Px(xt), Py(yt, at)].

Given knowledge of M , the Counterfactual Data Augmenta-
tion (CoDA) framework (Pitis et al., 2020b) allowed model-
free agents to stitch together disconnected components from
two different transitions to create new, causally valid data.
Our proposed framework (MOCODA) leverages a dynam-
ics model to improve upon model-free CoDA in several re-
spects: (a) MOCODA works with overlapping parent sets,
(b) MOCODA allows the agent to control the base data
distribution, (c) MOCODA demonstrates zero-shot general-
ization to new areas of the state space, allowing the agent to
solve tasks that are entirely outside the original data distri-
bution.

3 Generalization Properties of Locally
Factored Models

3.1 Sample Complexity of Training a Locally Factored
Dynamics Model

In this subsection, we provide an original adaptation of an
elementary result from model-based RL to the locally fac-
tored setting, to show that factorization can exponentially
improve sample complexity. We note that several theoretical
works have shown that the FMDP structure can be exploited
to obtain similarly strong sample complexity bounds in the
FMDP setting. Our goal here is not to improve upon these re-
sults, but to adapt a small part (model-based generalization)
to the significantly more general locally factored setting and
show that local factorization is enough for (1) exponential
gains in sample complexity and (2) out-of-distribution gen-
eralization with respect to the empirical joint, to a set of
states and actions that may be exponentially larger than the
empirical set. Note that the following discussion applies to
tabular RL, but we apply our method to continuous domains.

Notation. We work with finite state (|S|) and action (|A|)
spaces and assume that there are m local subspaces L of
size |L|, such that m|L| = |S||A|. For each subspace L, we
assume transitions factor into k causal mechanisms {Pi},
each with the same number of possible children, |ci|, and the
same number of possible parents, |Pai|. Note mΠi|ci| = |S|
(child sets are mutually exclusive) but mΠi|Pai| ≥ |S||A|
(parent sets may overlap).

Theorem 1. Let n be the number of empirical samples
used to train the model of each local causal mechanism,
PL
i,θ at each configuration of parents Pai = x. There exists

constant c such that, if

n ≥ ck2|ci| log(|S||A|/δ)
ϵ2

,

then, with probability at least 1− δ, we have:

max
(s,a)

∥P (s, a)− Pθ(s, a)∥1 ≤ ϵ.

Sketch of Proof. We apply a concentration inequality to
bound the ℓ1 error for fixed parents and extend this to a
bound on the ℓ1 error for a fixed (s, a) pair. The conclusion
follows by a union bound across all states and actions. See
Appendix A for details.

To compare to full-state dynamics modeling, we can trans-
late the sample complexity from the per-parent count n
to a total count N . Recall mΠi|ci| = |S|, so that
|ci| = (|S|/m)1/k, and mΠi|Pai| ≥ |S||A|. We assume
a small constant overlap factor v ≥ 1, so that |Pai| =
v(|S||A|/m)1/k. We need the total number of component
visits to be n|Pai|km, for a total of nv(|S||A|/m)1/km
state-action visits, assuming that parent set visits are allo-
cated evenly, and noting that each state-action visit provides
k parent set visits. This gives:

Corollary 1. To bound the error as above, we need to have

N ≥ cmk2(|S|2|A|/m2)1/k log(|S||A|/δ)
ϵ2

,

total train samples, where we have absorbed the overlap
factor v into constant c.

Comparing this to the analogous bound for full-state model
learning (Agarwal et al. (2019), Prop. 2.1):

N ≥ c|S|2|A| log(|S||A|/δ)
ϵ2

,

we see that we have gone from super-linear
O(|S|2|A| log(|S||A|)) sample complexity in



terms of |S||A|, to the exponentially smaller
O(mk2(|S|2|A|/m2)1/k log(|S||A|)).

This result implies that for large enough |S||A| our model
must generalize to unseen states and actions, since the num-
ber of samples needed (N ) is exponentially smaller than the
size of the state-action space (|S||A|). In contrast, if it did
not, then sample complexity would be Ω(|S||A|).
Remark 3.1. The global factorization property of FMDPs
is a strict assumption that rarely holds in reality. Although
local factorization is broadly applicable and significantly
more realistic than the FMDP setting, it is not without cost.
In FMDPs, we have a single subspace (m = 1). In the
locally factored case, the number of subspaces m is likely
to grow exponentially with the number of factors k, as there
are exponentially many ways that k factors can interact. To
be more precise, there are k2k possible bipartite graphs
from k nodes to k nodes. Nevertheless, by comparing bases
(2 ≪ |S||A|), we see that we still obtain exponential gains
in sample complexity from the locally factored approach.

3.2 Training Value Functions and Policies for
Out-of-Distribution Generalization

In the previous subsection, we saw that a locally factored
dynamics model provably generalizes outside of the empir-
ical joint distribution. A natural question is whether such
local factorization can be leveraged to obtain similar results
for value functions and policies?

We will show that the answer is yes, but perhaps counter-
intuitively, it cannot be achieved by training on the empiri-
cal distribution, as was the case for dynamics models. The
difference arises because learned value functions, and conse-
quently learned policies, involve the long horizon prediction
EP,π

∑∞
t=0 γ

tr(st, at), which can no longer take advantage
of the sparsity of GL. When compounded over time, sparse
local structures can quickly produce an entangled long hori-
zon structure (cf. the “butterfly effect”). Intuitively, even
if several pool balls are far apart and locally disentangled,
future collisions are central to planning and the optimal
policy depends on the relative positions of all balls. This
applies even if rewards are factored (e.g., rewards in most
pool variants) (Sodhani et al., 2022).

We note that, although temporal entanglement may be expo-
nential in the branching factor of the unrolled causal graph,
it’s possible for the long horizon structure to stay sparse
(e.g., k independent factors that never interact). It’s also
possible that other regularities in the data will allow for
good out-of-distribution generalization. Thus, we cannot
claim that value functions and policies will never generalize
well out-of-distribution (see Veerapaneni et al. (2020) for an
example when they do). Nevertheless, we hypothesize that
exponentially fast entanglement does occur in complex nat-
ural systems, making direct generalization of long horizon

predictions difficult.

Out-distribution generalization of the policy and value func-
tion can be achieved, however, by leveraging the generaliza-
tion properties of a locally factored dynamics model. We
propose to do this by generating out-of-distribution states
and actions (the “parent distribution”), and then applying
our learned dynamics model to generate transitions that are
used to train the policy and value function. We call this
process Model-based Counterfactual Data Augmentation
(MOCODA).

4 Model-based Counterfactual Data
Augmentation

In the previous section, we discussed how locally factored
dynamics model can generalize beyond the empirical dataset
to provide accurate predictions on an augmented state-action
distribution we call the “parent distribution”. We now seek
to leverage this out-of-distribution generalization in the dy-
namics model to bootstrap the training of an RL agent.
Our approach is to control the agent’s training distribution
P (s, a, s′) via the locally factored dynamics Pϕ(s

′|s, a) and
the parent distribution Pθ(s, a) (both trained using experi-
ence data). This allows us to sample augmented transitions
(perhaps unseen in the experience data) for consumption by
a downstream RL agent. We call this framework MOCODA,
and summarize it using the following three-step process:

S1 Given known parent sets, generate appropriate parent
distribution Pθ(s, a).

S2 Apply a learned dynamics model Pϕ(s
′|s, a) to parent

distribution to generate “augmented dataset” of transi-
tions (s, a, s′).

S3 Use augmented dataset s, a, s′ ∼ PθPϕ (alongside
experience data, if desired) to train an off-policy RL
agent on the (perhaps novel) target task.

Figure 3 illustrates this framework in a block diagram. An
instance of MOCODA is realized by specific choices at each
step. For example, the original CoDA method (Pitis et al.,
2020b) is an instance of MOCODA, which (1) generates the
parent distribution by uniformly swapping non-overlapping
parent sets, and (2) uses subsamples of empirical transitions
as a locally factored dynamics model. CoDA works when
local graphs have non-overlapping parent sets, but it does
not allow for control over the parent distribution and does
not work in cases where parent sets overlap. MOCODA gen-
eralizes CoDA, alleviating these restrictions and allowing
for significantly more design choices, discussed next.



Figure 3: Training an RL Agent with MOCODA: We use the empirical dataset to train parent distribution model, Pθ(s, a) and locally
factored dynamics model Pϕ(s

′ | s, a), both informed by the local structure. The dynamics model is applied to the parent distribution to
produce augmented dataset PθPϕ. The augmented & empirical datasets are labeled with the target task reward, r(s, a) and fed into the
RL algorithm as training data.

4.1 Generating the Parent Distribution

What parent distribution (Step 1) should be used to gen-
erate the augmented dataset? We describe some options
below, noting that our proposals (MOCODA, MOCODA-U,
MOCODA-P) rely on knowledge of parent sets—i.e., they
require the state to be decomposed into objects.

Baseline Distributions. If we restrict ourselves to states
and actions in the empirical dataset (EMP) or short-horizon
rollouts that start in the empirical state-action distribution
(DYNA), as is typical in Dyna-style approaches (Sutton and
Barto, 2018; Janner et al., 2019), we limit ourselves to a
small neighborhood of the empirical state-action distribu-
tion. This forgoes the opportunity to train our off-policy RL
agent on out-of-distribution data that may be necessary for
learning the target task.

Another option is to sample random state-actions from S×A
(RAND). While this provides coverage of all state-actions
relevant to the target task, there is no guarantee that our
locally factorized model generalizes well in RAND. The
proof of Theorem 1 shows that our model only generalizes
well to a particular (s, a) if each component generalizes
well on the configurations of each parent set in that (s, a).
In context of Theorem 1, this occurs only if the empirical
data used to train our model contained at least n samples for
each set of parents in (s, a). This suggests focusing on data
whose parent sets have sufficient support in the empirical
dataset.

The MOCODA distribution. We do this by constraining
the marginal distribution of each parent set (within local

neighborhood L) in the augmented distribution to match
the corresponding marginal in the empirical dataset. As
there are many such distributions, in absence of additional
information, it is sensible to choose the one with maximum
entropy (Jaynes, 1957). We call this maximum entropy,
marginal matching distribution the MOCODA augmented
distribution. Figure 1 provides an illustrative example of
going from EMP (driving primarily on the right side) to
MOCODA (driving on both right and left). We propose an
efficient way to generate the MOCODA distribution using
a set of Gaussian Mixture Models, one for each parent set
distribution. We sample parent sets one at a time, condition-
ing on any previous partial samples due to overlap between
parent sets. This process is detailed in Appendix B.

Weaknesses of the MOCODA distribution. Although our
locally factored dynamics model is likely to generalize well
on MOCODA, there are a few reasons why training our RL
agent on MOCODA in Step 3 may yield poor results. First,
if there are empirical imbalances within parent sets (some
parent configurations more common than others), these im-
balances will appear in MOCODA. Moreover, multiple such
imbalances will compound exponentially, so that (s, a) tu-
ples with rare parent combinations will be extremely rare
in MOCODA, even if the model generalizes well to them.
Second, Support(MOCODA) may be so large that it makes
training the RL algorithm in Step 3 inefficient. Finally, the
cost function used in RL algorithms is typically an expecta-
tion over the training distribution, and optimizing the agent
in irrelevant areas of the state-action space may hurt per-
formance. The above limitations suggest that rebalancing
MOCODA might improve results.



MOCODA-U and MOCODA-P. To mitigate the first weak-
ness of MOCODA we might skew MOCODA toward the uni-
form distribution over its support, U(Support(MOCODA)).
Although this is possible to implement using rejection sam-
pling when k is small, exponential imbalance makes it im-
practical when k is large. A more efficient implementation
reweights the GMM components used in our MOCODA sam-
pler. We call this approach (regardless of implementation)
MOCODA-U. To mitigate the second and third weaknesses
of MOCODA, we need additional knowledge about the target
task—e.g., domain knowledge or expert trajectories. We
can use such information to define a prioritized parent dis-
tribution MOCODA-P with support in Support(MOCODA),
which can also be obtained via rejection sampling (perhaps
on MOCODA-U to also relieve the initial imbalance).

4.2 The Choice of Dynamics Model and RL Algorithm

Once we have a parent distribution, Pθ(s, a), we gener-
ate our augmented dataset by applying dynamics model
Pϕ(s

′ | s, a). The natural choice in light of the discussion in
Section 3 is a locally factored model. This requires knowl-
edge of the local factorization, which is more involved than
the parent set knowledge used to generate the MOCODA dis-
tribution and its reweighted variants. We note, however, that
a locally factored model may not be strictly necessary for
MOCODA, so long as the underlying dynamics are factored.
Although unfactored models do not perform well in our ex-
periments, we hypothesize that a good model with enough
in-distribution data and the right regularization might learn
to implicitly respect the local factorization. The choice of
model architecture is not core to our work, and we leave
exploration of this possibility to future work.

Masked Dynamics Model. In our experiments, we assume
access to a mask function M : S×A → {0, 1}(|S|+|A|)×|S|

(perhaps learned (Kipf et al., 2018; Pitis et al., 2020b)),
which maps states and actions to the adjacency map of the lo-
cal graph GL. Given this mask function, we design a dynam-
ics model Pϕ that accepts M(s, a) as an additional input and
respects the causal relations in the mask (i.e., mutual infor-
mation I(Xi

t ;X
j
t+1 | (St, At)\Xi

t) = 0 if M(st, at)ij = 0.
There are many architectures that enforce this constraint. In
our experiments we opt for a simple one, which first embeds
each of the k parent sets: f = [fi(Pai)]ki=1, and then com-
putes the j-th child as a function of the sum of the masked
embeddings, gj(M(s, a)·,j · f). See Appendix B for further
implementation details.

The RL Algorithm. After generating an augmented
dataset by applying our dynamics model to the augmented
distribution, we label the data with our target task reward
and use the result to train an RL agent. MOCODA works
with a wide range of algorithms, and the choice of algorithm
will depend on the task setting. For example, our experi-

ments are done in an offline setup, where the agent is given
a buffer of empirical data, with no opportunity to explore.
For this reason, it makes sense to use offline RL algorithms,
as this setting has proven challenging for standard online
algorithms (Levine et al., 2020).

Remark 4.1. The rationales for (1) regularizing the pol-
icy toward the empirical distribution in offline RL algo-
rithms, and (2) training on the MOCODA distribution, are
compatible: in each case, we want to restrict ourselves to
state-actions where our models generalize well. By using
MOCODA we expand this set beyond the empirical distri-
bution. Thus, when we apply offline RL algorithms in our
experiments, we train their offline component (e.g., the ac-
tion sampler in BCQ (Fujimoto et al., 2019) or the BC
constraint in TD3-BC (Fujimoto and Gu, 2021)) on the
expanded MOCODA training distribution.

5 Experiments

Hypotheses Our experiments are aimed at finding support
for two critical hypotheses:

H1 Dynamics models, especially ones sensitive to the lo-
cal factorization, are able to generalize well in the
MOCODA distribution.

H2 This out-of-distribution generalization can be lever-
aged via data augmentation to train an RL agent to
solve out-of-distribution tasks.

Note that support for H2 provides implicit support for H1.

Domains We test MOCODA on two continuous control do-
mains. First is a simple, but controlled, 2D Navigation
domain, where the agent must travel from one point in a
square arena to another. States are 2D (x, y) coordinates
and actions are 2D (∆x,∆y) vectors. In most of the state
space, the sub-actions ∆x and ∆y affect only their respec-
tive coordinate. In the top right quadrant, however, the ∆x
and ∆y sub-actions each affect both x and y coordinates, so
that the environment is locally factored. The agent has ac-
cess to empirical training data consisting of left-to-right and
bottom-to-top trajectories that are restricted to a ⌟ shape of
the state space (see the EMP distribution in Figure 4). We
consider a target task where the agent must move from the
bottom left to the top right. In this task there is sufficient
empirical data to solve the task by following the ⌟ shape of
the data, but learning the optimal policy of going directly
via the diagonal requires out-of-distribution generalization.

Second, we test MOCODA in a challenging HookSweep2
robotics domain based on Hook-Sweep (Kurenkov et al.,
2020), in which a Fetch robot must use a long hook to sweep
two boxes to one side of the table (either toward or away
from the agent). The boxes are initialized near the center



EMP DYNA MOCODA MOCODA-U RAND

Figure 4: 2D Navigation Visualization. (Best viewed with 2x zoom) Blue arrows represent transition samples as a vector from (xt, yt) to
(xt+1, yt+1). Shaded red areas mark the edges of the initial states of empirical trajectories and the center of the square. We see that 5-step
rollouts (DYNA) do not fill in the center (needed for optimal policy), and fail to constrain actions to those that the model generalizes well
on. For MOCODA, we see the effect of compounding dataset imbalance discussed in Subsection 4.1, which is resolved by MOCODA-U.

EMP MOCODA MOCODA-P

Figure 5: HookSweep2 Visualization: Stylized visualization of the distributions EMP (left), MOCODA (center), and MOCODA-P (right).
Each figure can be understood as a top down view of the table, where a point is a plotted if the two blocks are close together on the
table. The distribution EMP does not overlap with the green goal areas on the left and right, and so the agent is unable to learn. In the
MOCODA distribution, the agent gets some success examples. In the MOCODA-P distribution, state-actions are reweighted so that the
joint distribution of the two block positions is approximately uniform, leading to more evenly distributed coverage of the table.

Figure 6: HookSweep2 environment. At test time the agent must
sweep both blocks to one side of the table, but empirical data
contains only trajectories of a single block being sweeped.

of the table, and the empirical data contains trajectories of
the agent sweeping exactly one box to one side of the table,
leaving the other in the center. The target task requires the
agent to generalize to states that it has never seen before
(both boxes together on one side of the table). This is par-
ticularly challenging because the setup is entirely offline
(no exploration), where poor out-of-distribution generaliza-
tion typically requires special offline RL algorithms that
constrain the agent’s policy to the empirical distribution
(Levine et al., 2020; Agarwal et al., 2020; Kumar et al.,
2020; Fujimoto and Gu, 2021).

Directly comparing model generalization error. In the
2D Navigation domain we have access to the ground
truth dynamics, which allows us to directly compare general-
ization error on variety of distributions, visualized in Figure
4. We compare three different model architectures: un-

factored, globally factored (assuming that the (x,∆x) and
(y,∆y) causal mechanisms are independent everywhere,
which is not true in the top right quadrant), and locally fac-
tored. The models are each trained on a empirical dataset
of 35000 transitions for up to 600 epochs, which is early
stopped using a validation set of 5000 transitions. The re-
sults are shown in Table 1. We find strong support for H1:
even given the simple dynamics of 2d Navigation, it
is clear that the locally factored model is able to general-
ize better than a fully connected model, particularly on the
MOCODA distribution, where performance degradation is
minimal. We note that the DYNA distribution was formed by
starting in EMP and doing 5-step rollouts with random ac-
tions. The random actions produce out-of-distribution data
to which no model (not even the locally factored model) can
generalize well to.

Solving out-of-distribution tasks. We apply the trained
dynamics models to several base distributions and compare
the performance of RL agents trained on each dataset. To
ensure improvements are due to the augmented dataset and
not agent architecture, we train several different algorithms,
including: SAC (Haarnoja et al., 2018), BCQ (Fujimoto et al.,
2019) (with DDPG (Lillicrap et al., 2016)), CQL (Kumar
et al., 2020) and TD3-BC (Fujimoto and Gu, 2021).

The results on 2D Navigation are shown in Table 2.
We see that for all algorithms, the use of the MOCODA



Table 1: 2D Navigation Dynamics Modeling Results: Mean squared error ± std. dev. over 5 seeds, scaled by 1e2 for clarity (best
model boldfaced). The locally factored model experienced less performance degradation out-of-distribution, and performed better on all
distributions, except for the empirical distribution (EMP) itself.

Generalization Error (MSE ×1e2) (lower is better)
Model Architecture EMP DYNA RAND MOCODA MOCODA-U

Not Factored 0.14 ± 0.04 2.41 ± 0.29 4.4 ± 0.31 0.95 ± 0.06 1.29 ± 0.15
Globally Factored 0.36 ± 0.01 2.09 ± 0.28 3.17 ± 0.3 0.41 ± 0.02 0.51 ± 0.02
Locally Factored 0.23 ± 0.1 1.47 ± 0.27 2.03 ± 0.19 0.33 ± 0.11 0.46 ± 0.11

Table 2: 2D Navigation Offline RL Results: Average steps to completion ± std. dev. over 5 seeds for various RL algorithms (best
distribution in each row boldfaced), where average steps was computed over the last 50 training epochs. Training on MOCODA and
MOCODA-U improved performance in all cases. Interestingly, even using RAND improves performance, indicating the importance of
training on out-of-distribution data. Note that this is an offline RL task, and so SAC (an algorithm designed for online RL) is not expected
to perform well.

Average Steps to Completion (lower is better)
RL Algorithm EMP RAND MOCODA MOCODA-U

SAC (online RL) 53.1 ± 9.8 27.6 ± 1.1 38.8 ± 18.3 41.3 ± 17.7
BCQ 58.5 ± 10.1 31.7 ± 2.4 22.8 ± 0.4 24.8 ± 4.2
CQL 45.8 ± 4.0 27.6 ± 1.3 22.8 ± 0.2 22.7 ± 0.3

TD3-BC 40.0 ± 16.1 26.1 ± 0.8 21.0 ± 0.7 20.7 ± 0.8

Table 3: HookSweep2 Offline RL Results: Average success percentage (± std. dev. over 3 seeds), where the average was computed over
the last 50 training epochs. SAC and CQL (omitted) were unsuccessful with all datasets. We see that MOCODA was necessary for learning,
and that results improve drastically with MOCODA-P, which re-balances MOCODA toward a uniform distribution in the box coordinates
(see Figure 5).

Average Success Rate (higher is better)
RL Algorithm EMP MOCODA MOCODA-P

BCQ 2.0 ± 1.6 20.7 ± 4.1 64.7 ± 4.1
TD3-BC 0.7 ± 0.9 38.7 ± 7.5 84.0 ± 2.8

and MOCODA-U augmented datasets greatly improve the
average step count, providing support for H2 and suggest-
ing that using these datasets allows the agents to learn to
traverse the diagonal of the state space, even though it is
out-of-distribution with respect to EMP. This is consistent
with a qualitative assessment of the learned policies, which
confirms that agents trained on the ⌟ -shaped EMP distri-
bution learn a ⌟-shaped policy, whereas agents trained on
MOCODA and MOCODA-U learn the optimal (diagonal)
policy.

The results on the more complex HookSweep2 environ-
ment, shown in Table 3, provide further support for H2.
On this environment, only results for BCQ and TD3-BC
are shown, as the other algorithms failed on all datasets.
For HookSweep2 we used a prioritized MOCODA-P par-
ent distribution, as follows: knowing that the target task
involves placing two blocks, we applied rejection sampling
to MOCODA to make the marginal distribution of the joint
block positions approximately uniform over its support. The
effect is to have good representation in all areas of the most
important state features for the target task (the block po-

sitions). The visualization in Figure 5 makes clear why
training on MOCODA or MOCODA-P was necessary in or-
der to solve this task: the base EMP distribution simply does
not have sufficient coverage of the goal space.

6 Conclusion

In this paper, we tackled the challenging yet common set-
ting where the available empirical data provides insufficient
coverage of critical parts of the state space. Starting with
the insight that locally factored transition models are capa-
ble of generalizing outside of the empirical distribution, we
proposed MOCODA, a framework for augmenting available
data using a controllable “parent distribution” and locally
factored dynamics model. We find that adding augmented
samples from MOCODA allows RL agents to learn poli-
cies that traverse states and actions never before seen in
the experience buffer. Although our data augmentation is
“model-based”, the transition samples it produces are com-
patible with any downstream RL algorithm that consumes
single-step transitions.

Future work might (1) explore methods for learning lo-



cally factorized representations, especially in environments
with high-dimensional inputs (e.g., pixels) (Jiang et al.,
2019; Kipf et al., 2020), and consider how MOCODA
might integrate with latent representations, (2) combine
the insights presented here with learned predictors of out-of-
distribution generalization (e.g., uncertainty-based predic-
tion) (Pan et al., 2020), (3) create benchmark environments
for entity-based RL (Winter et al., 2022) so that object-
oriented methods and models can be better evaluated, and
(4) explore different approaches to re-balancing the training
distribution for learning on downstream tasks. With regards
to direction (1), we note that asserting (or not) certain inde-
pendence relationships may have fairness implications for
datasets (Park et al., 2018; Creager et al., 2020) that should
be kept in mind or explored. This is relevant also in regards
to direction 4, as dataset re-balancing may result in (or fix)
biases in the data (Krasanakis et al., 2018). Re-balancing
schemes should be sensitive to this.
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In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 2185–
2195. PMLR, 13–18 Jul 2020.

Alexander D’Amour, Hansa Srinivasan, James Atwood, Pallavi
Baljekar, David Sculley, and Yoni Halpern. Fairness is not
static: deeper understanding of long term fairness via simulation
studies. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pages 525–534, 2020.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y
Rubinstein. A tutorial on the cross-entropy method. Annals of
operations research, 134(1):19–67, 2005.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to
offline reinforcement learning. Advances in Neural Information
Processing Systems, 34, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep
reinforcement learning without exploration. In International
Conference on Machine Learning, pages 2052–2062. PMLR,
2019.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani,
Sergey Levine, Yoshua Bengio, and Bernhard Schölkopf. Re-
current independent mechanisms. In International Conference
on Learning Representations, 2021.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha
Venkataraman. Efficient solution algorithms for factored mdps.
Journal of Artificial Intelligence Research, 19:399–468, 2003.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
Soft actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International confer-
ence on machine learning, pages 1861–1870. PMLR, 2018.

Lily Hu and Issa Kohler-Hausmann. What’s sex got to do with fair
machine learning? In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, 2020.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine.
When to trust your model: Model-based policy optimization.
In Advances in Neural Information Processing Systems, pages
12498–12509, 2019.

Edwin T Jaynes. Information theory and statistical mechanics.
Physical review, 106(4):620, 1957.

Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin
Ahn. Scalor: Generative world models with scalable object
representations. In International Conference on Learning Rep-
resentations, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexan-
der Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal
Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep rein-
forcement learning for vision-based robotic manipulation. In
Conference on Robot Learning, pages 651–673. PMLR, 2018.

Michael Kearns and Daphne Koller. Efficient reinforcement learn-
ing in factored mdps. In IJCAI, volume 16, pages 740–747,
1999.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling,
and Richard Zemel. Neural relational inference for interacting
systems. In International Conference on Machine Learning,
pages 2688–2697. PMLR, 2018.

Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive
learning of structured world models. In International Confer-
ence on Learning Representations, 2020.

Daphne Koller and Nir Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009.



Emmanouil Krasanakis, Eleftherios Spyromitros-Xioufis, Symeon
Papadopoulos, and Yiannis Kompatsiaris. Adaptive sensitive
reweighting to mitigate bias in fairness-aware classification. In
Proceedings of the 2018 world wide web conference, pages
853–862, 2018.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine.
Conservative q-learning for offline reinforcement learning. Ad-
vances in Neural Information Processing Systems, 33:1179–
1191, 2020.

Andrey Kurenkov, Ajay Mandlekar, Roberto Martin-Martin, Silvio
Savarese, and Animesh Garg. Ac-teach: A bayesian actor-critic
method for policy learning with an ensemble of suboptimal
teachers. In Conference on Robot Learning, pages 717–734.
PMLR, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter
Abbeel, and Aravind Srinivas. Reinforcement learning with
augmented data. In Advances in Neural Information Processing
Systems, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Of-
fline reinforcement learning: Tutorial, review, and perspectives
on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Mar-
tin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. na-
ture, 518(7540):529–533, 2015.

Geraud Nangue Tasse, Steven James, and Benjamin Rosman. A
boolean task algebra for reinforcement learning. Advances in
Neural Information Processing Systems, 33:9497–9507, 2020.

Ian Osband and Benjamin Van Roy. Near-optimal reinforcement
learning in factored MDPs. Advances in Neural Information
Processing Systems, 27, 2014.

Feiyang Pan, Jia He, Dandan Tu, and Qing He. Trust the model
when it is confident: Masked model-based actor-critic. Ad-
vances in neural information processing systems, 33:10537–
10546, 2020.

Ji Ho Park, Jamin Shin, and Pascale Fung. Reducing gender bias
in abusive language detection. In Conference on Empirical
Methods in Natural Language Processing, 2018.

Silviu Pitis, Harris Chan, and Stephen Zhao. mrl: modular rl.
https://github.com/spitis/mrl, 2020a.

Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual
data augmentation using locally factored dynamics. Advances in
Neural Information Processing Systems, 33:3976–3990, 2020b.

Martin L Puterman. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lu-
cas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the
game of go without human knowledge. nature, 550(7676):
354–359, 2017.

Shagun Sodhani, Sergey Levine, and Amy Zhang. Improv-
ing generalization with approximate factored value functions.
In ICLR2022 Workshop on the Elements of Reasoning: Ob-
jects, Structure and Causality, 2022. URL https://
openreview.net/forum?id=B4exBrOUceq.

Alexander L Strehl. Model-based reinforcement learning in
factored-state mdps. In 2007 IEEE International Symposium on
Approximate Dynamic Programming and Reinforcement Learn-
ing, pages 103–110. IEEE, 2007.

Richard S Sutton. Dyna, an integrated architecture for learning,
planning, and reacting. ACM Sigart Bulletin, 2(4):160–163,
1991.

Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

Rishi Veerapaneni, John D Co-Reyes, Michael Chang, Michael
Janner, Chelsea Finn, Jiajun Wu, Joshua Tenenbaum, and Sergey
Levine. Entity abstraction in visual model-based reinforcement
learning. In Conference on Robot Learning, pages 1439–1456.
PMLR, 2020.

Clemens Winter, Huang Costa, Bamford Chris, and Ma-
tricon Theo. Entity gym. https://github.com/
entity-neural-network/entity-gym, 2022.

https://github.com/spitis/mrl
https://openreview.net/forum?id=B4exBrOUceq
https://openreview.net/forum?id=B4exBrOUceq
https://github.com/entity-neural-network/entity-gym
https://github.com/entity-neural-network/entity-gym


A Proof of Theorem 1

The dynamics model assumed is a maximum-likelihood, count-based model that has separate parameters for each causal
mechanism, PL

i,θ, in each local neighborhood. That is, for a given configuration of the parents Pai = x in PL
i,θ, we define

count parameter θij for the j-th possible child, cij , so that PL
i,θ(cij |x) = θj/

∑|ci|
k=1 θk.

We use the following two lemmas (see source material for proof):

Lemma 1 (Proposition A.8 of Agarwal et al. (2019)). Let z be a discrete random variable that takes values in {1, . . . , d},
distributed according to q. We write q as a vector where q⃗ = [Pr(z = j)]dj=1. Assume we have n i.i.d. samples, and that our
empirical estimate of q⃗ is [q⃗]j =

∑n
i=1 1[zi = j]/n.

We have that ∀ϵ > 0:
Pr(∥q̂ − q⃗∥2 ≥ 1/

√
n+ ϵ) ≤ e−nϵ2

which implies that:
Pr(∥q̂ − q⃗∥1 ≥

√
d(1/

√
n+ ϵ)) ≤ e−nϵ2

Lemma 2 (Corollary 1 of Strehl (2007)). If for all states and actions, each model Pi,θ of Pi is ϵ/k close to the ground truth
in terms of the ℓ1 norm: ∥Pi(s, a)− Pi,θ(s, a)∥1 < ϵ/k, then the aggregate transition model Pθ is ϵ close to the ground
truth transition model: ∥P (s, a)− Pθ(s, a)∥1 < ϵ.

Theorem 1. Let n be the number of empirical samples used to train the model of each local causal mechanism PL
i,θ at each

configuration of parents Pai=x. There exists positive constant c such that, if

n ≥ ck2|ci| log(|S||A|/δ)
ϵ2

,

then, with probability at least 1− δ, we have:

max
(s,a)

∥P (s, a)− Pθ(s, a)∥1 ≤ ϵ.

Proof. Applying Lemma 1, we have that for fixed parents Pai = x, wp. at least 1− δ,

∥Pi(x)− Pi,θ(x)∥1 ≤ c

√
|ci| log(1/δ)

n
,

where n is the number of independent samples used to train Pi,θ and c is a positive constant. Now consider a fixed (s, a),
consisting of k parent sets. Applying Lemma 2 we have that, wp. at least 1−δ,

∥P (s, a)− Pθ(s, a)∥1 ≤ ck

√
|ci| log(1/δ)

n
.

We apply the union bound across all states and actions to get that wp. at least 1− δ,

max
(s,a)

∥P (s, a)− Pθ(s, a)∥1 ≤ ck

√
|ci| log(|S||A|/δ)

n
.

The result follows by rearranging for n and relabeling c.

To compare to full-state dynamics modeling, we can translate the sample complexity from the per-parent count n to a total
count N . Recall mΠi|ci| = |S|, so that |ci| = (|S|/m)1/k, and mΠi|Pai| ≥ |S||A|. We assume a small constant overlap
factor v ≥ 1, so that |Pai| = v(|S||A|/m)1/k. We need the total number of component visits to be n|Pai|km, for a total of
nv(|S||A|/m)1/km state-action visits, assuming that parent set visits are allocated evenly, and noting that each state-action
visit provides k parent set visits. This gives:



Corollary 1. To bound the error as above, we need to have

N ≥ cmk2(|S|2|A|/m2)1/k log(|S||A|/δ)
ϵ2

,

total train samples, where we have absorbed the overlap factor v into constant c.

To extend this and adapt other results to our setting, we could now apply the Simulation Lemma (Agarwal et al., 2019) to
bound the value difference given the model error, or alternatively, develop the theory in the direction of (Strehl, 2007) and
related work. However, we believe the core insights are already contained in Theorem 1 and Corollary 1.

B Implementation Details

Implementation code will be made available upon acceptance. There are numerous components involved that each have
several different settings that were mostly just taken “as-is” or picked as reasonable defaults (e.g., using a layer size of 512
in most neural networks, or having 5 components in the MDN, or the specific implementation of rejection sampling for
Mocoda-U). The best documentation for specific details is the code itself. As such, the implementation details below cover
the broad strokes so that a reader might understand the general pipeline, and we refer the reader to the provided code for
precise details.

B.1 Causal Transition Structure and Parent Set Definitions

We implement the local causal model as a mask function M that maps (state, action) tuples to an adjacency matrix of the
causal structure. For example, in 2d Navigation, the mask function was implemented as follows:

def Mask2dNavigation(input_tensor):
"""
accepts B x num_sa_features, and returns B x num_parents x num_children
"""

# base local mask
mask = torch.tensor(
[[1, 0],
[0, 1],
[1, 0],
[0, 1]]).to(input_tensor.device)

# change local mask in top right quadrant
mask = mask[None].repeat((input_tensor.shape[0], 1, 1))
mask[torch.logical_and(input_tensor[:,0] > 0.5, input_tensor[:, 1] > 0.5)] = 1

return mask

As an example, the causal graph for the base local mask, which applies for most of the state space is shown in the figure 7.
We used the base local graph to select the parent sets, in this case, (x,∆x) and (y,∆y).

Figure 7: Causal graph for local mask



Figure 8: Hypothetical 2D illustration of the GMM-based parent set sampler. It is assumed that there are two non-overlapping parent sets
{x} and {y}, but that x and y exhibit dependence in the empirical data. We fit a GMM to each marginal P (x) and P (y) and sample from
them independently to get Q(x, y), which has the same marginal distributions (so that the components in a locally factored dynamics
model will generalize), but eliminates the spurious dependence in the empirical data.

B.2 Parent Distribution

To sample the parent distribution in Step 1 of MOCODA, we use the Gaussian Mixture Model (GMM) based approach
described in the main text. The advantage of this approach is that we can easily do conditional sampling in case of
overlapping parent sets. For a given local subset L, we fit a separate GMM to the marginal of each parent set, as it appears
in the empirical distribution for L. To generate a new sample, we optionally shuffle the GMMs, and then sample from one
GMM at a time, conditioning on any already generated features. This process eliminates any spurious correlations between
features that are not part of the same parent set, and thus results in the maximum-entropy, marginal matching distribution.

In cases of multiple local neighborhoods, L1,L2, . . . , one should respect the boundaries of the current local subset L during
both training and generation. If a sample generated with the GMM for L falls outside of L, that sample should be rejected,
as the local causal structure is no longer valid, and the generalization guarantee for the locally factored model no longer
holds.

As the local factorization in our experiments is quite simple, we did not stratify the GMM generator, and instead used a
single GMM generator for the sparsest local causal structure. In the case of 2d Navigation this did not generate any
data that was out-of-distribution for the locally factored model components (as the agent’s policy was consistent in all local
neighborhoods). In the case of HookSweep2, there was a bit of locally out-of-distribution data in the local subspace in
which there is a block collision; however, most of this data is unreachable as it involves overlapping blocks, and we obtained
strong results even with this shortcut.

B.3 Dynamics Models

Our experiments used three different dynamics models. In each case, we used an ensemble of 5 base models, described
below. The base models output a Gaussian mean and variance for each output variable and are trained independently via a



negative log likelihood loss. All models are trained using Adam Optimizer (Kingma and Ba, 2014).

A. Unfactored: The base model is a fully connected neural network with ReLU activations (MLP).

B. Globally Factored: The base model has one MLP for each causal mechanism in the sparsest local graph. For both 2d
Navigation and HookSweep2 the sparest local graph has two components, so the base global model is composed
of two MLPs.

C. Locally factored: The base model is designed as follows. For each child node, ci, there is a separately parameterized
single MLP that is preceded by a “Masked Composer” module. The Masked Composer applies a single layer MLP
(linear transform followed by ReLU) to each root node, ri (each parent set has several nodes), to obtain embeddings
εi(ri). The i-th column of the mask is used to zero out the corresponding embeddings which are then summed,∑

i Mijεi(ri), and the result is passed as an input to the MLP.

This architecture works (and enforces local factorization), but is likely poor, because it does not take advantage of
potentially useful shared representations between parent nodes across children (since there is a separately parameterized
Masked Composer for each child). A better architecture would likely use a single parameterization for a single, possibly
deeper Masked Composer. As this is not the focus of our contribution, we stuck with simple model, as it “just worked”
for purposes of our experiments.

B.4 Training Data for the RL Algorithm

This varied by experiment, and is described in the next Section. Notably, we divided the standard deviation returned by our
dynamics models by a factor of three when generating data to avoid data that was too far out of distribution.

B.5 Reinforcement Learning Algorithms

We use Modular RL (Pitis et al., 2020a), adding three offline RL (Levine et al., 2020) algorithms: BCQ (Fujimoto et al.,
2019), CQL (Kumar et al., 2020) & TD3-BC (Fujimoto and Gu, 2021).

The BCQ implementation uses DDPG (Lillicrap et al., 2016). For the generative model we use a Mixture Density Network
(MDN) (Bishop, 1994) with 5 components, that produces 20 action samples at each call (both during test rollouts and when
creating critic targets). The MDN was trained for 1000 batches with batch size of 2000. We did not use a perturbation
model.

The CQL implementation uses SAC (Haarnoja et al., 2018). Rewards in our environments are sparse, and so value targets can
be accurately clipped between two values (depends on the discount factor). CQL balances two losses: a penalty for Q-values
of some non-behavioral distribution/policy (we use a random policy), and a bonus for the Q-values behavioral actions. We
use an L1 penalty toward the lower end of the value target clipping range, and an L1 bonus toward the higher end of the
value target clipping range. We then multiply that by a minimum Q coefficient, as in the original CQL implementation.

The TD3-BC implementation closely follows Fujimoto and Gu (2021).

C Experimental Details

C.1 2D Navigation

In this environment, the agent must travel from one point in a square arena to another. States are 2D (x, y) coordinates and
actions are 2D (∆x,∆y) vectors.

observation_space = spaces.Box(np.zeros((2,)), np.ones((2,)), dtype=np.float32)
action_space = spaces.Box(-np.ones((2,)), np.ones((2,)), dtype=np.float32)

Episodes run for up to 70 steps. Rewards are sparse, with a -1 reward everywhere except the goal, where reward is 0. In most
of the state space, the sub-actions ∆x and ∆y affect only their respective coordinate. In the top right quadrant, however, the
∆x and ∆y sub-actions each affect both x and y coordinates, so that the environment is locally factored. The two causal
graphs are as follows:



The graph on the right applies only in the top-right quadrant; otherwise the graph on the left applies. The graph on the left
has non-overlapping parent sets (x,∆x) and (y,∆y). The graph on the right has overlapping parent sets (x,∆x,∆y) and
(y,∆x,∆y).

The agent has access to an empirical dataset consisting of left-to-right & bottom-to-top trajectories (20,000 transitions of
each type):

Figure 9: Left/Middle: Random samples of the two types of trajectories the agent has access to. Right: Random sample of transitions
from this empirical dataset.

We consider a target task where the agent must move from the bottom left to the top right. In this task there is sufficient
empirical data to solve the task by following the ⌟ shape of the data, but learning the optimal policy of going directly via the
diagonal requires out-of-distribution generalization.

For 2d Navigation, we generated the MOCODA distribution by fitting a GMM generator as described in the previous
Section. Each GMM (one for each parent set) had 32 components, and was fit using expectation maximization. To obtain
MOCODA-U, we implemented rejection sampling by using a KDE density estimator is as follows:

def prune_to_uniform(proposals, target_size=12000.):
from sklearn.neighbors import KernelDensity
sample = proposals[-10000:]

fmap = lambda s: s[:, :2]
K = KernelDensity(bandwidth=0.05)
K.fit(fmap(sample))
scores = K.score_samples(fmap(proposals))
scores = np.maximum(scores, np.log(0.01))
scores = (1. / np.exp(scores))
scores = scores / scores.mean() * (target_size / len(proposals))

return proposals[np.random.uniform(size=scores.shape) < scores]

The dynamics models each had 2 layers of 256 neurons and were trained with a batch size of 512 and learning rate of 1e-4.
Hyperparameters were not tuned once a working setting was found. Of the 40K empirical samples, 35K were used for
training, and 5000 for validation. The models were trained for 600 epochs, with early stopping used in the last 50 epochs to
find a locally optimal stopping point.

Augmented datasets of 200K samples were generated. In each case except EMP, 40K were the original empirical dataset



(thus 160K new samples were generated by applying the dynamics model to samples from the augmented distribution).
In case of EMP, the 40K original samples were simply repeated 5 times to get a size 200K dataset. The locally factored
network was used to generate the augmented datasets.

These augmented distributions were then used to train the downstream RL agents. The agent algorithms used a discount
factor of 0.98, a target cutoff range of (-50, 0), batch size of 500, and used 2 layers of 512 neurons in both actor and critic
networks. The agents were trained for 25K batches (for a total of 62.5 passes over the dataset).

For 2D Navigation we ran 5 seeds, which all yielded similar results. For each seed we trained new parent set samplers
and generated new augmented datasets.

C.2 HookSweep2

HookSweep2 is a challenging robotics domain based on Hook-Sweep (Kurenkov et al., 2020), in which a Fetch robot must
use a long hook to sweep two boxes to one side of the table (either toward or away from the agent). States, excluding the
goal, are 16 dimensional continuous vectors. Goals are 6 dimensions. The agents all concatenate the goal to the state, and so
operate on 22 dimensional states. The action space is a 4 dimensional continuous vector.

The environment contains two boxes that are initialized near the center of the table.

The empirical data contains 1M transitions from trajectories of an expert agent sweeping exactly one box to one side
of the table, leaving the other in the center. The target task requires the agent to sweep both boxes together to one side
of the table. This is particularly challenging because the setup is entirely offline (no exploration), where poor out-of-
distribution generalization typically requires special offline RL algorithms that constrain the agent’s policy to the empirical
distribution (Levine et al., 2020; Agarwal et al., 2020; Kumar et al., 2020; Fujimoto and Gu, 2021).

Episodes run for 75 steps. Rewards are dense, but structured similarly to a sparse reward, with a base reward of -1 everywhere
except the goal and a reward of 0 at the goal. Additional small rewards are given if the agent keeps the hook near the table
(this was required to obtain natural movements from the trained expert agent).

In this environment, we did not have the ground truth causal graph, and so a heuristic was used. The heuristic (wrongly)
assumes that the agent/hook always causes each of the next object position (hook and objects are always entangled), even
though this is only true when the hook and the objects are touching. The heuristic considers the two boxes to be separate
whenever they are further than 5cm from each other. Here is the implementation of the heuristic:

def MaskHookSweep2(input_tensor):

# base local mask for when boxes are far apart
mask = torch.tensor(
[[1, 1, 1],
[1, 1, 0],
[1, 0, 1],
[1, 1, 1]]
).to(input_tensor.device)

mask = mask[None].repeat((input_tensor.shape[0], 1, 1))

# change local mask when boxes are close to each other
mask[torch.sum(torch.abs(input_tensor[:,O1X:O1X+2] -\

input_tensor[:,O2X:O2X+2]), axis=1) < 0.05] = 1

return mask

where the state-action components are (gripper, box1, box2, action). This heuristic returns the following two causal graphs
(note that goals are not part of the dynamics, and are separately labeled using random goal samples from the environment):



The parent sets are (g, o1, a) and (g, o2, a) for the first graph, and (g, o1, o2, a) in the second graph.

For HookSweep2, the generation of the MOCODA distribution is identical to how it was generated in 2d Navigation
(see previous subsection). To obtain MOCODA-P, we implemented rejection sampling as follows:

def prune_to_uniform2(proposals, target_size=12000., smaller=True):
proposals = proposals[np.linalg.norm(proposals[:,O1X:O1X+2] - proposals[:,O2X:O2X+2], axis=-1) < 0.3]
sample = proposals[-5000:]

fmap = lambda s: s[:,[O1X,O1X+1,O2X,O2X+1]]
K = KernelDensity(bandwidth=0.05)
K.fit(fmap(sample))
scores = K.score_samples(fmap(proposals))
scores = np.maximum(scores, np.log(0.05))
scores = (1. / np.exp(scores))
if np.minimum(scores, 1).sum() > 10000:
while np.minimum(scores, 1).sum() > 10000:
scores = scores * 0.99

else:
while np.minimum(scores, 1).sum() < 10000:
scores = scores / 0.99

return proposals[np.random.uniform(size=scores.shape) < scores]

The key difference to the 2d Navigation is the definition of the fmap function, which defines the feature map under
which the density is computed for rejection sampling.

The dynamics models for HookSweep2 each had 2 layers of 512 neurons and were trained with a batch size of 512 and
learning rate of 2e-4. Hyperparamters were not tuned once a working setting was found (learning rate was increased to
make training slightly faster). Of 1M empirical samples, 5000 were used for validation. The models were trained for 4000
epochs, where each epoch involved 40K random samples, with early stopping used in the last 50 epochs to find a locally
optimal stopping point.

Augmented datasets of 5M samples were generated. In each case except EMP, 1M were the original empirical dataset (thus
4M new samples were generated). In the case of EMP, the 1M original samplers were simply repeated 5 times to get the full
augmented dataset. The locally factored network was used to generate the augmented datasets.

These augmented distributions were then used to train the downstream RL agents. The agent algorithms were the same as
for 2d Navigation, except that they used 3 layers of 512 neurons in both actor and critic networks. The agents were
trained for 1M steps with batch size 500 (for a total of 100 passes over the dataset).

C.3 Licenses and Compute

All experiments were run on a modern desktop CPU and a NVIDIA GTX 1080 Ti GPU.

Code and assets are available under Apache and MIT licenses from Mujoco, OpenAI Gym, AC-Teach (Kurenkov et al.,
2020), and Modular RL (Pitis et al., 2020a) repositories. The implementations used in this paper will be released upon
acceptance under an open source license.

D Further Discussion of Broader Impacts

MOCODA uses causally-motivated data augmentation to tackle sequential decision making problems where the available
experience data may not be sufficient to find an optimal policy for the task at hand. While we have thusfar applied this
approach to continuous control problems, there are a large body of problems that share this general motivation, where
long-term fairness and robustness may be a central concern (D’Amour et al., 2020). In these cases, the causal assumptions
used to implement MOCODA deserve extra care and external scrutiny. For such problems, the structure of the state space
may include sensitive and/or socially-ascribed attributes of groups and individuals (which cannot be directly intervened
upon), so any graphical causal will involve normative assumptions about the environment in which the agent is embedded
(Hu and Kohler-Hausmann, 2020).


