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Abstract

Reinforcement Learning (RL) has made significant strides in
enabling artificial agents to learn diverse behaviors. However,
learning an effective policy often requires a large number of
environment interactions. To mitigate sample complexity is-
sues, recent approaches have used high-level task specifica-5

tions, such as Linear Temporal Logic (LTLf ) formulas or Re-
ward Machines (RM), to guide the learning progress of the
agent. In this work, we propose a novel approach, called Log-
ical Specifications-guided Dynamic Task Sampling (LSTS),
that learns a set of RL policies to guide an agent from an10

initial state to a goal state based on a high-level task speci-
fication, while minimizing the number of environmental in-
teractions. Unlike previous work, LSTS does not assume in-
formation about the environment dynamics or the Reward
Machine, and dynamically samples promising tasks that lead15

to successful goal policies. We evaluate LSTS on a grid-
world and show that it achieves improved time-to-threshold
performance on complex sequential decision-making prob-
lems compared to state-of-the-art RM and Automaton-guided
RL baselines, such as Q-Learning for Reward Machines20

and Compositional RL from logical Specifications (DIRL).
Moreover, we demonstrate that our method outperforms RM
and Automaton-guided RL baselines in terms of sample-
efficiency, both in a partially observable robotic task and in
a continuous control robotic manipulation task.25

1 Introduction
Agents are now capable of learning optimal control be-
havior for a broad spectrum of tasks, ranging from
Atari games (Gao and Wu 2021) to robotic manipulation
tasks (Nguyen and La 2019), thanks to recent advancements30

in Reinforcement Learning (RL). Despite the progress made
in RL, learning an optimal task policy using model-free RL
techniques still suffers from sample complexity issues be-
cause of sparse reward settings and unknown transition dy-
namics (Lattimore, Hutter, and Sunehag 2013). These chal-35

lenges further intensify in long-horizon settings, where the
agent needs to perform a series of correct sequential deci-
sions to achieve the goal. Additionally, certain tasks (such
as - robot needs to make dinner only if it bought groceries
in the afternoon) require the agent to encode and remem-40

ber its episodic history (whether the groceries were bought)
in order to solve the task effectively. To alleviate this is-
sue in complicated tasks, several lines of work have ex-

plored representing the goal using an intricately shaped re-
ward function that guides the agent toward the goal (Grzes 45

2017). However, generating such a reward function requires
the human engineer to assign ‘importance’ weights to var-
ious aspects of the task, which is time consuming and as-
sumes knowledge on which aspects of the task are impor-
tant. Poorly engineered reward functions can lead to local 50

optima, where the agent learns to satisfy only a subset of
goals and ignores the rest.

Recent research has investigated representing the goal us-
ing high-level specification languages, such as finite-trace
Linear Temporal Logic (LTLf ) (De Giacomo and Vardi 55

2013), Reward Machines (RM) (Icarte et al. 2022), SPEC-
TRL (Jothimurugan, Alur, and Bastani 2019) that allow
defining the goal of the task using a graphical representa-
tion of sub-tasks. The high-level objective is known before
commencing the task, and the graphical representation al- 60

lows the agent to achieve easier sub-goals initially, and build
upon them to achieve complex goals. Encoding the task us-
ing a graphical structure allows us to tackle the problem in
a Markovian manner by tracking the history as a part of the
state space (Afzal et al. 2023), thereby allowing the agent to 65

keep track of its episodic history. For instance, if the task for
a robot is to reach kitchen and then make dinner, the graphi-
cal structure of the task obtained from the high-level specifi-
cation allows the agent to reason whether it has reached the
kitchen before it can commence its policy for making din- 70

ner. RM approaches still require human guidance in defining
the reward structure of the machine, which is dependent on
knowing how much reward should be assigned for accom-
plishing each sub-goal. The process of designing the reward
structure assumes that the human engineer is aware of how 75

much should reward should the agent receive when it accom-
plishes the sub-goals in particular order. This assumption is
infeasible in scenarios when the structure of the environment
or the exact order in which the sub-goals must be achieved
is unknown in advance. In contrast, our method does not re- 80

quire access to the reward structure.
Another method, Compositional RL from Logical Spec-

ifications (DIRL) (Jothimurugan et al. 2021) mitigates the
reward assignment issue by using Dijkstra’s algorithm to
determine which sub-tasks (edges) should be explored in 85

the SPECTRL DAG graph (Jothimurugan, Alur, and Bastani
2019) in order to learn policies to reach nodes in the DAG
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(a) Gridworld domain
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(b) SPECTRL formula and its corresponding
DAG. The DAG excludes all self-loops and
transitions to a sink state.
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Figure 1: (a) Gridworld domain and descriptors. The agent (red triangle) needs to collect one of the keys and open the door to
reach the goal; (b) The SPECTRL formula for the task and its DAG. Formulas l, k1, k2, d and g correspond to Lava, Key1,
Key2, Door and Goal respectively; (c) Learning curves for individual sub-tasks (averaged over 10 trials) generated using
LSTS. The path chosen by LSTS is highlighted in red in Fig.1(b)

that yield the highest success rate. DIRL requires the agent
to learn RL policies for satisfying all outgoing edge proposi-
tions (each edge encodes a sub-task) from such nodes. How-90

ever, this approach requires the agent to explore a sub-task
for a manually specified number of interactions, which re-
quires knowledge about the task complexity. DIRL ends up
spending a lot of interactions learning unproductive poli-
cies as some sub-tasks can be unpromising, yet the agent95

has to spend the defined number of interactions learning
a policy for the sub-task. Unlike DIRL, our approach is
sample-efficient as it finds unpromising sub-tasks based on
the learning progress of the sub-tasks, and discards them;
saving costly interactions and converging to a successful100

policy faster. This problem of minimizing the overall num-
ber of interactions while learning a set of successful policies
is non-trivial as the problem equates to finding the shortest
path in a graph whose true edge weights are unknown a pri-
ori (Szepesvári 2004). In our case, the edge weight denotes105

the total number of environmental interactions required by
the agent to learn a successful policy for the sub-task en-
coded by the edge, in which the agent must induce a visit
to a state where certain properties hold true. And, we can
sample interactions for a sub-task only if we have a policy110

to reach the edge’s source node from the start node of the
graph, making the learning process more sample-inefficient.

To address the above challenges, we present Logical
Specifications-guided Dynamic Task Sampling (LSTS). We
begin with a high-level objective represented using SPEC-115

TRL specification formulas which can equivalently be rep-
resented using directed acyclic graphs (DAG) (Jothimuru-
gan, Alur, and Bastani 2019). The DAG structure encodes
memory, helping the agent understand what events of inter-
est have occurred in the past, and which events must occur120

to reach the accepting states. Our key insight is to learn RL
policies for sub-tasks defined using the edges of the DAG.
Specifically, the agent transitions from the node q to p in the
DAG when the propositional logic formula labeling the edge
(q, p) evaluates to true. We use the set of propositional logic125

formulas labeling the outgoing edges from a given node in
DAG to define sub-tasks. The trajectory induced by a suc-

cessful RL policy for the sub-task enables the agent’s high-
level state in the DAG to transition from the source node
to the destination node of the edge defining the sub-task. 130

We employ an adaptive Teacher-Student learning strategy,
where, (1) the Teacher agent uses its high-level policy along
with exploration techniques to actively sample a sub-task
for the Student agent to learn. The high-level policy consid-
ers the DAG representation and the Student agent’s expected 135

performance on all the sub-tasks, aiming to satisfy the high-
level objective in the fewest number of interactions, and (2)
the Student agent interacts with the environment for a few
steps (much fewer than the interactions required to learn a
successful policy for the sub-task) while updating its low- 140

level RL policy for the sampled sub-task. The Teacher ob-
serves the Student’s performance on these interactions and
updates its high-level policy. Steps (1) and (2) continue al-
ternately until the Student agent learns a set of successful
policies that guide the agent to reach a goal state. 145

Running example: As an example, let us look at the en-
vironment shown in Fig. 1a. The goal for the agent is to col-
lect any of the two Keys, followed by opening the Door and
then reaching the Goal while avoiding the Lava at all times.
The task’s high-level objective (ϕ) is represented using the 150

SPECTRL formula and its corresponding DAG represen-
tation Gϕ in Fig. 1b. The DAG does not contain informa-
tion about the environment configuration, such as: the op-
timal number of interactions required to reach Door from
Key1 are much higher compared to the interactions required 155

to reach Door from Key2, making the Key1 to Door tra-
jectory sub-optimal. Hence, it is crucial to prevent any ad-
ditional interactions the agent spends in learning a policy
for the sub-task defined by the edge q1

¬l∧d−−−→ q3 as the

path q0
¬l∧k1−−−−→ q1

¬l∧d−−−→ q3
¬l∧g−−−→ q4 will always be sub- 160

optimal. In our proposed approach LSTS, the Student agent
begins with the aim of learning two distinct RL policies: π1

for the task of visiting Key1 and π2 for the task of visit-
ing Key2, both avoiding Lava. The Teacher agent initially
samples evenly from these two sub-tasks for the Student but 165

later biases its sampling toward the sub-task on which the



Student agent shows higher learning potential. Once the Stu-
dent agent learns a successful policy for one of the sub-tasks
(let’s say the learned policy π∗

1 corresponding to the sub-task

defined by the transition q0
¬l∧k1−−−−→ q1), the Teacher does not170

sample that task anymore, identifies the next task(s) for the
Student using the DAG representation, and appends them to
the set of tasks it is currently sampling (in this case, the only
next task is: q1

¬l∧d−−−→ q3). Since the Student agent only has
access to the state distribution over q0, it follows the trajec-175

tory given by π∗
1 to reach a state that lies in the set of states

where the proposition ¬Lava∧Key1 holds true before com-
mencing its learning for the policy (π3) for q1

¬l∧d−−−→ q3. If
the Student agent learns the policies π∗

2 for satisfying the

sub-task defined by q0
¬l∧k2−−−−→ q2 and π∗

4 for q2
¬l∧d−−−→ q3 be-180

fore learning π3, it effectively has a set of policies to reach
the node q3. Thus, the Teacher will now only sample the next

task for the Student in the DAG representation q3
¬l∧g−−−→ q4,

as learning RL policies for paths that reach q3 are effectively
redundant. This process continues iteratively until the Stu-185

dent agent learns a set of policies that reach the goal node
(q4) from the start node (q0). The learning curves in Fig. 1c
empirically validate the running example. As evident from
the learning curves, the Student agent learns policies for the

path q0
¬l∧k2−−−−→ q2

¬l∧d−−−→ q3
¬l∧g−−−→ q4 that produce trajec-190

tories to reach the goal node q4 from the initial node q0,
without excessively wasting interactions on the unpromis-
ing sub-task q1

¬l∧d−−−→ q3. The dashed lines in Fig. 1c signify
the interactions at which a task policy converged.

The dynamic task sampling strategy promotes LSTS to195

achieve sample-efficient learning on complex tasks by iden-
tifying unpromising tasks and discarding them, saving costly
interactions. Our empirical results show that LSTS reduces
environmental interactions by orders of magnitude com-
pared to state-of-the-art Specifications-Guided RL Baseline200

DIRL, Reward Machine-based baselines QRM (Icarte et al.
2018), GSRS (Camacho et al. 2018), and curriculum learn-
ing baseline TSCL (Matiisen et al. 2020). We also evaluate
LSTSct, a modified algorithm that further improves sample
efficiency by continuing exploration on a new sub-task once205

a goal state for a sub-task is reached. We perform evalua-
tion on two robotic navigation and manipulation tasks and
demonstrate that LSTS reduces the number of interactions
by orders-of-magnitude when compared to state-of-the-art
automaton-guided RL baselines.210

2 Related Work
Automaton-guided RL approaches utilize temporal logic-
based language specifications to define tasks (Toro Icarte
et al. 2018; Bozkurt et al. 2020; Xu and Topcu 2019; Alur
et al. 2022). Separating policies for task sub-goals aids in ab-215

stracting knowledge that can be utilized in novel tasks (Icarte
et al. 2018), without reliance on a dense reward function.
Another technique is to shape the reward in proportion to the
distance from the accepting node in the automaton (Cama-
cho et al. 2018); however, this often leads to suboptimal re-220

ward settings. Augmenting the reward function with Monte

Carlo Tree Search helps mitigate this issue (Velasquez et al.
2021). This approach requires the ability to plan-ahead in
the environment, which is not always feasible. Automaton-
guided RL has been used to aid navigational exploration for 225

robotic domains (Cai et al. 2023) and for multi-agent set-
tings (Hammond et al. 2021). Generating a curriculum given
the high-level objective (Shukla et al. 2023) requires ac-
cess to the Object-Oriented MDP (Diuk, Cohen, and Littman
2008), which cannot be obtained if environment details are 230

not known in advance. DIRL interleaves high-level planning
with RL to learn a policy for each edge, which overcomes
challenges arising from poor representations (Jothimurugan
et al. 2021). This approach becomes inefficient in terms of
number of interactions, as it requires the agent to act for a 235

predetermined number of interactions, even if learning the
task does not show any promise. Unlike previous works, in
this paper, we propose an logical specifications-guided dy-
namic task sampling approach that does not require access
to the environment dynamics or the Reward Machine, and 240

efficiently samples tasks that show promise toward the high-
level objective, saving interactions on unpromising tasks.
Teacher-Student algorithms (Matiisen et al. 2020) have
been previously studied in Curriculum Learning litera-
ture (Narvekar et al. 2020; Shukla et al. 2022) and in the 245

Intrinsic Motivation literature (Oudeyer and Kaplan 2009).
The idea is to have the Teacher propose those tasks to Stu-
dent on which the Student shows most promise. This strat-
egy helps Student learn simpler tasks first, transferring its
knowledge to complex tasks. The technique reduces the 250

overall number of interactions necessary to learn a success-
ful policy. These approaches tend to optimize a curricu-
lum to learn a single policy, which does not scale well to
temporally-extended tasks. Instead, we propose an Logical
Specifications-guided Teacher-Student learning strategy that 255

learns a policies for promising automaton transitions, pro-
moting sample-efficient training compared to the baselines.

3 Theoretical Framework
Episodic MDP. An episodic labeled Markov Decision
Process (MDP) M is a tuple (S,A, P,R,S0, γ,K,P, L), 260

where S is the set of states,A is the set of actions, P (s′|s, a)
denotes the transition probability of reaching state s′ ∈ S
from s ∈ S using action a ∈ A, R : S × A × S → R
is the reward function, S0 is the initial state distribution,
γ ∈ [0, 1] is the discount factor, K is the maximum number 265

of interactions in any episode, P is a set of predicates, and
L : S → 2P is a labeling function that maps a state s ∈ S
to a subset of predicates that are true in that state. In every
interaction, the agent observes the current state s and selects
an action a according to its policy function π(a|s, θ) with 270

parameters θ. The MDP transitions to a new state s′ ∈ S
with probability P (s′ | s, a). The agent’s goal is to learn
an optimal policy π∗ that maximizes the discounted return
G0 =

∑K
k=0γ

kR(s′k, ak, sk) until the end of the episode,
which occurs after at-most K interactions. 275

High level specification language: In our framework,
we adopt the specification language SPECTRL to articu-



late reinforcement learning tasks (Jothimurugan, Alur, and
Bastani 2019). A specification ϕ in SPECTRL is a logical280

formula applied to trajectories, determining whether a
given trajectory ζ = (s0, s1, . . .) successfully accomplishes
a desired task. Mathematically, ϕ can be depicted as a
function ϕ : Z → B, where B = {TRUE, FALSE} and Z is
the set of all trajectories.285

Formally, a specification is defined over a set of atomic
predicates P0. Each p ∈ P0 is associated with a function
fp : S → B. The agent’s MDP state s satisfies p (denoted
by s |= p) when fp(s) = True (in other words, p ⊆ L(s)).

The set of predicates P comprises conjunctions and dis-290

junctions of atomic predicates P0. A predicate b ∈ P fol-
lows the grammar b ::= p | (b1 ∧ b2) | (b1 ∨ b2), where
p ∈ P0. Each predicate b ∈ P corresponds to a function
fb : S → B defined naturally over Boolean logic.

The syntax of SPECTRL specifications is given by295

ϕ ::= achieve b | ϕ1 ensuring b | ϕ1;ϕ2 | ϕ1 or ϕ2,

where b ∈ P . Here, achieve and ensuring correspond
to ‘eventually’ and ‘always’ operators in temporal logic.
Each specification ϕ corresponds to a function fϕ : Z → B,
and ζ ∈ Z satisfies ϕ (denoted ζ |= ϕ) if fϕ(ζ) := TRUE.
The SPECTRL semantics for a finite trajectory ζ of length300

t are:
ζ |= achieve b if ∃ i ≤ t, si |= b (or b ⊆ L(s)) (1)
ζ |= ϕ ensuring b if ∃ i ≤ t, si |= b (2)
ζ |= ϕ1;ϕ2 if ∃ i < t, ζ0:i |= ϕ1 and ζi+1:t |= ϕ2 (3)
ζ |= ϕ1 or ϕ2 if ζ |= ϕ1 or ζ |= ϕ2 (4)
Intuitively, the condition (1) signifies that the trajectory

should eventually reach a state where the predicates b hold
true. The condition (2) signifies that the trajectory should
satisfy specification ϕ while always remaining in states305

where b holds true. The condition (3) signifies that the tra-
jectory should sequentially satisfy ϕ1 and then ϕ2. The con-
dition (4) signifies that the trajectory should satisfy either
ϕ1 or ϕ2. A trajectory ζ satisfies ϕ if there is a t such that
the prefix ζ0:t satisfies ϕ.310

Furthermore, each SPECTRL specification ϕ is guar-
anteed to have an equivalent directed acyclic graph
(DAG), called an abstract graph. An abstract graph G =
(Q,E, q0, F, β,Zsafe, κ) is a directed acyclic graph (DAG)
with nodes Q, (directed) edges E ⊆ Q×Q, initial node q0 ∈315

Q, final nodes F ⊆ Q, subgoal region map β : Q → 2S

such that for each q ∈ Q, β(q) is a subgoal region and safe
trajectories Zsafe =

⋃
e∈E Ze

safe where Ze
safe ⊆ Zf de-

notes the safe trajectories for edge e ∈ E. Intuitively, (Q,E)
is a standard DAG, and q0 and F define a graph reachabil-320

ity problem for (Q,E). Furthermore, β and Zsafe connect
(Q,E) back to the original MDP M ; in particular, for an
edge e = q → q′, Ze

safe is the set of trajectories in the MDP
M that can be used to transition from β(q) to β(q′)1. The
function κ labels each edge e = q → q′ with the predicates325

be (labeled edge denoted as e := q
be−→ q′). The agent tran-

sitions from q to q′ when the states si, si+j in the agent’s
trajectory ζ satisfy si ⊆ β(q) and be ⊆ L(si+j) and j ≥ 0.

1See DIRL (Jothimurugan et al. 2021) for more details

Given a SPECTRL specification ϕ, we can construct an
abstract graph Gϕ such that, for every trajectory ζ ∈ Z , we 330

have ζ |= ϕ if and only if ζ |= Gϕ. Thus, we can solve the
reinforcement learning problem for ϕ by solving the reach-
ability problem for Gϕ. As described below, we leverage the
structure of Gϕ in conjunction with reinforcement learning
to do so. In summary, SPECTRL specifications provide a 335

powerful and expressive means to define and evaluate rein-
forcement learning tasks. It allows users to specify complex
conditions and requirements for successful task completion,
enabling a nuanced approach to learning from specifications.

340

Problem Formulation. Given an MDP M with un-
known transition dynamics and a SPECTRL formula ϕ
representing the high-level objective of the agent, let Gϕ be
the DAG representing the language of ϕ. Let Paths(q,X)
be the set of all paths in the DAG originating in q and termi- 345

nating at a node in X ⊆ Q. The aim of this work is to learn
a set of policies π∗

i , i = 0, . . . , n − 1, with the following
three properties: (i) Following π∗

0 results in a trajectory in
the MDP that induces a transition from q0 to some state
q1 ∈ Q in the DAG, following π∗

1 results in a trajectory in 350

MDP that induces a transition from q1 to some state q2 ∈ Q
in the DAG, and so on. (ii) The resulting path q0q1 . . . qn
in the DAG terminates at a final node, i.e., qn ∈ F , with
probability greater than a given threshold, η ∈ (0, 1). (iii)
The total number of environmental interactions spent in 355

exploring and learning sub-task policies are minimized.

4 Methodology

Sub-task definiton: Given the DAG Gϕ representing the
language of ϕ, we define a set of sub-tasks based on the 360

edges of the DAG. Intuitively, given any MDP state s ∈ S
and a DAG node q ∈ Q, a sub-task defined by an edge from
node q to p ∈ Q defines a reach-avoid objective for the agent
represented by the SPECTRL formula,

Task(q, p):=achieve(b(q,p)) ensuring

 ∧
r∈Sc(q),r ̸=p

¬b(q,r)


where b(q,p) is the propositional formula labeling the edge 365

from q to p in the DAG and Sc(q) is the set of successors of
node q in DAG. For example, in Fig. 1b, the propositional
formula labeling the edge from q0 to q1 is b(q0,q1) = ¬l∧k1.
When e = (q, p), we use Task(e) instead of Task(q, p) and
be instead of b(q,p) for notational convenience. 370

Each sub-task Task(q, p) defines a problem to learn a pol-
icy π∗

(q,p) such that, given any MDP state s0 ∈ S, following
π∗
(q,p) results in a trajectory s0s1 . . . sn in MDP that induces

the path qq . . . qp in the DAG. That is, the agent’s high-level
DAG state remains at q until it transitions to p. While con- 375

structing the set of sub-tasks, we omit transitions that lead to
a ‘sink’ state (from which final states are unreachable).

Given the MDP M with unknown transition dynamics
and the SPECTRL objective, ϕ, we first translate ϕ to its
corresponding directed acyclic graphical (DAG) represen- 380

tation Gϕ = (Q,E, q0, F, β,Zsafe, κ). Next, we define the



set of sub-tasks. For this, we consider the edges that lie on
some path in the DAG from q0 to some node in F . This is
because any path that does not visit F leads to a sink state
from which the objective cannot be satisfied. Such edges is385

identified using breadth-first-search (Moore 1959).

LSTS Initialization: The algorithm for LSTS is de-
scribed in Algo. 1. We begin by initializing the following
(lines 2-4): (1) Set of: Active Tasks AT, Learned Tasks390

LT, Discarded Tasks DT; (2) A Dictionary Π that maps a
sub-task Task(e) corresponding to edge e of DAG Gϕ to
a RL policy πe; (3) A Dictionary representing the Teacher
Q-Values Q by mapping Task(e) to a numerical value
associated with Task(e).395

Firstly, we convert Gϕ into an Adjacency Matrix X
(line 6), and find the tasks corresponding to the set all the
outgoing edges Eq0 ⊆ E from the initial node q0 (line 7).
Satisfying the edge’s predicates b(q0,q1) ∈ κ(Eq0) represent
a reachability sub-task M ′ where each goal state s ∈ SM ′

f of400

M ′ satisfy the condition b(q0,q1) ⊆ L(s). The Student agent
receives a positive reward for satisfying b(q0,q1) and a small
negative reward at all other time steps. The state and action
space, and the transition dynamics of M ′ are equivalent
to M . To complete the sub-task, the Student agent must405

learn a RL policy π∗
(q,p) that ensures a visit from q to p

with probability greater than a predetermined threshold (η).
Moreover, the policy must also avoid triggering unintended
transitions in the DAG. For instance, while picking up
Key1, the policy must not inadvertently pick up Key2.410

Teacher-Student learning: We set the Teacher Q-Values
for all the sub-tasks corresponding to edges in AT (i.e.,
tasks corresponding to Eq0 ) to zero (line 8). We formalize
the Teacher’s goal of choosing the most promising sub-task415

as a Partially Observable MDP (Kaelbling, Littman, and
Cassandra 1998), where the Teacher does not have access to
the entire Student agent state but only to the Student agent’s
performance on a sub-task (e.g. success rate or average
returns), and as an action, chooses a sub-task Task(e) ∈420

AT the Student agent should train on next. In this POMDP
setting, each Teacher action has an Q-Value associated
with it. Intuitively, higher Q-Values correspond to tasks on
which the Student agent is more successful, and the Teacher
should sample such tasks at a higher frequency to satisfy ϕ425

(reach a goal node) in fewest overall interactions.
(A) Given the Teacher Q-Values, we sample a sub-task

Task(e) ∈ AT using the ϵ−greedy exploration strategy (line
10), and (B) The Student agent trains on task Task(e) us-
ing the RL policy Π[e] for ‘x’ interactions (line 11). In one430

Teacher timestep, the Student trains for x environmental in-
teractions. Here, x << total number of environmental inter-
actions required by the Student agent to learn a successful
RL policy for Task(e), since the aim is to keep switching
to a sub-task that shows highest promise. (C) The Teacher435

observes the Student agent’s average return gt on these x
interactions, and updates its Q-Value for Task(e) (line 12):

Q[e]← α(gt) + (1− α)Q[e] (5)
where α is the Teacher learning rate, gt is the average

Student agent return on Task(e) at the Teacher timestep
t. As the learning advances, gt increases as t increases, 440

and hence we use a constant parameter α to tackle the
non-stationary problem of a moving return distribution.
Several other algorithms could be used for the Teacher
strategy (e.g., UCB or Thomspson Sampling). Steps (A),
(B), (C) continue successively until the policy for any 445

Task(e) ∈AT task converges.

Sub-task convergence criteria: We define Student
agent’s RL policy for Task(q, p) to be converged (line 13) if
a trajectory ζ produced by the policy triggers the transition 450

with probability Prζ∈Z [ζ satisfies Task(q, p)] ≥ η and
∆(gt, gt−1) < τ where η is the expected performance
and τ is a small numerical value. Intuitively, a converged
policy attains an average success rate ≥ η and has not
improved further by maintaining constant average returns. 455

Like all other RM and automaton-based approaches, we
assume access to the labeling function L to examine if the
trajectory ζ satisfies the formula b(q,p) by checking if the
final environmental state s of the trajectory satisfies the
condition b(q,p) ⊆ L(s). The sub-goal regions need not 460

be disjoint, i.e., the same state s can satisfy propositions
for multiple DAG nodes. Once a policy for the Task(q, p)
converges, we append Task(q, p) to the set of Learned Tasks
LT and remove it from the set of Active Tasks AT (line 14).
In order to ensure that the learned sub-task does not get 465

sampled any further, we set the Teacher Q-value for this
sub-task to −∞ (line 15).

Discarding unpromising sub-tasks: Once we have
a successful policy for the Task(q, p) (the transition 470

q
b(q,p)−−−→ p), we determine the sub-tasks that can be dis-

carded (line 16). We find the sub-tasks corresponding to
edges that: (1) lie before p in a path from q0 to any q ∈ F ,
and, (2) do not lie in a path to q ∈ F that does not contain
p. Intuitively, if we already have a set of policies that can 475

generate a successful trajectory to reach the node p, we do
not need to learn policies for sub-tasks that ultimately lead
only to p (e.g., in Fig. 1 if we have successful policies for
Task(q0, q2) and Task(q2, q3), we can discard Task(q0, q1)
and Task(q1, q3)). We add all such sub-tasks to the set of 480

Discarded Tasks DT (line 17), and set the Teacher Q-values
for all the discarded tasks to −∞ to prevent them from
being sampled for the Student agent (line 18). As an
extension, in the limit, an optimal policy can be found by
not completely discarding such sub-tasks, but rather biasing 485

away from them so that they would still be explored.

Traversing in the DAG until ϕ satisfied: Subsequently, we
determine the next set of tasks Tasks(EAT ) in the DAG to
add to the AT set (line 19). This is calculated by identifying 490

sub-tasks corresponding to all the outgoing edges from p.

Since the edge eq,p corresponds to the transition q
b(q,p)−−−→ p,

we have a successful policy that can produce a trajectory
that reaches a state where b(q,p) hold true, and Tasks(EAT )
corresponds to X [p]\DT (‘\’ refers to set-minus) i.e., 495

sub-tasks corresponding to all the outgoing edges from p



Algorithm 1: LSTS ( Gϕ,M, η, x )
Output: Set of learned policies : Π∗, Edge-Policy
Dictionary P

1: Placeholder Initialization:
2: Sets of: Active Tasks (AT)← ∅;

Learned Tasks (LT)← ∅; Discarded Tasks (DT)← ∅
3: Edge-Policy Dictionary Π : Task(e)→ π
4: Teacher Q-Value Dictionary: Q : Task(e)→ −∞
5: Algorithm:
6: X ← Adjacency Matrix (Gϕ)
7: AT← AT ∪ {Tasks(X [q0])}
8: ∀ Task(e) ∈ AT : Q[e] = 0
9: while True do

10: e← Sample(Q)
11: Π[e], g ← Learn(M,Gϕ, e, x,P)
12: Update Teacher(Q, e, g)
13: if Convergence(Q, e, g, η) then
14: Π∗ ← Π∗ ∪Π[e] ; LT← LT ∪{Task(e)} ;

AT← AT \{Task(e)}
15: Q[e] = −∞
16: Tasks(EDT )← Discarded Tasks(X , e)
17: DT← DT ∪ Tasks(EDT )
18: ∀ Task(e) ∈ Tasks(EDT ) : Q[e] = −∞
19: EAT ← Next Tasks (X , e, DT)
20: if |Tasks(EAT )| = 0 then
21: break
22: end if
23: ∀ Task(e) ∈ Tasks(EAT ) : Q[e] = 0
24: AT← AT ∪ Tasks(EAT )
25: end if
26: end while
27: return Π∗,Π

that do not lie in the DT set.
After identifying Tasks(EAT ), we set Teacher Q-values

for all Task(e) ∈ Tasks(EAT ) to 0 so that the Teacher
will sample these tasks (line 23). In our episodic setting, the500

episode always starts from a state s ∼ S0 where the propo-
sitions for q0 hold true, and if the current sampled sub-task
is Task(p, r), the agent follows a trajectory using learned
policies from Π∗ to reach a state where the propositions for
reaching DAG node p hold true (i.e., s ∈ β(p)). The agent505

then attempts learning a separate policy for Task(p, r).
The above steps (lines 9-26) go on iteratively until

|Tasks(EAT )| = ∅. This indicates we have no further tasks
to add to our sampling strategy, and we have reached a node
q ∈ F . Thus, we break from the while loop (line 21) and510

return the set of learned policies Π∗, and edge-policy dictio-
nary Π (line 27). From Π and Π∗, we get an ordered list of
policies Π∗

list = [π(q1,q2), π(q2,q3), . . . , π(qk−1,qk)] such that
sequentially following π ∈ Π∗

list generates trajectories that
satisfy the SPECTRL objective ϕ 2.515

Guarantee: Given the ordered list of policies Π∗
list,

we can generate a trajectory ζ in the task M with

2Link to code to be provided after review

Prζ∈Z [ζ satisfies ϕ] ≥ η (Details in Appendix B).

5 Experimental Results
We aim to answer the following questions: (Q1) Does LSTS 520

yield sample efficient learning compared to state-of-the-art
baselines? (Q2) After reaching a sub-task goal state, can
we sample a new sub-task to continue training and improve
sample efficiency? (Q3) Does LSTS yield sample efficient
learning for complex robotic tasks with partially observable 525

or continuous control settings? (Q4) How does LSTS scale
to complex search-and-rescue scenarios?

5.1 LSTS - Gridworld Domain
To answer (Q1), we evaluated LSTS on a Mini-

grid (Chevalier-Boisvert, Willems, and Pal 2018) inspired 530

domain with the SPECTRL objective:

ϕgrid
f := (achieve(k1) or achieve(k2);

achieve(d); achieve(g))ensuring(¬l) (6)

where k1, k2, d, g, l represent the atomic propositions
Key1,Key2, Door,Goal, Lava respectively. The environ-
ment and its ϕ are given in Fig. 1. Essentially, the agent
needs to collect any of the Keys before heading to the Door. 535

After toggling the Door open, the agent needs to visit the
grid with the Goal. At all times, the agent needs to avoid
the Lava object. We assume an episodic setting where an
episode ends if the agent touches the Lava object, reaches
the Goal or exhausts the number of allocated interactions. 540

This is a complex problem as the agent needs to perform
a series of correct actions to satisfy ϕgrid

f . The agent has ac-
cess to three navigation actions: move forward, rotate left
and rotate right. The agent can also perfom: pick-up action,
which adds the Key to the agent’s inventory if it is facing 545

the Key, drop places the Key in the next grid if Key is present
in the inventory, and, toggle that toggles the Door (closed↔
open) only if the agent is holding the Key. In this experiment,
we assume a fully-observable setting where the environmen-
tal state is a low-level image encoding of the state. For each 550

cell in the grid, the low-level encoding returns an integer that
describes the item occupying the grid, along with any addi-
tional information (e.g., the Door can be open or closed).

For the Student RL agent, we use PPO (Schulman et al.
2017), which works for discrete and continuous action 555

spaces. We consider a standard actor-critic architecture with
2 convolutional layers followed by 2 fully connected layers.
For LSTS, the reward function is sparse. The agent gets
a reward of (1 − 0.9 (interactions taken)

(interactions allocated) ) if it achieves
the goal in the sub-task, and a reward of 0 otherwise. For 560

sub-tasks, interactions allocated = 100. The agent does
not receive any negative rewards for hitting the Lava.
Baselines: We compare our LSTS method with six baseline
approaches: learning from scratch (LFS), Reward Machine-
based (RM) baselines: GSRS (Camacho et al. 2018), 565

QRM (Icarte et al. 2018); and Compositional RL from
Logical Specifications (DIRL) (Jothimurugan et al. 2021).
All the baselines are implemented using the RL algorithm
(PPO), described above. GSRS assigns reward inversely



Approach # Interactions
(Mean ± SD)

Success Rate
(Mean ± SD)

LSTSct (5.75±0.38)×106 0.96± 0.02
LSTS (6.12±0.25)×106 0.95± 0.01

DIRLc (7.97±0.46)×106 0.95± 0.03
DIRL (9.62±0.42)×106 0.94± 0.01
QRM 5× 107 0.05± 0.04
GSRS 5× 107 0± 0
TSCL 5× 107 0± 0
LFS 5× 107 0± 0

Table 1: Table comparing #interactions & success rate.
LSTS (highlighted) outperfomed all baselines
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Figure 2: Averaged over 10 trials: Learning curves for ap-
proaches whose policies successfully converged.

proportional to the distance from the RM goal node. QRM570

employs a separate Q-function for each node in the RM, and
DIRL uses Dijkstra’s algorithm (edge cost is the average
RL policy success rate) to guide the agent in choosing a
path from the specification graph. For the fifth baseline,
we modify DIRL such that instead of manually specifying575

a limit on the number of interactions, which needs to be
fine-tuned to suit the task, we stop learning a sub-task once
it has reached the convergence criteria defined in Section 4.
We call this modified baseline as DIRLc. The sixth base-
line (TSCL (Matiisen et al. 2020)) follows a curriculum580

learning strategy where the Teacher samples most promis-
ing task without the use of any automaton to guide the
learning progress of the agent. (More details in Appendix C)

The results in Table 2 and Fig. 2 (averaged over 10585

trials) show that LSTS reaches a successful policy quicker
compared to all baselines. LSTSct is a modified version
of LSTS and is described in Sec. 5.1. The learning curves
in Fig. 2 have an offset on the x-axis to account for the
interactions in the initial sub-tasks before moving on to the590

final task in the specification, signifying strong transfer
(Taylor and Stone 2009). Our custom baseline, DIRLc is
more sample-efficient than DIRL, and both outperform
other baselines, which do not learn a meaningful policy.
We performed an unpaired t-test (Kim 2015) to compare595

LSTS against the best performing baselines at the end
of 107 training steps and we observed statistically sig-
nificant results (95% confidence). Thus, LSTS not only
achieves a better success rate, but also converges faster
(statistical significance result details in Appendix D).600

Time-to-threshold metric is defined as the difference in
number of interactions between two approaches to reach a
desired performance (Narvekar et al. 2020). From Fig. 2,
we see that the time-to-threshold between LSTS and the
best-performing baseline DIRLc is 1.85 × 106 interactions605

for 95% success rate.

LSTSct (LSTS + Cont. Training) - Gridworld Domain
In LSTS, while learning a policy for Task(q, p), we reinitial-
ize the environment to a random initial environmental state
s ∼ S0 once the agent reaches a state where the proposi-610

tions (b(q,p)) hold true. To answer the question Q2, instead of

resetting the environment after reaching such a state where
b(q,p) hold true, we let the Teacher agent sample a task (let’s
say Task(p, r)) from the set X [p]\ DT, where X is the ad-
jacency matrix for the graph, and DT is the set of Discarded 615

Tasks, as defined in Algo. 1. This helps the agent continue its
training by attempting to learn a policy π(p,r) for Task(p, r)
while simultaneously learning a separate policy π(q,p) for
Task(q, p). If the agent fails to satisfy Task(p, r), we reset
the environment to state s ∼ S0. Otherwise, the agent con- 620

tinues its training until its trajectory satisfies the high-level
objective ϕ. We call this approach LSTSct (Detailed algo in
Appendix A). Results in Table 2 and Fig. 2 demonstrate that
this approach improves sample efficiency by reducing the
number of interactions required to learn a successful pol- 625

icy for the gridworld task, with a time-to-threshold metric of
3.7× 105 interactions as compared to LSTS.

5.2 LSTS and LSTSct - Robotic Domains
To answer (Q3), we test LSTS and LSTSct on two simulated
robotic environments with high interaction cost. The task in 630

Fig. 3a has the following SPECTRL objective:

ϕnavigation
f := (achieve(Key1)orachieve(Key2);

achieve(Goal)) ensuring(¬Lava) (7)
In this task, the agent (a simulated TurtleBot) needs to col-
lect any of the keys (yellow blocks) present in a [3m, 3m]
continuous environment before reaching the goal position
(gray block). At all times, the agent needs to avoid the lava 635

object (red wall) present in the center. The move forward
(backward) action causes the robot to move forward (back-
ward) by 0.1m and the robot rotates by π/8 radians with
each rotate action. The pick-up and drop actions have ef-
fects similar to the gridworld domain. The robotic domain is 640

more complex as objects can be placed at continuous loca-
tions. The agent receives an ego-centric image view of the
environment (top-right corner of Fig. 3a), which makes the
task partially observable in nature and more complex to get
a successful policy. The RL agent is described in Sec. 5.1. 645

The second environment (Fig. 3c) consists of a simu-
lated robotic arm pushing two objects to their target loca-
tions (Gallouédec et al. 2021) with the SPECTRL formula:

ϕmanipulation
f := achieve(p1) ; achieve(p2) (8)
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(a) TurtleBot domain
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(b) Turtlebot results (c) Panda arm domain
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(d) Panda arm results

Figure 3: Learning curves (Averaged over 10 trials) for the two robotic domains.

where p1 and p2 are the atomic propositions for ’push-
object-1’, ‘push-object-2’. The robot has continuous action650

parameters for moving the arm and a binary gripper action
(close/open). An episode begins with the two objects ran-
domly initialized on the table, and the robotic arm has to
push these two objects to its final location. The agent re-
ceives its current end-effector pose, positions and veloci-655

ties of the two objects, and the desired goal position for
the two objects. For this task, we use the Deep Deter-
ministic Policy Gradient with Hindsight Experience Replay
(DDPG-HER) (Andrychowicz et al. 2017) as our RL algo-
rithm. DDPG-HER is implemented using the OpenAI base-660

lines (Dhariwal et al. 2017). Both the robotic domains were
modeled using PyBullet (Coumans and Bai 2021), and the
reward structure for both the RL agents was sparse, simi-
lar to the one described in Sec. 5.1. The learning curves for
the TurtleBot domain (Fig. 3b) and the Panda arm domain665

(Fig 3d) (averaged over 10 trials) are shown in Fig. 3b and
Fig. 3d respectively. For both domains, LSTS outperforms
all the baselines in terms of learning speed. LSTSct further
speeds-up learning for both the robotic domains. The time-
to-threshold between LSTS and the best performing base-670

line (our custom implementation) DIRLc, is 2× 106 for the
TurtleBot domain and 5× 105 for the Panda arm domain.

5.3 LSTS - Search and Rescue task

To demonstrate how LSTS performs when the plan length
becomes deeper, we evaluated LSTS on a complex urban675

Search and Rescue domain with multi-goal objectives. In
this domain, the agent acts in a grid setting where it needs
to perform a series of sequential sub-tasks to accomplish the
final goal of the task. The agent needs to open a door using a
key, then collect a fire extinguisher to extinguish the fire, and680

then find and rescue stranded survivors. The order in which
these individual sub-goals such as opening the door, rescu-
ing the survivors, and extinguishing the fire are achieved
does not matter. A fully-connected graph Gphi generated us-
ing the above mentioned high-level states consists of 24 dis-685

tinct DAG paths. This is a multi-goal task as the agent needs
to find the key to open the door, then extinguish fire and res-
cue survivors to reach the goal state (details in Appendix F).
The results in Table 2 (averaged over 10 trials) show that
LSTS reaches a successful policy quicker compared to the690

LFS, GSRS, QRM and TSCL. The overall number of in-

Approach # Interactions
(Mean ± SD)

Success Rate
(Mean ± SD)

LSTS (8.61±0.12)×106 0.87± 0.04
LFS 5× 107 0± 0

GSRS 5× 107 0.05± 0.04
QRM 5× 107 0.05± 0.04
TSCL 5× 107 0± 0

Table 2: Table comparing #interactions & success rate for
the Search and Rescue domain.

teractions to learn a set of successful policies for satisfying
the high-level goal objective are higher compared to the door
key experiment because of the additional complexity of task.
We observe that LSTS is able to accommodate the task and 695

learn RL policies that satisfy the high-level goal objective.

6 Conclusion
We proposed LSTS, a framework for dynamic task sam-
pling for RL agents using the high-level SPECTRL ob-
jective coupled with the Teacher-Student learning strategy. 700

Through experiments, we demonstrated that LSTS acceler-
ates learning, converging to a desired success rate quicker
as compared to other curriculum learning and automaton-
guided RL baselines. LSTSct further improves sample effi-
ciency by continuing exploration on a new sub-task once a 705

goal state for a sub-task is reached. We also evaluate our
approach on long-horizon complex robotic tasks where the
state space is large and the actions are continuous. LSTS re-
duces training time without relying on human-guided dense
reward function, accelerating learning when the high-level 710

objective is available.
Limitations & Future Work: In certain cases, the

SPECTRL objective can be novel and/or generating the la-
beling function can be infeasible. Our future plans involve
expanding our framework to scenarios where obtaining a 715

precise SPECTRL specification is challenging. As an ex-
tension, we would like to explore biasing away from sub-
tasks rather than completely discarding them once the target
node is reached, so in the limit, optimal policies can be ob-
tained. We would also like to explore complex robotic and 720

multi-agent scenarios with elaborate SPECTRL objectives.
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