Under review as submission to TMLR

Multi-Task Reinforcement Learning with
Language-Encoded Gated Policy Networks

Anonymous authors
Paper under double-blind review

Abstract

Multi-task reinforcement learning often relies on task metadata—such as brief natural-
language descriptions—to guide behavior across diverse objectives. We present Lexical
Policy Networks (LEXPOL), a language-conditioned mixture-of-policies architecture for
multi-task RL. LEXPOL encodes task metadata with a text encoder and uses a learned
gating module to select or blend among multiple sub-policies, enabling end-to-end training
across tasks. On MetaWorld benchmarks, LEXPOL matches or exceeds strong multi-task
baselines in success rate and sample efficiency, without task-specific retraining. To analyze
the mechanism, we further study settings with fixed expert policies obtained independently
of the gate and show that the learned language gate composes these experts to produce be-
haviors appropriate to novel task descriptions and unseen task combinations. These results
indicate that natural-language metadata can effectively index and recombine reusable skills
within a single policy.

1 Introduction

Multi-task reinforcement learning (MTRL) aims to train a single agent that solves many tasks and reuses
skills across them. Recent MTRL approaches condition behavior on task metadata—often short natural-
language descriptions—to improve generalization and sample efficiency.

"Context-Aware Representations’, or CARE, introduced by [Sodhani et al.| (2021) exemplifies this trend by
leveraging natural language metadata about the different tasks to generate representations. In CARE,
context, or metadata, embeddings are used to gate over the outputs of multiple state-embeddings networks
to generate a single combined state representation. The state representation is concatenated with the context
embedding and ingested by a single policy to generate the resulting actions for the agent.

While CARE became a benchmark for multi-task reinforcement learning, it doesn’t entirely reflect how
humans tend to reason about their environment. Humans often master multiple smaller sub-skills and then
combine them in different capacities (Graybiell |1998; Jin & Costal [2010) to solve new tasks—the amount of
different skills, or policies, required to solve a goal often change between different tasks and even in different
states of the same task. This quantization into smaller skills must, therefore, serve as a motivation for
building agents that can perform well in multi-task reinforcement learning.

We introduce Lexical Policy Networks (LEXPOL) as a novel algorithm for multi-task reinforcement learning.
LEXPOL uses language-encoded gated policy optimization—the same single state is provided to multiple
policies and the final action is picked by gating over the outputs of the different policies using natural-
language embeddings of the task context. Since all individual policies receive the same state representation,
one can use LEXPOL to combine multiple single-task skills to perform larger multi-task learning. The entire
algorithm can be learned end-to-end.

We evaluate LEXPOL on MetaWorld using the evaluation protocol of CARE, reporting success rate and
sample efficiency. LEXPOL matches or exceeds strong multi-task baselines under end-to-end training. We
also study a frozen-experts setting in which sub-policies are expert single-task policies trained independently
(e.g., via single-task RL or scripted controllers). With only the gating module learned, LEXPOL composes

Under review as submission to TMLR

these experts using language to produce appropriate behavior for novel task descriptions and unseen task
combinations.

Both LEXPOL and CARE work by disentangling the complexity of multi-task reinforcement learning into
smaller learnable pieces. CARE divides the state into object-specific and state-specific representations with
a universal policy, while LEXPOL divides the tasks into fundamental skills that are then combined into a
universal action. As a final step, we propose preliminary experiments combining LEXPOL and CARE to
encapsulate their respective skill and state decompositions into a single hybrid framework.

Our primary contributions are:

1. We introduce Lexical Policy Networks (LEXPOL), a language-conditioned mixture-of-policies archi-
tecture that uses natural-language task metadata to gate over the actions of multiple sub-policies,
enabling modular skill reuse in multi-task RL.

2. We empirically evaluate LEXPOL on the MetaWorld domain and show that it matches or exceeds
strong baselines in success rate and sample efficiency.

3. We qualitatively evaluate LEXPOL using frozen-experts and compare it to end-to-end learning to
demonstrate the modular skills learned generalize to novel task descriptions.

4. We combine LEXPOL with Context-Aware Representations (CARE) into a hybrid algorithm that
jointly factorizes behaviors (policy) and representations (state), yielding additional gains in higher-
data regimes.

2 Background

A Markov Decision Process (MDP) (S, A, T,R,v) (Sutton & Barto, [2018} [Bellman) [1957) consists of a
set of states S, a set of actions A, a transition function T (s, a,s’) = P(Siy1 = §'|S; = s, Ay = a), a reward
function R : § X A — R and a reward discount factor v € [0,1). Since we consider a multi-task setting,
each goal has its own reward function R, and discount factors y,. A Markovian policy 7 : S x A — [0,1] :=
P(A; = a|S; = s) is a probability distribution of all the actions conditioned over the states.

The agent’s goal is to construct a policy that maximises the state value function V(s) and action-value func-
tion Qr (s, a) defined as Vi (s) = Ex [Y ;20 V' Re+1 | so = s] and Qx(s,a) = Ex [> ;27 Re41 | s0 = s,a0 = al.
Solving for the optimal action-value function allows one to deduce a greedy optimal policy. For discrete MDPs
there is at least one optimal policy that is greedy with respect to its action-value function.

A Contextual Markov Decision Process (CMDP) (C,S, A, M) (Hallak et al| [2015) augments the
MDP with the context space C and mapping function M(c) = {R¢, T°} that maps context ¢ € C to rewards
and transitions. CMDPs are applicable to multi-task reinforcement learning since each task can be defined
as an MDP with all tasks sharing the same state space S. For each task in the family of MDPs, the agent
only has access to a subspace of the state space §¢ consisting of all relevant objects and states. The state
space 8¢ and R¢ can differ for MDPs (tasks), but the object-specific dynamics remain consistent across tasks
(even though the MDP dynamics 7¢ differ due to different).

A common starting point for MTRL is to model each task as an MDP and optimize a single policy over a dis-
tribution of tasks. In our work, tasks come with auxiliary information—natural-language descriptions—that
is observed at the beginning of each episode and fixed for its duration. Treating this information as a context
variable leads naturally to a CMDP formulation, which lets us precisely distinguish the per-episode task
identity (context) from the within-episode Markov dynamics.

Like CARE (Sodhani et al.| |2021)), we focus on the setting where S° is a strict subset of the dimensions in
S. This leads to the definition of the Block-Contextual MDP.

A Block-Contextual Markov Decision Process (BC-MDP) (C, S, A, M’) (Zhang et al.,[2020; Du et al.,
2019) augments the CMDP by defining the function M’ that maps a context ¢ € C to MDP parameters and
observation space M(c) = {R¢, T¢,S8°}.

Under review as submission to TMLR

The MetaWorld domain over 50 distinct robotics manipulation tasks is an ideal BC-MDP candidate since
all tasks share the same state dimensionality but have different semantic meaning depending on task. For
instance, the same state space could reflect a goal-state in one task and the object’s location in another.
Therefore, this translates into a family of MDPs with different rewards and states (semantic meaning), but
with the same state-dimensionality.

In any single-task, actor-critic or policy gradient algorithms like Soft Actor-Critic (SAC, Haarnoja et al.
(2018)) and Proximal Policy Optimization (PPO, [Schulman et al.|(2017)) would result in the ideal perfor-
mance and hence result in an upper bound. However, multi-task variations of these algorithms struggle with
the states having different semantic meaning depending on the task. The purpose of LEXPOL, and CARE,
is to use the task context for gating over multiple networks that learn smaller pieces of information which
when combined help construct a solution to different tasks. In CARE, this translates to combining different
state networks to build and represent relevant state information about the task. In LEXPOL, this translates
to learning smaller behaviors and skills that can be combined to produce longer-term behaviors that solve
solve multiple different tasks. LEXPOL leverages the fact that, in the single-task setting, SAC and PPO
learn optimal performance.

3 Lexical Policy Networks

Lexical Policy Networks (LEXPOL) tackle complexity in multi-task reinforcement learning by factoring the
tasks into fundamental and reusable skills common across MDPs. The primary source of complexity in
learning multiple-tasks arises from the reusability across the dynamics in BC-MDPs—the same section of
the state space can represent different objects depending on the task (object-representation) or different
skills to be performed (skill-representation). For instance, the tasks "Close the door" and "Open the window"
in a BC-MDP will have the same state dimensionality, but the same dimensions in one task could represent
"close" and "door" while representing "open" and "window" in another. Architectures that do not utilize the
context, such as any multi-task variations of policy optimization algorithm, fails to learn the task. However,
if provided with single-tasks, policy optimization algorithms can achieve perfect performance.

Factoring the state spaces of the different BC-MDPs allows us to leverage that on single-tasks, policy
optimization algorithm achieve benchmark performance. Having a collection of optimal policies on factored
skills poses the advantage that they can be combined in different capacities to form more complex skills. We
will indeed see that in our experiments that learning an attention over optimal single-task skills results in
solve multiple longer-horizon tasks of higher complexity.

LEXPOL use natural language embeddings to leverage the task context for learning a gating over the different
skills. Language serves as a favorable medium for context as metadata is often available or easily constructed
for different tasks. The entire architecture ranging from the gating to policy parameters is learned end-to-
end, but we will also note in Section [£.2] that it is possible to just learn the gating and context embeddings
over already learned optimal policies.

3.1 Architecture

The architecture for lexical policy networks is divided into three distinct parts:

1. Context Encoder: The raw natural language instruction is encoded into a fixed dimension using
the a Pre-Trained Language model and an optional multi-layer perceptron. The output is a single
n-dimensional encoded context zeontert € R™. We use BERT (Devlin et al., 2019)) as our pre-trained
language model.

2. Mixture of Policies: A mixture of policies is used to learn the factorized skills that then combine
into solving multiple longer horizon task. We learn & different policies, each of which produces an m-
dimensional action a; € R™. Any policy optimization algorithm can be used for learning the policy
parameters; we use Soft Actor-Critic Haarnoja et al.| (2018]) as our policy optimization algorithm.

Under review as submission to TMLR

Mixture of Policies Attention over different skills
Policy — [a
Algorithm 1 !
Optional .
Final
s - State T gatecuntexf " Action
State Embedding
Policy
Algorithm n = 8,
Context Encoder
| Pretrained | z
! language | MLP zenend Gating MLP ——> gate
' model ;

Figure 1: LEXPOL Architecture. There are three primary components: 1) A Context Encoder, 2) Mixture
of Policies, 3) Gating MLP. Natural language metadata is used to encode a context while a mixture of
policies, representing smaller skills, generate a series of actions. The Gating MLP is used to generate a
soft attention over the policy outputs using the encoded context, resulting in a final action. Each policy
represents a smaller skill that when combined with other skills can used to solve multiple longer horizon
tasks.

All policies use the same state representation for inputs. We will note in Section [5] that the object-
specific context representations can be combined with the factorized policies of LEXPOL to further
enable multi-task learning.

3. Gating: A gating multi-layer perceptron R” — R” transform zeontes: into the context gating weights
gatecontert- These weights are used to gate over the outputs of the k different policies to produce a
final action a € R™ that is used to interact with the environment.

Figure [I] plots the architecture for LEXPOL with the three different components highlighted. The entire
algorithm is learned end-to-end; however, we will note in our experiments in Section [£.2] that it is possible
to freeze the policy weights and learn a gating over prior optimized policies.

3.2 Algorithm

The flow of LEXPOL is defined in Algorithm

The task context (metadata) is passed to the pre-trained language model C' to obtain zeontert € R™. The
state representation s is passed to all k policies P;, Vi € {1,...,k} to generate its respective actions a;.
The language context embedding is converted to a softmax gating embedding geontext Dy passing it to the
gating MLP G. The final action is the dot product of the attention weights and the policy outputs. The
policy loss is used to update all the parameters as all networks directly result in the generation of the final
action.

The hyperparameter here is the number of policies k, which also controls the output size of the gating MLP.
We use Soft Actor-Critic (Haarnoja et al., [2018]) as our policy optimization algorithm. While the algorithm
describes a method of learning the entire task end-to-end, we will see in our experiments that it is possible to
freeze the policy parameters and just learn the gating. This leaves it to the user to learn single-task modular
policies that would be effective when combined.

Under review as submission to TMLR

Algorithm 1 Lexical Policy Networks
Input: State Representation s
Require: Pre-Trained Language Model C
Require: Mixture of k-Policies P;
Require: Gating MLP G
Output: Final Action a

1: Let ¢t = 0.

2: for timestep t = 1..N do

3: for each task T}, do

4: Zeontext = C(metadata)

5: ai:Pi(s), VZE{].,,]C}

6: gggnte:rt = Stopgrad('z?clmtezt)

T g;’:gntezt = G(Egntemt

S i = 50ftmaz(g)

9: am = ieq1,.. 0y @ X o (OR a.ay)
10: Update parameters P, G

11: end for

12: end for

3.3 Comparison with State Disentanglement

We draw our closest comparison with Context-Aware Representations (CARE, [Sodhani et al.| (2021))) which
performs gating over the states instead of actions with a similar motivation of breaking down multi-task
complexity into modular representations. CARE decomposes the task representations, such as object rep-
resentations, by breaking the state representation into a mixture of state-encoders with a single universal
policy. LEXPOL decomposes the task into modular skills by using a mixture of policies with a single state.
LEXPOL is further motivated by the fact that humans often don’t learn a one universal skill, but instead
learn a magnitude of smaller behaviors that collectively solve multiple longer horizon tasks.

We will see in Section [5] that it is possible to combine LEXPOL and CARE to utilize both, modular skills
and modular representations, to further enhance multi-task learning.

4 Experiments

Our experiments focus on the task performance of the end-to-end learning of LEXPOL as compared to
benchmark baselines, along with an interpretation of LEXPOL on tasks where the policy is pre-trained
and the parameters are frozen. The efficacy of using task metadata in multi-task learning was already
demonstrated by [Sodhani et al.| (2021)), and hence we shall not cover it.

4.1 LEXPOL Performance
4.1.1 Method

We conduct experiments on the MetaWorld domain (Yu et al., |2019)—a popular multi-task and meta-
learning robotics domain consisting of 50 different benchmark tasks. It offers two versions of tasks, MT10
(multi-task 10) and M'T50 (multi-task 50), that simulate multi-task learning over 10 and 50 robotics domains
respectively. It comprises 50 diverse robotic manipulation tasks, each challenging agents with different object
interactions—ranging from pushing and pulling to opening and closing objects like drawers, doors, and cups.
Although every task shares a common state and action space, the semantic interpretation of these states
varies across tasks, thereby making it an ideal candidate for a BC-MDP.

We compare LEXPOL with its closest method Context-Aware Representations (CARE, [Sodhani et al.
(2021))), which we described as a benchmark method that uses natural language to gate over state rep-
resentations. We also compare our method with Attenion-based Mixture-of-Experts (AMESAC, |Cheng

Under review as submission to TMLR

et al.[(2023])) which uses a backbone network to extract domain knowledge with a task-conditioned attention
mechanism without using task priors such as metadata. We compare with Soft Modularization (Yang et al.
(2020)) that performs routing in a shared-policy network to learn policies for different tasks. We compare
with SAC + FiLM (Perez et all [2018]), which is a general-purpose conditioning method used to condition
the CARE encoder on context. Finally, we compare against Multi-Task SAC as a simple extension of a
single-task RL algorithm to multi-task settings. We use single-task SAC (Haarnoja et all 2018) as the
upper-bound of measuring performance.

We use the same evaluation strategy used by [Sodhani et al.| (2021) in CARE in order to ensure uniformity
across the previous benchmark method. The agent is evaluated at regular intervals by conducting 5 trials
in each test environment, with the mean success rate across these trials representing performance in the
respective environment. These environment-specific success rates are subsequently averaged to yield a mean
success rate for each evaluation interval. By repeating this evaluation process at regular intervals throughout
training, we construct a time series representing the progression of mean success rates. Since the agent
is trained with multiple random seeds (ten in our experiments), we obtain ten distinct time series, each
corresponding to a different seed. These ten series are further averaged to calculate the overall mean success
rate across seeds. Ultimately, we report the best mean success rate observed across all time-series as the
agent’s performance metric. This evaluation method is necessary since MetaWorld returns binary success
signals at the end of its episodes.

4.1.2 Results

Results are reported for the MT10 and MT50 setups of tasks to include a varied difficulty of the problem.
Further, the results are reported at two intervals of 100000 timesteps and 2 Million timesteps. We find that
LEXPOL outperforms other methods in all sets of tasks.

Table [1] plots the results for the MT10 setup after 100k and 2 million timesteps. In both settings, LEX-
POL achieves the best performance. LEXPOL also demonstrates better sample efficiency as seen by its
performance in the low-sample setting of 100k timesteps. Interestingly, using a Mixture-of-Encoders under-
performs at the low-sample setting.

Table 1: Evaluation Performance Comparison of LEXPOL with previous benchmark methods on the M'T10
test environments after 100k timesteps and 2 million timesteps of training for each environment. The
results are averaged. LEXPOL matches or outperforms the benchmark methods, including the two primary
baselines of CARE and Mixture-of-Encoders (MoE). Single-Task SAC (one SAC per task) is used as the
upper-bound of performance. Statistical significance denoted by *

Agent Success @ 100k Success @ 2M
(mean + stderr) (mean + stderr)
Multi-task SAC* (Yu et al., |2019)) 0.10 4+ 0.02* 0.45 + 0.051*
Soft Modularization (Yang et al., [2020) 0.35 £+ 0.042 0.71 + 0.062
SAC + FiLM (Perez et al., [2018) 0.24 +£0.031* 0.72 +0.072
MOORE Hendawy et al.| (2024)) 0.33 £0.014 0.83 £ 0.021
SAC + CARE (Sodhani et al. [2021) 0.35+0.038 0.82 £ 0.054
SAC + MoE (Cheng et al., 2023) 0.29 + 0.056 0.78 £0.034
LEXPOL (Our Algorithm) 0.39 £ 0.052 0.86 +£0.063
One SAC agent per task (upper bound) 0.93 +0.051

Likewise, we observe similar results on the more difficult MT50 task. Table[2] plots the results for the MT50
task after 100k and 2 million timesteps. The performance for all methods, including the SAC upper-bound,
degrades as compared to the MT10 task given the increased difficulty. We note that LEXPOL matches or
outperforms the previous benchmark methods, even on the low-sample complexity setup.

Under review as submission to TMLR

Table 2: Evaluation Performance Comparison of LEXPOL with previous benchmark methods on the MT50
test environments after 100k timesteps and 2 million timesteps of training for each environment. The
results are averaged. LEXPOL matches or outperforms the benchmark methods, including the two primary
baselines of CARE and Mixture-of-Encoders (MoE). Single-Task SAC (one SAC per task) is used as the
upper-bound of performance. Statistical significance denoted by *

Agent Success @ 100k Success @ 2M
(mean + stderr) (mean + stderr)
Multi-task SAC (Yu et al., [2019)) 0.09 +0.0072* 0.30 £ 0.069*
Soft Modularization (Yang et al.,2020) 0.21 4 0.038* 0.5 4+ 0.030*
SAC + FiLM (Perez et all [2018) 0.16 + 0.026* 0.42 £+ 0.023*
MOOORE Hendawy et al.| (2024]) 0.27 4+ 0.053* 0.60 + 0.067
SAC + CARE (Sodhani et al.| [2021) 0.38 = 0.082 0.56 £ 0.032
SAC + MoE (Cheng et al.| [2023) 0.35+0.018* 0.53 £ 0.059
LEXPOL (Our Algorithm) 0.42+0.012 0.64 £+ 0.057
One SAC agent per task (upper bound) 0.72 +0.070

Statistical significance was evaluated with two-sided Welch t-tests with Bonferroni correction: LEXPOL
is significantly better than baselines like Multi-task SAC, Soft Modularization and SAC + FiLM, while
differences with stronger baselines like CARE/MoE are not statistically significant. Practically, LEXPOL
delivers consistent learning gains under a fair tuning protocol—every method (ours and baselines) was tuned
with the same search space and budget, with final configurations provided in the Appendix for reproducibility.
Additional experiments and ablation studies varying the number of encoders and the language encoder are
included in Appendices [A71] and [A72] respectively.

4.2 Pre-Trained Modular Policies

We now test the efficacy of LEXPOL when the policy parameters are fixed and only the gating and embedding
MLPs can be trained.

For this experiment, we consider a continuous T-Shaped environment. There are two goals, each on opposite
end: one located on the left side of the T ("go to the blue goal") and the other located on the right side of
the T ("go to the red goal"). There are two tasks, one corresponding to each goal. The agent must navigate
to the goal from any starting point. Two policies are learned to convergence using any policy optimization
algorithm (SAC in our case) with one policy corresponding to each task. The parameters for each policy are
then frozen.

LEXPOL is now trained on a new composite task "go to the red goal, then the blue goal" using the frozen
policies—the actions are now only generated using a combination of the converged policies. The reward
structure is designed to give a reward when the red goal is reached and a subsequent reward when the blue
goal is reached. A penalty is incurred if the agent reaches them in the wrong order or takes too long.

We plot the percentage each policy is used in Figure[2] At each state, we plot the dominant policy with the
color representing the respective red or blue policies. The intensity of the color corresponds to the percentage
of policy dominance, with darker shades implying a more decisive policy selection by LEXPOL.

LEXPOL learns how to use the two frozen policies to solve the combined longer horizon task, thereby
demonstrating that the usage of factorized skills that enable multi-task reinforcement learning when combined
using natural language context.

Interestingly, we observe similar results when LEXPOL is trained end-to-end without pre-training the skills.
The two learned skills with end-to-end LEXPOL training are the two pre-trained modular policies. This
further confirms the motivation of LEXPOL for decomposing complex long-horizon multi-task setups into
fundamental skills.

Under review as submission to TMLR

LEXPOL with Fixed Policy Weights

LEXPOL

Figure 2: A comparison of LEXPOL with pre-trained frozen policies (top image) and end-to-end trained
policies (bottom image). Two goals are selected, go left (go to the blue goal) and go right (go to the red
goal). In the top image with pre-trained policies, two separate policies are trained corresponding to each
task, their parameters are frozen, and then LEXPOL is trained on a new task (go to the red goal then the
blue goal). In the bottom image, LEXPOL is trained end-to-end, and then trained on the new task with
the policies frozen. In both cases, we see the usage of factorized skills that enable multi-task reinforcement
learning on longer-horizons using natural language context. Interestingly, it is also inferred by the similarity
that the end-to-end training results in the two pre-trained skills.

5 Combining State and Policy Context Awareness

5.1 Architecture

We have introduced LEXPOL that factorizes the task into a set of fundamental skills and then uses natural
language context to generate a soft attention over the skills to combine them to solve multiple longer horizon
tasks. We have also discussed a closely related previous method, Context-Aware Representations (CARE),
that factorizes the state into object-specific and skill-specific information and then uses natural language
attention to generate a single state fed into a single universal policy.

We now propose an improvement to both methods that combines both methods to leverage the best of both,
state and policy context awareness—not only factorizing the state into its core components, but also using

Under review as submission to TMLR

a selection of factorized modular skills for solving longer tasks. This new method, LEXPOL + CARE,
builds on the same architecture presented in Figure [l A Mixture of State-Encoders is added along with its
own Gating MLP and Context Encoder. The single state generated using the soft-attention over the Mixture
of State-Encoders is used to generate the State Representation in Figure [I}

It should be noted that the same Context Encoder can be used for the Mixture of Policies and Mixture of
State-Encoders if there are no parameters with it other than the pre-trained language model. If there is an
additional network, as seen in Figure [I] then separate Context Encoders must be used.

5.2 Experiments

We now conduct experiments in the MetaWorld environment to compare LEXPOL + CARE with other
methods using the same evaluation and experiment methodology as in the previous section.

Table 3: Evaluation Performance Comparison of LEXPOL + CARE with previous benchmark methods
on the MT10 test environments after 100k timesteps and 2 million timesteps of training for each
environment. LEXPOL + CARE outperforms other methods over 2 million timesteps, but not after 100k
timesteps given the increased learning difficulty with network size.

Agent Success @ 100k Success @ 2M
(mean + stderr) (mean + stderr)
SAC + CARE (Sodhani et al.} [2021) 0.35 £ 0.038 0.82 £ 0.054
SAC + MoE (Cheng et al., 2023) 0.29 £ 0.056 0.78 £0.034
LEXPOL (Our Algorithm) 0.39 +0.052 0.86 £+ 0.063
LEXPOL + CARE (Our Algorithm) 0.30 £ 0.029 0.90 +£0.075
One SAC agent per task (upper bound) 0.93 +0.051

Table 4: Evaluation Performance Comparison of LEXPOL + CARE with previous benchmark methods
on the MT50 test environments after 100k timesteps and 2 million timesteps of training for each
environment. LEXPOL + CARE outperforms other methods over 2 million timesteps, but not after 100k
timesteps given the increased learning difficulty with network size.

Agent Success @ 100k Success @ 2M
(mean + stderr) (mean + stderr)
SAC + CARE (Sodhani et al.| [2021) 0.38 £+ 0.082 0.56 £ 0.032
SAC + MokE (Cheng et al.| [2023) 0.35 £ 0.018 0.53 £ 0.059
LEXPOL (Our Algorithm) 0.42+0.012 0.64 £+ 0.057
LEXPOL + CARE (Our Algorithm) 0.33 +£0.081 0.68 +0.049
One SAC agent per task (upper bound) 0.72 +0.070

Table [3] plots the results for the MT10 setup after 2 million and 100k timesteps respectively, while Table
plots the results for the MT50 setup after 2 million and 100k timesteps respectively. LEXPOL + CARE
outperforms the benchmark baselines in the MT10 and MT50 setups after 2 million timesteps, indicating the
efficacy of both state and policy disengtanglement in multi-task reinforcement learning. However, LEXPOL
+ CARE does not outperform other methods in the low sample complexity setting of 100k timesteps since
the increased number of networks is accompanied with added learning difficulty.

6 Related Work

There are two primary related prior works: Context-Aware Representations and Attention-based Mixture.

Under review as submission to TMLR

Context-Aware Representations (CARE, [Sodhani et al.| (2021)) uses natural language context to generate
a soft-attention over a Mixture of State-Encoders. This generates a single combined state composed of the
original state factorized into a set of object-specific state representations. The combined state is fed into a
single universal policy to learn multiple reinforcement learning tasks.

Attention-based Mixtures (AMESAC, |Cheng et al.| (2023])) uses attention over a Mixture of Policies like we
do. However, they propose using a backbone network to generate the attention by learning task embeddings
directly from reinforcement learning interactions without relying on external descriptive information. Each
expert network takes features from the shared backbone network and produces expert-specific outputs,
specifically the Key and Value vectors. While AMESAC proposes itself as a self-contained method not
relying on natural language metadata as context, we propose that natural language context is often widely
available or easily generated for tasks—as agent continue to become more widely available, natural language
will likely be a key method for humans to communicate with them.

There are other related works in multi-task reinforcement learning. PCGrad (Yu et all [2020) performs
gradient surgery by reducing interference between tasks during training. Soft Modularization (Yang et al.,
2020) performs routing in a shared-policy network to learn policies for different tasks. Policy Sketches
(Andreas et al., 2017) is a hierarchical reinforcement learning approach that leverages high-level, abstract
“sketches” as weak supervision to guide the learning process. Distral (Teh et al., [2017), short for "Distill
& Transfer Learning', is a framework that focuses on sharing knowledge among several tasks by distilling
common behaviors into a single, central policy.

7 Discussion

We have introduced Lexical Policy Networks (LEXPOL)—an end-to-end multi-task reinforcement learning
algorithm that factorizes the different tasks into a set of modular policies that are then combined together
using soft-attention generated by a natural language context to solve multiple longer horizon tasks. Our
method is motivated by human behavior in multi-task learning, where fundamental skills are combined
together in varying capacities to solve more complex tasks. Using natural language metadata for multi-task
learning is advantageous since it is widely available and can be easily generated—often representing how
humans learn to combine skills using natural language thoughts and instructions.

Our experiments demonstrate LEXPOL matches or outperforms benchmark methods on multiple setups in
the complex MetaWorld robotics domain. We also demonstrate the efficacy of LEXPOL when using pre-
trained frozen skills, and make comparisons with the policies learned end-to-end to demonstrate the capacity
of the framework in learning modular skills.

We have also introduced LEXPOL + Context-Aware Representations, a method that combines Lexical
Policy Networks with another multi-task reinforcement learning benchmark. The combined method uses
soft-attention over a Mixture of Policies as well as a Mixture of State-Encoders, thereby factorizing the
task complexity twice into a collection of fundamental skills and object-specific representations. The hybrid
LEXPOL + CARE method matches or outperforms LEXPOL and the other benchmark methods in the
MetaWorld domain, yielding additional improvements over either state or policy factorization alone.

An interesting next avenue of research would be to continue exploring the combined LEXPOL + Care method
and understand the interplay between the decomposed state-representations and policies.

References

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
pp. 166-175. JMLR.org, 2017.

Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edition, 1957.

10

Under review as submission to TMLR

Guangran Cheng, Lu Dong, Wenzhe Cai, and Changyin Sun. Multi-task reinforcement learning with
attention-based mixture of experts. IEEE Robotics and Automation Letters, 8(6):3812-3819, 2023. doi:
10.1109/LRA.2023.3271445.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of grounded language
learning. arXiv preprint arXiv:1810.08272, 2018.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem Lahlou,
Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented tasks. In Advances in Neural Information Processing
Systems 36, New Orleans, LA, USA, December 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics, 2019. URL
https://aclanthology.org/N19-1423/.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford. Prov-
ably efficient RL with rich observations via latent state decoding. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pp. 1665-1674. PMLR, 09-15 Jun 2019. URL
https://proceedings.mlr.press/v97/dul9b.htmll

Ann M. Graybiel. The basal ganglia and chunking of action repertoires. Neurobiology of Learning and
Memory, 70(1):119-136, 1998. ISSN 1074-7427. doi: https://doi.org/10.1006/nlme.1998.3843. URL
https://www.sciencedirect.com/science/article/pii/S1074742798938436.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. International Conference on Machine Learning
(ICML), 2018.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes, 2015. URL
https://arxiv.org/abs/1502.02259.

Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement learning with mixture of or-
thogonal experts. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=aZH1dM3G0X.

Xin Jin and Rui M. Costa. Start/stop signals emerge in nigrostriatal circuits during sequence learn-
ing. Nature, 466(7305):457-462, jul 2010. doi: 10.1038 /nature09263. URL https://doi.org/10.1038/
nature09263.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised representations for
reinforcement learning. In Hal Daumé IIT and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5639-5650.
PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/v119/laskin20a.html.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual reasoning
with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-based
representations. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 9767-9779. PMLR,
18-24 Jul 2021. URL https://proceedings.mlr.press/v139/sodhani2la.htmll

11

https://aclanthology.org/N19-1423/
https://proceedings.mlr.press/v97/du19b.html
https://www.sciencedirect.com/science/article/pii/S1074742798938436
https://arxiv.org/abs/1502.02259
https://openreview.net/forum?id=aZH1dM3GOX
https://doi.org/10.1038/nature09263
https://doi.org/10.1038/nature09263
https://proceedings.mlr.press/v119/laskin20a.html
https://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v139/sodhani21a.html

Under review as submission to TMLR

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. 2018. ISBN 0262039249.

Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell,
Nicolas Heess, and Razvan Pascanu. Distral: robust multitask reinforcement learning. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17, pp. 4499-4509,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Ruihan Yang, Huazhe Xu, YI WU, and Xiaolong Wang. Multi-task reinforcement learning with soft modu-
larization. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 4767-4777. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/32cfdce9631d8c7906e8e9d6e68b514b-Paper . pdf.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine.
Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference
on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.10897.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient
surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020.

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal,
and Doina Precup. Invariant causal prediction for block MDPs. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 11214-11224. PMLR, 13-18 Jul 2020.

A Appendix

A.1 Additional Experiments
A.1l.1 MetaWorld

Like|Sodhani et al.| (2021)), we also compare all methods at 0.5 million timesteps in order to make an accurate
and fair comparison. This comparison at low sample size is inspired by [Laskin et al.| (2020).

These results are in Tables [and [6]

Table 5: Evaluation Performance Comparison of LEXPOL with previous benchmark methods on the MT10
test environments after 0.5 million timesteps of training for each environment. The results are averaged.
LEXPOL matches or outperforms the benchmark methods, including the two primary baselines of CARE and
Mixture-of-Encoders (MoE). Single-Task SAC (one SAC per task) is used as the upper-bound of performance.
Statistical significance denoted by *

Agent success
(mean + stderr)

Multi-task SAC* (Yu et al.l [2019) 0.32 +0.089
Soft Modularization (Yang et al., 2020) 0.63 &+ 0.073
SAC + FiLM (Perez et al.l [2018) 0.59 +£0.017
SAC + CARE (Sodhani et al., [2021) 0.66 £ 0.034
SAC + MoE (Cheng et al., [2023) 0.60 £ 0.076
LEXPOL (Our Algorithm) 0.69 £0.093

12

https://proceedings.neurips.cc/paper/2020/file/32cfdce9631d8c7906e8e9d6e68b514b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32cfdce9631d8c7906e8e9d6e68b514b-Paper.pdf
https://arxiv.org/abs/1910.10897

Under review as submission to TMLR

Table 6: Evaluation Performance Comparison of LEXPOL with previous benchmark methods on the MT50
test environments after 0.5 million timesteps of training for each environment. The results are averaged.
LEXPOL matches or outperforms the benchmark methods, including the two primary baselines of CARE and
Mixture-of-Encoders (MoE). Single-Task SAC (one SAC per task) is used as the upper-bound of performance.
Statistical significance denoted by *

Agent success
(mean =+ stderr)

Multi-task SAC* (Yu et all [2019) 0.25 & 0.090
Soft Modularization (Yang et al, [2020) 0.44 + 0.082
SAC + FiLM* (Perez et al., 2018) 0.35+0.023
SAC + CARE (Sodhani et al.| [2021) 0.49 + 0.056
SAC + MoE (Cheng et al.,[2023) 0.46 £ 0.067
LEXPOL (Our Algorithm) 0.52+0.057

A.1.2 Time-Series

Figure [3] plots the timeseries of the success rates for all the multi-task algorithms.

MT10 MT50

o

©
o
o

206 £

o T 04

173 173

804 8

S S

%) ® 0.2
02

O'8.00 025 050 0.75 1.00 1.25 1.50 175 2.00 O'8.00 025 050 0.75 1.00 1.256 1.50 175 200

Number of Timesteps 1e6 Number of Timesteps 1e6
= MT-SAC = SAC + FiLM == SAC + MoE = LEXPOL = MT-SAC
= Soft Mod = SAC + CARE

Figure 3: Success rates for the different multi-task reinforcement learning algorithms for the MT10 and
MT50 domains.

A.1.3 BabyAl/MiniGrid

BabyALI |Chevalier-Boisvert et al.| (2018) and Minigrid |Chevalier-Boisvert et al.| (2023) provide a natural do-
main to test since they provide grounded natural-language intructions for missions while adding a variability
on the actions and descriptors in the environment, testing both action and state decomposition.

We propose a two-step curriculum over the Minigrid domain. Our task involves using two of the Minigrid
environments—Go to Object (“go to the {color} {object type}”) and Pickup (“pick up a {color} {object
type}”). Color is the color of the object and can be “red”, “green”", or “blue”, and type is the type of the
object and can be “ball”; “box” or “key”. This allows us variations in (1) the action being performed (go to
vs pick), (2) the descriptive color, and (3) the type of object.

In our curriculum, we propose learning each of the two tasks and their descriptive variations separately for a
set number of timesteps and then combining the tasks (for example., Pick up blue box then Go To red ball).
In our experiments, we learn the individual tasks for 200k timesteps before switching to the complex tasks.

We report our results in Table [7] It is very interesting to note that the hybrid state and action factorizing
algorithm performs best in the complex task setting that involves factorizing the actions ("Go To" vs "Pick
Up") as well as the state (color and object).

13

Under review as submission to TMLR

Table 7: Evaluation Performance Comparison of multi-task reinforcement learning algorithms on the Minigrid
environment. We aim at using tasks that introduce variations in (1) actions, (2) state descriptors (color),
and (3) the objects in state (types)

Agent Success Rate @ 200k Success @ 500k
(Simple Multi-Task) (Complex Curriculum)
SAC + CARE (Sodhani et al., 2021) 0.44 £0.010 0.59 £ 0.087
LEXPOL (Our Algorithm) 0.42 +0.027 0.60 +0.073
LEXPOL + CARE (Our Algorithm) 0.38 +£0.061 0.65+0.033

A.2 Ablation Studies

We conduct two ablation studies to demonstrate the effectiveness of LEXPOL under different hyperparam-
eters along with demonstrating the lack of any significant hyperparameter tuning in our results.

A.2.1 Varying k—the number of mixture-policies

We vary the number of encoders k for both MT10 and MT50 domains. It is worth noting that for certain
hyperparameters we slightly outperform the results reported in the main text of the paper (though not
in a statistically significant manner), but choose not to report those since we attempt at matching the
hyperparameters used in the baselines.

Table 8: Evaluation Performance Comparison of LEXPOL by varying the number of encoders on the MT10
test environments after 2 million timesteps of training for each environment. The results are averaged.

Agent success

(mean + stderr)
LEXPOL k = 6 (Reported) 0.86+0.063
LEXPOL k=3 0.80 +0.078
LEXPOL k=5 0.87 £ 0.056
LEXPOL k=9 0.85+0.023

Table 9: Evaluation Performance Comparison of LEXPOL by varying the number of encoders on the M'T50
test environments after 2 million timesteps of training for each environment. The results are averaged.

Agent success

(mean =+ stderr)
LEXPOL k = 6 (Reported) 0.64 +0.057
LEXPOL k=3 0.54 +0.087
LEXPOL k=5 0.62 £+ 0.047
LEXPOL k=9 0.64 £ 0.018

14

Under review as submission to TMLR

A.2.2 Using alternative pre-trained language models

We used BERT to generate the encodings in the results reported in the main text of the paper. In this section,
we demonstrate comparable results using alternative language models for both the M'T10 and MT50 sets
of tasks. We use the same hyperparameters as reported in all the results in the main text.

Table 10: Evaluation Performance Comparison of LEXPOL by varying the language encoder on the MT10
test environments after 2 million timesteps of training for each environment. The results are averaged.

Agent success
(mean =+ stderr)

LEXPOL (BERT) (Reported) 0.86 + 0.063
LEXPOL (RoBERTa) 0.83 4 0.052
LEXPOL (DistilBERT) 0.78 4 0.095
LEXPOL (ALBERT) 0.81 4 0.020
LEXPOL (ELECTRA) 0.79 4+ 0.012
LEXPOL (DeBERTa) 0.85 4 0.027

Table 11: Evaluation Performance Comparison of LEXPOL by varying the language encoder on the MT50
test environments after 2 million timesteps of training for each environment. The results are averaged.

Agent success
(mean =+ stderr)

LEXPOL (BERT) (Reported) 0.64 4+ 0.057
LEXPOL (RoBERTu) 0.59 +0.081
LEXPOL (DistilBERT) 0.57 +0.086
LEXPOL (ALBERT) 0.62 £0.013
LEXPOL (ELECTRA) 0.65 =+ 0.036
LEXPOL (DeBERTa) 0.63 £ 0.079

15

Under review as submission to TMLR

A.3 Hyperparameters

We use the same hyperparameters in [Sodhani et al.| (2021)) to make an accurate and fair comparison. These
hyperparameters are listed in Tables [12] and

Table 12: Hyperparameter for LEXPOL

Hyperparameter

Values

batch size

128 x number of tasks

network architecture

feedforward network

actor /critic size

three fully connected layers with 400 units

non-linearity

ReLU

policy initialization

standard Gaussian

exploration parameters

run a uniform exploration policy 1500 steps

of samples / # of train steps per iteration

1 env step / 1 training step

policy learning rate 3e-4

Q function learning rate 3e-4
optimizer Adam
policy learning rate 3e-4

beta for Adam optimizer for policy (0.9, 0.999)
Q function learning rate 3e-4

beta for Adam optimizer for Q function (0.9, 0.999)
discount .99
Episode length (horizon) 150

reward scale 1.0

Table 13: Algorithm-specific Hyperparameter values for LEXPOL, CARE, and hybrid LEXPOL 4+ CARE

Hyperparameter

Hyperparameter values

task encoder size

two layer feedforward network. Hidden/output dims = 50

number of encoders

6 for MT10, 10 for MT50 (each for LEXPOL + CARE)

16

Under review as submission to TMLR

Additionally, the hyperparameters used for the other methods are listed in Table

Table 14: Hyperparameter values and architecture settings for (i) Soft Modularization, (ii) FiLM, (iii) SAC

+ MoE, and (iv) MOORE

Method

Hyperparameter

Hyperparameter values

Soft Modularization

task encoder size
routing network size

two layer feedforward network. Hidden/output dims = 50
4 layers and 4 modules per layer.

temperature learned. disentangled with tasks
SAC + FiLM
task encoder size two layer feedforward network. Hidden/output dims = 50
temperature learned. disentangled with tasks
SAC + MoE
Number of experts (M) MT10: 3 | MT50: 10
task query size 400-dim trainable task query (used by attention module)
critic backbone two-layer MLP (state-action concat — backbone features)
expert network each expert is a two-layer MLP
tower network two-layer MLP after attention mixing
hidden units per layer 400 (applies to each layer above)
activation ReLU
MOORE

Representation Block

Number of Experts (k)
Number of Linear layers
Number of output units
Activation functions

{MT10: k=4, MT50: k =6}
3

400, 400, 400]

[ReLU, ReLU, Linear]

Output Block

Number of linear layers
Number of output units

1 (x number of tasks |T])
[|A] for actor and 1 for critic]

Activation functions Linear
Task Encoder
Number of linear layers 1
Number of output units Number of Experts (k)
Use bias False
Activation function Linear

17

	Introduction
	Background
	Lexical Policy Networks
	Architecture
	Algorithm
	Comparison with State Disentanglement

	Experiments
	LEXPOL Performance
	Method
	Results

	Pre-Trained Modular Policies

	Combining State and Policy Context Awareness
	Architecture
	Experiments

	Related Work
	Discussion
	Appendix
	Additional Experiments
	MetaWorld
	Time-Series
	BabyAI/MiniGrid

	Ablation Studies
	Varying k—the number of mixture-policies
	Using alternative pre-trained language models

	Hyperparameters

