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ABSTRACT

Controlling high-dimensional nonlinear systems presents significant challenges
in biological and robotic applications due to the large state and action spaces.
While deep reinforcement learning has emerged as the leading approach, it suf-
fers from being computationally-intensive and time-consuming, and are not scal-
able to wide varieties of tasks that each require significant manual tuning. This
paper introduces Model Predictive Control with Morphology-aware Proportional
Control (MPC2), a novel hierarchical model-based algorithm that addresses these
challenges. By integrating a sampling-based model predictive controller for tar-
get posture planning with a morphology-aware proportional controller for actuator
coordination, our algorithm achieves stable movement control of a 700-actuator
musculoskeletal model without training. We show that MPC2 enables zero-shot
high-dimensional motion control across diverse movement tasks, such as standing,
walking on varying terrains, and sports motion imitation. It can be incorporated
into optimal cost function design to automatically optimize the objective, reduc-
ing the reliance on traditional reward engineering methods. This work presents a
major advancement in (near) real-time control for complex dynamical systems.

Figure 1: Movement control of 700-dimensional human musculoskeletal system over a diverse
set of motion control tasks. The videos of the control performances and the code for experiment
reproduction are in this anonymous link.

1 INTRODUCTION

High-dimensional nonlinear dynamical systems are prevalent in the real world, especially in biolog-
ical musculoskeletal systems. The system complexity laid the foundation of flexible motion due to
their over-actuated nature. The presence of additional actuation enhances the safety and robustness
of the system, reducing the risk of performance degradation from actuator faults(Hsu et al., 1989).
However, it also leads to large state and action spaces, posing significant challenges to achieving
stable control performance. We take the human musculoskeletal system as a key example, where
hundreds of muscles coordinate to facilitate various movements. Understanding and optimizing
control in such systems is crucial for applications such as rehabilitation and human robot interaction
(Kidziński et al., 2018; Vittorio et al., 2022).

To control such high-dimensional systems, various control methods have been proposed, with deep
reinforcement learning (DRL) being the state of the art approach. However, RL approaches es-
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Figure 2: Workflow of Model Predictive Control with Morphology-aware Proportional Control
(MPC2). Solid arrows indicate control pipeline, and dashed arrows indicate planning procedure.

pecially struggle in high-dimensional state and action spaces, and typically necessitate the use of
lower-dimensional representations. More importantly, the immense computational requirements
of DRL impose a strict bottleneck on the iteration speed of reward engineering, meaning that re-
searchers often require days (or longer) to discover effective control policies. Being able to generate
effective control policies for high-dimensional nonlinear dynamical systems in near real-time is an
open challenge.

Clinical studies on motor control of human movement revealed that predictive sampling is a crucial
strategy in human movement control, such as maintaining balance during walking (Winter, 1991;
Patla, 2003), where planning over a finite horizon determines the controls to be executed. Recent
works have started to incorporate model predictive control (MPC) as the control backbone, offering
faster behavior synthesis and more efficient reward design compared to DRL (Howell et al., 2022; Yu
et al., 2023). However, effective planning in high-dimensional control spaces remains challenging,
limiting the success of MPC primarily to low-dimensional systems. To the best of our knowledge,
no training-free methods have achieved stable movement control of a whole-body musculoskeletal
model across varying task conditions.

In this paper, we propose Model Predictive Control with Morphology-aware Proportional Control
(MPC2), a hierarchical model-based planning algorithm designed to address the challenges of high-
dimensional musculoskeletal control. We introduce a sampling-based model predictive controller to
plan the target posture of the agent, while a morphology-aware proportional controller serves as
the low-level policy, adaptively coordinating the actuators to achieve the target joint positions. We
demonstrate that our method can achieve stable control of a 700-actuator whole-body musculoskele-
tal model without training, enabling tasks such as standing, walking over varying terrain conditions,
and sports motion imitation (Figure 1). Furthermore, we show that MPC2’s fast control generation
facilitates efficient cost function optimization, improving task performance, especially for perform-
ing complex sequences of movement. The bottleneck in achieving real-time control with MPC2 is
the speed of the additional model forward dynamics computation, which can be solved by using
more powerful computing devices or by controlling systems with reduced complexity.

Our contributions. (1) We propose MPC2, the first MPC-based method capable of achieving
near real-time stable control of high-dimensional musculoskeletal systems. (2) We demonstrate that
our hierarchical model predictive control algorithm enables zero-shot high-dimensional full-body
motion control across a wide range of motion tasks, many of which have not been achieved by
state-of-the-art DRL-based methods. (3) We show that the much faster control generation latency of
MPC2facilitates automated cost function optimization via Bayesian optimization, demonstrating a
pathway for reducing the human burden of reward engineering to near zero.

2 RELATED WORK

2.1 HIGH-DIMENSIONAL MUSCULOSKELETAL CONTROL

The control of musculoskeletal systems is challenging due to both high dimensionality and non-
linearity, with deep reinforcement learning (DRL) being the predominant choice in existing solutions

2
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(Kidziński et al., 2018; Geiß et al., 2024). Hierarchical architectures are often employed to decom-
pose control across different modules, where DRL provides high-level actions and a low-level policy
generates muscle controls (Lee et al., 2019; Park et al., 2022; Feng et al., 2023). These approaches
typically require large collections of motion data for imitation learning. Several works have also
explored strategies to improve sample efficiency in over-actuated regime, including bio-inspired ex-
ploration (Schumacher et al., 2022), latent space exploration (Chiappa et al., 2023), model-based
planning (Hansen et al., 2023), and multi-task learning (Caggiano et al., 2023). Recent studies have
leveraged muscle synergies to reduce control dimensionality, enabling stable control across various
musculoskeletal models (Berg et al., 2023; He et al., 2024). The aforementioned methods typically
require many hours or even days of training to achieve effective control, and thus poses a significant
bottleneck on the iteration speed of reward engineering.

2.2 MODEL PREDICTIVE CONTROL FOR FAST CONTROL GENERATION

Compared to DRL, model predictive control allows for real-time control(Tassa et al., 2012), and
thus has seen an increasing application of MPC in robotics, including tasks such as quadruped
locomotion and dexterous manipulation (Kim et al., 2023). Recent works have also integrated MPC
into the reward design process due to its training-free nature (Jain et al., 2021; Yu et al., 2023; Liang
et al., 2024). However, MPC typically succeeds only in low-dimensional settings and often struggles
when applied to high-dimensional problems. The most complex systems handled by existing MPC-
based methods are typically torque-driven humanoids (Meser et al., 2024).

3 PRELIMINARIES

3.1 MUSCULOSKELETAL SYSTEM CONTROL

High-dimensional overactuated system. In this paper, we used MS-Human-700 as the target high-
dimensional over-actuated system, which is a comprehensive whole-body musculoskeletal model
with 90 rigid body segments, 206 joints, and 700 muscle-tendon units (Zuo et al., 2024). The
dynamics of the system can be formulated as follows:

M(q)q̈ + c(q, q̇) = JT
mfm + JT

c fc + τext, (1)
where q denotes generalized coordinates of joints, M(q) denotes the mass distribution matrix, and
c(q, q̇) denotes Coriolis and the gravitational force, Jm and Jc denote Jacobian matrices that map
forces to the generalized coordinates, fc is the constraint force, fm denotes actuator forces, and τext
denotes all external torque when interacting with environments.

MS-Human-700 is implemented in the MuJoCo physics simulator (Todorov et al., 2012), where
actuators are modeled as first-order systems. The force generated by one actuator can be formulated
as follows:

fm = Fk · a+ Fp,
∂a

∂t
=

u− a

(u− a)τ1 + τ2
, (2)

where a is the actuator activation, Fk, Fp represents the gain and bias of the actuator force dynamics,
u denotes the actuator control, τ1 and τ2 denote the time coefficients of the first-order actuator
system.

Problem formulation. We treat the high-dimensional over-actuated control problem as a finite
horizon Markov decision process with state s ∈ S, control u ∈ U , and dynamics f . For a given
initial state of the model s0 and a desired horizon T , we aim to find a control sequence u⋆

0:T =
(u0, ..., uT−1) that enable stable control, which can be achieved by minimizing the cumulative value
of a task-specific cost function Cθ parameterized by θ:

u⋆
0:T = argminu0:T

T−1∑
t=0

Cθ(st, ut), st+1 = f(st, ut) (3)

In this paper, the definition of cost function Cθ is equivalent to the reward functions used in rein-
forcement learning (with negative value for maximization). For MS-Human-700, we consider the
action space is du = 700-dimensional control of actuators (muscle-tendon units). The state space
of the full-body model consist of joint positions and velocities, actuator activations and lengths, and
task-related observations, leading to space dimensionality ds over 1500.

3
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3.2 SAMPLING-BASED MODEL PREDICTIVE CONTROL

Model predictive control is a general framework for model-based control, which optimizes a local
control sequence using an approximated dynamics f̂ within a short horizon H ≪ T :

ûθ
t:t+H = argminût:t+H

H−1∑
h=0

Cθ(st+h, ût+h), st+h+1 = f̂(st+h, ût+h). (4)

The optimized action sequence ûθ
t:t+H = (ûθ

t , · · · , ûθ
t+H−1) is a local approximation of optimal

controls u⋆
t:t+H . In real-world deployment where the action execution and planning are asyn-

chronous, the planning horizon H should be chosen to balance accuracy and instantaneity.

Among various implementations of MPC frameworks, sampling-based MPC is a popular choice
which samples local control sequences from a distribution of open-loop control sequences, ût:t+H ∼
pϕ(·), and update the sample distribution via parallel rollouts of the sampled action sequences. The
objective of sampling-based MPC is to find a distribution parameter ϕ that minimize the cumula-
tive cost function value of sampled action sequences. The distribution update process usually only
depends on the rollout performance without direct operation on the states, which has been demon-
strated success in the control of high degree-of-freedom systems, such as torque-driven humanoid
models (Meser et al., 2024).

Model Predictive Path Integral (MPPI) control (Williams et al., 2016) is a commonly used sampling-
based MPC method, which assumes the sampling distribution is a factorized Gaussian with ϕ =
(µt, · · · , µt+H−1, σt, · · · , σt+H−1):

pϕ(ût:t+H) =

H−1∏
h=0

N (ût+h;µt+h, σt+h). (5)

During the rollout process, N action sequences {ût:t+H}Nn=1 are sampled and executed via ap-
proximated transition f̂ . For each sampled sequence ûn

t:t+H , the cumulative cost function Cnθ =∑H−1
h=0 Cθ(st+h, û

n
t+h) is collected and used for distribution update:

µt+h =

∑N
n=1 wn · ûn

t+h∑N
n=1 wn

, σt+h =

√√√√∑N
n=1 wn · (ûn

t+h − µt+h)2∑N
n=1 wn

, 0 ≤ h ≤ H − 1, (6)

where wn = 1r(n)≤me−
1
λCn

θ , r(n) is the increasing-order rank of cumulative cost function value of
rollout n, m is the number of elite rollouts, and λ is the temperature parameter.

3.3 OPTIMAL COST FUNCTION DESIGN

The finite-horizon optimization of MPC can result in a myopic policy, which may be suboptimal
when evaluated in the long term. Recent studies demonstrate that the parameters of the cost function
can be optimized to compensate for the issues induced by local optimization, which can be different
from the true cost function measured in the full horizon T (Jain et al., 2021; Le & Malikopoulos,
2023). The objective of optimal cost function design is to find parameters θ∗ that minimizes the
cumulative value of true cost function Cθ over the horizon T :

θ∗ = argminθ′

T−1∑
t=0

Cθ(st, û
θ′

t ), st+1 = f(st, û
θ′

t ), (7)

where (ûθ′

0 , · · · , ûθ′

H − 1) is the control sequence of MPC optimized under cost function parameter-
ized by θ′. As only zero-order cost function value can be accessed, e.q. 7 can be considered as a
black-box optimization problem, which can be addressed by Bayesian optimization (Frazier, 2018)
or evolutionary algorithms (Hansen, 2006)

4
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Algorithm 1: Model Predictive Control with Morphology-aware Proportional Control (MPC2)
Input: Model dynamics f , rollout horizon H , total rollout number N , instant rollout number

N̄ , iteration number r, distribution parameter µ, σ, current state st
1 for i = 1, · · · , r do
2 z1, ..., zN̄ ∼ N (Mpos(st), σ) // Instant rollout

3 zN̄+1, ..., zN ∼ N (µ, σ) // MPPI rollout
4 C1θ , · · · , CNθ ← RMP(z

1, H), · · · ,RMP(z
N , H)

5 Update µ, σ using e.q. (6)
6 end
7 z∗ ← µ, ûθ

t ← πMP(st, z
∗)

8 return ûθ
t , z∗, µ, σ

4 MODEL PREDICTIVE CONTROL WITH MORPHOLOGY-AWARE
PROPORTIONAL CONTROL (MPC2)

Existing approaches for controlling high-dimensional musculoskeletal systems often incorporate
deep reinforcement learning as a central component, where a state-feedback policy, π(u|s), is
learned from interactions with the model dynamics. While substantial efforts have been made to
reduce the dimensionality of the action space, the large state space continues to present significant
challenges for policy training. In this paper, we opt to use model predictive control instead of deep
reinforcement learning for the following reasons: (1) The overall control is conducted in simula-
tion, where the exact dynamics is accessible, that is f̂ = f ; and (2) the use of sampling-based
MPC circumvents the challenge of decision-making in high-dimensional state spaces. (3) MPC of-
fers much faster control generation, enabling more reward design iterations than DRL. We consider
these features significant advantage of sampling-based MPC over DRL-based methods.

However, directly deploying MPC on musculoskeletal systems is challenging. High-dimensional
control space poses large obstacles for generating control sequences for movement. In this section,
we demonstrate that applying MPC to such problems is indeed possible. In biological systems such
as vertebrates, hierarchical control strategies are widely observed, where sensory information is pro-
cessed by a high-level controller for planning, while motor commands are generated by a low-level
controller based on proprioception (Merel et al., 2019). This enables diverse motion control with-
out specific training. To this end, we introduce MPC2, a hierarchical MPC method that facilitates
stable control of high-dimensional musculoskeletal systems, as shown in Figure 2 and Algorithm
1. MPC2 has two major components: (1) a model predictive position controller as the high-level
planner which optimize for the target posture z∗ given current state st; and (2) a morphology-
aware proportional controller πMP(u|s, z) as the low-level policy which computes actuator controls
to achieve the target posture from given state.

4.1 MODEL PREDICTIVE POSITION CONTROL

We employ MPC over the planning of major joint coordinates z that determine the system posture.
For MS-Human-700, the dimension of z is dz = 37. Compared to torque, we choose lower-order
joint position as the MPC objective to reduce the control frequency. Therefore, only one target
posture z is required to optimize during one rollout, where our morphology-aware proportional
controller adapts control signals based on the instant states:

Cθ = RMP(z,H) =

H−1∑
h=0

C(st+h, ut+h), ut+h = πMP(st+h, z). (8)

Compared to planning over original action space, MPC2 significantly reduce the number planning
parameters from H · du to dz , enabling optimizing controls via sampling. While the original Model
Predictive Path Integral (MPPI) can be directly employed as a high-level planner for target positions,
we find that it lacks the ability to respond quickly to rapidly changing states, such as when the agent
is falling. This issue cannot be easily mitigated by simply increasing the number of rollouts, as only a

5
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limited number (at most a few dozen) can be executed in parallel when controlling high-dimensional
systems, due to both computational budget constraints and the need for real-time responsiveness.

To equip MPC with rapid response capabilities for changing states, we leverage the feature of posi-
tion control and propose the use of instant rollouts during planning (line 2 in Algorithm 1). Rather
than sampling based on the policy from the previous planning iteration, instant rollouts sample tar-
get postures based on the model’s current posture, which can be extracted from the current state
using a posture mask: zt = Mpos(st). When the current state significantly deviates from the pre-
vious planning state, this approach provides a better initial point compared to the original MPPI
samples, increasing the likelihood of sampling more effective controls to re-stabilize the agent. We
will demonstrate the necessity of instant rollouts for position control in the experimental section.

4.2 MORPHOLOGY-AWARE PROPORTIONAL CONTROL

Here we introduce the morphology-aware proportional controller πMP(u|s, z), a key component
for reducing the control dimensionality, which coordinates actuator controls to adapt to the target
posture. Given the target joint coordinate z∗, the target actuator length l∗ can be computed with
model forward dynamics. We define proportional controllers for each actuator, which determine the
actuator force required to achieve the target actuator length given current actuator length l:

f∗
m = min(0, k · (l∗ − l)), (9)

where k is the proportional gain parameter. Utilizing the first-order actuator dynamics in 2, we
are able to derive the control signal u∗ to achieve target actuator force f∗

m given current actuator
activation a:

u∗ = a+
τ2(a

∗ − a)

∆t− τ1(a∗ − a)
, (10)

where a∗ = (f∗
m − Fp)/Fk is the target actuator activation, and ∆t is the duration of each time

step. The proportion gain vector K = (k1, · · · , kdu
) controls the scaling of target forces, which is

critical for the control performance. Improper gain settings can result in excessive collisions (if too
large), insufficient force generation (if too small), which should be individually set for each of the
700 actuators.

From system dynamics in e.q. 1, the conversion from actuator forces to joint torque is computed
using the Jacobian matrices of the model, Jm, which can represent the influence of actuators on joint
movements. Based on this observation, we propose to set proportional gains according to the system
morphology. Instead of manually setting these gains, we set them based on the Jacobian matrices of
current state and the target posture:

K = k̄ ·
∑
i∈Iz

|coli(Jm) · [z∗i −Mpos(st)i]|, (11)

where k̄ is the only scaling parameter, Iz is the indices of major joints z over all joints, |·| is the
absolute value operator, and col(·)(Jm) is the column operator of Jm. The Jacobian values vary
according to different system posture, allowing for adaptive and efficient control of different motion.

Note that MPC2 achieves high-dimensional musculoskeletal control through online planning using
model dynamics, allowing for the control of complex behaviors without the need for a training
procedure. This zero-shot motion control also enables rapid evaluation of cost function designs,
facilitating efficient optimization of the cost function.

5 EXPERIMENTS

In this section, we aim to comprehensively evaluate MPC2, and seek to answer the following ques-
tions: (1) Can MPC2 achieve robust and performant control over a wide variety of motion tasks?
(2) Can we leverage the fast generation speed of MPC2to serve as the inner loop in a cost function
optimization problem? (3) How do the individual components of MPC2 contribute to its overall
effectiveness?

6
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Figure 3: Control sequences of MPC2 in (a) Stand, (b) Rough, (c) Walk, (d) Slope and (e) Stair
tasks. The simulation speed of Stair task is set to 10% due to slower contact computation.

Figure 4: Control performance versus clock time (training
time + deployment time). Results show the mean perfor-
mance with one standard error, averaged over 50 indepen-
dent trials.

Tasks: We design the following con-
trol tasks, which consists of a wide
range of human full-body motion
(with individual cost function terms
listed in Appendix C.):

Stand. This task requires standing
still and keep balance for 10 seconds.
Walk. This task requires walking for-
ward over a flat floor for 10 meters.
Rough. This task requires walking
forward over a rough terrain for 10
meters.
Slope. This task requires walking up
and down slopes.
Stair. This task requires walking up
and down stairs.
Soccer. This task requires imitating a
reference trajectory to kick the ball.

Implementation details. We im-
plement MPC2 using the Mujoco
MPC (MJPC) platform (Howell et al.,
2022), a framework designed for real-time model predictive control. The MJPC platform supports
asynchronous simulation between the main thread and planning, which we find to be more practical
than freezing the main thread during planning. In all experiments, we set the iteration number r
of MPC2 to 1 for rapid response to the changing states in the main thread, and sample 64 rollouts
(containing N̄ = 10 instant rollouts) across a 0.3s horizon during each round of planning. Unless
otherwise noted, the simulation in main thread are run with 20% of the real-time speed (following
Howell et al. (2022)), where control sequences to complete the task can be generated within 2 min-
utes. The experiments of MPC2 were conducted on a server equipped with an AMD EPYC 7773X
processor, an NVIDIA GeForce RTX 4090 GPU, and 512 GB of memory.

7
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Figure 5: Motion control of Soccer task. (a) Cost function optimization performance. (b) Control
sequences of MPC2. The simulation speed is set to 1% for more frequent planning for rapidly
changing motion, where the entire control sequence is learned within 4 minutes.

5.1 FULL-BODY MOVEMENT CONTROL

Motion control over different terrain. We show control sequences of the Stand, Walk, Rough,
Slope, and Stair tasks using MPC2 in Figure 3. While no previous control methods have demon-
strated success in whole-body musculoskeletal systems for these tasks, MPC2 exhibits consistent
and stable control performance across various tasks, enabling navigation over different terrain con-
ditions.

Comparison to RL. In the Stand and Walk-Flat tasks, we compared the control performance of
MPC2 with the current state-of-the-art DRL-based algorithms, DynSyn (He et al., 2024), which
identify and utilize muscle synergies to reduce control dimensionality, and demonstrates stable walk-
ing control over whole-body musculoskeletal model. We also included the original MPPI (Williams
et al., 2016) as a baseline to perform an ablation of our hierarchical pipeline. Figure 4 shows the
total time required for control sequence generation. We observe that DynSyn requires at least one
day to achieve effective control in both tasks. While MPPI is capable of maintaining balance in the
Stand task, it struggles to generate control sequences for forward movement in the high-dimensional
action space. MPC2 enables stable standing and walking control within 2 minutes, demonstrating a
significant time efficiency advantage over DynSyn for deployment.

5.2 SPORTS MOTION CONTROL WITH OPTIMAL COST FUNCTION DESIGN

The fast control generation speed of MPC2 enables rapid evaluation and iteration of cost function
design. In settings where the true objective can be simply described, we can leverage black-box
optimization algorithms to discover MPC cost functions that best optimize the true cost function,
resulting in automatic behavior synthesis. If possible, this functionality is especially crucial in
massively multi-task settings, where many complex behaviors must be generated.

We consider this problem in the setting of sports, which often require diverse and complex move-
ments. As a case study, we investigate whether MPC2 combined with a black-box optimizer can au-
tomatically learn to kick a soccer ball. We specifically use a Gaussian-process-based Bayesian opti-
mization algorithm to optimize the weights of the position error terms for different body parts (Jones
et al., 1998; Rasmussen, 2003; Ament et al., 2023). The optimization objective is the quadratic po-
sition error of each body part, with results shown in Figure 5(a). We observe that the cost objective
effectively improves compared to the initial settings. Thanks to MPC2’s training-free control gener-
ation, our 100 cost design iterations take only around 5 hours, whereas DRL-based methods cannot
even complete a single reward evaluation (i.e. a single trained policy) in that time frame. MPC2 suc-
cessfully imitates the reference trajectory and enables sports motion control, generating sufficient
speed and force to kick the ball (Figure 5(b)).

5.3 ALGORITHM ANALYSIS

To understand superior control performance behind MPC2 , we investigate both model predictive
position controller and morphology-aware proposition controller. The analysis results is shown in
Figure 6.

8
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Figure 6: Analysis of MPC2. Results show the mean performances with one standard error over
20 trials. (a) Control performance of lean backward standing, with initial position shown on the
left. Blue axis indicates the vertical direction. (b) Control performance of the Walk task. (c) The
distribution of absolute Jacobian summations of a walking trajectory.

Instant rollout for rapid planning. We modified the standing task to evaluate the effectiveness
of the instant rollout component in high-level posture planning. As shown in Figure 6(a), instead
of starting from an upright position, we set the initial posture of the model to lean significantly
backward, requiring a rapid response to recover balance. Our results show that MPC2 significantly
outperforms its variant without the instant rollout, demonstrating that the instant rollout enables a
timely response in unstable states.

Morphology-aware gain design. We compare MPC2 with two variants over the low-level actuator
controller side: (1) a proportional controller with constant gain settings for all actuators, which
has a similar average actuator force as MPC2, and (2) proportional-derivative (PD) control, setting
the derivative gains based on the proportional gains. Figure 6(b) shows that MPC2 significantly
outperforms both the constant gain and PD control variants. In Figure 6(c), we observe that the
system’s Jacobian effectively identifies the major muscles involved during walking and adapts to
different phases of motion. Our morphology-aware gain design automatically prioritizes the major
actuators for more efficient control, demonstrating its fidelity in biomechanics.

6 CONCLUSION

In this paper, we propose MPC2, a hierarchical model predictive control method designed to en-
able near real-time motion control of high-dimensional musculoskeletal systems without the need
for training. The algorithm employs a high-level model predictive position controller for posture
planning and utilizes a morphology-aware proportional controller to coordinate actuators in achiev-
ing the target posture. Using a whole-body model with 700 actuators, we demonstrate the stable
control performance of MPC2 across a wide range of movement tasks, as well as its fast controller
generation for efficient cost function optimization. Ablation studies over the algorithm components
further verify the principled design and biomechanical fidelity of MPC2.
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A NEURO-MUSCLE DYNAMICS

We use the muscle-tendon units in MuJoCo as our actuator. The input control signal of muscle-
tendon units is the neural excitation, denoted as u. The muscle activation, denoted as act, is calcu-
lated by a first-order nonlinear filter as follows:

∂act
∂t

=
u− act
τ(u, act)

, τ(u, act) =
{
τact (0.5 + 1.5 · act) u > act,
τdeact/ (0.5 + 1.5 · act) u ≤ act

,

where τact and τdeact represent the time constants for activation and deactivation latency, with default
values of 10 ms and 40 ms. where τ(u, a) is the the effective time constant (Millard et al., 2013),
which have been smoothed using sigmoid function in e.q. 2, as derived in the tutorial of MyoSuite1.

The force produced by a single muscle-tendon unit is given by:

fm(a) = fmax · [Fl(l) · Fv(v) · a+ Fp(l)] ,

1https://github.com/MyoHub/myosuite/blob/main/docs/source/tutorials/6_
Inverse_Dynamics.ipynb
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Algorithm Parameter Task
Stand Walk

SAC

Learning rate linear schedule(0.001)
Batch size 256
Buffer size 1e6

Warmup steps 100
Discount factor 0.98

Soft update coeff. 2
Train frequency (steps) 1

Gradient steps 4
Target update interval 1
Environment number 112

Entropy coeff. auto
Target entropy auto
Policy hiddens [512, 300]

Q hiddens [512, 300]
Activation ReLU

Training steps 1e7

DynSyn

Control Amplitude 5
Trajectory steps 5e5

Number of groups 100
aD 3e7
kD 5e-9

Table 1: Parameters of SAC and DynSyn

where fmax is the maximum isometric muscle force, and a, l, and v represent the activation, nor-
malized length, and normalized velocity of the muscle, respectively. The term Fp(l) accounts for
the passive force-length relationship, and the terms Fl(l) and Fv(v) are the force-length and force-
velocity functions, which have been fitted using data from biomechanical experiments (Millard et al.,
2013).

We use the following 37 major joint positions that determine the whole-body posture: hip (6) knee
(2), ankle (2), subtalar (4), spinal (9), shoulder (6), elbow (2), and wrist (6).

B BASELINES

We compare our algorithm with the reinforcement learning algorithms DynSyn. DynSyn adopt SAC
as the basic algorithm and use the DRL framework Stable baselines3. We set control frequency to 10
simulation steps, which can significantly increase the sample efficiency of the reinforcement learning
algorithm. All the parameters are reported in the original papers, and we use the same parameters
for models with similar complexity. Algorithm hyperparameters are summarized in Table 1.

The output range of the reinforcement learning policy is typically [−1, 1], and it is then normalized
to [0, 1] in order to control the musculoskeletal system. We use the following equation to normalize
the action of the policy, which is widely used in MyoSuite environments.

a =
1

1 + e−5(a−0.5)

The reward design is as follows:

reward = rewardhealth − costtasks

where rewardhealth is the healthy reward given in each step, We subtract costtasks and add it to
rewardhealth to ensure that the reward remains positive. We find that the original cost weight in the
cost function is sufficient for the reinforcement learning algorithm to learn effectively, so we adopt
the same weight as used in the cost function.
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C TASK SETTINGS

The common objective terms are defined as follows:

Height. This term encourages maintaining a specific height between the head and feet. It only
penalize when the head is too low.

costheight = |min(Hhead −Hfeet −Htarget, 0)|

where Hhead is the head height, Hfeet is the average height of the four feet, and Htarget is the target
height (different for each task).

Upright. This term encourages the character to maintain an upright posture.

costupright =
∣∣∣(1− k̂up · k̂pelvis) + (1− k̂up · k̂head) + 0.1(1− k̂up · k̂lfoot) + 0.1(1− k̂up · k̂rfoot)

∣∣∣
where k̂up is the up direction vector, and k̂head, k̂torso, k̂pelvis, k̂lfoot, k̂rfoot are the up vectors for
the head, torso, pelvis, left foot, and right foot respectively.

Balance. This term encourages keeping the center of mass above the support polygon formed by
the feet.

costbalance = |COMxy − Favg|
where COMxy is the horizontal position of the center of mass, and Favg is the average horizontal
position of the feet.

Forward velocity. This term encourages maintaining a specific forward velocity.

costforwardvelocity =
∣∣∣vcom · k̂forward − vtarget

∣∣∣
where vcom is the center of mass velocity, k̂forward is the forward direction vector, and vtarget is
the target velocity.

Forward angle. This term discourages sideways motion.

costforwardangle =
∥∥∥vcom − (vcom · k̂forward)k̂forward

∥∥∥
2

Pelvis forward. This term encourages the character to face forward.

costforward =
∣∣∣(1− k̂forward · k̂pelvis)

∣∣∣
where k̂pelvis is the forward direction of the pelvis.

Joint velocity. This term penalizes excessive joint velocities.

costjointvelocity = ∥qvel∥2
where qvel is the vector of joint velocities.

Joint position. This term penalizes extreme joint positions.

costjointposition = ∥qpos∥2
where qpos is the vector of joint positions.

Feet cross. This term discourages crossing of the feet and maintains proper leg alignment.

costfeetcross =
∣∣∣min(0, k̂hip · k̂feet − 0.15) + min(0, k̂hip · k̂toe − 0.15) + min(0, k̂hip · k̂knee − 0.15)

∣∣∣
where k̂hip, k̂feet, k̂toe, k̂knee are the direction vector between hip joints, feet centers, toes and knee
joints.

We list the cost function setting of tasks in Table 2. For the soccer tasks, we set the cost terms are
position errors berween motion capture points and current body part, with weight shown in Figrue
7.
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Cost Function Term Tasks
Stand Walk Rough Slope Stair

Height 100
Upright 100
Balance 100

Forward velocity 10 50
Forward angle 10 20
Pelvis forward 100
Joint velocity 0.01 / / / /
Joint position 1 5 2

Feet cross / 50

Table 2: Weights of Cost functions

Figure 7: Cost initial and optimized weight of the Soccer task.
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