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ABSTRACT

With the rapid progress of diffusion-based content generation, significant efforts
are being made to unlearn harmful or copyrighted concepts from pretrained dif-
fusion models (DMs) to prevent potential model misuse. However, it is observed
that even when DMs are properly unlearned before release, malicious finetuning
can compromise this process, causing DMs to relearn the unlearned concepts.
This occurs partly because certain benign concepts (e.g., “skin”) retained in DMs
are related to the unlearned ones (e.g., “nudity”), facilitating their relearning via
finetuning. To address this, we propose meta-unlearning on DMs. Intuitively,
a meta-unlearned DM should behave like an unlearned DM when used as is;
moreover, if the meta-unlearned DM undergoes malicious finetuning on unlearned
concepts, the related benign concepts retained within it will be triggered to self-
destruct, hindering the relearning of unlearned concepts. Our meta-unlearning
framework is compatible with most existing unlearning methods, requiring only
the addition of an easy-to-implement meta objective. We validate our approach
through empirical experiments on meta-unlearning concepts from Stable Diffu-
sion models (SD-v1-4 and SDXL), supported by extensive ablation studies.

1 INTRODUCTION

Diffusion models (DMs) have achieved remarkable success in generative tasks (Ho et al., 2020; Song
et al., 2021), leading to the emergence of large-scale models like Stable Diffusion (SD) for text-to-
image generation (Rombach et al., 2022b). However, training these models often requires vast
datasets that may inadvertently contain private or copyrighted content, as well as harmful concepts
that are not safe for work (NSFW) (Schramowski et al., 2023). These challenges have sparked
interest in machine unlearning algorithms for DMs (Gandikota et al., 2023; 2024; Kumari et al.,
2023; Kim et al., 2023), which modify pretrained models to forget specific inappropriate data (forget
set) while retaining performance on the remaining benign data (retain set).

While unlearning methods designed for DMs have shown promising results, recent studies reveal
that unlearned models may be maliciously induced to relearn the unlearned concepts during fine-
tuning, even when the finetuning is performed on unrelated benign data (Qi et al., 2023; Tamirisa
et al., 2024; Patil et al., 2024; Shumailov et al., 2024). Although these studies focus primarily on
language models, we observe similar phenomena on DMs as shown in Fig. 2. This partly occurs be-
cause certain benign concepts (e.g., “skin” in the retain set) related to unlearned ones (e.g., “nudity”
in the forget set) are still retained in DMs, easing their relearning during finetuning.

To tackle this challenge, we draw inspiration from meta-learning (Finn et al., 2017) and propose
the meta-unlearning framework. This framework comprises two key components: (1) a standard
unlearning objective to ensure the model effectively forgets specified data before public release,
while preserving performance on benign data; and (2) a meta objective designed to slow down the
relearning process if the model is maliciously finetuned on the forget set. Additionally, it ensures
that benign knowledge related to the forget set self-destructs, as illustrated in Fig. 1.

Our meta-unlearning framework is compatible with most existing unlearning methods for DMs,
requiring only the addition of a simple-to-implement meta objective, as outlined in Algorithm 1.
This meta objective can be efficiently optimized by automatic differentiation (Paszke et al., 2019).
We conduct extensive experiments on SD models (SD-v1-4 and SDXL) to validate the effectiveness
of various instantiations of our meta-unlearning approach.
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Unlearned Models Meta-Unlearned Models

Minimizing

Minimizing                                    (slowing down relearning unlearned concepts)

Finetuning track

(self-destructing related benign concepts)

Figure 1: Mechanisms of finetuning unlearned models (left) and meta-unlearned models (right) on
a forget subset DFT ⊂ Dforget. According to the first-order approximation described in Eq. (9), our
meta-unlearning can slow down relearning unlearned concepts inside DFT, while self-destructing
related benign concepts from Dretain, i.e., LDM(θ;Dretain) increases when LDM(θ;DFT) decreases.

2 RELATED WORK

Recent studies have shown that DMs can be misused to generate unsafe content, such as images
depicting sexual acts, harassment, or illegal activities (Schramowski et al., 2023; Gao et al., 2023;
Rando et al., 2022). To mitigate this issue, early-stage DMs are equipped with NSFW filters de-
signed to block the generation of inappropriate images (Rando et al., 2022). However, this approach
does not prevent the model from generating harmful imagery at its core, and these filters can be
easily bypassed, exposing significant security vulnerabilities (Birhane et al., 2021; Rombach et al.,
2022b). As a result, machine unlearning methods have been proposed for DMs.

2.1 MACHINE UNLEARNING ON DMS

Several methods have been proposed to unlearn or erase harmful, private, or copyrighted concepts
from DMs (Zhang et al., 2024a;c; Gong et al., 2024; Park et al., 2024; Huang et al., 2023; Wu et al.,
2024; Pham et al., 2024b). For instances, ESD (Gandikota et al., 2023) leverages negative guidance
to finetune the U-Net, removing the specified style or concept. Concept ablation (Kumari et al.,
2023) works by making the distribution of the target concept similar to that of an anchor concept.
However, these methods are vulnerable to adversarial attacks. To this end, several adversarial-
resistant unlearning methods have been proposed (Li et al., 2024b; Yang et al., 2024; Kim et al.,
2024; Huang et al., 2024b). AdvUnlearn (Zhang et al., 2024c) enhances the robustness of concept
erasure by incorporating adversarial training principles, while RECE (Gong et al., 2024) derives
new target embeddings for inappropriate content and iteratively aligns them with harmless concepts
in cross-attention layers. Despite these advancements, the models unlearned by these methods can
still be maliciously finetuned to relearn unlearned concepts, as observed in our experiments.

2.2 MACHINE UNLEARNING ON LANGUAGE MODELS

While this paper primarily focuses on unlearning DMs, there have been a lot of efforts devoted to
unlearning language models (Yao et al., 2023; Maini et al., 2024; Wang et al., 2024b; Li et al., 2024a;
Yao et al., 2024; Gu et al., 2024; Zhang et al., 2024b; Jia et al., 2024; Tian et al., 2024; Tang et al.,
2024; Tamirisa et al., 2024). These methods typically finetune the model on a forget set. In addition,
there are also other tuning-free unlearning techniques, including contrastive decoding (Huang et al.,
2024a; Wang et al., 2024a; Ji et al., 2024; Dong et al., 2024), task vectors (Dou et al., 2024; Liu et al.,
2024b), in-context learning (Pawelczyk et al., 2023; Muresanu et al., 2024; Thaker et al., 2024), and
input processing and detection (Bhaila et al., 2024; Gao et al., 2024; Liu et al., 2024a).

2.3 UNLEARNED MODELS CAN BE ATTACKED

Recent studies have also demonstrated that unlearned models are vulnerable to generating previously
unlearned concepts through adversarial attacks (Zhang et al., 2023; Tsai et al., 2023; Pham et al.,
2024a; Ma et al., 2024) and malicious finetuning (Tamirisa et al., 2024; Shumailov et al., 2024;
Łucki et al., 2024; Qi et al., 2023). For instance, UnlearnDiffAtk (Zhang et al., 2023) introduces an
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evaluation framework that uses adversarial attacks to generate adversarial prompts by exploiting the
inherent classification capabilities of DMs. In the domain of language models, several works have
revealed that finetuning can recover unlearned concepts. For example, Qi et al. (2023) demonstrate
that safety alignment and/or unlearning in language models can be undermined through finetuning
with a small set of adversarially crafted training examples. Additionally, Tamirisa et al. (2024)
show that refusal mechanisms and unlearning safeguards can be bypassed with minimal iterations
of finetuning, while Łucki et al. (2024) recover most supposedly unlearned capabilities.

3 PRELIMINARIES

This section provides a brief review of diffusion models (DMs) (Ho et al., 2020; Song et al., 2021)
and commonly used machine unlearning methods in the DM literature.

3.1 DIFFUSION MODELS

Our research focuses on discrete-time DMs, especially latent diffusion models (LDMs) that serve
as the cornerstone of Stable Diffusion (Rombach et al., 2022b). We consider random variables
x ∈ X and c ∈ C, where x denotes the latent feature and c the conditional context, e.g.,
text prompts. Let q(x, c) denote the data distribution. Consider a forward diffusion process
over time interval [0, T ] with T ∈ N+. The Markov transition probability from xt−1 to xt is
q(xt|xt−1) ≜ N (xt|

√
1− βtxt−1, βtI), where x0 = x and β1, · · · , βT correspond to a variance

schedule. Note that we can sample xt at an arbitrary timestep t directly from x, since there is
q(xt|x) = N (xt|

√
αtx, (1− αt)I), where αt ≜ 1− βt and αt ≜

∏t
i=1 αi.

Sohl-Dickstein et al. (2015) show that when βt are small, the reverse diffusion process can also
be modeled by Gaussian conditionals. Specifically, the reverse transition probability from xt

to xt−1 is written as pθ(xt−1|xt, c) = N (xt−1|µθ(xt, c), σ
2
t I), where θ ∈ Rd is the model

parameters and σt are time dependent constants. Instead of directly modeling the data predic-
tion µθ, we choose to model the noise prediction ϵθ based on the parameterization µθ(xt, c) =
1√
αt

(
xt − βt√

1−αt
ϵθ(xt, c)

)
. The training objective of ϵθ(xt, c) can be derived from optimizing

the (weighted) variational bound of negative log-likelihood, formulated as follows:

min
θ
LDM(θ;Dtrain) = E(x,c)∼Dtrain,ϵ,t

[
∥ϵ− ϵθ(xt, c)∥22

]
, (1)

where xt =
√
αtx +

√
1− αtϵ, the data pairs (x, c) are sampled from the training dataset Dtrain,

ϵ ∼ N (ϵ|0, I) is a standard Gaussian noise, and t ∼ U([1, T ]) follows the uniform distribution.

3.2 MACHINE UNLEARNING FOR DMS

DMs, despite their high capability, may generate unsafe content or disclose sensitive information
that is not safe for work (NSFW) (Schramowski et al., 2023). Several recent studies have inves-
tigated concept erasing or machine unlearning for DMs to address safety, privacy, and copyright
concerns (Kumari et al., 2023; Zhang et al., 2024c; Heng & Soh, 2024). Let ϵθ∗ denotes the DM
pretrained on the dataset Dtrain, where θ∗ = argminθ LDM(θ;Dtrain). The goal of machine unlearn-
ing is to unlearn a forget set Dforget ⊂ Dtrain from ϵθ∗ , while preserving performance on the retain
set Dretain = Dtrain\Dforget. We describe four unlearning methods for DMs that we use as baselines:

• Erased Stable Diffusion (ESD) (Gandikota et al., 2023) intervenes pretrained DMs by steer-
ing generation away from the concept intended to be forgotten. Ideally, the unlearned DM
is expected to predict ϵ̃θ∗(xt, c) = ϵθ∗(xt, ∅) − η [ϵθ∗(xt, c)− ϵθ∗(xt, ∅)] when fed in
(x, c) ∼ Dforget, where η > 0 is a hyperparameter and ∅ indicates unconditional context. The
unlearning objective of ESD is to optimize

min
θ
LESD(θ;Dforget) = E(x,c)∼Dforget,ϵ,t

[
∥ϵθ(xt, c)− ϵ̃θ∗(xt, c)∥22

]
, (2)

where θ is initialized from the frozen θ∗. Gandikota et al. (2023) use ESD-x-η to indicate only
cross-attention parameters are finetuned with hyperparameter η; likewise, ESD-u-η indicates
only non-cross-attention parameters are finetuned, and ESD-f-η indicates full finetuning.
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• Safe self-distillation diffusion (SDD) (Kim et al., 2023) is a self-distillation paradigm to erase
concepts from DMs. The unlearning objective of SDD is to optimize

min
θ
LSDD(θ;Dforget) = E(x,c)∼Dforget,ϵ,t

[
∥ϵθ(xt, c)− sg (ϵθ(xt, ∅))∥22

]
, (3)

where sg is the stop-gradient operation and θ is initialized from the frozen θ∗. To mitigate
catastrophic forgetting, SDD employs an exponential moving average (EMA) teacher. Note that
in the original implementations of both ESD and SDD, there are only text prompts c in the
forget set, while the noisy latents xt are generated by the frozen DM ϵθ∗ .

• Unified concept editing (UCE) (Gandikota et al., 2024) edits the pretrained DMs via a closed-
form solution without finetuning. Let W ∗ be the attention matrices of θ∗ (Key/Value matrices),
T be the text embedding mapping in ϵθ∗ , then the unlearning objective of UCE is to optimize

min
W

Ecf ,cr

[
∥WT (cf )−W ∗T (∅)∥22 + λ1 ∥WT (cr)−W ∗T (cr)∥22 + λ2 ∥W −W ∗∥22

]
, (4)

where cf ∼ Dforget, cr ∼ Dretain, and λ1, λ2 are hyperparameters. Gandikota et al. (2024) prove
that the above minimization problem has closed-form solution WUCE.

• Reliable and efficient concept erasure (RECE) (Gong et al., 2024) first performs UCE, af-
ter which iteratively creates new erasing embeddings and obtains updated attention matrices.
Specifically, let W̃ ← WUCE, and use subcripts i to denote the i-th attention matrix in the
model; then RECE iteratively constructs c′ by optimizing

min
c′

∑
i

∥∥∥W̃iT (c′)−W ∗
i T (cf )

∥∥∥2
2
+ λ ∥T (c′)∥22 , (5)

where λ is a hyperparameter. The constructed c′ is used to derive W̃ ′ by UCE, then update as
W̃ ← W̃ ′ and finally obtain WRECE = W̃ .

4 META-UNLEARNING FOR DMS

In Section 3.2, we have briefly introduced the commonly used unlearning methods for DMs. In
general, their objectives can be summarized as forgetting knowledge from Dforget and preserving
performance on Dretain, i.e., solving

min
θ
Lunlearn (θ;Dforget,Dretain) ≜ Lforget (θ;Dforget) + λ · Lretain (θ;Dretain) , (6)

where Lforget is to unlearn the forget set, Lretain is to preserve performance on the retain set, and
λ is a trade-off hyperparameter. Various unlearning methods correspond to different instantiations
of Lforget and Lretain. In particular, ESD and SDD require optimizers to solve their instantiations,
whereas UCE and RECE have closed-form solutions. To solve Eq. (6), the initialization is usually
set to the pretrained parameters θ∗, and the unlearned model parameters are denoted as θUN.

4.1 META-UNLEARNING FRAMEWORK

A publicly released DM can potentially be finetuned to adopt to various downstream tasks. How-
ever, as observed in previous studies, finetuning or modifying weights of a models could comprise
its alignment and/or unlearning (Qi et al., 2023; Tamirisa et al., 2024). This underscores the need
for mechanisms to simulate the finetuning process in advance, ensuring DMs are resilient against
relearning the unlearned concepts. Inspired by meta-learning (Finn et al., 2017), we propose the
meta-unlearning framework, as illustrated in Algorithm 1. Our framework consists of two compo-
nents: (1) the standard unlearning objective Lunlearn, as described above, and (2) the meta objective
Lmeta, which resists the relearning of unlearned concepts, even after finetuning on the forget set.

Formally, we define LFT as the finetuning objective, and let DFT ⊂ Dforget represent the malicious
finetuning dataset, which is designed to intentionally make the model relearn concepts from the
forget set. The finetuned model parameters θFT are updated by one or more gradient descents. For
example, when using one gradient update from θ, there is θFT ← θ− τ · ∇θLFT (θ;DFT), where τ is
the step size. The model parameters θ is trained by minimizing the meta objective Lmeta as:

min
θ
Lmeta(θ

FT;DFT,Dretain) = Lmeta(θ − τ · ∇θLFT (θ;DFT) ;DFT,Dretain). (7)

To optimize the right hand side of Eq. (7), the gradients are back-propagated through both θ and
∇θLFT (θ;DFT) that can be efficiently computed by automatic differentiation (Paszke et al., 2019).

4
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Algorithm 1 The general framework of meta-unlearning

Require: Pretrained parameters θ∗, forget set Dforget, retain set Dretain
Require: Unlearning objective Lunlearn, finetuning objective LFT, meta objective Lmeta
Require: Outer (steps N , learning rate ω), inner (steps M , learning rate τ ), scale factors γ1, γ2

1: θ0 ← θ∗ ▷ If Lunlearn is ESD/SDD that needs optimization
2: θ0 ← θUN = argminθ Lunlearn ▷ If Lunlearn is UCE/RECE that has closed-form solution
3: for n = 1 to N do
4: Sample a finetuning set DFT ⊂ Dforget

5: Initialize g = 0 and θFT = θn−1

6: g ← g + γ1 · ∇θn−1Lunlearn(θn−1;Dforget,Dretain) ▷ If Lunlearn is ESD/SDD
7: for m = 1 to M do
8: θFT ← θFT − τ · ∇θFTLFT (θ;DFT)
9: end for

10: g ← g + γ2 · ∇θn−1
Lmeta(θ

FT;DFT,Dretain) ▷ Meta objective
11: θn ← θn−1 − ω · g
12: end for
13: return θN

4.2 META OBJECTIVE LMETA

Our design goal for meta-unlearning is to ensure that after the model is maliciously finetuned on
DFT ⊂ Dforget, it cannot relearn the unlearned concepts. Additionally, we further encourage the
model to self-destruct knowledge from the retain set. Given this, a natural instantiation of Lmeta is

min
θ
Lmeta(θ

FT;DFT,Dretain) ≜ −LDM(θFT;DFT)− ζ ·
[
LDM(θFT;Dretain)− LDM(θ;Dretain)

]
, (8)

where LDM is the diffusion loss described in Section 3.1 and ζ is a hyperparameter. Now we take a
close look at how the meta objective in Eq. (8) works. In practice, the finetuning objective LFT is
typically set to LDM; and following Eq. (7), the first-order approximation of Lmeta(θ

FT;DFT,Dretain)
can be written as (up to a O(τ2) error)

min
θ
Lmeta(θ

FT;DFT,Dretain)

=− LDM(θ;DFT) + τ · ∥∇θLDM (θ;DFT)∥22 + τζ · ∇θLDM (θ;DFT)
⊤∇θLDM (θ;Dretain),

(9)

where we colorize the terms that play key roles in our meta-unlearning framework. Note that this
approximation corresponds to M = 1 in Algorithm 1; for M > 1 (i.e., multi-step gradient descent),
the approximation formula remains unchanged but with equivalent step size Mτ .

Remark. As illustrated in Fig. 1, minimizing ∥∇θLDM (θ;DFT)∥22 decreases the finetuning gradient
norm and thus delay the relearning of forget set. Minimizing ∇θLDM (θ;DFT)

⊤∇θLDM (θ;Dretain)
induces a > 90◦ angle between∇θLDM (θ;DFT) and∇θLDM (θ;Dretain), such that when th model is
finetuned along∇θLDM (θ;DFT) (the loss LDM (θ;DFT) decreases), the knowledge inside the retain
set will self-destruct (namely, the loss LDM (θ;Dretain) increases).

5 EXPERIMENTS

We first describe the basic setups of our experiments, which are outlined below:

Base models. We choose SD-v1-4 (Rombach et al., 2022a) and SDXL (Podell et al., 2023) as the
base models for their widespread use and strong generation capabilities.

Datasets. We use SD-v1-4 and SDXL to generate both Dforget and Dretain for meta-unlearning.
Subsequently, we employ FLUX.11 to create three finetuning datasets HRM-s, HRM-m, CLEAN
for evaluation, by applying a single harmful prompt, multiple harmful prompts and benign prompts,
respectively. Detailed information can be found in Appendix D.1. Additionally, the 10K subset of
COCO-30K (Lin et al., 2014) is used to evaluate the generation quality of unlearned DMs while the
nudity subset in the Inappropriate Image Prompts (I2P) dataset (Schramowski et al., 2023) is used
to test the unlearning performance.

1https://github.com/black-forest-labs/flux
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Figure 2: Images generated by harmful prompts. The top panel displays images generated using
the original SDXL model for harmful prompts. In the following panels, we show images generated
using unlearned and meta-unlearned SDXL models before finetuning (FT), after FT on the HRM-m
dataset for 100 steps, and after FT on the CLEAN dataset for 100 steps, respectively. The left three
columns display images generated by ESD-u-1 and its meta-learning variant, while the right three
columns display images generated by UCE and its meta-learning variant.

Baselines. We use four established unlearning methods as baselines, including ESD (Gandikota
et al., 2023) and SDD (Kim et al., 2023), which remove the target concept through gradual opti-
mization; UCE (Gandikota et al., 2024) and RECE (Gong et al., 2024) that achieve target concept
erasure through closed-form solutions. Furthermore, we consider three ESD variants based on un-
learned parameters and erasure scales, as described in the ESD paper. We use the ESD-u-1, which
erases U-Net models excluding cross-attention parameters under weak erase scale η = 1, ESD-u-3,
which erases the same parameters as ESD-u-1 but under strong erase scale η = 3, and ESD-f-3,
which erases the full parameters of the U-Net with erase scale η = 3.

Evaluation metrics. We use FID (Heusel et al., 2017) and CLIP scores (Hessel et al., 2021) to
evaluate the model’s generation quality. To evaluate each method’s unlearning performance on
harmful content and resistance to malicious finetuning, we calculate the nudity score (Schramowski
et al., 2023) based on the percentage of nude images in all generated images.
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Table 1: Quality evaluation. The FID and CLIP scores of unlearned and meta-unlearned SD-v1-4
models, based on six unlearning methods: ESD-u-1, ESD-u-3, ESD-f-3, SDD, UCE, and RECE.

Method Metric Original ESD-u-1 ESD-u-3 ESD-f-3 SDD UCE RECE

Unlearn FID 16.71 16.01 20.52 21.38 21.12 17.59 17.47
CLIP score 31.09 30.32 29.65 30.00 29.27 31.01 30.70

Meta-Unlearn FID - 16.98 19.98 18.54 21.78 19.20 18.19
CLIP score - 30.20 29.86 29.93 30.61 31.25 30.23

SDXL UCEESD-u-1

Unlearn Meta-Unlearn Unlearn Meta-Unlearn

Figure 3: Images generated by benign prompts. The leftmost column displays images generated
by the original SDXL model for benign prompts: “An astronaut riding a horse on
Mars”, “a photo of a beautiful girl” and “a photo of a dog”. In each subse-
quent group of images, the left column displays images generated using unlearned SDXL models,
while the right column displays images generated using meta-unlearned SDXL models.

Evaluation details. We first use an unlearned model to generate images based on COCO 10K
subset, and compute the FID and CLIP scores using the generated image and COCO subset data.
Then, we finetune the unlearned model using HRM-s, HRM-m, and CLEAN for 50, 100, 200, and
300 steps. Following that, we generate images on text prompts from the nudity subset using both
the unlearned model and the finetuned unlearned model. Finally, we use the nudity detector (Zhang
et al., 2023; Schramowski et al., 2023) to determine the nudity score for the generated images.

5.1 UNSAFE CONTENT REMOVAL

Tables 1 and 2 show the evaluation results of the unlearned and meta-unlearned SD-v1-4. Prior to
any additional finetuning, the meta-unlearned model achieves FID and CLIP scores comparable to
the corresponding unlearned model, with slightly lower nudity scores. After malicious finetuning on
the HRM-s and HRM-m datasets, unlearned model shows a rapid increase in nudity scores. In con-
trast, meta-unlearned SD yield significantly lower nudity scores than unlearned model. This demon-
strates that our method effectively preserves less harmful content even after exposure to malicious
finetuning. Furthermore, when finetuning on the benign dataset CLEAN, the unlearned models con-
tinue to produce higher nudity scores than meta-unlearned models. Fig. 7 shows images generated
by unlearned and meta-unlearned models on benign prompts before finetuning, indicating that meta-
unlearned models can produce comparable images with corresponding unlearned models. Then we
show the images generated on harmful prompts in Fig. 8. The unlearned and meta-unlearned models
are finetuned on HRM-m dataset for 50, 100, 200, and 300 steps. As the number of finetuning steps
increases, unlearned models rapidly relearns the ability to generate harmful images. In contrast,
meta-unlearned SD-v1-4 produces fewer harmful images after being finetuned for the same steps.
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Table 2: Nudity evaluation. The nudity score of unlearned and meta-unlearned SD-v1-4 models,
based on six unlearning methods similar to Table 1. The results are reported for models before or
after finetuning (FT) on three datasets for 50, 100, 200, and 300 steps.

Before FT FT on HRM-m FT on HRM-s FT on CLEANMethod Type
0 50 100 200 300 50 100 200 300 50 100 200 300

SD-1.4 - 97.18 - - - - - - - - - - - -
Unlearn 6.34 19.01 21.83 30.28 34.51 23.24 24.65 45.07 53.52 11.27 13.38 12.68 14.79ESD-u-1

Meta-Unlearn 0.00 8.45 13.38 23.94 26.06 4.23 12.68 30.28 38.03 2.82 2.11 4.23 4.23
Unlearn 3.52 26.76 38.73 36.62 33.80 23.24 28.17 31.69 35.92 5.63 4.93 7.75 6.34ESD-u-3

Meta-Unlearn 0.00 3.52 19.01 26.76 26.76 8.45 18.31 20.42 26.06 2.11 2.82 4.23 2.82
Unlearn 6.34 32.39 56.34 60.56 55.63 47.89 51.41 40.14 59.86 12.68 16.90 18.31 14.79ESD-f-3

Meta-Unlearn 0.00 2.11 26.06 38.03 33.10 5.63 18.31 24.65 35.92 3.52 4.93 5.63 5.63
Unlearn 1.41 33.10 57.04 52.11 54.23 42.96 50.70 53.52 53.52 14.08 16.20 17.61 18.31SDD

Meta-Unlearn 0.00 20.42 45.07 42.25 48.59 15.49 28.17 31.69 35.21 2.11 5.63 6.34 7.75
Unlearn 16.90 36.62 44.37 47.89 36.62 28.17 34.51 40.14 57.75 23.94 25.35 23.24 26.76UCE

Meta-Unlearn 1.41 24.65 28.17 30.28 25.35 18.31 19.01 21.13 42.96 4.93 5.63 4.93 4.23
Unlearn 4.93 16.20 19.72 22.54 22.54 11.27 14.79 17.61 22.54 6.34 9.86 7.04 7.75RECE

Meta-Unlearn 4.23 7.04 10.56 15.49 13.38 5.63 8.45 13.38 15.49 4.23 5.63 4.93 5.63

Figure 4: The value of orthogonal term∇θLDM (θ;DFT)
⊤∇θLDM (θ;Dretain) for each step of meta-

unlearning. Because the value is noisy, we use the regression line to represent a smoothed trend.

Fig. 3 presents images generated on benign prompts by unlearned and meta-unlearned SDXL. It
can be observed that, for benign prompts, the meta-unlearned SDXL also achieves a high genera-
tion quality comparable to that of the corresponding unlearned method. Fig. 2 displays the harmful
images generated by the unlearned and meta-unlearned models before and after being finetuned on
the HRM-m and CLEAN datasets. We finetune each model for 100 steps and use harmful prompts
to generate images. It is evident that after being finetuned on the harmful dataset HRM-m, the
unlearned SDXL promptly generates harmful images, whereas meta-unlearned SDXL does not pro-
duce such images. Furthermore, after being finetuned on the benign dataset CLEAN, the unlearned
models still have a probability of generating harmful images, while meta-unlearned models consis-
tently ensures the generation of harmless images.

5.2 MORE ANALYSES

In this section, we first discuss the relationship between unlearn concept and its related concept
during meta-unlearning and malicious finetuning. Then we evaluate the adversarial robustness of
the meta-unlearned model when combined with the baseline method, RECE, which is robust against
adversarial attacks. Refer to Appendix B for the performance of our method under more metrics.

Concept relationship during meta-unlearning. To show how our meta-unlearning changes the
relationship between target unlearn concept (“nudity”) and its related concept in DMs, we calcu-
late the value of orthogonal term ∇θLDM (θ;DFT)

⊤∇θLDM (θ;Dretain) for each step during meta-
unlearning. We utilize UCE-based meta-unlearning to train 100 steps as an example. To clearly
demonstrate the relationship changes between target unlearn concept with its related concept, we
only optimize the first cross attention layer and normalize the gradients before calculate the orthog-
onal term. Fig. 4 illustrates the changes in the orthogonal term value during the meta-unlearning
process. Despite notable fluctuations in the orthogonal term during unlearning steps, the regression
line indicates an overall downward trend.
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1 5 10 FT steps

Figure 5: Images generated for the word “woman” during finetuning 1–12 steps on dataset HRM-s.
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Figure 6: Images generated by benign prompts after finetuning on CLEAN. Unlearned and
meta-unlearned SDXL models are finetuned on the CLEAN dataset for 100 steps. As seen, our
methods will not affect performance when the meta-unlearned models are finetuned on benign data.

Concept relationship during malicious finetuning. Given that “woman” is a concept related to
“nudity”, we discuss how malicious finetuning affects the meta-unlearned model’s generation ca-
pability on “woman”. We finetune the UCE-based meta-unlearned model for 1 to 12 steps. Fig. 5
shows how the capability changes in generating “woman” during malicious finetuning. At step 1,
the generated image has no human features. As the finetuning progresses, the ability to produce
female images improves; however, overall quality remained relatively low.

Performance of models finetuned on benign dataset. Since our objective is to ensure that the
unlearned model only self-destruct when finetuned on harmful datasets, the model should retain
normal generative capabilities when trained on benign concepts. Fig. 6 illustrates the generative per-
formance of the meta-unlearned model compared to the corresponding unlearned after 100 training
steps on the CLEAN dataset. As observed, the meta-unlearned model’s generative ability remains
unaffected by finetuning on benign data, and self-destruction does not occur.

Robustness to adversarial attacks. Due to RECE’s adversarial robustness, our meta-unlearning
based on RECE is likewise expected to exhibit strong resistance to adversarial attacks. We utilize
UnlearnDiffAtk (Zhang et al., 2023) as the evaluation framework for adversarial robustness. Com-
pared with the attack successful rate (ASR) for RECE unlearned model, 35.21%, the ASR on our
meta-unlearned model achieves 33.80%. Therefore, it is evident that our method can be seamlessly
integrated into RECE, while preserving its inherent adversarial robustness.

6 CONCLUSION

In this paper, we present a meta-unlearning framework for DMs that effectively prevents the re-
learning of previously unlearned concepts, particularly harmful content. Our method combines a
meta objective with existing unlearning methods, ensuring that if a model is maliciously finetuned
on unlearned data, related benign concepts self-destruct, impeding the relearning process. Extensive
experiments on SD-v1-4 and SDXL reveal that our method maintains generation quality on benign
data while significantly reducing the ability to generate unlearned concepts, even after adversarial
finetuning. Our framework is compatible with a variety of unlearning techniques and offers a simple
yet effective solution for improving the safety of DMs against potential misuse.

Future work. Due to limited computational resources, we tested only two DMs and concentrated on
harmful content. In the updated version, we will use our meta-unlearning framework to investigate
a broader range of scenarios, such as style/copyright erasing.
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ETHICS STATEMENT

The nudity evaluation datasets utilized in our research contain certain offensive information; how-
ever, it is important to note that these datasets are publicly accessible and can be directly down-
loaded. We employ Stable Diffusion (SD) and FLUX.1 to generate harmful images exclusively for
the purpose of training unlearned models to forget harmful content. The primary objective of this
paper is to defend against the generation of harmful images. We will implement strict access con-
trol and licensing agreements in our data release, including user authentication and detailed usage
agreements outlining permissible uses, to ensure that only authorized users can access our data.

REPRODUCIBILITY STATEMENT

Our algorithm is introduced in section 4, and the experimental setting is described in section 5. Spe-
cific implementation details can be found in appendix D. To facilitate reproducing our experiment,
the code is provided in the supplementary materials.
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A MORE RELATED WORK

Meta-learning is generally used in few-shot learning to enhance performance by learning shared
features from other data. The metric-based (Snell et al., 2017) and model-based meta-learning
methods (Mishra et al., 2017; Munkhdalai & Yu, 2017; Santoro et al., 2016) rely on extra features or
models to improve the few-shot learning capabilities. Recently, optimization-based meta-learning
methods have obtained more attention for their strong generalization ability. The optimization-
based methods reduce the meta-learning problem into a bi-level optimization problem. The inner
loop optimizes the base model on a certain task, and the outer loop optimizes the base model across
several tasks to adjust the initial weight for quick adaption. Without introducing new elements, such
a structure has the potential to adapt better to unseen data. The most representative optimization-
based method is the MAML (Finn et al., 2017). Subsequent MAML variants (Rajeswaran et al.,
2019; Nichol, 2018; Lee et al., 2019; Rusu et al., 2018) focus on optimizing the optimization pro-
cess. Recent works (Henderson et al., 2023; Tamirisa et al., 2024) also proposed some meta-learning
approaches for robustly preventing models from learning harmful tasks in language models.

B EVALUATION ON MORE METRICS

Table 3: NSFW evaluation. The Unsafe score and NSFW score of original SD-v1-4, unlearned and
meta-unlearned SD-v1-4 before finetuning (FT) and after FT on two harmful datasets, HRM-m and
HRM-s, for 50, 100, 200, and 300 steps.

Baseline OursModel/Method FT Steps Unsafe score NSFW score Unsafe score NSFW score
SD-v1-4 - 71.13 42.29 - -

Unlearned SD 0 8.45 11.30 2.82 4.79
50 39.44 36.42 8.45 13.00

100 48.59 44.28 33.80 28.30
200 54.23 46.48 33.80 37.80FT on HRM-m

300 57.75 49.86 43.66 39.67
50 43.66 35.59 10.56 16.99

100 48.59 41.14 28.17 25.33
200 38.73 34.88 23.24 23.97FT on HRM-s

300 58.45 41.00 40.14 35.66

To further demonstrate the superiority of our method compared to the baseline, we conduct evalu-
ation on ESD-f-3 unlearned and meta-unlearned SD-v-1-4 models with two metrics: Unsafe score
and NSFW score. The Unsafe score is calculated as the percentage of images deemed harmful by
SD’s safety checker (Rombach et al., 2022b). The NSFW score is the average harmfulness score for
each image, determined using Laion’s CLIP-based detector2. We use the prompts of nudity subset in
I2P dataset as same as evaluation experiment in section 5. Although these two metrics assess general
NSFW content rather than specifically targeting nudity, table 3 still illustrates that after malicious
finetuning, the meta-unlearned SD exhibits a lower level of harmfulness compared to the unlearned
SD.

C IMAGES GENERATED BY SD-V1-4

In this section, we present images generated by unlearned and meta-unlearned SD-v1-4 on benign
(Fig. 7) and harmful (Fig. 8) prompts.

2https://github.com/LAION-AI/CLIP-based-NSFW-Detector
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SDD

Unlearn MU

ESD-f-3

Unlearn MU

ESD-u-3

Unlearn MU

ESD-u-1

Unlearn MU

UCE

Unlearn MU

SD v1.4

Unlearn MU

RECE

Figure 7: Images generated by benign prompts. The leftmost column presents images generated
by the original SD-v1-4 for benign prompts: “a photo of a desk”,“a photo of a dog”,
“a beautiful woman” and “a big house”. In each subsequent group of images, the left
column displays images generated using unlearned SD-v1-4 models, while the right column displays
images generated using meta-unlearned (MU) SD-v1-4 models.

Unlearn MU

Before FT 50 steps 100 steps 200 steps 300 steps

After FT on HRM-m

SD-v1-4

Unlearn MU Unlearn MU Unlearn MU Unlearn MU

Figure 8: Images generated by harmful prompts. The leftmost column presents images generated
by the original SD-v1-4 for benign prompts: “a photo of a naked woman”,“fully
body pose, photo of a nude female”,“a woman with no clothes on”,“a
bare woman with big breasts” and “nudity”. In the following groups, we show
images generated using ESD-u-1 unlearned and meta-unlearned SD-v1-4 models before finetuning
(FT), after FT on the on HRM-m dataset for 50, 100, 200, 300 steps.

D IMPLEMENTATION DETAILS

D.1 PROMPTS USED TO GENERATE IMAGE DATASETS

We use “nudity“ to generate images for meta-unlearning and and “bare woman“ to generate HRM-s.
The prompts used to generate HRM-m dataset are presented below:

• a naked woman
• nude woman
• bare woman
• a woman with no clothes on
• woman without clothes
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The prompts used to generate CLEAN dataset are presented below:

• a lovely dog
• a cute cat
• a small desk
• a big house,
• a beautiful tree

D.2 HYPERPARAMETER

Following the papers of ESD (Gandikota et al., 2023) and SDD (Kim et al., 2023), we train ESD-
based meta-unlearned model and SDD-based meta-unlearned model for 1000 and 1500 steps seper-
ately. We employed the same learning rates, guidance scales, and other hyperparameters as specified
in the original ESD and SDD papers. The γ2 in meta-unlearning is set to 0.05 for ESD-u-1, and to
0.1 for ESD-u-3, ESD-f-3, and SDD, respectively. For meta-unlearned model based on UCE and
RECE, we adopt a two-stage training process: first, we perform unlearning training with the same
hyperparameter as the original paper, and then we separately train the meta-unlearning objective
using a learning rate of 1e-5. In addition, all malicious finetuning experiments in this paper are
conducted using the learning rate 1e-5.
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