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Abstract

With the surge of large language models (LLMs), Large Vision-
Language Models (VLMs)—which integrate vision encoders with
LLMs for accurate visual grounding—have shown great potential
in tasks like generalist agents and robotic control. However, VLMs
are typically trained on massive web-scraped images, raising con-
cerns over copyright infringement and privacy violations, and
making data auditing increasingly urgent. Membership inference
(MI), which determines whether a sample was used in training, has
emerged as a key auditing technique, with promising results on
open-source VLMs like LLaVA (AUC > 80%). In this work, we revisit
these advances and uncover a critical issue: current MI benchmarks
suffer from distribution shifts between member and non-member
images, introducing shortcut cues that inflate MI performance. We
further analyze the nature of these shifts and propose a principled
metric based on optimal transport to quantify the distribution dis-
crepancy. To evaluate MI in realistic settings, we construct new
benchmarks with i.i.d. member and non-member images. Existing
MI methods fail under these unbiased conditions, performing only
marginally better than chance. Further, we explore the theoreti-
cal upper bound of MI by probing the Bayes Optimality within
the VLM’s embedding space and find the irreducible error rate re-
mains high. Despite this pessimistic outlook, we analyze why MI
for VLMs is particularly challenging and identify three practical
scenarios—fine-tuning, access to ground-truth texts, and set-based
inference—where auditing becomes feasible. Our study presents
a systematic view of the limits and opportunities of MI for VLMs,
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providing guidance for future efforts in trustworthy data auditing.
Code and data will be available at €.
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1 Introduction

Large Vision-Language Models (VLMs) are becoming ubiquitous.
Proprietary systems such as GPT-4o0 [52] and Claude 3.5 Sonnet [1]
exhibit impressive multimodal capabilities, excelling at comprehen-
sive image description and complex visual reasoning, with promis-
ing applications in generalist agents [20] and embodied robotics
[45]. To support open scientific research, the community has made
notable progress in replicating these abilities under transparent,
open-source settings. Notably, the LLaVA series [31, 36] integrates
vision encoders with large language models (LLMs), achieving com-
petitive performance while remaining fully accessible.

However, training large VLMs typically involves scraping web-
scale multimodal data [4, 52], raising concerns about data legality
and transparency. Recent incidents have highlighted these risks:
copyright lawsuits involving GPT-4o0 [29], potential personal data
leakage via VLM outputs [48], and test set contamination in bench-
mark evaluations [53, 54]. These challenges underscore the urgent
need for principled data auditing, empowering third-party verifica-
tion of whether specific data were used during VLM training.

Membership inference (MI)—which assesses whether a specific
sample was part of a model’s training set [57]—has recently emerged
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as a powerful approach for auditing VLMs. In this setting, MI probes
a black-box API with a target image and a crafted instruction, ana-
lyzing the language response and token-level probabilities to com-
pute membership-indicative statistics. Thresholds calibrated on
known member and non-member images are then used to infer
membership status [26, 33], enabling non-intrusive and statistically
grounded audits. Recent work has introduced benchmark datasets
for open-source VLMs like LLaVA, designating subsets of train-
ing images as members and post-release or synthetic images as
non-members [33]. Under this setup, state-of-the-art (SOTA) MI
methods have achieved promising results (e.g., AUC > 80%).

However, this paper identifies a critical issue in current VLM
MI benchmarks: distribution shifts between member and non-
member images introduce unintended shortcuts for infer-
ence. These shifts stem from long-term temporal drift or discrep-
ancies between real and synthetic image sources. We show that a
simple image-only classifier (e.g., EfficientNet-B0 [58]), outperforms
most SOTA MI methods—without accessing any VLM outputs (Ta-
ble 1). Moreover, when evaluating on pseudo-MI datasets where all
samples share the same membership status but differ in distribution,
MI methods still perform well in distinguishing subsets, indicating
that their success is driven largely by distributional artifacts rather
than genuine membership signals (Table 2).

Thus, to ensure reliable inference, it is critical that member and
non-member images are drawn from the same underlying distri-
bution. Unfortunately, distribution shifts in the visual domain are
pervasive yet often imperceptible [21], arising in subtle or multi-
faceted ways [64]. To support debiasing efforts, we systematically
analyze concrete forms of shift by interpretably encoding images
with a visual bag-of-words (capturing high-level semantics) and a
frequency-domain energy profile (capturing low-level textures). To
quantify these discrepancies, we further introduce WiRED—a prin-
cipled metric that measures the ratio of sliced Wasserstein distances
across embedding spaces tailed to different types of shift.

Building on this, we construct a suite of unbiased MI datasets
by carefully examining four open-source VLM families—LLaVA-
1.5 [35], LLaVA-OneVision [31], Cambrian-1 [60], and Molmo [12].
Leveraging random train/test splits from pretraining and instruction-
tuning data, the member and non-member images are ensured to be
drawn ii.d. Under these conditions, SOTA MI methods perform only
slightly better than random guessing. To assess the true auditing
potential of MI, we design a series of classifiers (e.g., attention pool-
ing probes) to directly inspect the VLM embedding space—where
memorization signals are expected to reside. Even in this idealized
setting, separability remains poor. We further estimate the theoret-
ical upper bound of inference accuracy via Bayes optimality and
observe that the irreducible error remains substantial.

These sobering results raise a central question: why is MI partic-
ularly challenging for VLMs? Through careful analysis, we identify
three key factors. First, the massive data volume and single-epoch
training lead to minimal overfitting. Second, model developers rela-
bel images with high-quality captions, rendering the ground-truth
text inaccessible. Third, inherent attributes of a single image result
in high-variance token confidences, diluting the membership signal.
To address these challenges, we relax standard assumptions and
propose three practical scenarios: multi-epoch fine-tuning on down-
stream tasks, access to ground-truth text, and aggregation-based
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set inference. Under all three settings, MI becomes not only feasible
but also practically valuable for real-world data auditing.

Our analytical framework is illustrated in Figure 1. The key
contributions of this work are as follows:

e We identify distribution shifts in existing VLM MI bench-
marks, characterize their concrete forms, and introduce a
principled metric WiRED to quantify them (§ 3).

e We construct unbiased MI datasets with ii.d. splits, where
SOTA MI methods perform marginally better than chance.
We further estimate the Bayes optimality in VLM embedding
space to assess the theoretical limits of MI (§ 4).

e We analyze why MI is particularly challenging for VLMs
and identify three realistic scenarios in which MI becomes
feasible and practically relevant for data auditing (§ 5).

2 Related Work

2.1 Large Vision-Language Models

Built upon powerful LLMs [50], proprietary VLMs such as GPT-
4V [51] have shown impressive performance on open-domain mul-
timodal tasks. Open-source efforts like LLaVA [36] follow a simple
design, aligning vision and language via a vision encoder gy (-), a
projector pg(-), and a language model f4(-). Given an image X,
and instruction Xg, features Z, = g (Xy) are projected to visual
tokens Hy = pg(Zy) and input to the LLM with X, for response
generation. Training involves modality alignment on large-scale
datasets (e.g., LAION-5B [55], CC12M [28], Datacomp [18]) and
instruction tuning on curated multimodal QA tasks.

To promote transparency, recent open-source VLMs such as
LLaVA-1.5[35], LLaVA-OneVision [31], Cambrian-1 [60], and Molmo
[12] release not only model weights but also complete training data.
As web-crawled image-text pairs are often noisy or short, these
models re-annotate images with synthetic or human-curated texts.
LLaVA-OneVision generates 99.8% of its high-quality knowledge
with proprietary VLMs [8], while Molmo constructs its pretraining
data from human-transcribed speech descriptions of web images.

2.2 Membership Inference on Language Models

As foundational models are trained on large-scale web data, con-
cerns about unauthorized use of copyrighted or private content
have intensified [14, 30]. Membership inference (MI) has emerged as
a non-intrusive auditing tool to detect training data exposure [57].
Early MI methods relied on simple statistics like perplexity [7, 62],
while recent work proposes token-level metrics like Min-K% [56]
and Min-K%++ [65] for improved stability. In the VLM setting, the
standard threat model assumes black-box access, with only an im-
age X, and crafted instruction X, available. Auditors collect output
token probabilities and compute MI scores. VL-MIA [33] builds
the first VLM MI benchmark and introduces MaxRényi-K%, while
image-only inference [26] assesses membership via self-consistency
of sampled descriptions. As these methods produce only MI scores
rather than binary decisions, evaluation relies on threshold-free
metrics such as AUC and TPR@5%FPR, while real-world deploy-
ment requires reference sets to calibrate decision thresholds.
Despite advances in LLM MI, temporal biases have been re-
vealed in evaluation datasets [41], where non-members contain
low-confidence, out-of-vocabulary tokens. We reveal a similar yet
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(1) Data
Current VLM MI Benchmarks with Distribution Shifts

(2) Inference
Current Approach: Probing Output Token Probabilities
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(3) Scenario
Current Approach: Image-only Inference on Pretrain and Instruction Tuning Data
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Figure 1: Revisiting of VLM MI: (1) Identifying Bias in MI Datasets, (2) Probing Bayes Optimality in VLM Inner States, (3) Future Scenarios for Data Auditing.

subtler shift in VLM MI: member and non-member images exhibit
complex, vision-specific biases difficult to detect or interpret. Unlike
textual shifts explainable by out-of-vocabulary words [11], these vi-
sual biases are largely opaque. We introduce a principled framework
to quantify such shifts and assess their impact on data auditing.

3 Distribution Shortcuts in VLM Membership
Inference Benchmarks

We identify that in current VLM MI benchmarks, distribution shifts
between member and non-member images contribute significantly
more to their separability than the genuine membership. On bench-
marks such as VL-MIA/Flickr or VL-MIA/DALL-E, an EfficientNet-
B0 [58] trained solely on 300 images—without any access to VLM
outputs—achieves a test AUC well above most SOTA MI methods.
Moreover, MI methods yield high AUCs when comparing subsets
with identical membership yet different distributions (§ 3.2).

The distribution shift not only compromises evaluations but also
limits the utility of MI. When target images deviate in distribution
from the reference set, the derived threshold becomes misaligned,
causing substantial false positives and false negatives. To address
this, we provide a thorough analysis of the concrete form of distri-
bution shifts in VL-MIA/Flickr and VL-MIA/DALL-E (§ 3.3), and
introduce a principled measure of distribution discrepancy (§ 3.4).

3.1 Experimental Settings

3.1.1  Datasets. Our study builds upon the existing VLM MI bench-
mark: VL-MIA/Flickr and VL-MIA/DALL-E, each comprising 300
member and 300 non-member images [33]. In VL-MIA/Flickr, mem-
ber images are sourced from MS COCO [34], a dataset widely used in
training open-source VLMs, while non-member images are scraped
from Flickr [17] after 2024. In VL-MIA/DALL-E, the member set is
drawn from LAION [55], while non-members are synthesized by
DALL-E [49] using the exact captions associated with members.

3.1.2  Vision-Language Models. We consider representative VLM
families with fully open data and models, enabling training data
traceability [12]. In this section, we evaluate LLaVA-1.5-7B [35, 36],
LLaVA-ov-7B [31], Cambrian-1-8B [60], and Molmo-7B-D [12].
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3.1.3  MI Methods. We consider MI methods from classical ap-
proaches such as perplexity and maximum probability gap [7, 62],
to recent SOTA for LLMs, Min-K% [56] and Min-K %++ [65]. We also
include VLM-specific methods: MaxRényi-K% and ModRényi [33],
as well as the Image-only Inference [26]. All methods interact with
VLMs via their language interface, simulating realistic black-box au-
diting: given the target image and a crafted instruction, the auditor
infers membership from the language response and confidence.

3.1.4  The Blind Classifier. To isolate the impact of distribution shift
from genuine membership signals, we evaluate a blind classifier
without access to any VLM outputs. An EfficientNet-B0 [58] is
trained directly on images from VL-MIA/Flickr and VL-MIA/DALL-
E to distinguish members from non-members, using a 1:1 split of
300 training and 300 testing samples per dataset.

3.2 Distribution Shifts Surpass Membership
Signals in Separability

Table 1 reports the performance of MI methods on the VL-MIA suite.
Following standard practice [26, 33, 56, 65], the Area Under the
ROC Curve (AUC) and True Positive Rate at 5% False Positive Rate
(TPR) are used as evaluation protocols, where higher values indicate
better inference. Surprisingly, most of the times, the EfficientNet-
BO trained solely on images achieves significantly higher scores
than SOTA MI methods, indicating that distribution shifts between
member and non-member images alone are sufficient for separation,
independent of any memorization signals from the VLM.
However, could the supervised training simply encourage Effi-
cientNet to exploit distributional cues, while SOTA MI methods
genuinely reflect the VLM’s overfitting behavior? To disentangle
the effects of distribution shift from true membership signals, we
construct two pseudo-MI datasets by swapping subsets between VL-
MIA/Flickr and VL-MIA/DALL-E: in VL-MIA/Member, all images
come from the training set—VL-MIA/Flickr members as members,
and VL-MIA/DALL-E members as pseudo-nonmembers. Similarly, in
VL-MIA/Nonmember, all images are unseen during training, with
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Table 1: Performance of MI methods on Existing MI Datasets.

Dataset Method | LLaVA-15  LLaVA-ov Molmo Cambrian
|AUC TPR AUC TPR AUC TPR AUC TPR
Pernlexit inst | 343 07 181 00 346 13 344 17
PIXIY  desp | 574 160 145 00 558 120 433 40
inst | 575 73 218 07 673 110 94 03
Max-Prob-Gap  g. | 610 167 621 93 568 103 367 13
inst | 482 17 599 100 651 127 551 40
Min-K% 2.2
Flicke i desp | 573 160 201 00 558 123 594 120
(WiRED  MinKre,  IMSt| 585 137 147 03 65 133 447 17
-2.10) ’ desp | 618 217 801 140 679 163 507 10
inst | 666 187 483 83 693 187 684 163
MaxRényi-K% e
axRenyr desp | 574 193 955 790 643 190 555 77
ModRényi NSt | 384 03 842 587 327 07 414 13
YU desp | 571 123 157 00 530 100 455 37
Image-only Inference | 64.0 8.7 21.6 6.5 668 135 761 316
Blind Classifier (ours) | 99.1 974 99.1 974 99.1 974 99.1 974
Perplexit inst | 377 20 584 170 590 113 246 10
PIXIY  desp | 655 80 555 173 559 120 712 127
inst | 589 93 633 163 678 153 893 663
Max-Prob-Gap .o | 45 77 580 173 584 147 785 383
Min K7 inst | 393 63 605 187 635 113 339 10
DALLE ¢ desp | 656 80 657 180 559 120 708 120
" inst | 585 103 547 127 482 70 877 667
(WiRED Min-K ns oL 567
-3.00) K%+ Gesp | 670 93 496 107 576 110 754 147
MaxRénviks 0St | 7L8 143 787 303 545 77 949 877
VIR% desp | 703 90 640 143 579 147 871 563
ModRényi NSt | 384 30 719 290 510 93 255 50
Y desp | 646 90 629 243 550 123 840 473
Image-only Inference | 47.0 49 673 142 637 137 410 00
Blind Classifier (ours) | 87.4 49.1 874 49.1 874 49.1 874 49.1

VL-MIA/DALL-E nonmembers as nonmembers, and VL-MIA/Flickr
nonmembers as pseudo-members. While membership status is uni-

form within each dataset, distributional discrepancies remain.
Table 2: Performance of MI methods on Pseudo-MI Datasets

Dataset Method ‘ LLaVA-1.5 LLaVA-ov Molmo Cambrian
| AUC TPR AUC TPR AUC TPR AUC TPR
Perplexit inst | 424 07 79 00 204 00 545 10
P desp | 639 70 204 00 519 20 272 13
inst | 538 03 40 00 370 03 17 00
Max-Prob-Gap . | 589 03 601 10 467 07 149 00
P

inst | 426 10 482 00 391 07 651 63

Min-K% =22
Member m desp | 652 70 237 00 556 60 768 217
(WiRED  Min.K7es  IBSE | 760 160 3L1 00 7715 77 174 00
—2.42) ¢ desp | 652 197 817 300 452 37 295 00
! MaxRénvi-Ke PSt | 848 380 660 110 820 297 548 30
VIER% desp | 787 180 909 523 554 53 454 47
ModRényi ISt | 386 00 840 403 184 00 658 27
Y' desp| 639 73 187 00 534 30 373 13
Image-only Inference | 68.2 197  20.0 44 41.6 2.0 59.9 149
Blind Classifier (ours) | 97.3 855 973 855 973 855 973 855
Perplexit inst | 350 13 349 43 417 03 370 00
PIeXY  desp | 572 37 677 333 529 33 571 43
inst | 550 27 229 03 418 13 508 7.7

Max-Prob-G

AXLTODDAP gesp | 555 23 569 100 488 40 540 6.0
Min K% inst | 452 67 657 220 462 03 443 13
Non g desp | 57.3 43 722 340 601 87 570 80
Member . inst | 750 180 756 187 636 60 664 167
(WiRED : desp | 598 63 446 100 346 23 516 80
660 RénviKeg PS| 799 213 905 633 L3 207 844 477
VIR% desp | 669 133 799 363 496 40 559 77
ModRényi ISt | 352 07 444 47 434 00 361 37
VI desp | 575 47 737 383 575 50 582 130
Image-only Inference | 48.6 8.1 58.2 5.8 40.3 1.8 31.4 0.0
Blind Classifier (ours) | 99.6 984 99.6 984 99.6 984 996 984

As shown in Table 2, despite the absence of genuine member-
ship differences, MI methods retain high performance on these
pseudo-MI datasets !, matching or exceeding their performance
on the original benchmarks. Notably, some methods yield AUCs
well below 50% (random guessing). This reflects the assumption in
MI methods that membership signals are directional—e.g., lower
perplexity implies membership. However, distribution shifts can in-
validate this assumption, resulting in inverted decisions. In general,
AUCs near 50% indicate low separability.

1AUC > 65% and TPR > 15% are highlighted with underlines.
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Finding 1: Current VLM MI benchmarks exhibit distri-
bution shifts between member and non-member images,
acting as unintended shortcuts. SOTA MI methods rely on
these shifts rather than genuine membership signals.

3.3 Understanding Distribution Discrepancy

The blind EfficientNet indicates the presence of distribution shifts.
Yet, the exact nature of these shifts remains unclear. Recent stud-
ies [37] show that shifts are common in large-scale datasets, but
often imperceptible to humans [37]. Auditors may be unaware that
the target and reference images differ in distribution. Understanding
the concrete form of shifts is therefore critical for debiasing. We an-
alyze VL-MIA/Flickr and VL-MIA/DALL-E from two perspectives:
high-level semantics and low-level textures.

102 x1072
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3 3
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Figure 2: Distribution Shifts in Existing MI Datasets: (a) Flickr; (b) DALL-E.

VL-MIA/Flickr exhibits a temporal gap of over a decade, lead-
ing to semantic shifts in object content. Member images from MS
COCO tend to depict natural scenes with a concentrated object dis-
tribution, while non-members—crawled from Flickr after 2024—con-
tain more man-made objects and a flatter distribution. We train a
YOLOvV11 detector [61] on LVIS [22] (1,203 categories) and extract
object annotations from both subsets. As shown in Figure 2(a), the
category frequency distributions differ significantly. We further
encode each image as a 1,203-dimensional sparse vector of object
counts and train a random forest [6] to distinguish members from
non-members. This visual bag-of-words classifier achieves an AUC
of 81.96%, demonstrating that high-level semantic shifts alone are
sufficient to separate the two subsets in VL-MIA/Flickr.

In contrast, VL-MIA/DALL-E controls high-level semantics by
generating non-member images with the same captions as members.
Thus, the visual bag-of-words classifier performs poorly, with an
AUC of 53.15%. However, real and Al-generated images often differ
in low-level details [40]. We analyze high-frequency features known
to capture fine-grained visual cues [64]. Given an image with pixel
intensity matrix I € REXW  the centered magnitude spectrum of
its 2D discrete Fourier transform is computed as:

30

H-1W-1
Flwo)= Y, Y 10xy)-e ), M) = 1F @) (1)
x=0 y=0
We divide the spectrum into K concentric frequency bands based
on ¢, distance from the center. The energy of the i-th band is:

1
E; = M(u,0)

= — @)
Bl' (u,0) € B;

|
where B; is the set of frequency coordinates in the i-th band. This
defines a frequency feature vector E = [Ey, Eq,...,Egx—1] € RK.
Figure 2(b) shows the distribution of high-frequency energy E1o
for K = 10, revealing clear separation between members and non-
members. Using E as a 10-dimensional input, a simple linear classi-
fier achieves a test AUC of 96.21%—far exceeding all MI baselines.
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Despite similar semantics, subtle texture differences are sufficient
to separate member and non-member images in VL-MIA/DALL-E.

Finding 2: Distribution shifts are ubiquitous yet hard to
detect. They can arise from temporal gaps or differences in
data collection, and manifest in diverse forms—from subtle
texture patterns to high-level semantic variations.

3.4 Quantifying Distribution Discrepancy

Accurately quantifying distribution shift is essential for building
fair MI benchmarks and thresholds calibration. While shifts are
pervasive in large-scale datasets, effective and interpretable metrics
remain underexplored [37, 64]. One straightforward approach is to
train a deep classifier (e.g., EfficientNet) to distinguish subsets—an
instantiation of classifier two-sample tests [39]. However, this is
computationally expensive for personal auditing and underesti-
mates subtle shifts, e.g., in VL-MIA/DALL-E, EfficientNet yields a
significantly lower AUC than a frequency-based linear classifier.
Thus, to facilitate fair benchmarks and practical auditing, we
propose a principled, interpretable, and efficient metric for distri-
butional discrepancies. We introduce WiRED—Wasserstein Ratio
of Embedded Representations—which measures the degree of shift
between two image subsets S; and S,. Specifically, WiRED first
embeds each image I into a collection of metric spaces via embed-
ding functions ¢, . . ., ¢r, each targeting a distinct form of shift. Let
p1 and py denote the probability densities of S; and Sz in the i-th
embedding space. The Wasserstein distance [46] is defined as:

1/q

Wy (p1,p2) = yGFl(rg,m) E(xpx)~yllX1 —x2l7| (3)
where I'(p1, p2) denotes all couplings between p; and p,. Intu-
itively, Wy captures the minimal cost of transporting one distri-
bution into the other, commonly referred to as the Earth Mover’s
Distance [46]. As computing Wy exactly requires solving the op-
timal transport problem with time complexity O(N?) for sample
size N, we adopt the sliced Wasserstein distance (SWD) [5] as an
efficient approximation, which projects samples onto random di-
rections {0; }f: . € RY, computes one-dimensional Wasserstein

distances, and averages them across all directions:

K
SWD(S1,52) = 2 > W (0 (S0, 074i(52)) . @
j=1

To normalize the discrepancy between S; and Sy, we compare
their distance to the internal variation within Sj. Specifically, we
sample two disjoint subsets S11, S12 C S1, along with a size-matched
subset S, C Sz. The WiRED score in the i-th embedding space is

then defined as WiRED; = %.

This highlights how distinguishable Sy is from Sy, relative to S1’s
internal variation. A ratio close to 1 indicates similar distributions,
while a significantly higher value signals a notable shift. Since each
embedding function ¢; captures different aspects of the data, we
define the final WiRED score as the maximum across all embeddings,
Le., WiRED = max;[,] WiRED;.

In our experiments, we instantiate ¢; with two embedding func-
tions: (1) ImageNet-pretrained EfficientNet-B0 features to capture
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high-level semantics, and (2) frequency-domain energy vectors
(§ 3.3) to capture low-level textures. WiRED is non-parametric,
makes no assumptions about distribution shapes, and is highly effi-
cient (e.g., taking 10 seconds for a 600-image MI dataset). We report
WIRED scores alongside each benchmark, clearly reflecting the
distributional biases identified in § 3.2 (e.g., WiRED > 1), without
model training or prior knowledge of the shift.

4 Feasibility of Membership Inference on VLMs

In § 3, we show that current benchmarks suffer from distribution
shifts, introducing unintended shortcuts. When such shifts are
eliminated, can MI reliably detect membership based on overfitting
signals in VLM outputs? In this section, we investigate this question
and uncover that, under strictly i.i.d. conditions, SOTA MI methods
perform only slightly better than random guessing (§ 4.2). Even with
white-box access to VLM internal features—the presumed source of
memorization—separability remains poor, and the theoretical upper
bound of performance, quantified by the estimated Bayes Error Rate
(BER), remains pessimistic (§ 4.3). These results suggest that in the
most realistic auditing scenario—where the auditor must determine
whether a single image appeared in VLM training—current MI
techniques are unlikely to yield reliable conclusions.

4.1 Towards Unbiased VLM MI Datasets

The most rigorous way to construct i.i.d. subsets is through ran-
dom splits from the same source [16]. Following this principle,
we carefully inspect open-source VLMs to identify datasets with
standard training/testing splits. We focus on the fully open VLM
families—LLaVA-1.5 [35], LLaVA OneVision [31], Cambrian-1 [60],
and Molmo [12]—all trained exclusively on publicly available data.
VLMs first align vision and language representations during pre-
training, and are further tuned for instruction following. These
phases typically utilize all available data, without held-out valida-
tion sets. Fortunately, many VLMs incorporate widely used caption-
ing and VQA datasets that do provide standard splits. For instance,
all four families use MS COCO [34], primarily during pretraining,
and both LLaVA OneVision and Molmo include instruction-tuning

datasets built on clearly partitioned VQA benchmarks.
Table 3: Quantitative Debiasing Validation: Blind CIf Performance and WiRED.

datasets Models ‘ blind clf AUC blind cIf TPR WiRED
COCo Allmodels | 49.0+0.6 8.3+1.0 0.97
ChartQA 57.7+0.7 8.3+1.6 1.04
DocVQA LLaVA-ov 54.9+1.0 6.2£2.5 0.98
InfoVQA 57.0+1.4 7.2£0.9 1.25
PixMoChart 48.410.1 1.7£0.6 1.00
PixMoDiagram  Molmo 48.5+0.3 6.8+1.2 1.22
PixMoTable 57.1£1.2 9.8£0.3 0.94

To ensure that member images were seen during training while
non-members were not, we select datasets explicitly used in both
training and evaluation, excluding any with evident distribution
shifts between splits. The resulting datasets are listed in Table 3.
Following the VL-MIA setup [33], we sample 300 images each from
the training and testing splits to form the member and non-member
sets. We apply both EfficientNet and WiRED metric to assess shifts.
Across all selected datasets, EfficientNets yield AUCs near 50%,
and WIiRED scores remain close to 1, confirming well-matched
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distributions. ChartQA [43], DocVQA [44], and InfoVQA [44] show
slightly elevated AUCs, though they adhere to standard splits. We
attribute this to image redundancy in the original VQA datasets;
our de-duplication may introduce minor residual imbalance. This
effort represents an initial step toward reliable benchmarks, paving
the way for larger and more rigorous datasets in future research.

4.2 VLM MI Performance on Unbiased Datasets

Table 4: Performance of MI Methods on the Debiased COCO Dataset.

‘ LLaVA-1.5 LLaVA-ov Molmo Cambrian
Method

‘ AUC TPR AUC TPR AUC TPR AUC TPR

Perplexity ISt | 512 63 507 70 493 57 553 83

desp | 537 17 515 80 543 53 543 57

inst | 500 60 535 83 455 30 506 53

Max-Prob-Gap .00 | 530 57 535 43 518 83 545 80

Min K% inst | 5.2 73 507 70 515 57 558 87

desp | 542 33 526 80 548 70 541 73

MinKze,  InSt| 503 43 524 63 516 63 525 73

desp | 534 83 529 87 510 43 499 40

. inst | 5.5 93 548 110 529 63 517 7.3

MaxRényi-K%  geep | 543 50 568 63 530 50 522 77

ModRényi  WDST| 524 73 531 77 488 80 548 73

desp | 537 33 536 117 549 70 561 53

Image-only Inference | 525 46 517 83 533 71 505 6.1

Blind Classifier (ours) | 49.0 83 490 83 490 83 490 83

Table 4 reports the performance of MI methods on COCO across
four VLMs. AUCs hover around 50% (random guessing), never
exceeding 60%, while TPR@5%FPR remains below 10% in most
cases—indicating poor separability between members and non-
members. Table 5 presents results on the instruction-tuning datasets
of LLaVA OneVision and Molmo. Although these datasets are in-
troduced at later training stages—where catastrophic forgetting is

expected to be less severe—separability remains weak.
Table 5: MI Methods Performance on Debiased Model-Specific MI Datasets.

‘ LLaVA-OneVision ‘ Molmo
Method | “CpagA  DocVQA  InfoVQA | PixChart  PixDigram  PixTable

|AUC TPR AUC TPR AUC TPR|AUC TPR AUC TPR AUC TPR
Perpl | 478 20 478 10 393 14 | 488 17 493 30 510 60
€rp de 53.9 4.3 54.2 2.7 50.7 4.8 53.1 5.0 52.2 9.3 46.7 5.0
Max in | 417 27 579 87 564 102 | 497 67 521 47 519 83
Gap de| 551 90 559 63 504 48 | 505 47 492 37 474 40
Min in | 529 53 526 40 414 14 | 488 40 508 40 529 100
K% de| 541 47 542 43 523 68 | 532 57 533 103 521 67
Min in 53.7 8.0 50.5 4.0 58.7 10.2 52.6 7.7 48.6 4.0 50.4 7.7
K%++ de | 539 70 524 67 528 54 | 471 43 504 53 470 47
Max in | 486 53 566 147 584 88 | 519 77 551 7.0 492 67
Rényi de | 533 47 540 47 534 82 | 523 87 547 73 515 67
Mod in | 531 57 461 40 451 54 | 514 70 496 63 500 50
Rényi de | 537 33 544 47 508 48 | 548 43 520 100 475 57
ImgInfer | 480 43 535 97 584 94 | 545 57 503 70 461 45
BlindCIf | 577 83 549 62 570 72 | 484 17 485 68 571 98

In contrast, as shown in § 3.2, when distribution shifts are present,
a simple classifier trained on just 300 samples can achieve near-
perfect separation (AUC =~ 100%). This stark contrast highlights
how subtle the true membership signal is in VLM outputs compared
to distributional artifacts. In this context, a natural question arises:
is membership inference on VLMs truly feasible?

4.3 Probing the Envelope of MI Performance

To assess the feasibility of VLM membership inference, we consider
an idealized setting where the auditor has full white-box access to
the model’s internal embeddings—the source of potential memo-
rization signals. This enables us to examine whether members and
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non-members are separable in the representation space, and to esti-
mate the theoretical upper bound of this separability, characterized
by Bayes optimality [19, 24].

4.3.1 Probing VLM Embedding Space. Given a target image I €
(0,255)3*HXW e extract all hidden states from the vision en-
coder and language decoder during description generation. For
each layer v; in the vision encoder, we collect token-wise visual fea-
tures {h},h2, ...} € R%; for each layer I; in the language decoder,
we record hidden states generated during next-token prediction
terr = p(0;1,t<k), denoted as {hl,h?, ...} € R To evaluate the
separability in these hidden states, we first apply average pooling to
obtain fixed-size embeddings of dimension d, and d; for visual and
language tokens, and then adopt standard probes [38], training both
linear classifiers and multi-layer perceptrons (MLPs) to distinguish
members (class 1) from non-members (class 0).

To mitigate potential information loss from global pooling, we
further introduce an attention pooling classifier that adaptively
aggregates the most informative tokens:

pyi =1 ux<i) =o(w'h;) 5
where the aggregated representation h; is computed as:
I exp(q"h;)
h; = Z ajjhj,  aij= % (6)
J=1 Zk:l exp(qThy)

Here, q € R is a learnable query vector that attends to infor-
mative tokens. This enables the classifier to capture fine-grained
membership signals that may be distributed across tokens.

4.3.2  Estimating MI Performance Against Bayes Optimality. While
the probes assume full white-box access to the VLM—far beyond
what is feasible with real-world APIs—they remain empirical in
nature. One might conjecture that, as probes improve, members
and non-members may eventually become separable. To investigate
this, we consider the theoretical upper bound of MI: the irreducible
error in distinguishing members from non-members based on VLM
hidden representations, quantified by the Bayes error rate (BER)
[19, 24]. Formally, BER is defined as the expected misclassification
rate of the Bayes-optimal classifier under the task distribution D:

Bp = IEj’(x,y)~D [1 - mkaXP(y =k| x)] ()
Alternatively, it can be interpreted as the minimal error rate
achievable over all measurable functions h:
Bp "o hE(x,y)~D [I(h(x) # y)] ()
where I is the indicator function. Since VLM feature spaces do
not follow simple, tractable distributions that permit analytical
computation of BER, we adopt an efficient approximation [9] to
estimate BER in distinguishing membership in VLM hidden states.
Specifically, we compute pairwise £, distances between token
features to construct an adjacency matrix A, where A;; = 1if x;
and x; share the same label, and 0 otherwise. Connected compo-
nents representing confident regions are identified via breadth-first
search. Remaining unconnected samples are treated as uncertain
and labeled using Label Spreading [69]. BER is then estimated as the
fraction of incorrect predictions among these uncertain samples:
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Table 6: BER and Performance of Probing Methods using Visual and Language Tokens on the Debiased COCO Dataset.

Model Modal | BER Linear MLP Attention
‘ Original Calibrated ACC AUC TPR ACC AUC TPR ACC AUC TPR
LLaVA-1.5 Vision 33.8 22.3 53.3+3.8 55.4#2.1 8.0+2.2 53.6+34 55.3+0.3 10.8+#3.0 52.2#5.3 53.4%#28 4.5%1.5
' Language 26.3 N/A 50.0£3.1 52.24#5.6 11.5%#4.6 50.6+x2.6 52.245.2 8.846.7 48.6%x2.7 51.2+49 9.2+3.0
Cambrian Vision 36.8 22.3 52.8+2.4 50.4£3.5 5.3%14 52.2+3.7 50.1£3.0 3.6x2.6 50.0+2.4 50.7x1.5 11.1x49
Language 233 N/A 55.0+£5.6 54.1#5.8 11.7#3.3 51.9+2.6 522443 59459 53.9+55 52.9+6.6 13.5%4.7
.. Vision 21.2 22.3 50.8+4.2 58.8#6.3 10.3#4.3 52,5434 56.4+5.2 155+6.1 55.8#4.1 60.2+5.7 8.6+3.5
LLaVA-OneVision
Language 23.2 N/A 63.3+5.7 63.4+x4.8 8.6x2.4 60.8+4.7 63.8+53 59+3.2 62.5#4.1 65.0+43 6.9+3.7
Molmo Vision 25.5 22.3 55.3+3.7 56.3#4.2 13.0£1.3 52.842.1 53.4+4.2 14.0+6.3 51.7#5.6 55.6£3.9 15.3£4.8
Language 21.7 N/A 50.3+3.5 52.1#4.1 10.0£1.5 51.1+#14 52.0+3.3 8.1£8.0 50.3%¥2.7 53.6%£3.5 12.3£3.5
Table 8: BER on Debiased Model-Specific MI Datasets.
1 N Vision Language Vision Language
BER = Z I(gi # yi) © Dataset | ;" cal ori cal | P22%€t | o4 Cal Ori Cal
ieU
: ~ : ChartQA | 240 327 23.0 N/A PixChart | 325 283 262 N/A
where U denotes the set of uncertain samples, j; the predicted
pies, Yi the predictec DocVQA | 175 252 203 NJ/A || PixDigram | 333 275 262 N/A
label, and y; the ground-truth. Note that BER provides a optimistic InfoVQA | 205 209 159 N/A || PixTable |307 27.0 222 N/A
estimate of the lowest achievable error. The Bayes-optimal classifier
is not accessible, and BER does not account for generalization—it Linear  —— MLP - ’::te”“"” = 100BER  --- Random Guessing
i . 80 - 80 I
may reflect separability based on spurious features. S _,-Vn_‘;-‘“--’ T e L
70 pe" S70 A
> / >
Table 7: Performance of Probing Methods on Model-Specific Debiased Datasets. § 60 ¥ §
Dataset Method ‘ Vision Language K50 - AR o AT b
| Acc AUC TPR  ACC  AUC TPR 0
N 5 10 15 20 25 0 5 10 15 20 25 30
Chart Linear 51.7+1.4 53.2+14 0.6+0.8 56.1x0.8 56.0+0.8 5.4+3.9 (a) Vision Layer Index (b) Language Layer Index
oA MLP | 49.2+18 53.0£0.7 6.4%28 57.2442 56.0427  2.3%33
Attention | 51.9+1.6 52911 41330 53312 535:12 5324 5
b Linear | 52808 547:30 6.5:0.9 46.1%17 46.8+13  6.4%2.8 >
Vé’f\ MLP | 544355 56.0+7.0 7.0£27 46922 46317  0.0%0.0 8
Attention | 533£0.0 55.8+2.6 47:22 46.7:07 46.7:0.1  7.1%16 3
<<
Inf Linear | 66.4+38 73333 255178 67.5:0.8 71.3%3.6 153438
VBX MLP | 64.4+4.0 69.4+05 22.0485 68.1434 73.0+41 14.5¢10.7 40,008 78 28 405 64 128 256
Attention | 69.5£3.5 74236 207+44 66.1%14 720%23  9.6:2.4 () Model Size (d) Text Length
pix Linear | 53325 508t42 58+44 55339 56845 42424 Figure 3: Ablation Performance of Probing Methods(LLaVA-ov on COCO).
Chart ~ MLP ) 519852 498453  7.1:13  56.7£48 57.4xd1  25:3.5 and the corresponding Bayes optimality (100 — BER) across layers.
Attention | 547+1.0 503:0.5 23%1.6 544331 558437  3.0:3.2 . . : o
- While deeper layers offer slightly improved separability, results
) Linear |50.8+5.1 48.7:42 6.5:23 53.9%6.1 50.3t6.1 10.1+1.1 ) . . .
Dig;’;m MLP | 46.9:3.1 47.1344 42:17 48.9+dd4 48.9:44  4.9%46 remain near random guessing. Figure 3(c) evaluates models ranging
Attention | 51.9+3.1 54.6+14 10.2£62 48.6+2.7 49.9%+3.0  83+23 from 0.5B to 72B parameters; despite the substantial increase in
Pix Linear | 46.4+40 492#50 5313 46416 46109  59%46 capacity, the largest model still fails to distinguish membership.
Table MLP | 51.1+44 493345 53:l4 467425 46526  0.6%0.9 Fi 3(d) expl the effect of output leneth ling that een-
Attention | 50.0£6.2 50.0:49 3.5:37 453:14 45716  8.2+45 lgure explores the eltect of output length, revealing that gen

4.3.3 Experimental Results. Tables 6 and 7 report the performance
of three probes applied to visual and language tokens across our
unbiased datasets. In most cases, both accuracy and AUC remain
below 65%, and the sophisticated attention pooling classifier fails
to yield noticeable improvements, indicating even at the source of
memorization—internal representations of VLMs—members and
non-members remain weakly separable. Furthermore, in most cases,
BER falls between 20% and 30%, implying that the theoretical upper
bound for MI is only around 70%. Notably, BER is an optimistic esti-
mate that does not reflect practical generalization. As a sanity check,
we project the same images into the feature space of an EfficientNet.
Although all samples are non-members from EfficientNet’s perspec-
tive, the calibrated BER (Cal) in Table 6 and 8 still ranges from 20%
to 30%. This suggests that even with genuine membership, VLM
representations offer marginally better separation.

4.3.4 Ablations. Our default setting uses final-layer features of
7B-scale VLMs. We conduct ablations on COCO with the LLaVA
OneVision family, varying three key factors: layer depth, model
scale, and output length. Figures 3(a)(b) show the accuracy of probes
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erating longer descriptions also does not improve separability.

Finding 3: Even with oracle access to internal states, mem-
bership signals remain subtle. Probing classifiers on hidden
features yield only marginal gains, and Bayes optimality
remains low, indicating minimal room for improvement.

5 When Does VLM MI Become Feasible?

We analyze why MI struggles in large VLMs and construct targeted
scenarios to mitigate these challenges. Surprisingly, we find MI
becomes feasible in these realistic auditing settings.

5.1 Finetuning on Downstream Tasks

5.1.1 Challenge: Minimal Overfitting. Traditional MI typically tar-
gets models trained for many epochs on specific downstream tasks.
In contrast, LLMs and VLMs adopt general-purpose training ob-
jectives and often see each example only once [47]. Early VLMs
like LLaVA-1 [36] performed multi-epoch training (e.g., 3), but re-
cent models have shifted toward data scaling—training on massive,
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high-quality datasets for a single epoch—which enables general-
ization without severe overfitting [2, 59]. Moreover, due to the
sheer data volume, early examples are frequently forgotten during
training [27]. Theoretically, as dataset size grows, model behavior
converges across seen and unseen samples [42]. In § 4.3, we observe
unexpectedly better membership separability in LLaVA OneVision
on COCO, despite COCO being used during the more forgettable
alignment phase. Upon closer inspection, we identify substantial
image overlap among MS COCO [34], COCO Caption [10], and
RefCOCO [63] in the training corpus. We hypothesize that this
duplication amplifies MI signals and ask: can stronger MI emerge
when VLMs are fine-tuned for multiple epochs?

5.1.2  Scenario: Finetuning on Downstream Tasks. To ensure i.i.d.
splits, we continue using instruction-tuning images with random
partitions. Since test splits provide only short text answers, we gen-
erate image descriptions using LLaVA OneVision-7B, then fine-tune
LLaVA-1.5-7B with LoRA [25] for 10 epochs. As shown in Table 9,
Table 9: MI Performance on LoRA LLava-1.5 (gt Refers to Ground Truth).

ChartQA DocVQA
Method ‘ epoch 10 w/o gt epoch3w/gt epochl0 w/ogt epoch3w/gt
‘ AUC TPR AUC TPR AUC TPR AUC TPR
Perplexity | 60.8 16.3 78.2 8.3 65.2 18.7 75.3 19.0
Min-K% 60.9 16.7 78.7 143 65.2 18.7 76.2 26.7
ModRényi | 60.8 16.7 79.3 14.3 64.9 18.0 76.7 20.7

MI performance improves markedly by the 10th epoch, with AUCs
surpassing 0.6. Notably, traditional MI approaches such as perplex-
ity emerge as competitive baselines, indicating substantial room
for improvement. This setting reflects realistic auditing scenarios,
where privacy-sensitive or proprietary data (e.g., in medical VQA
[32]) are commonly involved during fine-tuning.

5.2 Access to Ground-Truth Text

5.2.1 Challenge: Lack of Ground-Truth Captions. In LLM-based
ML, auditors typically query the model with a suspicious text s =
(tokeny, tokeny, . . ., token;) and records the output probabilities
p(tokeny | 0, token_y) via teacher forcing for inference. However,
extending this to VLMs poses a key challenge: the training caption
for a suspicious image is usually inaccessible. Web-scraped image-
text pairs are noisy and short, while modern VLMs are trained
on high-quality, relabeled captions [12, 31]. As a result, in most
proprietary black-box VLMs, auditors cannot access the original
training text. To bypass this, MI methods like VL-MIA [33] rely
on the VLM’s own generated captions. However, these are merely
pseudo ground-truths. Due to snowballing prediction errors in au-
toregressive decoding [3], the outputs increasingly diverge from
the true training text. Given this gap, an open question is: would MI
attacks be more effective if ground-truth captions were available?

5.2.2  Scenario: Access to Ground-Truth Text. Due to the lack of
ii.d. train/test text splits in open datasets, we continue using the
fine-tuned LLaVA-1.5-7B and evaluate the 3rd-epoch checkpoint
with ground-truth text in Table 9. Since LoRA updates less than
3% of parameters, free-form generation at early epochs yields near-
random MI results. In contrast, ground-truth text enables signifi-
cantly stronger MI, with AUCs nearing 0.8—outperforming free-
form results even after 10 epochs. This underscores MI's value in
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detecting test set contamination [53] and verifying model owner-
ship via curated samples [67].

5.3 Aggregation-Based Set Inference

5.3.1 Challenge: Diverse Image Attributes. § 3 shows Ml is sensitive
to distribution shifts. The diverse sources of VLM training data in-
troduce natural image-level variation—quality, noise, object count,
and complexity—that can dominate token distributions, overshad-
owing subtle membership signals. However, when members and
non-members are drawn i.i.d., such high-variance factors may aver-
age out at the set level. This motivates: can aggregated MI signals
across multiple images enable reliable set-level inference?

Min 5.0%
Min 50.0%

—s— Min 90.0%
PPL

ModRényi (a=0.5)
ModRényi (a=1)

)

1510

—s— ModRényi (a=2)

1510 100 100

(a) Sample ;Oze (ChartQA) (b) Sample g?ze (DocVQA)
Figure 4: MI Performance in Aggregation-based Set Inference on LLaVA-ov.
5.3.2  Scenario: Aggregation-Based Set Inference. We treat a group
of images as a single MI unit by averaging MI scores. Inspired by
bootstrapping [15], we sample 1,000 sets with replacement from
member and non-member pools, varying set sizes from 1 to 100.
Figure 4 shows MI AUCs on LLaVA-OneVision. Even when single-
image AUCs are only slightly above chance, set-level performance
improves markedly. This approach is well-suited for auditing image
collections—e.g., social media albums or artist portfolios [23]—and
detecting unauthorized use of proprietary datasets [13]. Notably,
small per-image gains can translate into substantial set-level im-
provements, motivating further development of MI techniques.

Finding 4: VLM MI becomes feasible when: (1) fine-tuning
induces overfitting; (2) ground-truth text is available; or (3)
predictions are aggregated—key scenarios for auditing test
set contamination and collection copyright infringement.

6 Conclusion

In this work, we identify a critical issue in current MI bench-
marks for large VLMs: distribution shifts between member and
non-member images introduce spurious shortcuts that overshadow
true membership signals. We analyze these shifts and propose a
principled metric to quantify them, enabling practical MI auditing.
To build an unbiased testbed, we reconstruct i.i.d. member/non-
member splits from open-source VLMs. Under this setting, existing
MI methods perform only slightly above chance. We further as-
sess the theoretical upper bound of membership separability and
find a high irreducible Bayes error, underscoring the fundamental
difficulty of MI on VLMs. Despite these challenges, we identify
three practical scenarios where MI remains feasible and valuable
for auditing: fine-tuning, access to ground-truth text, and aggre-
gation across samples. Future work will explore additional viable
or adversarial settings [66, 68], design stronger MI methods, and
extend our study to closed-source VLMs via API access.



Revisiting Data Auditing in Large Vision-Language Models

Acknowledgements

The work was supported by the National Natural Science Founda-
tion of China under Grant 62271307 and 61771310.

References
[1] Anthropic. 2024. Introducing Claude 3.5 Sonnet. https://www.anthropic.com/

[10

[11

[12

[13

[14

(15

[16

(17

[18

[19

[20

[21

[22

]

]

]

]

]

]

news/claude-3-5-sonnet

Antonis Antoniades, Xinyi Wang, Yanai Elazar, Alfonso Amayuelas, Alon Albalak,
Kexun Zhang, and William Yang Wang. 2025. Generalization v.s. Memorization:
Tracing Language Models’ Capabilities Back to Pretraining Data. In Proceedings
of the 12th International Conference on Learning Representations (ICLR).

Gregor Bachmann and Vaishnavh Nagarajan. 2024. The Pitfalls of Next-Token
Prediction. In International Conference on Machine Learning. PMLR, 2296-2318.
Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai
Dang, Peng Wang, Shijie Wang, Jun Tang, et al. 2025. Qwen2. 5-vl technical
report. arXiv preprint arXiv:2502.13923 (2025).

Sebastian Bischoff, Alana Darcher, Michael Deistler, Richard Gao, Franziska
Gerken, Manuel Gloeckler, Lisa Haxel, Jaivardhan Kapoor, Janne K Lappalainen,
Jakob H Macke, et al. 2024. A Practical Guide to Sample-based Statistical Distances
for Evaluating Generative Models in Science. Transactions on Machine Learning
Research (2024).

Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5-32.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson,
et al. 2021. Extracting training data from large language models. In 30th USENIX
security symposium (USENIX Security 21). 2633-2650.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiagi Wang, Feng
Zhao, and Dahua Lin. 2024. Sharegpt4v: Improving large multi-modal models
with better captions. In European Conference on Computer Vision. Springer, 370—
387.

Qinggqiang Chen, Fuyuan Cao, Ying Xing, and Jiye Liang. 2023. Evaluating
classification model against Bayes error rate. IEEE Transactions on Pattern Analysis
and Machine Intelligence 45, 8 (2023), 9639-9653.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Pi-
otr Dollar, and C Lawrence Zitnick. 2015. Microsoft coco captions: Data collection
and evaluation server. arXiv preprint arXiv:1504.00325 (2015).

Debeshee Das, Jie Zhang, and Florian Tramer. 2024. Blind baselines beat mem-
bership inference attacks for foundation models. arXiv preprint arXiv:2406.16201
(2024).

Matt Deitke, Christopher Clark, Sangho Lee, and et al. 2025. Molmo and PixMo:
Open Weights and Open Data for State-of-the-Art Vision-Language Models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Linkang Du, Xuanru Zhou, Min Chen, Chusong Zhang, Zhou Su, Peng Cheng,
Jiming Chen, and Zhikun Zhang. 2024. SoK: Dataset Copyright Auditing in
Machine Learning Systems. In 2025 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 25-25.

André V Duarte, Xuandong Zhao, Arlindo L Oliveira, and Lei Li. 2024. DE-COP:
detecting copyrighted content in language models training data. In Proceedings
of the 41st International Conference on Machine Learning. 11940-11956.

Bradley Efron and Trevor Hastie. 2021. Computer age statistical inference, student
edition: algorithms, evidence, and data science. Vol. 6. Cambridge University Press.
Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Jacob Stein-
hardt, and Aleksander Madry. 2020. Identifying statistical bias in dataset replica-
tion. In International Conference on Machine Learning. PMLR, 2922-2932.

Flickr. 2025. Flickr: Online photo management and sharing application. https:
/Iwww.flickr.com.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios
Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu
Zhang, et al. 2023. Datacomp: In search of the next generation of multimodal
datasets. Advances in Neural Information Processing Systems 36 (2023), 27092—
27112.

Frederick D Garber and Abdelhamid Djouadi. 1988. Bounds on the Bayes clas-
sification error based on pairwise risk functions. IEEE Transactions on Pattern
Analysis and Machine Intelligence 10, 2 (1988), 281-288.

Zhiqi Ge, Hongzhe Huang, Mingze Zhou, Juncheng Li, Guoming Wang, Siliang
Tang, and Yueting Zhuang. 2024. Worldgpt: Empowering llm as multimodal world
model. In Proceedings of the 32nd ACM International Conference on Multimedia.
7346-7355.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel,
Wieland Brendel, Matthias Bethge, and Felix A Wichmann. 2020. Shortcut learn-
ing in deep neural networks. Nature Machine Intelligence 2, 11 (2020), 665-673.
Agrim Gupta, Piotr Dollar, and Ross Girshick. 2019. Lvis: A dataset for large
vocabulary instance segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 5356-5364.

11345

[23

[24

[25

IS
S

[27

[28

[29

(31]

(32]

[33

&
=)

[35

[36

[37

[38

[39

[40

[41

[42

[43

(44

MM °25, October 27-31, 2025, Dublin, Ireland

Anna Yoo Jeong Ha, Josephine Passananti, Ronik Bhaskar, Shawn Shan, Reid
Southen, Haitao Zheng, and Ben Y Zhao. 2024. Organic or diffused: Can we
distinguish human art from ai-generated images?. In Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security. 4822-4836.
Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer, New
York, NY. https:/link.springer.com/content/pdf/10.1007/978-0-387-84858-7.pdf
Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on Learning Representations. https:
//openreview.net/forum?id=nZeVKeeFYf9

Yuke Hu, Zheng Li, Zhihao Liu, Yang Zhang, Zhan Qin, Kui Ren, and Chun
Chen. 2025. Membership Inference Attacks Against Vision-Language Models. In
Proceedings of the 34th USENIX Security Symposium. USENIX Association.
Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine
Lee, Nicholas Carlini, Eric Wallace, Shuang Song, Abhradeep Guha Thakurta,
Nicolas Papernot, and Chiyuan Zhang. 2023. Measuring Forgetting of Memo-
rized Training Examples. In The Eleventh International Conference on Learning
Representations. https://openreview.net/forum?id=7bJizxLKrR

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le,
Yun-Hsuan Sung, Zhen Li, and Tom Duerig. 2021. Scaling up visual and vision-
language representation learning with noisy text supervision. In International
conference on machine learning. PMLR, 4904-4916.

Yuri Kageyama. 2025. ChatGPT’s viral Studio Ghibli-style images highlight AT
copyright concerns. https://apnews.com/article/studio-ghibli- chatgpt-images-
hayao-miyazaki- openai-0f4cb487ec3042dd5b43ad47879b91f4

Siwon Kim, Sangdoo Yun, Hwaran Lee, Martin Gubri, Sungroh Yoon, and
Seong Joon Oh. 2023. Propile: Probing privacy leakage in large language models.
Advances in Neural Information Processing Systems 36 (2023), 20750-20762.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen
Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. 2025. LLaVA-
OneVision: Easy Visual Task Transfer. Transactions on Machine Learning Research
(2025).

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei
Yang, Tristan Naumann, Hoifung Poon, and Jianfeng Gao. 2023. Llava-med: Train-
ing a large language-and-vision assistant for biomedicine in one day. Advances
in Neural Information Processing Systems 36 (2023), 28541-28564.

Zhan Li, Yongtao Wu, Yihang Chen, Francesco Tonin, Elias Abad Rocamora,
and Volkan Cevher. 2024. Membership inference attacks against large vision-
language models. Advances in Neural Information Processing Systems 37 (2024),
98645-98674.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer vision—-ECCV 2014: 13th European conference,
zurich, Switzerland, September 6-12, 2014, proceedings, part v 13. Springer, 740—
755.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. 2024. Improved baselines
with visual instruction tuning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 26296-26306.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual in-
struction tuning. Advances in neural information processing systems 36 (2023),
34892-34916.

Zhuang Liu and Kaiming He. 2025. A Decade’s Battle on Dataset Bias: Are We
There Yet?. In Proceedings of the International Conference on Learning Representa-
tions (ICLR).

Zhenhua Liu, Tong Zhu, Chuanyuan Tan, Bing Liu, Haonan Lu, and Wenliang
Chen. 2024. Probing Language Models for Pre-training Data Detection. In Proceed-
ings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 1576-1587.

David Lopez-Paz and Maxime Oquab. 2017. Revisiting Classifier Two-Sample
Tests. In International Conference on Learning Representations.

Zeyu Lu, Di Huang, Lei Bai, Jingjing Qu, Chengyue Wu, Xihui Liu, and Wanli
Ouyang. 2023. Seeing is not always believing: Benchmarking human and model
perception of ai-generated images. Advances in Neural Information Processing
Systems 36 (2023), 25435-25447.

Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. 2024. LLM
Dataset Inference: Did you train on my dataset? Advances in Neural Information
Processing Systems 37 (2024), 124069-124092.

Pratyush Maini, Mohammad Yaghini, and Nicolas Papernot. 2021. Dataset Infer-
ence: Ownership Resolution in Machine Learning. In International Conference on
Learning Representations. https://openreview.net/forum?id=hvdKKV2yt7T
Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. 2022.
ChartQA: A Benchmark for Question Answering about Charts with Visual and
Logical Reasoning. In Findings of the Association for Computational Linguistics:
ACL 2022. 2263-2279.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. 2021. Docvqa: A dataset
for vqa on document images. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision. 2200-2209.


https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.flickr.com
https://www.flickr.com
https://link.springer.com/content/pdf/10.1007/978-0-387-84858-7.pdf
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=7bJizxLKrR
https://apnews.com/article/studio-ghibli-chatgpt-images-hayao-miyazaki-openai-0f4cb487ec3042dd5b43ad47879b91f4
https://apnews.com/article/studio-ghibli-chatgpt-images-hayao-miyazaki-openai-0f4cb487ec3042dd5b43ad47879b91f4
https://openreview.net/forum?id=hvdKKV2yt7T

MM °25, October 27-31, 2025, Dublin, Ireland

[45

[46

[47

[48]

[56

[57

[58]

Ruaridh Mon-Williams, Gen Li, Ran Long, Wenqian Du, and Christopher G Lucas.
2025. Embodied large language models enable robots to complete complex tasks
in unpredictable environments. Nature Machine Intelligence (2025), 1-10.
Eduardo Fernandes Montesuma, Fred Maurice Ngolé Mboula, and Antoine
Souloumiac. 2025. Recent Advances in Optimal Transport for Machine Learn-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence 47, 2 (2025),
1161-1180. doi:10.1109/TPAMI.2024.3489030

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane
Tazi, Aleksandra Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. 2023.
Scaling data-constrained language models. Advances in Neural Information
Processing Systems 36 (2023), 50358-50376.

Milad Nasr, Javier Rando, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski,
A. Feder Cooper, Daphne Ippolito, Christopher A. Choquette-Choo, Florian
Tramer, and Katherine Lee. 2025. Scalable Extraction of Training Data from
Aligned, Production Language Models. In The Thirteenth International Conference
on Learning Representations. https://openreview.net/forum?id=vjel3nWP2a
OpenAl 2021. DALL-E: Creating Images from Text. https://openai.com/dall-e.
OpenAl 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt/
OpenAl 2023. GPT-4V(ision) System Card. https://cdn.openai.com/papers/
GPTV_System_Card.pdf

OpenAl 2024. GPT-40 System Card. arXiv preprint arXiv:2410.21276.

Yonatan Oren, Nicole Meister, Niladri S. Chatterji, Faisal Ladhak, and Tatsunori
Hashimoto. 2024. Proving Test Set Contamination in Black-Box Language Models.
In The Twelfth International Conference on Learning Representations. https:
//openreview.net/forum?id=KS8mlvetg2

Kylie Robison. 2025. Meta got caught gaming Al benchmarks. https://www.
theverge.com/meta/645012/meta-1llama- 4-maverick-benchmarks-gaming
Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross
Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell
Wortsman, et al. 2022. Laion-5b: An open large-scale dataset for training next
generation image-text models. Advances in neural information processing systems
35 (2022), 25278-25294.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra
Blevins, Dangi Chen, and Luke Zettlemoyer. 2024. Detecting Pretraining Data
from Large Language Models. In The Twelfth International Conference on Learning
Representations. https://openreview.net/forum?id=zWqr3MQuNs

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In 2017 IEEE sympo-
sium on security and privacy (SP). IEEE, 3-18.

Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.

11346

[59]

(60

(64

[65]

[66

[67]

[68

[69

Hongyu Zhu et al.

PMLR, 6105-6114.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan.
2022. Memorization without overfitting: Analyzing the training dynamics of
large language models. Advances in Neural Information Processing Systems 35
(2022), 38274-38290.

Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Veda-
giri IYER, Sai Charitha Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu,
Ziteng Wang, et al. 2024. Cambrian-1: A fully open, vision-centric exploration of
multimodal llms. Advances in Neural Information Processing Systems 37 (2024),
87310-87356.

Ultralytics. 2024. YOLOv11: Real-Time Object Detection. https://github.com/
ultralytics/ultralytics.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. 2018. Privacy
risk in machine learning: Analyzing the connection to overfitting. In 2018 IEEE
31st computer security foundations symposium (CSF). IEEE, 268-282.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C. Berg, and Tamara L. Berg.
2016. Modeling Context in Referring Expressions. In Computer Vision - ECCV
2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer
International Publishing, Cham, 69-85.

Boya Zeng, Yida Yin, and Zhuang Liu. 2025. Understanding bias in large-scale
visual datasets. In Proceedings of the 38th International Conference on Neural Infor-
mation Processing Systems (Vancouver, BC, Canada) (NIPS "24). Curran Associates
Inc., Red Hook, NY, USA, Article 1976, 33 pages.

Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang,
Hao Frank Yang, and Hai Li. 2025. Min-K%++: Improved Baseline for Pre-Training
Data Detection from Large Language Models. In International Conference on
Learning Representations (ICLR).

Hongyu Zhu, Sichu Liang, Wentao Hu, et al. 2025. Stealing Knowledge from Au-
ditable Datasets. In Proceedings of the European Conference on Artificial Intelligence
(ECAI).

Hongyu Zhu, Sichu Liang, Wentao Hu, Li Fanggi, Ju Jia, and Shi-Lin Wang. 2024.
Reliable Model Watermarking: Defending against Theft without Compromising
on Evasion. In Proceedings of the 32nd ACM International Conference on Multimedia
(Melbourne VIC, Australia) (MM ’24). Association for Computing Machinery,
New York, NY, USA, 10124-10133. doi:10.1145/3664647.3681610

Hongyu Zhu, Sichu Liang, Wenwen Wang, et al. 2025. Evading Data Provenance

in Deep Neural Networks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV).

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. 2003. Semi-supervised
learning using Gaussian fields and harmonic functions. In Proceedings of the
Twentieth International Conference on International Conference on Machine Learn-
ing (Washington, DC, USA) (ICML’03). AAAI Press, 912-919.


https://doi.org/10.1109/TPAMI.2024.3489030
https://openreview.net/forum?id=vjel3nWP2a
https://openai.com/dall-e
https://openai.com/blog/chatgpt/
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://openreview.net/forum?id=KS8mIvetg2
https://openreview.net/forum?id=KS8mIvetg2
https://www.theverge.com/meta/645012/meta-llama-4-maverick-benchmarks-gaming
https://www.theverge.com/meta/645012/meta-llama-4-maverick-benchmarks-gaming
https://openreview.net/forum?id=zWqr3MQuNs
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://doi.org/10.1145/3664647.3681610

	Abstract
	1 Introduction
	2 Related Work
	2.1 Large Vision-Language Models
	2.2 Membership Inference on Language Models

	3 Distribution Shortcuts in VLM Membership Inference Benchmarks
	3.1 Experimental Settings
	3.2 Distribution Shifts Surpass Membership Signals in Separability
	3.3 Understanding Distribution Discrepancy
	3.4 Quantifying Distribution Discrepancy

	4 Feasibility of Membership Inference on VLMs
	4.1 Towards Unbiased VLM MI Datasets
	4.2 VLM MI Performance on Unbiased Datasets
	4.3 Probing the Envelope of MI Performance

	5 When Does VLM MI Become Feasible?
	5.1 Finetuning on Downstream Tasks
	5.2 Access to Ground-Truth Text
	5.3 Aggregation-Based Set Inference

	6 Conclusion
	References



