Under review as a conference paper at ICLR 2026

LET LLMS SPEAK EMBEDDING LANGUAGES:
GENERATIVE TEXT EMBEDDINGS VIA ITERATIVE CON-
TRASTIVE REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing large language model (LLM)-based embeddings typically adopt an encoder-only
paradigm, treating LLMs as static feature extractors and overlooking their core gener-
ative strengths. We introduce GIRCSE (Generative Iterative Refinement for Contrastive
Sentence Embeddings), a novel framework that leverages autoregressive generation to iter-
atively refine semantic representations. By producing sequences of soft tokens optimized
under contrastive objective, GIRCSE captures latent concepts and implicit semantics that
encoder-only methods often miss. To guide this process, we propose an Iterative Con-
trastive Refinement (ICR) objective that encourages each refinement step to yield better
representations. Extensive experiments show that GIRCSE outperforms strong LLM-
based embedding baselines on the MTEB benchmark and instruction-following tasks.
Moreover, GIRCSE exhibits an emergent test-time scaling property: generating more to-
kens at inference steadily improves embedding quality. Our results establish generative
iterative refinement as a new paradigm for representation learning.

1 INTRODUCTION

Text embeddings are fundamental to a wide range of natural language processing (NLP) applications, in-
cluding information retrieval, semantic search, clustering, and recommendation (Karpukhin et al., 2020; |Liu
et al., [2024; | Xiong et al.|[2021)). With the rise of large language models (LLMs), representation learning has
advanced further: fine-tuning LL.Ms on large corpora now yields superior performance on several embedding
benchmarks (Tao et al., [2024).

However, current LLM-based embeddings typically operate as single-pass feature extractors: embeddings
are extracted in a single forward pass with contrastive learning objectives, without leveraging the gener-
ative capacity of LLMs. This overlooks a key strength of pretrained LLMs—their ability to reason and
iteratively refine through autoregressive generation (Wei et al.| 2022 Muennighoff et al.,[2025). This raises
a fundamental question: Can LLM-based embedding models also benefit from iterative generation? We
hypothesize that generation enables iterative refinement of embeddings, allowing models to progressively
consolidate semantics over multiple steps rather than encoding all semantics in a single pass.

Challenges. Designing effective generative embeddings presents several challenges. First, naive genera-
tion degrades embedding quality since pretrained LLMs are optimized for fluent text, not tokens aligned
with semantic similarity (see [Section 5.1). Second, unlike traditional language modeling, there is no clear
generation target: it is unclear what content the model should generate to obtain universally useful embed-
dings. Third, existing embedding learning frameworks do not accommodate multi-step generative refine-
ment. Therefore, it is necessary to develop new training paradigms that provide meaningful supervision for
generative embeddings.

Under review as a conference paper at ICLR 2026

Performance improves through longer reasoning ~
jreeee | ST -0 00000 - @
emotion of this text. Outputs fluent,

The emotion in this text is
human readable context

Static and unexpandable - /

o P \
Why is it so ha'rd to 2 G Embedding LLM DD [:] F Embeddi

4 ? . uality benefit
Text B clen il Gerek Outputs semantic Hidden States Text Embedding L) . f 5
text representation from iterative generation ?

=
ry

GIRCSE: Generative Embedding . Soft Token Generation @ Iterative Contrastive Refinement (ICR)

Expands beyond surface-level discriminative emb.

Emb. Quality improves with more gen. steps

Soft token stores more semantic
information and retain gradient flow

00-00-- 6> o>
SN Soft Token Distribution
\
Shared LLM Encoder Mo S
oo-pg | o EZ

this card? Token Emb. Table

D Input Token D Soft Token D H.S. of Input Token E _@

H.S. of Soft Token Text Embeddings
[:] f Soft [:] D . g Weighted sum *
- @ => Soft Token Gen. WILVAd Shared LLM Enc.

Figure 1: Top: Comparison between embedding LLMs that extract static representations and generative
LLMs that can iteratively refine through reasoning. Bottom: Overview of GIRCSE. Our framework com-
bines Soft Token Generation and Iterative Contrastive Refinement to enable end-to-end generative training.

Motivation. We argue that LLMs should learn to speak an embedding language: generating tokens not
constrained by human readability but optimized for semantic representation. Crucially, these tokens should
be discovered through end-to-end training jointly with contrastive objectives, enabling the model to
generate semantically meaningful tokens for iterative embedding refinement.

Building on this motivation, we propose GIRCSE—Generative Iterative Refinement for Contrastive Sen-
tence Embeddings—a novel framework that bridges this gap between generative LLM capabilities and em-
bedding optimization. GIRCSE consists of two major innovations: (1) Soft Token Generation preserves
differentiability for end-to-end contrastive training and captures richer semantics by retaining the diversity
of the full probability distribution. (2) Iterative Contrastive Refinement (ICR) provides contrastive super-
vision at every generation step, forcing the early generated tokens to capture useful semantics while later
tokens progressively refine representations. As illustrated in[Fig. T|and detailed in[Section 5.2} this paradigm
enables GIRCSE to generate instruction-aware refinement tokens (e.g., ’frustrated” and “’struggle”) that cap-
ture the implicit emotion beyond the surface text. In summary, we make the following contributions:

* Novel embedding framework. We propose GIRCSE, a novel end-to-end framework that integrates au-
toregressive generation with contrastive learning. Unlike prior methods, GIRCSE generates soft refinement
tokens without explicit targets, progressively distilling semantics into high-quality embeddings.

* Superior performance. We compare GIRCSE with 18 state-of-the-art embedding models. By generating
only up to 5-20 additional tokens, GIRCSE ranks within top 5-6 on MTEB and top 2-3 on instruction
following, leading to the best overall ranking across benchmarks. Meanwhile, GIRCSE consistently shows
stable improvements over reproduced fair baselines on different backbone and varying data scales.

¢ Test-time scaling ability for text embedding. We demonstrate that GIRCSE exhibits consistent embed-
ding quality improvements with increased refinement steps at inference time, representing a novel scaling
paradigm for embedding models analogous to test-time compute scaling in reasoning LLMs.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Early Embedding Models. Text embedding methods have evolved from traditional word-level repre-
sentations to sophisticated neural approaches. Early methods like Word2Vec (Mikolov et al.l 2013) and
GloVe (Pennington et al., [2014) captured basic semantic relationships but lacked contextual understand-
ing. The introduction of transformer-based models marked a significant advancement, with BERT-based
approaches like Sentence-BERT (Reimers & Gurevych, 2019) and SimCSE (Gao et al.| |2021)) establishing
contrastive learning as the dominant paradigm for learning sentence representations.

LLM-based Embedding models. Recent works have successfully adapted LLMs for representation learn-
ing through various architectural and training modifications. ES5-mistral (Wang et al., 2024) is one of
the early works that demonstrated that fine-tuning LLM could significantly outperform early stage meth-
ods. Recognizing that the unidirectional attention mechanism in LLMs may limit text embedding quality,
LLM2Vec (BehnamGhader et al., [2024) introduces a bidirectional attention mechanism combined with av-
erage pooling to enhance embedding quality. NV-Embed (Lee et al 2024) further improves the pooling
method by incorporating an additional Latent Attention Layer and implements a two-stage training strategy
to address the challenge of false negatives in non-retrieval tasks. BGE-en-icl (Li et al., |2025) suggests that
retaining the original framework of LLMs and leveraging in-context learning is the optimal approach for
generating text embeddings.

Towards Generative Text Embedding. A smaller line of research has explored generative approaches for
text embeddings. For example, Inbedder (Peng et al.| 2024)) combines instruction finetuning with token
generation, achieving strong performance on instruction-following tasks but showing limited generalization
to broader tasks (see [Table 2). As summarized in [Table I| most existing approaches differ only in pooling
strategies or auxiliary training techniques, while generative embeddings remain largely underexplored.

Table 1: Comparison of LLM-based embedding models. “Bidir.” indicates bidirectional attention, “GP”
means generated tokens pooling, “TTS” refers to test-time scaling capability.

Method Attention Pooling LoRA Generation TTS Gen. Token Training Obj.
ES5-MISTRAL Causal EOS v X X N/A sup. CL
SFR-EMBEDDING Causal EOS X X X N/A sup. CL
BGE-EN-ICL Causal EOS v X X N/A ICL & sup. CL
GRITLM Bidir. Avg. X X X N/A NTP & sup. CL
LLM2VEC Bidir. Avg. v X X N/A MLM & sup. CL
GTE-QWEN2 Bidir. Avg. X X X N/A unsup. CL & sup. CL
NV-EMBED-V1 Bidir. LAT v X X N/A Two-stage sup. CL
INBEDDER Causal GP v v X Hard Token Instruction Tuning
GIRCSE Causal GP v v v Soft Token sup. CL & ICR

3 GIRCSE: FROM DISCRIMINATIVE TO GENERATIVE EMBEDDING

We now detail our proposed generative embedding framework. first establishes our core au-
toregressive embedding generation process, introducing the fundamental concepts and notation.
then details the soft token generation mechanism that enables differentiable optimization within this frame-
work. Finally, [Section 3.3|presents our iterative contrastive refinement objective, guiding the model towards
progressively higher-quality representations.

3.1 GENERATIVE EMBEDDING FRAMEWORK

We consider a pretrained language model with parameters) = {E, 0, ¢}, where E € RIVI*4 is the token
embedding matrix, € denotes the parameters of the Transformer decoder, and ¢ corresponds to the parameters

Under review as a conference paper at ICLR 2026

of the LM head for next token generation. Here d is the embedding dimension and |V| is the vocabulary
size. Given an input sequence of N tokens T = {¢1,to,...,tx} from vocabulary), we first obtain token
embeddings X as:

X = (E[t1],E[ta], ..., E[ty]) € RV*4, (1)
Next, our goal is to autoregressively generate a sequence of K auxiliary soft tokens S = (s1,s2,...,8k) €
REXIVI that iteratively refines the representation space. Each soft token sy, is generated autoregressively
conditioned on the input sequence and previously generated tokens:

K
pe(S|T) = [pelsk | T,S<k),)

k=1
where p,;, represents the generative distribution and S, = (s,...,s—_1) are the previously generated soft

tokens. The soft tokens are then mapped into embedding spac producing D = (dy,...,d;) € RE*4,
and is concatenated with input embeddings X to further feed into the Transformer decoder fy:

H = f5([X;D]) = (", n{" ... n{)) e RVHIOxd, 3)

where hEL) denotes the hidden state of the i-th token at the final (i.e., L-th) layer. We then extract the
representations corresponding to the generated soft tokens, and aggregate them into a single representation
z via a pooling operation:

K
1
z = P(G) = Ezgu G = (gla"'ng) = (hg\%}rlv 7h§\%4)»K) S RKde (4)
i=1

where P denotes a general pooling function, with mean pooling as our default choice.

Computational Considerations. Since our approach involves iterative generation with K steps, it naturally
incurs a higher computational cost compared to single-step baselines (Appendix F). However, we find that
generating only a small number of tokens (e.g., X' = 5 or 10) is sufficient to achieve strong performance

(Section 5.1). Moreover, this cost could be largely mitigated via KV caching (Appendix E), where the
FLOPs are reduced to nearly the same level as standard embedding models (within ~1.0-1.1x).

3.2 SOFT TOKEN GENERATION

A critical challenge in our autoregressive framework is to maintain the differentiability throughout the gen-
eration process during training. Traditional discrete token sampling would break gradient flow, preventing
end-to-end optimization. We address this through a novel soft token generation mechanism that preserves
continuous optimization while capturing rich semantic information.

At each generation step k € {1,..., K}, the generative distribution p,, is instantiated via the LM head ¢.
Leth, , = hg\ﬂ x—1 denote the last layer hidden representation produced by the encoder given the input
sequence and the previously generated soft tokens up to step £ — 1, the LM head then produces a soft token
s € RV as a probability distribution over the vocabulary:

s = softmax(Whj,_; + by), ®)

where Wy € RIVIXd s the LM head weight matrix and by is the bias term. Given the soft token sy, its
embedding d;, € R is obtained by computing a convex combination of all token embeddings according to
their predicted probabilities:

VI

dp =) skiei, (6)
=1

'We defer the detailed soft token generation mechanism to|Section 3.2} while here we focus on the overall framework

Under review as a conference paper at ICLR 2026

where sy, ; is the i-th component of s;, and e; is the i-th row of the embedding matrix E. This soft token
generation approach offers two advantages: (1) Differentiability: The weighted combination preserves
gradients throughout the generation process, enabling end-to-end training with contrastive objectives. (2)
Semantic Richness: Rather than collapse the next-token distribution into a single token, soft tokens capture
the semantic diversity of the full probability distribution.

3.3 GUIDING GENERATIVE EMBEDDING WITH ITERATIVE CONTRASTIVE REFINEMENT

To guide the generative embedding process towards high-quality representations, we introduce an iterative
contrastive refinement (ICR) objective that encourages each generation step to yield increasingly refined
representations. ICR combines (1) Stepwise Contrastive Loss, which supervises each generation step with
contrastive loss, and (2) Iterative Refinement Regularization, which enforces progressive embedding qual-
ity improvement for each step.

Stepwise Contrastive Loss. In autoregressive soft token generation, supervising only the final embedding
(i.e., K-th generation step) might collapse intermediate steps into trivial or noisy representations. We instead
apply contrastive supervision at every generation step. Concretely, for step k, we pool the first k generated
tokens to form an intermediate embedding z;, = P(G1.) following Given a query—document pair
(q,d™), we compute the contrastive loss for all generation steps as:

K q _dt
exp(o(zk,zk)/7')
Accon ast — Eka Ek = - log)
=2 5 o b o D7)

where B denotes the document set (both positive and negative documents), o is the cosine similarity function,
and 7 is the temperature hyperparameter. This stepwise supervision ensures all intermediate representations
align with the contrastive objective, preventing early steps from drifting and providing richer supervision.

(N

Iterative Refinement Regularization. We empirically observe that simply increasing the number of gen-
eration steps does not guarantee improved embedding quality, as LLMs often produce highly similar tokens
which leads to redundant information in the multi-step process. To address this, we introduce a regularization
term that encourages monotonic improvement across generation steps:
| K-l
Lreg = -1 Z max(log L1 — log Lk, 0). ®)
k=1
This regularization term penalizes cases where later generation steps fail to outperform earlier ones. Finally,
the overall fine-tuning objective for generative embeddings combines the two terms: Lioal = Leontrast +ALreg,
where) is a hyperparameter that balances contrastive alignment and refinement regularization.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Backbone LLM. Following prior works (Wang et al., [2024; Muennighoff et al.l |2024), we adopt Mistral-
7B (Jiang et al.,[2023) as the primary backbone and further validate it on Qwen2.5-7B (Yang et al.,[2024).

Training Details. For training data, we use the dataset from (Li et al. [2025), which integrates supervised
pairs and hard negatives for contrastive learning across diverse tasks. Due to computational limits, we
sample 20% (0.2M) data for training. Following (Wang et al., 2024; |Li et al., 2025), we fine-tune the
LLM as an embedding model with LoRA and contrastive loss, applying task-specific instruction templates.
Specifically, for a given query g, we format it as g7 = Instruct: {task_definition}\nQuery: {¢q}. Detailed

hyperparameters and instructions are in and [K]

Under review as a conference paper at ICLR 2026

Evaluation. We evaluate on MTEB (English, v2) (Enevoldsen et al., |2025)), covering 41 datasets across 7
task types, reporting official leaderboard scores when available. Following InBedder (Peng et al.| 2024),
we also evaluate on INTENTEMOTION and NYTCLUSTERING to test the instruction-following ability of
embedding models. For more extensive comparison, we have also evaluated on TREC datasets used in
FollowIR (Weller et al,[2025) and BEIR (Thakur et all,[2021)), detailed results can be found in

Comparison Methods. We compare GIRCSE against four categories of text embedding models. (1)
Non-LLM methods including encoder-based models such as ES-Large (Wang et al. 2022), GTE-
Large (Li et al) [2023b), BGE-Large (Li et all [2023a), and UAE-Large (Li & Li, 2024). (2)
LLM-based methods are instruction-tuned LLM embeddings, including LLM2Vec (BehnamGhader et al.|
2024), GritLM (Muennighoff et al., 2024), ES-Mistral (Wang et al., [2024), NV-Embed-vl (Lee
et al, 2024), SFR-Embedding-2 (Meng* et all [2024), and gte-Qwen2 (Li et al 2023b). (3)
Generative embeddings cover (i) two-stage approaches that expand text with an auxiliary LLM before
re-encoding (see [Appendix G for detail) and (ii) the end-to-end generative model Inbedder (Peng et al.,
2024). (4) Fair Baselines are included by re-implementing two paradigms on the same training data for
fair comparison: (i) Causal-EOS (causal attention + EOS pooling) and (ii) Bidirectional-Avg (bidirectional
attention + average pooling), equivalent to E5-Mistral and GritLM respectively but trained with less data.

4.2 MAIN RESULTS

reports the performance comparison across MTEB tasks and instruction-following benchmarks. We
highlight the following observations:

Trade-off between generic tasks and instruction following. State-of-the-art non-generative embedding
models achieve strong results on generic MTEB tasks but lag behind on instruction-following benchmarks.
For example, gte-QWEN2 performs competitively on MTEB (rank 1) but drops notably on instruction-
following tasks (rank 18). Similarly, ES-Mistral ranks 4 on MTEB but falls to 10 on instruction following.
In contrast, generative embedding approaches such as Inbedder reverse this trend, achieving top instruction-
following performance (rank 1), since it is explicitly trained for this setting, but performing poorly on MTEB
(rank 20). A comparable trade-off is also observed in two-stage generative variants of non-generative mod-
els. For instance, ES-Mistral (w/ gen) improves on instruction following (rank 10 — 5) but degrades on
MTEB (rank 4 — 12). Similar patterns are also observed for E5-Large (w/ gen) and GritLM (w/ gen).

GIRCSE overcomes trade-off and strikes a balanced performance. Unlike prior methods, GIRCSE
delivers consistently strong results across both task categories. It not only outperforms fair baselines and
competitive embedding models (e.g., GritLM, LLM2Vec), but also avoids the severe trade-offs observed in
existing approaches. Specifically, GIRCSE ranks within the top 5-6 on MTEB and top 2-3 on instruction-
following tasks, leading to the best overall rankings of 3.5 and 4.5 across benchmarks. Remarkably, while
prior SOTA methods rely on multi-million—scale training datasets, GIRCSE achieves comparable or better
performance with only 0.2M training examples. These results highlight GIRCSE as an efficient embedding
model that achieves both strong general-purpose performance and robust instruction-following ability.

4.3 ABLATION STUDY

To better understand the contributions of different components in GIRCSE, represents an ablation
study on generative embedding, stepwise loss (SL), and iterative refinement (IR). Starting from the variant
without generation (i.e., the Causal-EOS baseline), we observe a substantial drop in performance across
both MTEB and instruction-following tasks. Incorporating generative embedding alone yields consistent
improvements across nearly all tasks. Adding SL provides further gains, particularly for classification and
summarization, while the combination of SL and IR achieves the strongest overall performance. Overall,
these results validate the effectiveness of our design in GIRCSE.

Under review as a conference paper at ICLR 2026

Table 2: Performance on MTEB and instruction-following tasks. T Results obtained from the official MTEB
leaderboard. Causal-EOS: causal attention with EOS pooling; Bidirectional-Avg: bidirectional attention
with average pooling. Highlighted rows are our reproductions, trained on a smaller dataset (0.2M) for fair
comparison. Bold = better than fair baselines with same backbone; * = statistically significant (p < 0.05).

For detailed performance of each MTEB dataset, please refer to

| MTEB (English, v2) | Instruct Following

‘ Overall

Task Size Vol. Backbone | Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg. (Rank) | IntEmo NYT Avg. (Rank) ‘ Rank
of datasets — - - - 10 2 8 3 8 9 1 41 1 1 2

Non-LLM Methods

E5-Large’ 0.3B 1B BERT 49.31 45.72 45.23 86.06 7644 80.67 3234 62.79 (18) 48.63 50.96 49.80 (14) 16.0
GTE-Large’ 03B 2B BERT 5329 47.84 4820 85.08 7547 8327 3290 64.77 (14) 52.62 17.52 | 35.07 (18) 16.0
BGE-Large! 03B 200M BERT 5544 4826 48.01 87.13 7834 8279 3313 65.89 (13) 51.66 61.38 56.52 (8) 10.5
UAE-Large! 03B 1M RoBERTa | 5591 4835 47.86 87.25 79.08 84.37 30.13 66.40 (9) 5049 60.54 55.52(11) 10.0
LLM-based: Causal-EOS

ES5-Mistralt 7B 1.8M Mistral 57.62 4978 51.44 88.42 79.85 8432 36.57 67.97 (4) 48.84 65.06 56.95 (10) 7.0
SFR-Embedding-2f 7B 1.7M Mistral 5375 4899 59.39 88.09 90.54 80.86 35.54 69.82 (2) 5049 60.54 55.52(11) 6.5
gte-Qwen2f 7B 800M QWEN2 | 58.09 50.47 58.97 85.90 88.52 82.69 3574 70.72 (1) 5262 17.52 = 35.07 (18) 9.5
Fair Baseline 7B 02M Mistral | 5524 49.21 54.28 85.65 8436 7398 36.31 66.32 (10) 3533 5876 47.05(15) 125
Fair Baseline 7B 02M QWEN2 | 51.10 47.49 55.26 84.46 80.10 7471 33.21 64.18 (17) 66.14 1471 4042 (17) 17.0
LLM-based: Bidirectional-Avg

LLM2Vecf 7B 1.5M Mistral 5127 4774 4410 87.99 79.74 8370 31.05 64.57 (15) 51.66 61.38 56.52 (8) 11.5
GritLM' 7B 2M Mistral | 5495 49.59 50.82 87.29 81.25 83.03 3565 67.07 (7) 3930 79.25 59.28 (6) 6.5
NV-Embed-v1f 7B 1.IM Mistral | 60.13 49.16 49.50 87.05 84.11 8220 31.40 68.32 (3) 5261 60.62 56.62 (7) 5.0
Fair Baseline 7B 02M Mistral 55.41 48.74 54.57 86.34 84.94 7587 36.09 66.96 (8) 2145 6642 43.94(16) 12.0
Fair Baseline 7B 02M QWEN2 | 5299 47.11 54.75 83.31 82.66 7281 3530 64.97 (16) 4326 6521 54.24 (13) 14.5
LLM-based: Two-Stage Generative Embedding

E5-Large (w/ gen.) 0.3B 1B BERT 4506 43.87 45.37 81.02 7270 7735 31.59 59.85 (19) 5134 5167 51.51(12) 155

E5-Mistral (w/ gen.) 7B 1.8M Mistral 57.20 49.18 53.02 84.26 7597 7952 31.73 65.92 (12) 58.64 60.89 59.77 (5) 8.5
GritLM (w/ gen.) 7B 2M Mistral 56.48 49.45 52.03 83.36 7777 79.66 32.82 65.90 (11) 51.16 70.50 60.83 (4) 75
LLM-based: End2End Generative Embedding

Inbedder B 02M LLaMA2 | 12.50 39.21 51.24 61.17 7241 7441 17.24 50.32 (20) 89.68 64.65 77.17 (1) 10.5
GIRCSE 7B 0.2M Mistral 57.10 48.88 56.26 86.18 8533 7637 33.56 67.83* (5) 5219 7375 62.97 (2) 35
GIRCSE 7B 02M QWEN2 | 55.16 49.28 56.62 85.17 86.69 7630 3542 67.67* (6) 64.92 60.04 62.48 (3) 4.5

Table 3: Ablation study of GIRCSE with generative embedding (Gen.), stepwise loss (SL), and iterative re-
finement (IR). The variant without generation corresponds to the Causal-EOS baseline. Results are reported
using the Mistral-7B backbone trained on 50K samples.

| MTEB (English, v2) | Instruct Following
Gen. SL IR | Retr. Rerank. Clust. PairCls. Class. STS Summ. | Avg. | IntEmo NYT | Avg.

X | 50.55 48.97 49.91 85.27 80.36 7576 34.02 | 63.84 | 33.11 58.76 | 47.05
X | 53.17 48.32 52.74 84.75 7834 7870 33.86 | 6521 | 48.00 64.93 | 56.47
X | 5497 48.86 52.07 85.04 78.63 78.87 3528 | 65.69 | 53.88 66.37 | 60.13
v | 5553 48.26 53.71 84.87 79.53 7893 3419 | 66.27 | 6270 73.75 | 62.97

AN
AN

5 ANALYSIS ON GENERATED TOKENS

While[Section 4.3]highlights the importance of generative embedding, it remains unclear how the generation
process itself translates to the improved performance. To address this, we present a thorough analysis of
the generation process. In we first discuss how the embedding quality changes by varying the
number of generated tokens at inference. Next, in we conduct a qualitative analysis to under-
stand what tokens are generated and how they evolve under different instructions. This analysis clarifies how
iterative generation improves performance and what semantic signals are encoded in the embedding space.

5.1 EFFECT OF GENERATION LENGTH AT INFERENCE

We first examine how performance varies with the number of generated tokens K at inference. We evaluate
K € {1,3,5,10,15,20} and compare against the non-generative baseline Causal-EOS. Results (Fig. 2)

Under review as a conference paper at ICLR 2026

GIRCSE: STS GIRCSE: Clustering GIRCSE: Classification
30.03
3 0.0075
5 0.010
Eo.02 0.0050
[
'% 0.01 0-005 0.0025
g 0.0000 =@ QWEN-0.5B (GIRCSE)
0.00 0-000) —BF - QWEN-0.5B (Causal-EOS)
1 3 5 10 15 20 1 3 5 10 15 20 1 3 5 10 15 20 ’

Generated Tokens # Generated Tokens # Generated Tokens =@ |LaMA-3B (GIRCSE)

Causal-EOQS: STS Causal-EOS: Clustering Causal-EOS: Classification = II\‘IILa:/IAI:;i (ZT:(S::EEOS)
3 00 =L % e-m—ami) R W Ry - Mictral 7B ECausaI-)EOS)
g A <= _m—a| 0025 L\N F
£ 01 \\Y’/ -0.05 . —0.050 W /
g0 \YI i\ ! N\l T
K \ / 010 ~0.075 \i vz =
& -02 / - \ 7 N

-0.100
0 1 3 5 10 20 10 zo 0 1 3 5 10 20
Generated Tokens # Generated Tokens # Generated Tokens

Figure 2: Effect of generation length at inference. Top: GIRCSE consistently improves with longer gener-
ations (10-20 tokens) despite been trained on only 5 tokens. Bottom: Baseline models show degraded or
fluctuated performance across generation lengths. Gray area indicates configurations beyond training length.

are reported on three LLM backbones and three representative MTEB tasks, with relative improvements
measured against ' = 1 for GIRCSE and against the no-generation baseline for Causal-EOS. For a more
comprehensive analysis, we further evaluate GIRCSE trained with two additional backbones: QWEN2.5-
0.5B (Yang et al.}2024) and LLaMA3.2-3B (Dubey et al.,|2024). We have the following two key findings:

(1) GIRCSE exhibits test-time scaling for embeddings. Increasing K consistently improves performance
across diverse tasks (e.g., STS, clustering, classification) and across model sizes. In contrast, the non-
generative method (Causal-EOS) does not benefit from additional generation and often degrades in per-
formance. This suggests that GIRCSE successfully learns an iterative refinement mechanism that converts
additional inference computation into stronger semantic representations—analogous to test-time compute
scaling in reasoning LLMs (Muennighoff et al.|[2025), but novel in the context of embedding models.

(2) ICR enables GIRCSE to generalize beyond training configurations. Although GIRCSE is trained
with K = b5, its performance improves monotonically within the training regime (X = 1, 3, 5) and continues
to improve even beyond it (KX = 10, 15,20). This extrapolation capability suggests that our ICR training
objective enables the learned refinement process to generalize beyond the training configuration, allowing
GIRCSE to continue improving with additional inference steps. Overall, GIRCSE establishes test-time
scaling as a new paradigm for embedding models, enabling controllable and training-free performance gains
through adjustable generation length.

5.2 QUALITATIVE ANALYSIS ON GENERATED TOKENS

Having shown that generating more tokens improves performance, we next ask: what do these tokens cap-
ture? We analyze generations for the sentence “Why is it so hard to track down this card?” under two
prompts: representing intention and emotion. At each generation step k, we collect the top-30 Candidates
from the soft token distribution s, aggregate across steps, and report most frequent tokens in
alongside results from GIRCSE before contrastive fine-tuning. Before fine-tuning, GIRCSE (before FT)
often yields generic or semantically weak tokens. After fine-tuning, we observe progressive semantic re-
finement that aligns with the results in At early steps (1-5), GIRCSE generates core content
words (e.g., why, hard, card). While at later steps, the outputs diverge by different instructions: intention
produces tokens such as seek, elusive, inquiry, and emotion yields tokens like frustrating, struggle. This
suggests multi-step generation acts as a semantic chain of thought, iteratively steering representations toward
nuanced, instruction-aligned regions of the embedding space.

Under review as a conference paper at ICLR 2026

Table 4: Qualitative analysis of generated tokens. Gray indicates generic/stopword-like tokens. Yellow
marks core input-related tokens shared across instructions. Instruction-specific expansions are shown in
Green (intention) and Red (emotion).

Input Sentence “Why is it so hard to track down this card?”

Instruction | “Represent the intention of this text.” | “Represent the emotion of this text.”

GIRCSE (Before FT) ‘ this, so, do, how, i, is, it, the, we, what ‘ why, how, what, this, it, is, you, can

GIRCSE (Step 1-5) | why, is, it, hard, track/tracking, card, this | why, is, it, hard, track,tracking, card, this, so, difficult
GIRCSE (Step 6-10) \ [prev.] + seek, elusive, so \ [prev.] + frustrating, tough, persistent, struggle, challenging
GIRCSE (Step 11-20) ‘ [prev.] + question, inquiry ‘ [prev.] + perseverance, stuck, complicated

6 DISCUSSION OF ROBUSTNESS AND LEARNING EFFICIENCY

To assess the robustness and learning efficiency of our method, we conduct comprehensive experiments
across varying data scales and backbone architectures. Specifically, we train different models with {50K,
100K, 200K} training samples using three widely adopted open-source LLMs as base models: Qwen-0.5B,
Llama-3B, and Mistral-7B. We compare GIRCSE against two fair baselines: Causal-EOS and Bidirectional-
Avg. shows that our method consistently outperforms both baselines across all data scales and model
sizes. In particular, when trained with only 50K samples, our method improves over Causal-EOS by +5.7
points on Qwen-0.5B (61.2% vs. 55.5%) and by +2.8 points on Llama-3B (65.5% vs. 62.7%). Even with
stronger backbones such as Mistral-7B, our approach still yields gains of +2.4 points (66.2% vs. 63.8%).
The performance gap becomes more pronounced when the training data is limited. These findings indicate

that our approach not only achieves superior performance across different scales of model size but also learns
more effectively under limited training data.

BN Causal-EOS I Bidirectional-Avg I GIRCSE

Qwen-0.5B 70% LLaMA-3B Mistral-7B

66.3 g5.966.4569

Avg. MTEB Score (%
vl w (= [=)]
o v o w
XR R

50K 100K 200K 50K 100K 200K

Training Samples Training Samples Training Samples

50K 100K 200K

Figure 3: Comparison of average MTEB scores (%) between GIRCSE and two fair baselines across three
backbone LLMs and varying training sample sizes. GIRCSE consistently delivers superior performance,
especially under limited-data settings.

7 CONCLUSION

We presented GIRCSE, a generative embedding framework that leverages autoregressive refinement to move
beyond single-pass LLM encoders. By generating soft refinement tokens and training with iterative con-
trastive refinement, GIRCSE enables embeddings to progressively distill semantics rather than compressing
them in one step. Experiments show that GIRCSE achieves state-of-the-art or competitive performance
across benchmarks while introducing a novel scaling property: embedding quality improves with additional
refinement steps at test time. These results highlight autoregressive generation as a powerful mechanism for
embedding optimization and open new directions for scalable, semantically rich representations.

Under review as a conference paper at ICLR 2026

REFERENCES

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. In First Conference
on Language Modeling, 2024.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective 1.2 norm-
based strategy for kv cache compression. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pp. 18476-18499, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pp- arXiv-2407, 2024.

Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Mérton Kardos, Ashwin Mathur, David Stap, Jay Gala,
Wissam Siblini, Dominik Krzeminski, Genta Indra Winata, et al. Mmteb: Massive multilingual text em-
bedding benchmark. In International Conference on Learning Representations. International Conference
on Learning Representations, 2025.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence embeddings.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6894—
6910, 2021.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=nzZeVKeeFYf9,

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard
Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée
Lacroix, and William El Sayed. Mistral 7b. ArXiv, abs/2310.06825, 2023. URL https://api.
semanticscholar.org/CorpusID:263830494.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6769-6781, 2020.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models. In The
Thirteenth International Conference on Learning Representations, 2024.

Chaofan Li, Minghao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Defu Lian, Yingxia Shao, and Zheng
Liu. Making text embedders few-shot learners. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=wfLuiDjQO0u.

Xianming Li and Jing Li. Aoe: Angle-optimized embeddings for semantic textual similarity. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1825-1839, 2024.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards general
text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281, 2023a.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards general
text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281, 2023b.

10

https://openreview.net/forum?id=nZeVKeeFYf9
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://openreview.net/forum?id=wfLuiDjQ0u

Under review as a conference paper at ICLR 2026

Qijiong Liu, Nuo Chen, Tetsuya Sakai, and Xiao-Ming Wu. Once: Boosting content-based recommendation
with both open-and closed-source large language models. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining, pp. 452461, 2024.

Rui Meng*, Ye Liu*, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Sfr-embedding-
2: Advanced text embedding with multi-stage training, 2024. URL https://huggingface.co/
Salesforce/SFR-Embedding—-2_R.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and Douwe
Kiela. Generative representational instruction tuning. In The Thirteenth International Conference on
Learning Representations, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettle-
moyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time scaling. In
Workshop on Reasoning and Planning for Large Language Models, 2025.

Letian Peng, Yuwei Zhang, Zilong Wang, Jayanth Srinivasa, Gaowen Liu, Zihan Wang, and Jingbo Shang.
Answer is all you need: Instruction-following text embedding via answering the question. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 459-477, 2024.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word repre-
sentation. In Proceedings of the 2014 conference on empirical methods in natural language processing

(EMNLP), pp. 15321543, 2014.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982-3992,
2019.

Chongyang Tao, Tao Shen, Shen Gao, Junshuo Zhang, Zhen Li, Zhengwei Tao, and Shuai Ma. Llms are
also effective embedding models: An in-depth overview. arXiv preprint arXiv:2412.12591, 2024.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A het-
erogeneous benchmark for zero-shot evaluation of information retrieval models. In Thirty-fifth Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021. URL
https://openreview.net/forum?id=wCub6T5xF jedl

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving text
embeddings with large language models. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 11897-11916, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,

et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural infor-
mation processing systems, 35:24824-24837, 2022.

11

https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://openreview.net/forum?id=wCu6T5xFjeJ

Under review as a conference paper at ICLR 2026

Orion Weller, Benjamin Chang, Sean MacAvaney, Kyle Lo, Arman Cohan, Benjamin Van Durme, Dawn
Lawrie, and Luca Soldaini. Followir: Evaluating and teaching information retrieval models to follow
instructions. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
11926-11942, 2025.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text retrieval.
In International Conference on Learning Representations, 2021. URL |https://openreview.net/
forum?id=zeFrfgyZln.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren,
Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.
Qwen?2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

12

https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln

Under review as a conference paper at ICLR 2026

A USE-OF-LLMSs

In this work, we utilized large language models (LLMs) as part of the core research methodology. Specifi-
cally, we fine-tuned existing open-source LLMs (e.g., LLaMA-3 and Mistral) to develop embedding models.
These pre-trained models served as the foundation for our experiments, and our main contributions build
upon their architectures and representations. Additionally, an LLM-based assistant (OpenAl GPT-5) was
used for minor writing support, including grammar checking and improving manuscript readability. All de-
cisions regarding research design, fine-tuning strategies, experimental setup, and final interpretations were
made solely by the authors.

B REPRODUCIBILITY FOR EMBEDDING MODELS

To facilitate reproducibility of our experiments, we provide links to all open-sourced embedding models
used in this paper in These links allow researchers to directly access the exact model checkpoints
we relied on.

Table 5: List of models with links for reproducibility.

Model Link

ES5-Large huggingface.co/intfloat/e5-large

GTE-Large huggingface.co/thenlper/gte-large

BGE-Large huggingface.co/BAAl/bge-large-en

UAE-Large huggingface.co/WherelsAI/UAE-Large-V 1
ES5-Mistral huggingface.co/intfloat/eS-mistral-7b-instruct
SFR-Embedding-2 huggingface.co/Salesforce/SFR-Embedding-2_R
gte-Qwen2 huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
LLM2Vec github.com/McGill-NLP/LLM?2Vec

GritLM huggingface.co/GritLM/GritLM-7B
NV-Embed-v1 huggingface.co/nvidia/NV-Embed-v1

C HYPERPARAMETER SETTINGS

For both GIRCSE and the baseline models we re-implement for comparison, we use nearly identical fine-
tuning hyperparameters across different model sizes (QWEN-0.5B, Llama-3B, and Mistral-7B) and training
data scales (50k, 100k, and 200k examples).

We adopt Low-Rank Adaptation (LoRA) (Hu et al.| [2022) for efficient fine-tuning, setting the rank to 64
and the scaling factor « to 32. The default learning rate is le-5 with a warmup ratio of 0.1. The only
exception is Llama-3B, for which we use a learning rate of le-4 to address convergence issues. For other
hyperparameters, we set the temperature of the contrastive loss to 0.02 across all models, and the
weighting coefficient A in GIRCSE for balancing contrastive alignment and refinement regularization to 1.
Due to limited computational resources, we train with a batch size of 2 and accumulate gradients over 8
steps, resulting in an effective batch size of 16. All models are fine-tuned for a single epoch.

For GIRCSE, we set the number of generated tokens K to 5 during training to avoid the high computational
cost of multiple autoregressive forward passes. During inference, we increase K to 20 to enable longer

13

https://huggingface.co/intfloat/e5-large
https://huggingface.co/thenlper/gte-large
https://huggingface.co/BAAI/bge-large-en
https://huggingface.co/WhereIsAI/UAE-Large-V1
https://huggingface.co/intfloat/e5-mistral-7b-instruct
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
https://github.com/McGill-NLP/LLM2Vec
https://huggingface.co/GritLM/GritLM-7B
https://huggingface.co/nvidia/NV-Embed-v1

Under review as a conference paper at ICLR 2026

generations and improved embedding refinement, while mitigating the computational overhead using KV-
cache techniques.

D PSeEUDO CODE FOR GIRCSE

Algorithm [T] provides a pseudo-code summary of GIRCSE. We include this block to clarify the core com-
putation steps and facilitate reproducibility. The algorithm specifies how input tokens are embedded, how
soft embeddings are autoregressively generated across multiple steps, and how the final representation is
obtained through pooling. While implementation details may vary, this summary highlights the essential
components needed to reproduce our method.

Algorithm 1: GIRCSE: Autoregressive Generative Embedding

Input: Input tokens (¢1, ..., ¢y), generation steps K, embedding matrix E, LLM decoder fy, LM head
parameters W and by, pooling function P

Output: Final embedding z € R?

X « (E[t1],...,E[tn]) // Embed the input tokens
D «] // Initialize the list of generated embeddings
for k = 1to K do
H + fo([X;D]) // Forward with input and generated tokens
h, , + H[N+k—1] // Last hidden state for next-token prediction
sk, < softmax(Wyh)_, +by) // Compute soft token distribution
d; <~ Zzll Sk.i€i // Compute soft embedding
D + D||dg // Append soft embedding for next step
H « fp([X;D])
G+ (H[N +1},...,H[N + K)) // Collect the last K hidden states
z +— P(Q) // Pool generated representations into a single embedding
return z

E SCALABILITY ANALYSIS

While GIRCSE offers superior representation quality, a natural concern arises regarding its computational
efficiency. We acknowledge that GIRCSE introduces additional overhead compared to traditional embed-
ding models due to its generative process; a detailed analysis of theoretical computation and memory costs
relative to the discriminative embedding paradigm is provided in Nevertheless, this overhead
can be substantially mitigated through the use of KV caching techniques (Devoto et al., 2024). As shown in
Table 6] GIRCSE without caching requires 2.0—-6.0x more FLOPs across different sequence lengths due to
auto-regressive computation. In contrast, with caching enabled, the FLOPs are effectively reduced to base-
line levels (=1.0x), while memory consumption remains comparable to traditional methods. These results
demonstrate that caching not only ensures scalability but also makes our approach practical for real-world
deployment.

F THEORETICAL COMPUTATIONAL AND MEMORY COST ANALYSIS

To better analyze the additional training and inference cost introduced by GIRCSE, we compare the compu-
tational and memory complexity of the proposed generative embedding framework against the conventional

14

Under review as a conference paper at ICLR 2026

Table 6: Computational efficiency comparison across sequence lengths (512, 1024, 2048) and generation
budgets k. Lower is better (]) for both FLOPs and memory. GIRCSE without caching (red) incurs signif-
icant computational overhead due to auto-regressive processing, whereas KV caching (blue) dramatically
mitigates this cost. Multipliers in parentheses show overhead relative to Causal-EOS method.

| FLOPs (T) | | Memory (GB) |
Method ‘ k ‘ 512 1K 2K ‘ 512 1K 2K
Causal-EOS - 7.33 14.65 29.30 13.89 1434 15.11
Bidirectional-Avg - 7.33 14.65 29.30 14.03 1445 15.24
1 | 14.67 cooxy 29.32 coox)y 58.62 coox | 13.72 13.90 14.28
GIRCSE (w/o cache) | 3 | 29.39 woixy 58.70 woix 117.31 woox | 13.74 13.92 14.29
5| 44.17 6020 88.13 oy 176.04 o1 | 13.75 13.94 14.30
1 7.34 a00x 14.67 a00x 29.32 ao00x | 13.73 13.91 14.32
GIRCSE (w/ cache) 3| 737 a0 1470 a0 29.35 a0 | 13.75 1393 14.34
5| 740 aoixo 1473 aoio 29.38 (1.00%) 13.77 13.96 14.35

discriminative embedding paradigm. In the baseline discriminative case, the encoder processes an input of
length NV, leading to a per-layer cost dominated by self-attention of order O(N2d) and memory footprint
O(LN?), where d is the embedding dimension and L is the number of layers.

In the generative framework, K auxiliary soft tokens are generated autoregressively. Each generation step
requires an encoder forward pass over N + j tokens (j = 0, ..., K — 1) followed by a vocabulary softmax
of cost O(d|V]). After generation, a final encoder pass is performed over the extended sequence of length
N + K. The total attention-dominated computation ratio with respect to the baseline is:

Con (K +1)N2 4 NEK(K + 1) KUHNEETD)
Rcompulalion = Cb = N2 3 (9)
ase

which simplifies t0 Reomputation = K + 1 when K < N. The additional softmax operations contribute
K O(d|V|), which is typically small compared to the quadratic encoder cost unless N is short or |V| is very
large.

In terms of memory, peak training-time activation usage is dominated by the final encoder pass over N + K
tokens. Thus, the relative peak memory ratio is:

My (N+K)?
memen Mbase - N?)
This indicates that while the generative embedding framework incurs roughly K additional encoder passes

in computation, the increase in peak memory is modest, scaling quadratically with the extended sequence
length N + K.

R (10)

G DETAIL IMPLEMENTATION OF TWO-STAGE GENERATION EMBEDDING
The two-stage generation embedding approach enhances representation quality by introducing an interme-
diate expansion step before re-encoding.

In the first stage, an auxiliary large language model (LLM) is prompted to generate a short augmentation
of the input, detailed expansion prompt can be found in The prompt instructs the model to output
only the augmentation, within a fixed token budget, without explanations or additional formatting. This

15

Under review as a conference paper at ICLR 2026

augmentation is designed to highlight or enrich semantic information that may be useful for downstream
tasks.

In the second stage, the original instruction and text is concatenated with the generated augmentation, and the
combined sequence is re-encoded into an embedding. This two-step process allows the encoder to capture a
more informative and contextually aligned representation than directly embedding the raw text alone.

Table 7: LLM expansion prompt used for two-stage generation methods.

Input:

Given the INSTRUCTION and the TEXT, produce a helpful augmentation that, when concatenated to
the original TEXT and embedded, is likely to improve embedding quality for the instruction’s task.
Do not explain yourself or output anything other than the augmentation.

Your answer must be written within {256} tokens.

INSTRUCTION: {instruction}
TEXT: {text}

H TRAINING STABILITY ANALYSIS

A potential concern when optimizing models that involve the generation of soft tokens is the risk of gradient
instability. To empirically validate the stability of our proposed model, GIRCSE, we monitor its training
dynamics. We present the training loss curve in Figure[d] and the L2 norm of the gradients in Figure[5]

As shown in the figures, the training loss (Figure {)) demonstrates a smooth and consistent decrease, indi-
cating stable convergence. Furthermore, the gradient norm (Figure [3) converges normally throughout the
training process.

Training loss (GIRCSE-Mistral7B-200K)

17.51 —— Raw loss
EMA smoothed loss

= = -
o N wu
o v o

Train loss

N
[
s

5.0

2.54

0.0 4

T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
Global step

Figure 4: Training loss curve of GIRCSE.

16

Under review as a conference paper at ICLR 2026

2000 1

1750

1500 A

norm

1250 -
|

1000 -

Train grad

750 A

500 -

250

Training grad_norm (GIRCSE-Mistral7B-200K)

—— Raw grad_norm
EMA smoothed grad_norm

RAVINTIN T | lH\..\JJ

)

. L,

NI

T
2000

T
4000

T
6000

Global step

T
8000

T
10000

T
12000

T
14000

Figure 5: Training gradient norm (L2) of GIRCSE, plotted with the top 2% of outliers removed for clarity.

I MORE EVALUATION ON NANOBEIR AND TREC BENCHMARKS

In this section, we provide additional evaluation results on the NanoBEIR and TREC benchmarks. These
benchmarks complement the main paper by covering a wider range of retrieval tasks and domains. The
results, presented in [Table §|and [Table 9] highlight consistent trends with our main findings, further demon-
strating the robustness and generalization ability of the proposed model compared to strong baselines.

Table 8: Performance comparison on NanoBEIR benchmark.

Dataset | E5-Mistral SFR-Embedding-2 gte-Qwen2 LLM2Vec GritLM NV-Embed-vl GIRCSE GIRCSE
Size 7B 7B 7B 7B 7B 7B 7B 7B
Vol. 1.8M 1.7M 800M 1.5M 2M 1.IM 0.2M 0.2M
Backbone Mistral Mistral QWEN2 Mistral Mistral Mistral Mistral QWEN2
ArguAna 60.13 64.33 72.37 54.41 67.72 68.00 70.18 70.88
ClimateFever 41.75 44.12 33.83 38.09 37.45 4293 36.83 31.66
DBPedia 71.59 73.81 72.14 70.78 68.15 71.44 71.01 69.81
FEVER 95.30 95.18 80.71 96.94 94.38 96.15 94.23 95.41
FiQA 60.50 65.08 68.23 61.46 65.98 68.07 60.79 55.90
HotpotQA 86.16 91.64 82.06 88.14 91.09 91.05 88.10 88.31
MSMARCO 66.58 66.51 70.67 64.30 62.82 67.80 64.03 61.85
NFCorpus 32.36 38.99 37.67 39.19 40.39 38.54 40.75 36.57
NQ 76.64 82.20 80.99 83.81 8291 87.11 78.57 70.01
Quora 96.28 95.48 97.44 95.64 95.76 91.59 92.73 88.76
SCIDOCS 36.00 48.18 50.76 43.72 46.32 38.11 44.27 43.97
SciFact 78.30 89.67 67.58 79.41 81.18 78.95 80.90 81.70
Touche2020 51.72 56.66 39.44 49.46 51.89 58.51 46.09 39.03
Avg. | 65.64 70.14 65.68 66.57 68.16 69.10 66.81 64.14

J FULL MTEB PERFORMANCE

In the main paper, we reported averaged performance across task categories for clarity. Here, we provide
the full per-dataset results on the MTEB benchmark, covering all tasks included in our evaluation. The

17

Under review as a conference paper at ICLR 2026

Table 9: Performance comparison on TREC datasets. T Results obtained from (Weller et al., 2025) Best
results per task (i.e., column) are in bold, with second best results are in underline.

Robust04 News21 Corel7 Avg
Model MAP nDCG MAP *
No-Instruction IR
E5-base-v2' 134 20.9 14.0 16.1
Contriever! 19.7 22.9 15.3 19.3
MonoBERT' 21.0 25.1 18.4 21.5
BM251 12.1 19.3 8.1 13.2
MonoT5-base’ 15.7 11.0 12.2 13.0
E5-large-v2' 17.4 24.3 170 | 19.6
MonoT5-3BT 27.3 16.5 18.2 20.7
Instruction-IR
TART-Contriever' 14.3 21.8 13.3 16.5
INSTRUCTOR-base’ 17.2 22.1 15.5 18.3
E5-mistral " 23.1 27.8 18.3 23.1
BGE-base! 16.8 20.0 14.6 17.1
INSTRUCTOR-x1" 19.7 26.1 16.8 20.9
BGE-large! 17.5 22.3 15.0 18.3
GritLM-7B' 28.6 24.4 20.8 24.6
TART-FLAN-T5-x1" 24.6 12.8 17.0 18.1
APIs
OpenAl v3 Large' 27.2 27.2 21.6 253
Cohere v3 English’ 22.3 28.3 20.6 23.7
Google Gecko' 23.3 29.5 232 | 253
Instruct LMs
FLAN-T5-base' 6.4 6.1 6.5 6.3
Llama-2-7B-chat! 6.3 1.7 5.4 4.5
FLAN-T5-large' 14.7 8.0 114 114
GritLM-Reranker! 9.7 10.2 9.8 9.9
Mistral-7B-instruct’ 23.2 27.2 19.7 23.4
FollowIR-7B' 24.8 29.6 20.0 24.8
End2End Generative Embedding
GIRCSE-Mistral-7B 27.9 26.8 23.0 | 25.9
GIRCSE-Qwen2-7B 23.9 24.1 21.0 23.0

detailed scores in[Table 10]allow a more granular comparison across individual datasets and complement the
averaged results presented in the main section.

18

Under review as a conference paper at ICLR 2026

Table 10: Full evaluation results across MTEB tasks for GIRCSE, Causal-EOS, and Bidirectional-Avg with
Mistral and Qwen backbones. Best results per task (i.e., row) are in bold.

Task GIRCSE Causal-EOS Bidirectional-Avg
Mistral Qwen Mistral Qwen Mistral Qwen
MindSmallReranking 0.294 0.321 0.307 0.308 0.302 0.311
AskUbuntuDupQuestions 0.684 0.664 0.677 0.642 0.673 0.631
TwitterSemEval2015 0.769 0.747 0.760 0.732 0.786 0.707
StackExchangeClusteringP2P.v2 0.499 0.508 0.457 0.463 0.439 0.479
BiorxivClusteringP2P.v2 0.487 0.497 0.439 0.431 0.459 0.472
SICK-R 0.727 0.742 0.731 0.741 0.753 0.746
ToxicConversationsClassification 0.841 0.870 0.781 0.735 0.811 0.760
TweetSentimentExtractionClassification 0.762 0.775 0.730 0.703 0.744 0.723
TwentyNewsgroupsClustering.v2 0.611 0.627 0.598 0.582 0.624 0.569
STSI15 0.845 0.833 0.835 0.817 0.839 0.815
MTOPDomainClassification 0.957 0.967 0.958 0.960 0.963 0.944
STSBenchmark 0.832 0.820 0.807 0.814 0.823 0.773
STS17 0.801 0.795 0.774 0.821 0.805 0.806
ClimateFEVERHardNegatives 0.268 0.261 0.220 0.222 0.227 0.269
HotpotQAHardNegatives 0.729 0.737 0.738 0.708 0.735 0.686
FiQA2018 0.552 0.489 0.486 0.480 0.521 0.440
CQADupstackGamingRetrieval 0.641 0.656 0.587 0.576 0.615 0.574
SprintDuplicateQuestions 0.943 0.949 0.946 0.940 0.939 0.942
ArguAna 0.699 0.692 0.694 0.574 0.703 0.662
MassivelntentClassification 0.772 0.781 0.775 0.757 0.772 0.756
SCIDOCS 0.237 0.250 0.234 0.231 0.242 0.231
STS22.v2 0.690 0.665 0.607 0.447 0.645 0.679
STS12 0.730 0.740 0.724 0.731 0.738 0.708
STS13 0.717 0.725 0.704 0.762 0.714 0.581
MedrxivClusteringP2P.v2 0.429 0.433 0.386 0.338 0.387 0.418
MassiveScenarioClassification 0.793 0.802 0.807 0.778 0.798 0.790
STS14 0.746 0.744 0.710 0.739 0.741 0.665
ArXivHierarchicalClusteringP2P 0.645 0.630 0.639 0.646 0.634 0.639
ImdbClassification 0.960 0.962 0.955 0.906 0.959 0.949
Banking77Classification 0.855 0.861 0.849 0.838 0.853 0.823
Touche2020Retrieval.v3 0.478 0.391 0.490 0.459 0.452 0.470
SummEvalSummarization.v2 0.336 0.354 0.363 0.332 0.361 0.353
TwitterURLCorpus 0.873 0.859 0.864 0.862 0.865 0.850
AmazonCounterfactualClassification 0.887 0.918 0.893 0.731 0.896 0.867
MedrxivClusteringS2S.v2 0.423 0.428 0.421 0.409 0.423 0.403
StackExchangeClustering.v2 0.759 0.772 0.758 0.747 0.755 0.742
FEVERHardNegatives 0.853 0.857 0.786 0.702 0.809 0.835
CQADupstackUnixRetrieval 0.522 0.545 0.493 0.455 0.504 0.450
TRECCOVID 0.731 0.640 0.797 0.702 0.733 0.682
BIOSSES 0.786 0.804 0.765 0.851 0.771 0.781
ArXivHierarchicalClusteringS2S 0.648 0.634 0.644 0.645 0.645 0.657

K FULL DATASET INSTRUCTIONS

This section provides the complete set of natural language instructions used with the datasets in our exper-
iments. We include both the instructions for the MTEB benchmark datasets and those for the Instruction

19

Under review as a conference paper at ICLR 2026

Following tasks. These instructions define the intended task for each dataset and serve as the input prompts
during embedding evaluation. The full text of the instructions is listed in[Table 11]and[Table 12] respectively.

Table 11: Instructions for the corresponding datasets in the MTEB benchmark. We mainly follow the
instructions from the GritLM paper. Note that for retrieval and reranking datasets, queries (Q) and corpus
(C) documents may require different instructions, denoted as {dataset }-Q and {dataset}-C, respectively. For
datasets with query instructions only (i.e., {dataset}-Q), no instructions are applied to the corpus.

Dataset

Instruction

SummEvalSummarization
ArXivHierarchicalClusteringP2P

ArXivHierarchicalClusteringS2S

Touche2020Retrieval.v3-Q
ClimateFEVERHardNegatives-Q

FEVERHardNegatives-Q
HotpotQAHardNegatives-Q

AmazonCounterfactualClassification

AmazonPolarityClassification
AmazonReviewsClassification
Banking77Classification
EmotionClassification

ImdbClassification

MassivelntentClassification
MassiveScenarioClassification
MTOPDomainClassification

MTOPIntentClassification
ToxicConversationsClassification
TweetSentimentExtractionClassification

ArxivClusteringP2P
ArxivClusteringS2S
BiorxivClusteringP2P

BiorxivClusteringS2S
MedrxivClusteringP2P

MedrxivClusteringS2S
RedditClustering
RedditClusteringP2P
StackExchangeClustering
StackExchangeClusteringP2P

TwentyNewsgroupsClustering
SprintDuplicateQuestions

Given a news summary, retrieve other semantically similar summaries.
Identify the main and secondary category of Arxiv papers based on the
titles and abstracts.

Identify the main and secondary category of Arxiv papers based on the
titles.

Given a question, retrieve passages that answer the question.

Given a claim about climate change, retrieve documents that support or
refute the claim.

Given a claim, retrieve documents that support or refute the claim.
Given a multi-hop question, retrieve documents that can help answer the
question.

Classify a given Amazon customer review text as either counterfactual
or not-counterfactual.

Classify Amazon reviews into positive or negative sentiment.

Classify the given Amazon review into its appropriate rating category.
Given a online banking query, find the corresponding intents.

Classify the emotion expressed in the given Twitter message into one of
the six emotions: anger, fear, joy, love, sadness, and surprise.

Classify the sentiment expressed in the given movie review text from the
IMDB dataset.

Given a user utterance as query, find the user intents.

Given a user utterance as query, find the user scenarios.

Classify the intent domain of the given utterance in task-oriented con-
versation.

Classify the intent of the given utterance in task-oriented conversation.
Classify the given comments as either toxic or not toxic.

Classify the sentiment of a given tweet as either positive, negative, or
neutral.

Identify the main and secondary category of Arxiv papers based on the
titles and abstracts.

Identify the main and secondary category of Arxiv papers based on the
titles.

Identify the main category of Biorxiv papers based on the titles and ab-
stracts.

Identify the main category of Biorxiv papers based on the titles.
Identify the main category of Medrxiv papers based on the titles and
abstracts.

Identify the main category of Medrxiv papers based on the titles.
Identify the topic or theme of Reddit posts based on the titles.

Identify the topic or theme of Reddit posts based on the titles and posts.
Identify the topic or theme of StackExchange posts based on the titles.
Identify the topic or theme of StackExchange posts based on the given
paragraphs.

Identify the topic or theme of the given news articles.

Retrieve duplicate questions from Sprint forum.

Continued on next page

20

Under review as a conference paper at ICLR 2026

Table 11 - continued from previous page

Dataset Instruction
TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet.
TwittertURLCorpus Retrieve tweets that are semantically similar to the given tweet.

AskUbuntuDupQuestions-Q
AskUbuntuDupQuestions-C
MindSmallReranking-Q
MindSmallReranking-C
SciDocsRR-Q

SciDocsRR-C

StackOverflowDupQuestions-Q
StackOverflowDupQuestions-C
ArguAna-Q

ClimateFEVER-Q

CQADupstackRetrieval-Q

DBPedia-Q
FEVER-Q
FiQA2018-Q

HotpotQA-Q
MSMARCO-Q
NFCorpus-Q

NQ-Q
QuoraRetrieval-Q

SCIDOCS-Q
SciFact-Q
Touche2020-Q

TRECCOVID-Q
STS12

STS13

STS14

STS15

STS16

STS17

STS22
BIOSSES
SICK-R
STSBenchmark
SummEval
CQADupstackTexRetrieval-Q

CQADupstackTexRetrieval-C

Retrieve duplicate questions from AskUbuntu forum.

Retrieve duplicate questions from AskUbuntu forum.

Retrieve relevant news articles based on user browsing history.

Retrieve relevant news articles based on user browsing history.

Given a title of a scientific paper, retrieve the titles of other relevant
papers.

Given a title of a scientific paper, retrieve the titles of other relevant
papers.

Retrieve duplicate questions from StackOverflow forum.

Retrieve duplicate questions from StackOverflow forum.

Given a claim, find documents that refute the claim.

Given a claim about climate change, retrieve documents that support or
refute the claim.

Given a question, retrieve detailed question descriptions from Stackex-
change that are duplicates to the given question.

Given a query, retrieve relevant entity descriptions from DBPedia.
Given a claim, retrieve documents that support or refute the claim.
Given a financial question, retrieve user replies that best answer the
question.

Given a multi-hop question, retrieve documents that can help answer the
question.

Given a web search query, retrieve relevant passages that answer the
query.

Given a question, retrieve relevant documents that best answer the ques-
tion.

Given a question, retrieve Wikipedia passages that answer the question.
Given a question, retrieve questions that are semantically equivalent to
the given question.

Given a scientific paper title, retrieve paper abstracts that are cited by
the given paper.

Given a scientific claim, retrieve documents that support or refute the
claim.

Given a question, retrieve detailed and persuasive arguments that answer
the question.

Given a query on COVID-19, retrieve documents that answer the query.
Retrieve semantically similar text.

Retrieve semantically similar text.

Retrieve semantically similar text.

Retrieve semantically similar text.

Retrieve semantically similar text.

Retrieve semantically similar text.

Retrieve semantically similar text.

Retrieve semantically similar text.

Retrieve semantically similar text.

Retrieve semantically similar text.

Given a news summary, retrieve other semantically similar summaries.
Represent the title of a user question to find a duplicate user question
title with body from the Tex StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the Tex StackExchange forum.

Continued on next page

21

Under review as a conference paper at ICLR 2026

Table 11 - continued from previous page

Dataset

Instruction

CQADupstackWebmastersRetrieval-Q
CQADupstackWebmastersRetrieval-C
CQADupstackEnglishRetrieval-Q
CQADupstackEnglishRetrieval-C
CQADupstackGamingRetrieval-Q
CQADupstackGamingRetrieval-C
CQADupstackGisRetrieval-Q
CQADupstackGisRetrieval-C
CQADupstackUnixRetrieval-Q
CQADupstackUnixRetrieval-C
CQADupstackMathematicaRetrieval-Q
CQADupstackMathematicaRetrieval-C
CQADupstackStatsRetrieval-Q
CQADupstackStatsRetrieval-C
CQADupstackPhysicsRetrieval-Q
CQADupstackPhysicsRetrieval-C
CQADupstackProgrammersRetrieval-Q
CQADupstackProgrammersRetrieval-C
CQADupstackAndroidRetrieval-Q
CQADupstackAndroidRetrieval-C
CQADupstackWordpressRetrieval-Q

CQADupstackWordpressRetrieval-C

Represent the title of a user question to find a duplicate user question
title with body from the Webmasters StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the Webmasters StackExchange forum.
Represent the title of a user question to find a duplicate user question
title with body from the English StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the English StackExchange forum.

Represent the title of a user question to find a duplicate user question
title with body from the Gaming StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the Gaming StackExchange forum.

Represent the title of a user question to find a duplicate user question
title with body from the Gis StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the Gis StackExchange forum.

Represent the title of a user question to find a duplicate user question
title with body from the Unix StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the Unix StackExchange forum.

Represent the title of a user question to find a duplicate user question
title with body from the Mathematica StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the Mathematica StackExchange forum.
Represent the title of a user question to find a duplicate user question
title with body from the Stats StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the Stats StackExchange forum.

Represent the title of a user question to find a duplicate user question
title with body from the Physics StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the Physics StackExchange forum.

Represent the title of a user question to find a duplicate user question
title with body from the Programmers StackExchange forum.
Represent the question title with body posted by a user to find a duplicate
user question title from the Programmers StackExchange forum.
Represent the title of a user question to find a duplicate user question
title with body from the Android StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the Android StackExchange forum.

Represent the title of a user question to find a duplicate user question
title with body from the Wordpress StackExchange forum.

Represent the question title with body posted by a user to find a duplicate
user question title from the Wordpress StackExchange forum.

Table 12: Instructions for two Instruction Following datasets used in Inbedder paper.

Dataset

Instruction

IntentEmotion (Intent)
IntentEmotion (Emotion)
NYTClustering (Location)

Represent the intent of this text.
Represent the emotion of this text.
Represent the text based on where the news happen.

Continued on next page

22

Under review as a conference paper at ICLR 2026

Table 12 - continued from previous page

Dataset Instruction

NYTClustering (Topic) Represent the text based on the main news category.

23

	Introduction
	Related Work
	GIRCSE: From Discriminative to Generative Embedding
	Generative Embedding Framework
	Soft Token Generation
	Guiding Generative Embedding with Iterative Contrastive Refinement

	Experiment
	Experiment Setup
	Main Results
	Ablation Study

	Analysis on Generated Tokens
	Effect of Generation Length at Inference
	Qualitative Analysis on Generated Tokens

	Discussion of Robustness and Learning Efficiency
	Conclusion
	Use-of-LLMs
	Reproducibility for Embedding Models
	Hyperparameter Settings
	Pseudo Code for GIRCSE
	Scalability Analysis
	Theoretical Computational and Memory Cost Analysis
	Detail Implementation of Two-stage Generation Embedding
	Training Stability Analysis
	More Evaluation on NanoBEIR and TREC benchmarks
	Full MTEB Performance
	Full Dataset Instructions

