

# 000 LET LLMs SPEAK EMBEDDING LANGUAGES: 001 002 GENERATIVE TEXT EMBEDDINGS VIA ITERATIVE CON- 003 TRASTIVE REFINEMENT 004

005  
006 **Anonymous authors**  
007 Paper under double-blind review  
008

## 009 010 ABSTRACT 011

012 Existing large language model (LLM)-based embeddings typically adopt an encoder-only  
013 paradigm, treating LLMs as static feature extractors and overlooking their core gener-  
014 ative strengths. We introduce GIRCSE (Generative Iterative Refinement for Contrastive  
015 Sentence Embeddings), a novel framework that leverages autoregressive generation to iter-  
016 atively refine semantic representations. By producing sequences of soft tokens optimized  
017 under contrastive objective, GIRCSE captures latent concepts and implicit semantics that  
018 encoder-only methods often miss. To guide this process, we propose an Iterative Con-  
019 trastive Refinement (ICR) objective that encourages each refinement step to yield better  
020 representations. Extensive experiments show that GIRCSE outperforms strong LLM-  
021 based embedding baselines on the MTEB benchmark and instruction-following tasks.  
022 Moreover, GIRCSE exhibits an emergent test-time scaling property: generating more to-  
023 kens at inference steadily improves embedding quality. Our results establish generative  
024 iterative refinement as a new paradigm for representation learning.

## 025 026 1 INTRODUCTION 027

028 Text embeddings are fundamental to a wide range of natural language processing (NLP) applications, in-  
029 cluding information retrieval, semantic search, clustering, and recommendation (Karpukhin et al., 2020; Liu  
030 et al., 2024; Xiong et al., 2021). With the rise of large language models (LLMs), representation learning has  
031 advanced further: fine-tuning LLMs on large corpora now yields superior performance on several embedding  
032 benchmarks (Tao et al., 2024).

033 However, current LLM-based embeddings typically operate as single-pass feature extractors: embeddings  
034 are extracted in a single forward pass with contrastive learning objectives, without leveraging the gener-  
035 ative capacity of LLMs. This overlooks a key strength of pretrained LLMs—their ability to reason and  
036 iteratively refine through autoregressive generation (Wei et al., 2022; Muennighoff et al., 2025). This raises  
037 a fundamental question: *Can LLM-based embedding models also benefit from iterative generation?* We  
038 hypothesize that generation enables iterative refinement of embeddings, allowing models to progressively  
039 consolidate semantics over multiple steps rather than encoding all semantics in a single pass.

040 **Challenges.** Designing effective generative embeddings presents several challenges. First, naive genera-  
041 tion degrades embedding quality since pretrained LLMs are optimized for fluent text, not tokens aligned  
042 with semantic similarity (see Section 5.1). Second, unlike traditional language modeling, there is no clear  
043 generation target: it is unclear what content the model should generate to obtain universally useful embed-  
044 dings. Third, existing embedding learning frameworks do not accommodate multi-step generative refine-  
045 ment. Therefore, it is necessary to develop new training paradigms that provide meaningful supervision for  
046 generative embeddings.

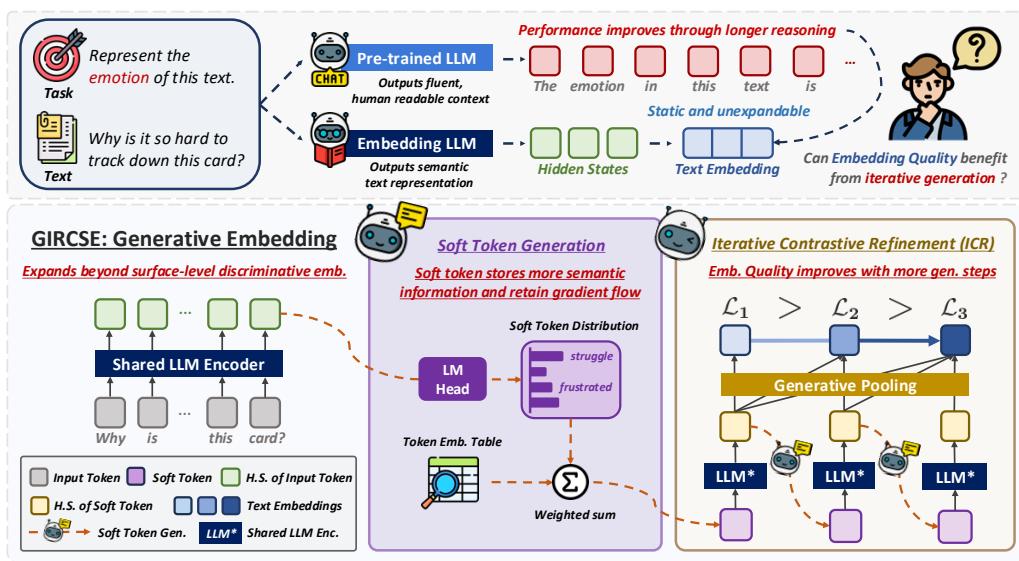


Figure 1: **Top:** Comparison between embedding LLMs that extract static representations and generative LLMs that can iteratively refine through reasoning. **Bottom:** Overview of GIRCSE. Our framework combines Soft Token Generation and Iterative Contrastive Refinement to enable end-to-end generative training.

**Motivation.** We argue that LLMs should learn to *speak an embedding language*: generating tokens not constrained by human readability but optimized for semantic representation. Crucially, these tokens should be discovered through **end-to-end training jointly with contrastive objectives**, enabling the model to generate semantically meaningful tokens for iterative embedding refinement.

Building on this motivation, we propose **GIRCSE**—*Generative Iterative Refinement for Contrastive Sentence Embeddings*—a novel framework that bridges this gap between generative LLM capabilities and embedding optimization. GIRCSE consists of two major innovations: (1) **Soft Token Generation** preserves differentiability for end-to-end contrastive training and captures richer semantics by retaining the diversity of the full probability distribution. (2) **Iterative Contrastive Refinement (ICR)** provides contrastive supervision at every generation step, forcing the early generated tokens to capture useful semantics while later tokens progressively refine representations. As illustrated in Fig. 1 and detailed in Section 5.2, this paradigm enables GIRCSE to generate instruction-aware refinement tokens (e.g., “frustrated” and “struggle”) that capture the implicit emotion beyond the surface text. In summary, we make the following contributions:

- **Novel embedding framework.** We propose **GIRCSE**, a novel end-to-end framework that integrates autoregressive generation with contrastive learning. Unlike prior methods, GIRCSE generates *soft refinement tokens* without explicit targets, progressively distilling semantics into high-quality embeddings.
- **Superior performance.** We compare GIRCSE with 18 state-of-the-art embedding models. By generating only up to 5–20 additional tokens, GIRCSE ranks within top 5–6 on MTEB and top 2–3 on instruction following, leading to the best overall ranking across benchmarks. Meanwhile, GIRCSE consistently shows stable improvements over reproduced fair baselines on different backbone and varying data scales.
- **Test-time scaling ability for text embedding.** We demonstrate that GIRCSE exhibits consistent embedding quality improvements with increased refinement steps at inference time, representing a novel scaling paradigm for embedding models analogous to test-time compute scaling in reasoning LLMs.

094 **2 RELATED WORK**

095

096 **Early Embedding Models.** Text embedding methods have evolved from traditional word-level representations to sophisticated neural approaches. Early methods like Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) captured basic semantic relationships but lacked contextual understanding. The introduction of transformer-based models marked a significant advancement, with BERT-based approaches like Sentence-BERT (Reimers & Gurevych, 2019) and SimCSE (Gao et al., 2021) establishing contrastive learning as the dominant paradigm for learning sentence representations.

100

102 **LLM-based Embedding models.** Recent works have successfully adapted LLMs for representation learning through various architectural and training modifications. E5-mistral (Wang et al., 2024) is one of 104 the early works that demonstrated that fine-tuning LLM could significantly outperform early stage methods. Recognizing that the unidirectional attention mechanism in LLMs may limit text embedding quality, 106 LLM2Vec (BehnamGhader et al., 2024) introduces a bidirectional attention mechanism combined with average 108 pooling to enhance embedding quality. NV-Embed (Lee et al., 2024) further improves the pooling method by incorporating an additional Latent Attention Layer and implements a two-stage training strategy 110 to address the challenge of false negatives in non-retrieval tasks. BGE-en-ic1 (Li et al., 2025) suggests that 112 retaining the original framework of LLMs and leveraging in-context learning is the optimal approach for generating 114 text embeddings.

116 **Towards Generative Text Embedding.** A smaller line of research has explored generative approaches for 118 text embeddings. For example, Inbedder (Peng et al., 2024) combines instruction finetuning with token 120 generation, achieving strong performance on instruction-following tasks but showing limited generalization 122 to broader tasks (see Table 2). As summarized in Table 1, most existing approaches differ only in pooling 124 strategies or auxiliary training techniques, while generative embeddings remain largely underexplored.

126 Table 1: Comparison of LLM-based embedding models. “Bidir.” indicates bidirectional attention, “GP” 128 means generated tokens pooling, “TTS” refers to test-time scaling capability.

| Method        | Attention | Pooling | LoRA | Generation | TTS | Gen. Token | Training Obj.       |
|---------------|-----------|---------|------|------------|-----|------------|---------------------|
| E5-MISTRAL    | Causal    | EOS     | ✓    | ✗          | ✗   | N/A        | sup. CL             |
| SFR-EMBEDDING | Causal    | EOS     | ✗    | ✓          | ✗   | N/A        | sup. CL             |
| BGE-EN-ICL    | Causal    | EOS     | ✓    | ✗          | ✗   | N/A        | ICL & sup. CL       |
| GRITLM        | Bidir.    | Avg.    | ✗    | ✗          | ✗   | N/A        | NTP & sup. CL       |
| LLM2VEC       | Bidir.    | Avg.    | ✓    | ✗          | ✗   | N/A        | MLM & sup. CL       |
| GTE-QWEN2     | Bidir.    | Avg.    | ✗    | ✗          | ✗   | N/A        | unsup. CL & sup. CL |
| NV-EMBED-V1   | Bidir.    | LAT     | ✓    | ✗          | ✗   | N/A        | Two-stage sup. CL   |
| INBEDDER      | Causal    | GP      | ✓    | ✓          | ✗   | Hard Token | Instruction Tuning  |
| <b>GIRCSE</b> | Causal    | GP      | ✓    | ✓          | ✓   | Soft Token | sup. CL & ICR       |

129 **3 GIRCSE: FROM DISCRIMINATIVE TO GENERATIVE EMBEDDING**

130

132 We now detail our proposed generative embedding framework. Section 3.1 first establishes our core 134 autoregressive embedding generation process, introducing the fundamental concepts and notation. Section 3.2 136 then details the soft token generation mechanism that enables differentiable optimization within this framework. Finally, Section 3.3 presents our iterative contrastive refinement objective, guiding the model towards 138 progressively higher-quality representations.

139 **3.1 GENERATIVE EMBEDDING FRAMEWORK**

140

We consider a pretrained language model with parameters  $\psi = \{\mathbf{E}, \theta, \phi\}$ , where  $\mathbf{E} \in \mathbb{R}^{|\mathcal{V}| \times d}$  is the token 142 embedding matrix,  $\theta$  denotes the parameters of the Transformer decoder, and  $\phi$  corresponds to the parameters 144

of the LM head for next token generation. Here  $d$  is the embedding dimension and  $|\mathcal{V}|$  is the vocabulary size. Given an input sequence of  $N$  tokens  $\mathbf{T} = \{t_1, t_2, \dots, t_N\}$  from vocabulary  $\mathcal{V}$ , we first obtain token embeddings  $\mathbf{X}$  as:

$$\mathbf{X} = (\mathbf{E}[t_1], \mathbf{E}[t_2], \dots, \mathbf{E}[t_N]) \in \mathbb{R}^{N \times d}. \quad (1)$$

Next, our goal is to autoregressively generate a sequence of  $K$  auxiliary soft tokens  $\mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_K) \in \mathbb{R}^{K \times |\mathcal{V}|}$  that iteratively refines the representation space. Each soft token  $\mathbf{s}_k$  is generated autoregressively conditioned on the input sequence and previously generated tokens:

$$p_\psi(\mathbf{S} \mid \mathbf{T}) = \prod_{k=1}^K p_\psi(\mathbf{s}_k \mid \mathbf{T}, \mathbf{S}_{<k}), \quad (2)$$

where  $p_\psi$  represents the generative distribution and  $\mathbf{S}_{<k} = (\mathbf{s}_1, \dots, \mathbf{s}_{k-1})$  are the previously generated soft tokens. The soft tokens are then mapped into embedding space<sup>1</sup>, producing  $\mathbf{D} = (\mathbf{d}_1, \dots, \mathbf{d}_k) \in \mathbb{R}^{K \times d}$ , and is concatenated with input embeddings  $\mathbf{X}$  to further feed into the Transformer decoder  $f_\theta$ :

$$\mathbf{H} = f_\theta([\mathbf{X}; \mathbf{D}]) = (\mathbf{h}_1^{(L)}, \mathbf{h}_2^{(L)}, \dots, \mathbf{h}_{N+K}^{(L)}) \in \mathbb{R}^{(N+K) \times d}, \quad (3)$$

where  $\mathbf{h}_i^{(L)}$  denotes the hidden state of the  $i$ -th token at the final (i.e.,  $L$ -th) layer. We then extract the representations corresponding to the generated soft tokens, and aggregate them into a single representation  $\mathbf{z}$  via a pooling operation:

$$\mathbf{z} = \mathcal{P}(\mathbf{G}) = \frac{1}{K} \sum_{i=1}^K \mathbf{g}_i, \quad \mathbf{G} = (\mathbf{g}_1, \dots, \mathbf{g}_K) = (\mathbf{h}_{N+1}^{(L)}, \dots, \mathbf{h}_{N+K}^{(L)}) \in \mathbb{R}^{K \times d}, \quad (4)$$

where  $\mathcal{P}$  denotes a general pooling function, with mean pooling as our default choice.

**Computational Considerations.** Since our approach involves iterative generation with  $K$  steps, it naturally incurs a higher computational cost compared to single-step baselines (Appendix F). However, we find that generating only a small number of tokens (e.g.,  $K = 5$  or  $10$ ) is sufficient to achieve strong performance (Section 5.1). Moreover, this cost could be largely mitigated via KV caching (Appendix E), where the FLOPs are reduced to nearly the same level as standard embedding models (within  $\sim 1.0\text{--}1.1 \times$ ).

### 3.2 SOFT TOKEN GENERATION

A critical challenge in our autoregressive framework is to maintain the differentiability throughout the generation process during training. Traditional discrete token sampling would break gradient flow, preventing end-to-end optimization. We address this through a novel soft token generation mechanism that preserves continuous optimization while capturing rich semantic information.

At each generation step  $k \in \{1, \dots, K\}$ , the generative distribution  $p_\psi$  is instantiated via the LM head  $\phi$ . Let  $\mathbf{h}'_{k-1} = \mathbf{h}_{N+k-1}^{(L)}$  denote the last layer hidden representation produced by the encoder given the input sequence and the previously generated soft tokens up to step  $k-1$ , the LM head then produces a soft token  $\mathbf{s}_k \in \mathbb{R}^{|\mathcal{V}|}$  as a probability distribution over the vocabulary:

$$\mathbf{s}_k = \text{softmax}(\mathbf{W}_\phi \mathbf{h}'_{k-1} + \mathbf{b}_\phi), \quad (5)$$

where  $\mathbf{W}_\phi \in \mathbb{R}^{|\mathcal{V}| \times d}$  is the LM head weight matrix and  $\mathbf{b}_\phi$  is the bias term. Given the soft token  $\mathbf{s}_k$ , its embedding  $\mathbf{d}_k \in \mathbb{R}^d$  is obtained by computing a convex combination of all token embeddings according to their predicted probabilities:

$$\mathbf{d}_k = \sum_{i=1}^{|\mathcal{V}|} s_{k,i} \mathbf{e}_i, \quad (6)$$

<sup>1</sup>We defer the detailed soft token generation mechanism to Section 3.2, while here we focus on the overall framework

188 where  $s_{k,i}$  is the  $i$ -th component of  $\mathbf{s}_k$  and  $\mathbf{e}_i$  is the  $i$ -th row of the embedding matrix  $\mathbf{E}$ . This soft token  
 189 generation approach offers two advantages: (1) **Differentiability**: The weighted combination preserves  
 190 gradients throughout the generation process, enabling end-to-end training with contrastive objectives. (2)  
 191 **Semantic Richness**: Rather than collapse the next-token distribution into a single token, soft tokens capture  
 192 the semantic diversity of the full probability distribution.  
 193

### 194 3.3 GUIDING GENERATIVE EMBEDDING WITH ITERATIVE CONTRASTIVE REFINEMENT

196 To guide the generative embedding process towards high-quality representations, we introduce an *iterative*  
 197 *contrastive refinement (ICR)* objective that encourages each generation step to yield increasingly refined  
 198 representations. ICR combines (1) **Stepwise Contrastive Loss**, which supervises each generation step with  
 199 contrastive loss, and (2) **Iterative Refinement Regularization**, which enforces progressive embedding quality  
 200 improvement for each step.

201 **Stepwise Contrastive Loss.** In autoregressive soft token generation, supervising only the final embedding  
 202 (i.e.,  $K$ -th generation step) might collapse intermediate steps into trivial or noisy representations. We instead  
 203 apply contrastive supervision at every generation step. Concretely, for step  $k$ , we pool the first  $k$  generated  
 204 tokens to form an intermediate embedding  $\mathbf{z}_k = \mathcal{P}(\mathbf{G}_{1:k})$  following Eq. (4). Given a query–document pair  
 205  $(q, d^+)$ , we compute the contrastive loss for all generation steps as:

$$206 \quad \mathcal{L}_{\text{contrast}} = \sum_{k=1}^K \mathcal{L}_k, \quad \mathcal{L}_k = -\log \frac{\exp(\sigma(\mathbf{z}_k^q, \mathbf{z}_k^{d^+})/\tau)}{\sum_{d \in \mathcal{B}} \exp(\sigma(\mathbf{z}_k^q, \mathbf{z}_k^d)/\tau)}, \quad (7)$$

209 where  $\mathcal{B}$  denotes the document set (both positive and negative documents),  $\sigma$  is the cosine similarity function,  
 210 and  $\tau$  is the temperature hyperparameter. This stepwise supervision ensures all intermediate representations  
 211 align with the contrastive objective, preventing early steps from drifting and providing richer supervision.

212 **Iterative Refinement Regularization.** We empirically observe that simply increasing the number of  
 213 generation steps does not guarantee improved embedding quality, as LLMs often produce highly similar tokens  
 214 which leads to redundant information in the multi-step process. To address this, we introduce a regularization  
 215 term that encourages monotonic improvement across generation steps:

$$216 \quad \mathcal{L}_{\text{reg}} = \frac{1}{K-1} \sum_{k=1}^{K-1} \max(\log \mathcal{L}_{k+1} - \log \mathcal{L}_k, 0). \quad (8)$$

219 This regularization term penalizes cases where later generation steps fail to outperform earlier ones. Finally,  
 220 the overall fine-tuning objective for generative embeddings combines the two terms:  $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{contrast}} + \lambda \mathcal{L}_{\text{reg}}$ ,  
 221 where  $\lambda$  is a hyperparameter that balances contrastive alignment and refinement regularization.  
 222

## 223 4 EXPERIMENT

### 225 4.1 EXPERIMENT SETUP

227 **Backbone LLM.** Following prior works (Wang et al., 2024; Muennighoff et al., 2024), we adopt **Mistral-7B**  
 228 (Jiang et al., 2023) as the primary backbone and further validate it on **Qwen2.5-7B** (Yang et al., 2024).

229 **Training Details.** For training data, we use the dataset from (Li et al., 2025), which integrates supervised  
 230 pairs and hard negatives for contrastive learning across diverse tasks. Due to computational limits, we  
 231 sample 20% (0.2M) data for training. Following (Wang et al., 2024; Li et al., 2025), we fine-tune the  
 232 LLM as an embedding model with LoRA and contrastive loss, applying task-specific instruction templates.  
 233 Specifically, for a given query  $q$ , we format it as  $q^+ = \text{Instruct: } \{\text{task\_definition}\} \backslash n \text{Query: } \{q\}$ . Detailed  
 234 hyperparameters and instructions are in Appendices C and K.

**Evaluation.** We evaluate on MTEB (English, v2) (Enevoldsen et al., 2025), covering 41 datasets across 7 task types, reporting official leaderboard scores when available. Following InBedder (Peng et al., 2024), we also evaluate on INTENTEMOTION and NYTCLUSTERING to test the instruction-following ability of embedding models. For more extensive comparison, we have also evaluated on TREC datasets used in FollowIR (Weller et al., 2025) and BEIR (Thakur et al., 2021), detailed results can be found in Appendix I.

**Comparison Methods.** We compare GIRCSE against four categories of text embedding models. (1) **Non-LLM methods** including encoder-based models such as **E5-Large** (Wang et al., 2022), **GTE-Large** (Li et al., 2023b), **BGE-Large** (Li et al., 2023a), and **UAE-Large** (Li & Li, 2024). (2) **LLM-based methods** are instruction-tuned LLM embeddings, including **LLM2Vec** (BehnamGhader et al., 2024), **GritLM** (Muennighoff et al., 2024), **E5-Mistral** (Wang et al., 2024), **NV-Embed-v1** (Lee et al., 2024), **SFR-Embedding-2** (Meng\* et al., 2024), and **gte-Qwen2** (Li et al., 2023b). (3) **Generative embeddings** cover (i) two-stage approaches that expand text with an auxiliary LLM before re-encoding (see Appendix G for detail) and (ii) the end-to-end generative model **Inbedder** (Peng et al., 2024). (4) **Fair Baselines** are included by re-implementing two paradigms on the same training data for fair comparison: (i) **Causal-EOS** (causal attention + EOS pooling) and (ii) **Bidirectional-Avg** (bidirectional attention + average pooling), equivalent to **E5-Mistral** and **GritLM** respectively but trained with less data.

## 4.2 MAIN RESULTS

Table 2 reports the performance comparison across MTEB tasks and instruction-following benchmarks. We highlight the following observations:

**Trade-off between generic tasks and instruction following.** State-of-the-art non-generative embedding models achieve strong results on generic MTEB tasks but lag behind on instruction-following benchmarks. For example, **gte-QWEN2** performs competitively on MTEB (rank 1) but drops notably on instruction-following tasks (rank 18). Similarly, **E5-Mistral** ranks 4 on MTEB but falls to 10 on instruction following. In contrast, generative embedding approaches such as **Inbedder** reverse this trend, achieving top instruction-following performance (rank 1), since it is explicitly trained for this setting, but performing poorly on MTEB (rank 20). A comparable trade-off is also observed in two-stage generative variants of non-generative models. For instance, **E5-Mistral (w/ gen)** improves on instruction following (rank 10 → 5) but degrades on MTEB (rank 4 → 12). Similar patterns are also observed for **E5-Large (w/ gen)** and **GritLM (w/ gen)**.

**GIRCSE overcomes trade-off and strikes a balanced performance.** Unlike prior methods, GIRCSE delivers consistently strong results across both task categories. It not only outperforms fair baselines and competitive embedding models (e.g., GritLM, LLM2Vec), but also avoids the severe trade-offs observed in existing approaches. Specifically, GIRCSE ranks within the **top 5–6 on MTEB** and **top 2–3 on instruction-following tasks**, leading to the **best overall rankings of 3.5 and 4.5** across benchmarks. Remarkably, while prior SOTA methods rely on multi-million-scale training datasets, GIRCSE achieves comparable or better performance with only **0.2M training examples**. These results highlight GIRCSE as an efficient embedding model that achieves both strong general-purpose performance and robust instruction-following ability.

## 4.3 ABLATION STUDY

To better understand the contributions of different components in GIRCSE, Table 3 represents an ablation study on generative embedding, stepwise loss (SL), and iterative refinement (IR). Starting from the variant without generation (i.e., the *Causal-EOS* baseline), we observe a substantial drop in performance across both MTEB and instruction-following tasks. Incorporating generative embedding alone yields consistent improvements across nearly all tasks. Adding SL provides further gains, particularly for classification and summarization, while the combination of SL and IR achieves the strongest overall performance. Overall, these results validate the effectiveness of our design in GIRCSE.

Table 2: Performance on MTEB and instruction-following tasks. <sup>†</sup> Results obtained from the official MTEB leaderboard. **Causal-EOS**: causal attention with EOS pooling; **Bidirectional-Avg**: bidirectional attention with average pooling. **Highlighted rows** are our reproductions, trained on a smaller dataset (0.2M) for fair comparison. **Bold** = better than fair baselines with same backbone; \* = statistically significant ( $p < 0.05$ ). For detailed performance of each MTEB dataset, please refer to Appendix J.

| Task<br># of datasets →                          | Size | Vol. | Backbone | MTEB (English, v2) |         |        |            |        |       |       |             | Instruct Following |       |             | Overall<br>Rank |
|--------------------------------------------------|------|------|----------|--------------------|---------|--------|------------|--------|-------|-------|-------------|--------------------|-------|-------------|-----------------|
|                                                  |      |      |          | Retr.              | Rerank. | Clust. | PairClass. | Class. | STS   | Summ. | Avg. (Rank) | IntEmo             | NYT   | Avg. (Rank) |                 |
| <i>Non-LLM Methods</i>                           |      |      |          |                    |         |        |            |        |       |       |             |                    |       |             |                 |
| ES-Large <sup>†</sup>                            | 0.3B | 1B   | BERT     | 49.31              | 45.72   | 45.23  | 86.06      | 76.44  | 80.67 | 32.34 | 62.79 (18)  | 48.63              | 50.96 | 49.80 (14)  | 16.0            |
| GTE-Large <sup>†</sup>                           | 0.3B | 2B   | BERT     | 53.29              | 47.84   | 48.20  | 85.08      | 75.47  | 83.27 | 32.90 | 64.77 (14)  | 52.62              | 17.52 | 35.07 (18)  | 16.0            |
| BGE-Large <sup>†</sup>                           | 0.3B | 200M | BERT     | 55.44              | 48.26   | 48.01  | 87.13      | 78.34  | 82.79 | 33.13 | 65.89 (13)  | 51.66              | 61.38 | 56.52 (8)   | 10.5            |
| UAE-Large <sup>†</sup>                           | 0.3B | 1M   | RoBERTa  | 55.91              | 48.35   | 47.86  | 87.25      | 79.08  | 84.37 | 30.13 | 66.40 (9)   | 50.49              | 60.54 | 55.52 (11)  | 10.0            |
| <i>LLM-based: Causal-EOS</i>                     |      |      |          |                    |         |        |            |        |       |       |             |                    |       |             |                 |
| ES-Mistral <sup>†</sup>                          | 7B   | 1.8M | Mistral  | 57.62              | 49.78   | 51.44  | 88.42      | 79.85  | 84.32 | 36.57 | 67.97 (4)   | 48.84              | 65.06 | 56.95 (10)  | 7.0             |
| SFR-Embedding-2 <sup>†</sup>                     | 7B   | 1.7M | Mistral  | 53.75              | 48.99   | 59.39  | 88.09      | 90.54  | 80.86 | 35.54 | 69.82 (2)   | 50.49              | 60.54 | 55.52 (11)  | 6.5             |
| gte-Qwen2 <sup>†</sup>                           | 7B   | 800M | QWEN2    | 58.09              | 50.47   | 58.97  | 85.90      | 88.52  | 82.69 | 35.74 | 70.72 (1)   | 52.62              | 17.52 | 35.07 (18)  | 9.5             |
| Fair Baseline                                    | 7B   | 0.2M | Mistral  | 55.24              | 49.21   | 54.28  | 85.65      | 84.36  | 73.98 | 36.31 | 66.32 (10)  | 35.33              | 58.76 | 47.05 (15)  | 12.5            |
| Fair Baseline                                    | 7B   | 0.2M | QWEN2    | 51.10              | 47.49   | 55.26  | 84.46      | 80.10  | 74.71 | 33.21 | 64.18 (17)  | 66.14              | 14.71 | 40.42 (17)  | 17.0            |
| <i>LLM-based: Bidirectional-Avg</i>              |      |      |          |                    |         |        |            |        |       |       |             |                    |       |             |                 |
| LLM2Vec <sup>†</sup>                             | 7B   | 1.5M | Mistral  | 51.27              | 47.74   | 44.10  | 87.99      | 79.74  | 83.70 | 31.05 | 64.57 (15)  | 51.66              | 61.38 | 56.52 (8)   | 11.5            |
| GritLM <sup>†</sup>                              | 7B   | 2M   | Mistral  | 54.95              | 49.59   | 50.82  | 87.29      | 81.25  | 83.03 | 35.65 | 67.07 (7)   | 39.30              | 79.25 | 59.28 (6)   | 6.5             |
| NV-Embed-v1 <sup>†</sup>                         | 7B   | 1.1M | Mistral  | 60.13              | 49.16   | 49.50  | 87.05      | 84.11  | 82.20 | 31.40 | 68.32 (3)   | 52.61              | 60.62 | 56.62 (7)   | 5.0             |
| Fair Baseline                                    | 7B   | 0.2M | Mistral  | 55.41              | 48.74   | 54.57  | 86.34      | 84.94  | 75.87 | 36.09 | 66.96 (8)   | 21.45              | 66.42 | 43.94 (16)  | 12.0            |
| Fair Baseline                                    | 7B   | 0.2M | QWEN2    | 52.99              | 47.11   | 54.75  | 83.31      | 82.66  | 72.81 | 35.30 | 64.97 (16)  | 43.26              | 65.21 | 54.24 (13)  | 14.5            |
| <i>LLM-based: Two-Stage Generative Embedding</i> |      |      |          |                    |         |        |            |        |       |       |             |                    |       |             |                 |
| ES-Large (w/ gen.)                               | 0.3B | 1B   | BERT     | 45.06              | 43.87   | 45.37  | 81.02      | 72.70  | 77.35 | 31.59 | 59.85 (19)  | 51.34              | 51.67 | 51.51 (12)  | 15.5            |
| ES-Mistral (w/ gen.)                             | 7B   | 1.8M | Mistral  | 57.20              | 49.18   | 53.02  | 84.26      | 75.97  | 79.52 | 31.73 | 65.92 (12)  | 58.64              | 60.89 | 59.77 (5)   | 8.5             |
| GritLM (w/ gen.)                                 | 7B   | 2M   | Mistral  | 56.48              | 49.45   | 52.03  | 83.36      | 77.77  | 79.66 | 32.82 | 65.90 (11)  | 51.16              | 70.50 | 60.83 (4)   | 7.5             |
| <i>LLM-based: End2End Generative Embedding</i>   |      |      |          |                    |         |        |            |        |       |       |             |                    |       |             |                 |
| Inbedder                                         | 7B   | 0.2M | LLaMA2   | 12.50              | 39.21   | 51.24  | 61.17      | 72.41  | 74.41 | 17.24 | 50.32 (20)  | 89.68              | 64.65 | 77.17 (1)   | 10.5            |
| GIRCSE                                           | 7B   | 0.2M | Mistral  | 57.10              | 48.88   | 56.26  | 86.18      | 85.33  | 76.37 | 33.56 | 67.83* (5)  | 52.19              | 73.75 | 62.97 (2)   | 3.5             |
| GIRCSE                                           | 7B   | 0.2M | QWEN2    | 55.16              | 49.28   | 56.62  | 85.17      | 86.69  | 76.30 | 35.42 | 67.67* (6)  | 64.92              | 60.04 | 62.48 (3)   | 4.5             |

Table 3: Ablation study of GIRCSE with generative embedding (Gen.), stepwise loss (SL), and iterative refinement (IR). The variant without generation corresponds to the Causal-EOS baseline. Results are reported using the Mistral-7B backbone trained on 50K samples.

| Gen. | SL | IR | MTEB (English, v2) |         |        |          |        |       |       |       | Instruct Following |       |       |
|------|----|----|--------------------|---------|--------|----------|--------|-------|-------|-------|--------------------|-------|-------|
|      |    |    | Retr.              | Rerank. | Clust. | PairCls. | Class. | STS   | Summ. | Avg.  | IntEmo             | NYT   | Avg.  |
| ✗    | ✗  | ✗  | 50.55              | 48.97   | 49.91  | 85.27    | 80.36  | 75.76 | 34.02 | 63.84 | 33.11              | 58.76 | 47.05 |
| ✓    | ✗  | ✗  | 53.17              | 48.32   | 52.74  | 84.75    | 78.34  | 78.70 | 33.86 | 65.21 | 48.00              | 64.93 | 56.47 |
| ✓    | ✓  | ✗  | 54.97              | 48.86   | 52.07  | 85.04    | 78.63  | 78.87 | 35.28 | 65.69 | 53.88              | 66.37 | 60.13 |
| ✓    | ✓  | ✓  | 55.53              | 48.26   | 53.71  | 84.87    | 79.53  | 78.93 | 34.19 | 66.27 | 62.70              | 73.75 | 62.97 |

## 5 ANALYSIS ON GENERATED TOKENS

While Section 4.3 highlights the importance of generative embedding, it remains unclear how the generation process itself translates to the improved performance. To address this, we present a thorough analysis of the generation process. In Section 5.1, we first discuss how the embedding quality changes by varying the number of generated tokens at inference. Next, in Section 5.2, we conduct a qualitative analysis to understand what tokens are generated and how they evolve under different instructions. This analysis clarifies how iterative generation improves performance and what semantic signals are encoded in the embedding space.

### 5.1 EFFECT OF GENERATION LENGTH AT INFERENCE

We first examine how performance varies with the number of generated tokens  $K$  at inference. We evaluate  $K \in \{1, 3, 5, 10, 15, 20\}$  and compare against the non-generative baseline *Causal-EOS*. Results (Fig. 2)

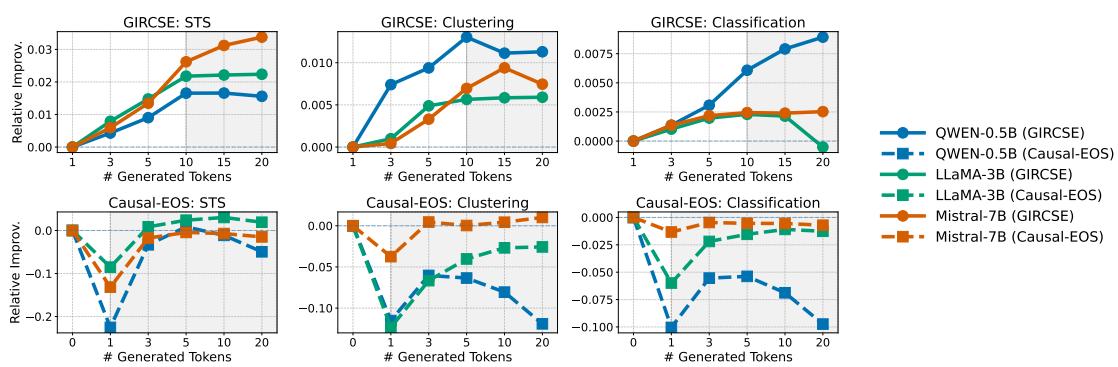


Figure 2: Effect of generation length at inference. **Top:** GIRCSE consistently improves with longer generations (10–20 tokens) despite being trained on only 5 tokens. **Bottom:** Baseline models show degraded or fluctuated performance across generation lengths. Gray area indicates configurations beyond training length.

are reported on three LLM backbones and three representative MTEB tasks, with relative improvements measured against  $K = 1$  for GIRCSE and against the no-generation baseline for *Causal-EOS*. For a more comprehensive analysis, we further evaluate GIRCSE trained with two additional backbones: **QWEN2.5-0.5B** (Yang et al., 2024) and **LLAMA3.2-3B** (Dubey et al., 2024). We have the following two key findings:

**(1) GIRCSE exhibits test-time scaling for embeddings.** Increasing  $K$  consistently improves performance across diverse tasks (e.g., STS, clustering, classification) and across model sizes. In contrast, the non-generative method (*Causal-EOS*) does not benefit from additional generation and often degrades in performance. This suggests that GIRCSE successfully learns an iterative refinement mechanism that converts additional inference computation into stronger semantic representations—analogous to test-time compute scaling in reasoning LLMs (Muennighoff et al., 2025), but novel in the context of embedding models.

**(2) ICR enables GIRCSE to generalize beyond training configurations.** Although GIRCSE is trained with  $K = 5$ , its performance improves monotonically within the training regime ( $K = 1, 3, 5$ ) and continues to improve even beyond it ( $K = 10, 15, 20$ ). This extrapolation capability suggests that our ICR training objective enables the learned refinement process to generalize beyond the training configuration, allowing GIRCSE to continue improving with additional inference steps. Overall, GIRCSE establishes test-time scaling as a new paradigm for embedding models, enabling controllable and training-free performance gains through adjustable generation length.

## 5.2 QUALITATIVE ANALYSIS ON GENERATED TOKENS

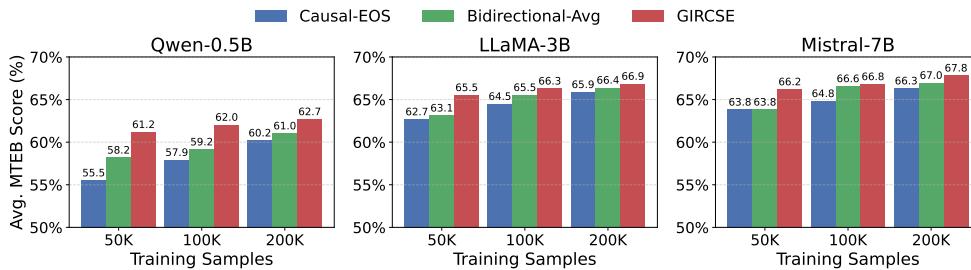
Having shown that generating more tokens improves performance, we next ask: what do these tokens capture? We analyze generations for the sentence “Why is it so hard to track down this card?” under two prompts: representing intention and emotion. At each generation step  $k$ , we collect the top-30 candidates from the soft token distribution  $s_k$ , aggregate across steps, and report most frequent tokens in Table 4, alongside results from GIRCSE before contrastive fine-tuning. Before fine-tuning, GIRCSE (before FT) often yields generic or semantically weak tokens. After fine-tuning, we observe progressive semantic refinement that aligns with the results in Section 5.1. At early steps (1–5), GIRCSE generates core content words (e.g., **why**, **hard**, **card**). While at later steps, the outputs diverge by different instructions: intention produces tokens such as **seek**, **elusive**, **inquiry**, and emotion yields tokens like **frustrating**, **struggle**. This suggests multi-step generation acts as a semantic chain of thought, iteratively steering representations toward nuanced, instruction-aligned regions of the embedding space.

376 Table 4: Qualitative analysis of generated tokens. Gray indicates generic/stopword-like tokens. **Yellow**  
 377 marks core input-related tokens shared across instructions. Instruction-specific expansions are shown in  
 378 **Green** (*intention*) and **Red** (*emotion*).  
 379

| 380 <b>Input Sentence</b>      | 381 “Why is it so hard to track down this card?”   |                                                                     |
|--------------------------------|----------------------------------------------------|---------------------------------------------------------------------|
| 382 <b>Instruction</b>         | 383 “Represent the <i>intention</i> of this text.” | 384 “Represent the <i>emotion</i> of this text.”                    |
| 385 <b>GIRCSE (Before FT)</b>  | 386 this, so, do, how, i, is, it, the, we, what    | 387 why, how, what, this, it, is, you, can                          |
| 388 <b>GIRCSE (Step 1–5)</b>   | 389 why, is, it, hard, track/tracking, card, this  | 390 why, is, it, hard, track,tracking, card, this, so, difficult    |
| 391 <b>GIRCSE (Step 6–10)</b>  | 392 [prev.] + seek, elusive, so                    | 393 [prev.] + frustrating, tough, persistent, struggle, challenging |
| 394 <b>GIRCSE (Step 11–20)</b> | 395 [prev.] + question, inquiry                    | 396 [prev.] + perseverance, stuck, complicated                      |

## 397 6 DISCUSSION OF ROBUSTNESS AND LEARNING EFFICIENCY

398 To assess the robustness and learning efficiency of our method, we conduct comprehensive experiments  
 399 across varying data scales and backbone architectures. Specifically, we train different models with {50K,  
 400 100K, 200K} training samples using three widely adopted open-source LLMs as base models: Qwen-0.5B,  
 401 Llama-3B, and Mistral-7B. We compare GIRCSE against two fair baselines: *Causal-EOS* and *Bidirectional-Avg*.  
 402 Fig. 3 shows that our method consistently outperforms both baselines across all data scales and model  
 403 sizes. In particular, when trained with only 50K samples, our method improves over *Causal-EOS* by +5.7  
 404 points on Qwen-0.5B (61.2% vs. 55.5%) and by +2.8 points on Llama-3B (65.5% vs. 62.7%). Even with  
 405 stronger backbones such as Mistral-7B, our approach still yields gains of +2.4 points (66.2% vs. 63.8%).  
 406 The performance gap becomes more pronounced when the training data is limited. These findings indicate  
 407 that our approach not only achieves superior performance across different scales of model size but also learns  
 408 more effectively under limited training data.



454 Figure 3: Comparison of average MTEB scores (%) between GIRCSE and two fair baselines across three  
 455 backbone LLMs and varying training sample sizes. GIRCSE consistently delivers superior performance,  
 456 especially under limited-data settings.

## 457 7 CONCLUSION

458 We presented GIRCSE, a generative embedding framework that leverages autoregressive refinement to move  
 459 beyond single-pass LLM encoders. By generating soft refinement tokens and training with iterative con-  
 460 trastive refinement, GIRCSE enables embeddings to progressively distill semantics rather than compressing  
 461 them in one step. Experiments show that GIRCSE achieves state-of-the-art or competitive performance  
 462 across benchmarks while introducing a novel scaling property: embedding quality improves with additional  
 463 refinement steps at test time. These results highlight autoregressive generation as a powerful mechanism for  
 464 embedding optimization and open new directions for scalable, semantically rich representations.

## 423 REFERENCES

424

425 Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and  
426 Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. In *First Conference*  
427 *on Language Modeling*, 2024.

428 Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective L2 norm-  
429 based strategy for kv cache compression. In *Proceedings of the 2024 Conference on Empirical Methods*  
430 *in Natural Language Processing*, pp. 18476–18499, 2024.

431 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,  
432 Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*,  
433 pp. arXiv–2407, 2024.

434

435 Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Márton Kardos, Ashwin Mathur, David Stap, Jay Gala,  
436 Wissam Siblini, Dominik Krzeminski, Genta Indra Winata, et al. Mmteb: Massive multilingual text em-  
437 bedding benchmark. In *International Conference on Learning Representations*. International Conference  
438 on Learning Representations, 2025.

439

440 Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence embeddings.  
441 In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 6894–  
442 6910, 2021.

443 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and  
444 Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on*  
445 *Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

446

447 Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,  
448 Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard  
449 Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée  
450 Lacroix, and William El Sayed. Mistral 7b. *ArXiv*, abs/2310.06825, 2023. URL <https://api.semanticscholar.org/CorpusID:263830494>.

451

452 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and  
453 Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *Proceedings of the 2020*  
454 *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6769–6781, 2020.

455

456 Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro, and  
457 Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models. In *The*  
*458 Thirteenth International Conference on Learning Representations*, 2024.

459

460 Chaofan Li, Minghao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Defu Lian, Yingxia Shao, and Zheng  
461 Liu. Making text embedders few-shot learners. In *The Thirteenth International Conference on Learning*  
*462 Representations*, 2025. URL <https://openreview.net/forum?id=wfLuiDjQ0u>.

463

464 Xianming Li and Jing Li. Aoe: Angle-optimized embeddings for semantic textual similarity. In *Proceedings*  
*465 of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,  
466 pp. 1825–1839, 2024.

467

468 Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards general  
469 text embeddings with multi-stage contrastive learning. *arXiv preprint arXiv:2308.03281*, 2023a.

470

471 Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards general  
472 text embeddings with multi-stage contrastive learning. *arXiv preprint arXiv:2308.03281*, 2023b.

470 Qijiong Liu, Nuo Chen, Tetsuya Sakai, and Xiao-Ming Wu. Once: Boosting content-based recommendation  
 471 with both open-and closed-source large language models. In *Proceedings of the 17th ACM International*  
 472 *Conference on Web Search and Data Mining*, pp. 452–461, 2024.

473

474 Rui Meng\*, Ye Liu\*, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Sfr-embedding-  
 475 2: Advanced text embedding with multi-stage training, 2024. URL [https://huggingface.co/Salesforce/SFR-Embedding-2\\_R](https://huggingface.co/Salesforce/SFR-Embedding-2_R).

476

477 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in  
 478 vector space. *arXiv preprint arXiv:1301.3781*, 2013.

479

480 Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and Douwe  
 481 Kiela. Generative representational instruction tuning. In *The Thirteenth International Conference on*  
 482 *Learning Representations*, 2024.

483

484 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer,  
 485 Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple test-time scaling. In *Workshop on Reasoning and Planning for Large Language Models*, 2025.

486

487 Letian Peng, Yuwei Zhang, Zilong Wang, Jayanth Srinivasa, Gaowen Liu, Zihan Wang, and Jingbo Shang.  
 488 Answer is all you need: Instruction-following text embedding via answering the question. In *Proceedings*  
 489 *of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,  
 490 pp. 459–477, 2024.

491

492 Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word repre-  
 493 sentation. In *Proceedings of the 2014 conference on empirical methods in natural language processing*  
 494 (*EMNLP*), pp. 1532–1543, 2014.

495

496 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the*  
 497 *9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 3982–3992,  
 498 2019.

499

500 Chongyang Tao, Tao Shen, Shen Gao, Junshuo Zhang, Zhen Li, Zhengwei Tao, and Shuai Ma. Llms are  
 501 also effective embedding models: An in-depth overview. *arXiv preprint arXiv:2412.12591*, 2024.

502

503 Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A het-  
 504 erogeneous benchmark for zero-shot evaluation of information retrieval models. In *Thirty-fifth Confer-  
 505 ence on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL  
 506 <https://openreview.net/forum?id=wCu6T5xFjeJ>.

507

508 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Majumder,  
 509 and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv preprint*  
 510 *arXiv:2212.03533*, 2022.

511

512 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving text  
 513 embeddings with large language models. In *Proceedings of the 62nd Annual Meeting of the Association*  
 514 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 11897–11916, 2024.

515

516 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,  
 517 et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural infor-  
 518 mation processing systems*, 35:24824–24837, 2022.

517 Orion Weller, Benjamin Chang, Sean MacAvaney, Kyle Lo, Arman Cohan, Benjamin Van Durme, Dawn  
518 Lawrie, and Luca Soldaini. Followir: Evaluating and teaching information retrieval models to follow  
519 instructions. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the As-*  
520 *sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.  
521 11926–11942, 2025.

522 Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid Ahmed, and  
523 Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text retrieval.  
524 In *International Conference on Learning Representations*, 2021. URL [https://openreview.net/](https://openreview.net/forum?id=zeFrfgyzln)  
525 [forum?id=zeFrfgyzln](https://openreview.net/forum?id=zeFrfgyzln).

527 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng  
528 Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,  
529 Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng  
530 Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren,  
531 Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.  
532 Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564 **A USE-OF-LLMs**  
565566 In this work, we utilized large language models (LLMs) as part of the core research methodology. Specifi-  
567 cally, we fine-tuned existing open-source LLMs (e.g., LLaMA-3 and Mistral) to develop embedding models.  
568 These pre-trained models served as the foundation for our experiments, and our main contributions build  
569 upon their architectures and representations. Additionally, an LLM-based assistant (OpenAI GPT-5) was  
570 used for minor writing support, including grammar checking and improving manuscript readability. All de-  
571 cisions regarding research design, fine-tuning strategies, experimental setup, and final interpretations were  
572 made solely by the authors.  
573574 **B REPRODUCIBILITY FOR EMBEDDING MODELS**  
575576 To facilitate reproducibility of our experiments, we provide links to all open-sourced embedding models  
577 used in this paper in Table 5. These links allow researchers to directly access the exact model checkpoints  
578 we relied on.  
579580 Table 5: List of models with links for reproducibility.  
581

| 582 <b>Model</b>    | 583 <b>Link</b>                                                                                                             |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 584 E5-Large        | 585 <a href="https://huggingface.co/intfloat/e5-large">huggingface.co/intfloat/e5-large</a>                                 |
| 585 GTE-Large       | 586 <a href="https://huggingface.co/thenlper/gte-large">huggingface.co/thenlper/gte-large</a>                               |
| 586 BGE-Large       | 587 <a href="https://huggingface.co/BAAI/bge-large-en">huggingface.co/BAAI/bge-large-en</a>                                 |
| 587 UAE-Large       | 588 <a href="https://huggingface.co/WhereIsAI/UAE-Large-V1">huggingface.co/WhereIsAI/UAE-Large-V1</a>                       |
| 588 E5-Mistral      | 589 <a href="https://huggingface.co/intfloat/e5-mistral-7b-instruct">huggingface.co/intfloat/e5-mistral-7b-instruct</a>     |
| 589 SFR-Embedding-2 | 590 <a href="https://huggingface.co/Salesforce/SFR-Embedding-2_R">huggingface.co/Salesforce/SFR-Embedding-2_R</a>           |
| 590 gte-Qwen2       | 591 <a href="https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct">huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct</a> |
| 591 LLM2Vec         | 592 <a href="https://github.com/McGill-NLP/LLM2Vec">github.com/McGill-NLP/LLM2Vec</a>                                       |
| 592 GritLM          | 593 <a href="https://huggingface.co/GritLM/GritLM-7B">huggingface.co/GritLM/GritLM-7B</a>                                   |
| 593 NV-Embed-v1     | <a href="https://huggingface.co/nvidia/NV-Embed-v1">huggingface.co/nvidia/NV-Embed-v1</a>                                   |

594 **C HYPERPARAMETER SETTINGS**  
595596 For both GIRCSE and the baseline models we re-implement for comparison, we use nearly identical fine-  
597 tuning hyperparameters across different model sizes (QWEN-0.5B, Llama-3B, and Mistral-7B) and training  
598 data scales (50k, 100k, and 200k examples).602 We adopt Low-Rank Adaptation (LoRA) (Hu et al., 2022) for efficient fine-tuning, setting the rank to 64  
603 and the scaling factor  $\alpha$  to 32. The default learning rate is 1e-5 with a warmup ratio of 0.1. The only  
604 exception is Llama-3B, for which we use a learning rate of 1e-4 to address convergence issues. For other  
605 hyperparameters, we set the temperature of the contrastive loss (Eq. (7)) to 0.02 across all models, and the  
606 weighting coefficient  $\lambda$  in GIRCSE for balancing contrastive alignment and refinement regularization to 1.  
607 Due to limited computational resources, we train with a batch size of 2 and accumulate gradients over 8  
608 steps, resulting in an effective batch size of 16. All models are fine-tuned for a single epoch.609 For GIRCSE, we set the number of generated tokens  $K$  to 5 during training to avoid the high computational  
610 cost of multiple autoregressive forward passes. During inference, we increase  $K$  to 20 to enable longer

611 generations and improved embedding refinement, while mitigating the computational overhead using KV-  
 612 cache techniques.  
 613

## 614 D PSEUDO CODE FOR GIRCSE

617 Algorithm 1 provides a pseudo-code summary of GIRCSE. We include this block to clarify the core com-  
 618putation steps and facilitate reproducibility. The algorithm specifies how input tokens are embedded, how  
 619 soft embeddings are autoregressively generated across multiple steps, and how the final representation is  
 620 obtained through pooling. While implementation details may vary, this summary highlights the essential  
 621 components needed to reproduce our method.

---

### 623 **Algorithm 1:** GIRCSE: Autoregressive Generative Embedding

---

624 **Input:** Input tokens  $(t_1, \dots, t_N)$ , generation steps  $K$ , embedding matrix  $\mathbf{E}$ , LLM decoder  $f_\theta$ , LM head  
 625 parameters  $W_\phi$  and  $b_\phi$ , pooling function  $\mathcal{P}$

626 **Output:** Final embedding  $\mathbf{z} \in \mathbb{R}^d$

```

627  $\mathbf{X} \leftarrow (\mathbf{E}[t_1], \dots, \mathbf{E}[t_N])$  // Embed the input tokens
628  $\mathbf{D} \leftarrow []$  // Initialize the list of generated embeddings
629 for  $k = 1$  to  $K$  do
630    $\mathbf{H} \leftarrow f_\theta([\mathbf{X}; \mathbf{D}])$  // Forward with input and generated tokens
631    $\mathbf{h}'_{k-1} \leftarrow \mathbf{H}[N + k - 1]$  // Last hidden state for next-token prediction
632    $\mathbf{s}_k \leftarrow \text{softmax}(\mathbf{W}_\phi \mathbf{h}'_{k-1} + \mathbf{b}_\phi)$  // Compute soft token distribution
633    $\mathbf{d}_k \leftarrow \sum_{i=1}^{|V|} s_{k,i} \mathbf{e}_i$  // Compute soft embedding
634    $\mathbf{D} \leftarrow \mathbf{D} \parallel \mathbf{d}_k$  // Append soft embedding for next step
635  $\mathbf{H} \leftarrow f_\theta([\mathbf{X}; \mathbf{D}])$ 
636  $\mathbf{G} \leftarrow (\mathbf{H}[N + 1], \dots, \mathbf{H}[N + K])$  // Collect the last  $K$  hidden states
637  $\mathbf{z} \leftarrow \mathcal{P}(\mathbf{G})$  // Pool generated representations into a single embedding
638 return  $\mathbf{z}$ 

```

---

## 641 E SCALABILITY ANALYSIS

643 While GIRCSE offers superior representation quality, a natural concern arises regarding its computational  
 644 efficiency. We acknowledge that GIRCSE introduces additional overhead compared to traditional embed-  
 645ding models due to its generative process; a detailed analysis of theoretical computation and memory costs  
 646 relative to the discriminative embedding paradigm is provided in Appendix F. Nevertheless, this overhead  
 647 can be substantially mitigated through the use of KV caching techniques (Devoto et al., 2024). As shown in  
 648 Table 6, GIRCSE without caching requires  $2.0\text{--}6.0\times$  more FLOPs across different sequence lengths due to  
 649 auto-regressive computation. In contrast, with caching enabled, the FLOPs are effectively reduced to base-  
 650 line levels ( $\approx 1.0\times$ ), while memory consumption remains comparable to traditional methods. These results  
 651 demonstrate that caching not only ensures scalability but also makes our approach practical for real-world  
 652 deployment.

## 653 F THEORETICAL COMPUTATIONAL AND MEMORY COST ANALYSIS

656 To better analyze the additional training and inference cost introduced by GIRCSE, we compare the compu-  
 657 tational and memory complexity of the proposed generative embedding framework against the conventional

658  
 659 Table 6: Computational efficiency comparison across sequence lengths (512, 1024, 2048) and generation  
 660 budgets  $k$ . Lower is better ( $\downarrow$ ) for both FLOPs and memory. GIRCSE without caching (red) incurs signif-  
 661 icant computational overhead due to auto-regressive processing, whereas KV caching (blue) dramatically  
 662 mitigates this cost. Multipliers in parentheses show overhead relative to Causal-EOS method.

| Method             | k | FLOPs (T) $\downarrow$ |               |                | Memory (GB) $\downarrow$ |       |       |
|--------------------|---|------------------------|---------------|----------------|--------------------------|-------|-------|
|                    |   | 512                    | 1K            | 2K             | 512                      | 1K    | 2K    |
| Causal-EOS         | - | 7.33                   | 14.65         | 29.30          | 13.89                    | 14.34 | 15.11 |
| Bidirectional-Avg  | - | 7.33                   | 14.65         | 29.30          | 14.03                    | 14.45 | 15.24 |
| GIRCSE (w/o cache) | 1 | 14.67 (2.00x)          | 29.32 (2.00x) | 58.62 (2.00x)  | 13.72                    | 13.90 | 14.28 |
|                    | 3 | 29.39 (4.01x)          | 58.70 (4.01x) | 117.31 (4.00x) | 13.74                    | 13.92 | 14.29 |
|                    | 5 | 44.17 (6.02x)          | 88.13 (6.02x) | 176.04 (6.01x) | 13.75                    | 13.94 | 14.30 |
| GIRCSE (w/ cache)  | 1 | 7.34 (1.00x)           | 14.67 (1.00x) | 29.32 (1.00x)  | 13.73                    | 13.91 | 14.32 |
|                    | 3 | 7.37 (1.01x)           | 14.70 (1.00x) | 29.35 (1.00x)  | 13.75                    | 13.93 | 14.34 |
|                    | 5 | 7.40 (1.01x)           | 14.73 (1.01x) | 29.38 (1.00x)  | 13.77                    | 13.96 | 14.35 |

673  
 674 discriminative embedding paradigm. In the baseline discriminative case, the encoder processes an input of  
 675 length  $N$ , leading to a per-layer cost dominated by self-attention of order  $O(N^2d)$  and memory footprint  
 676  $O(LN^2)$ , where  $d$  is the embedding dimension and  $L$  is the number of layers.

677 In the generative framework,  $K$  auxiliary soft tokens are generated autoregressively. Each generation step  
 678 requires an encoder forward pass over  $N + j$  tokens ( $j = 0, \dots, K - 1$ ) followed by a vocabulary softmax  
 679 of cost  $O(d|\mathcal{V}|)$ . After generation, a final encoder pass is performed over the extended sequence of length  
 680  $N + K$ . The total attention-dominated computation ratio with respect to the baseline is:

$$682 \quad R_{\text{computation}} = \frac{C_{\text{gen}}}{C_{\text{base}}} = \frac{(K+1)N^2 + NK(K+1) + \frac{K(K+1)(2K+1)}{6}}{N^2}, \quad (9)$$

683 which simplifies to  $R_{\text{computation}} \approx K + 1$  when  $K \ll N$ . The additional softmax operations contribute  
 684  $K O(d|\mathcal{V}|)$ , which is typically small compared to the quadratic encoder cost unless  $N$  is short or  $|\mathcal{V}|$  is very  
 685 large.

686 In terms of memory, peak training-time activation usage is dominated by the final encoder pass over  $N + K$   
 687 tokens. Thus, the relative peak memory ratio is:

$$688 \quad R_{\text{memory}} = \frac{M_{\text{gen}}}{M_{\text{base}}} \approx \frac{(N+K)^2}{N^2}. \quad (10)$$

689 This indicates that while the generative embedding framework incurs roughly  $K$  additional encoder passes  
 690 in computation, the increase in peak memory is modest, scaling quadratically with the extended sequence  
 691 length  $N + K$ .

## 692 G DETAIL IMPLEMENTATION OF TWO-STAGE GENERATION EMBEDDING

693 The two-stage generation embedding approach enhances representation quality by introducing an interme-  
 694 diate expansion step before re-encoding.

695 In the first stage, an auxiliary large language model (LLM) is prompted to generate a short augmentation  
 696 of the input, detailed expansion prompt can be found in Table 7. The prompt instructs the model to output  
 697 only the augmentation, within a fixed token budget, without explanations or additional formatting. This

705 augmentation is designed to highlight or enrich semantic information that may be useful for downstream  
 706 tasks.  
 707

708 In the second stage, the original instruction and text is concatenated with the generated augmentation, and the  
 709 combined sequence is re-encoded into an embedding. This two-step process allows the encoder to capture a  
 710 more informative and contextually aligned representation than directly embedding the raw text alone.

711 Table 7: LLM expansion prompt used for two-stage generation methods.  
 712

713 **Input:**

714 Given the INSTRUCTION and the TEXT, produce a helpful augmentation that, when concatenated to  
 715 the original TEXT and embedded, is likely to improve embedding quality for the instruction’s task.  
 716 Do not explain yourself or output anything other than the augmentation.  
 717 Your answer must be written within {256} tokens.

718 INSTRUCTION: {instruction}  
 719 TEXT: {text}

724 **H TRAINING STABILITY ANALYSIS**

726 A potential concern when optimizing models that involve the generation of soft tokens is the risk of gradient  
 727 instability. To empirically validate the stability of our proposed model, GIRCSE, we monitor its training  
 728 dynamics. We present the training loss curve in Figure 4 and the L2 norm of the gradients in Figure 5.

729 As shown in the figures, the training loss (Figure 4) demonstrates a smooth and consistent decrease, indicating  
 730 stable convergence. Furthermore, the gradient norm (Figure 5) converges normally throughout the  
 731 training process.

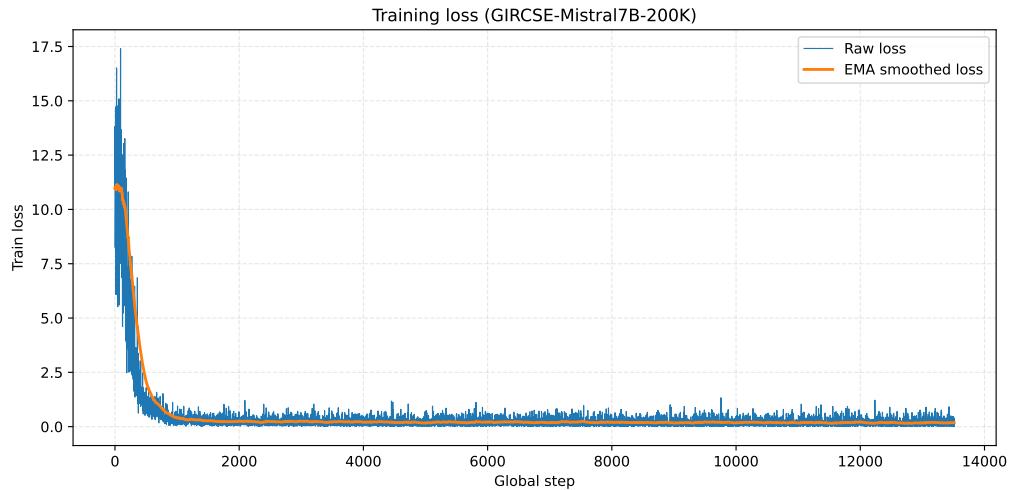


Figure 4: Training loss curve of GIRCSE.

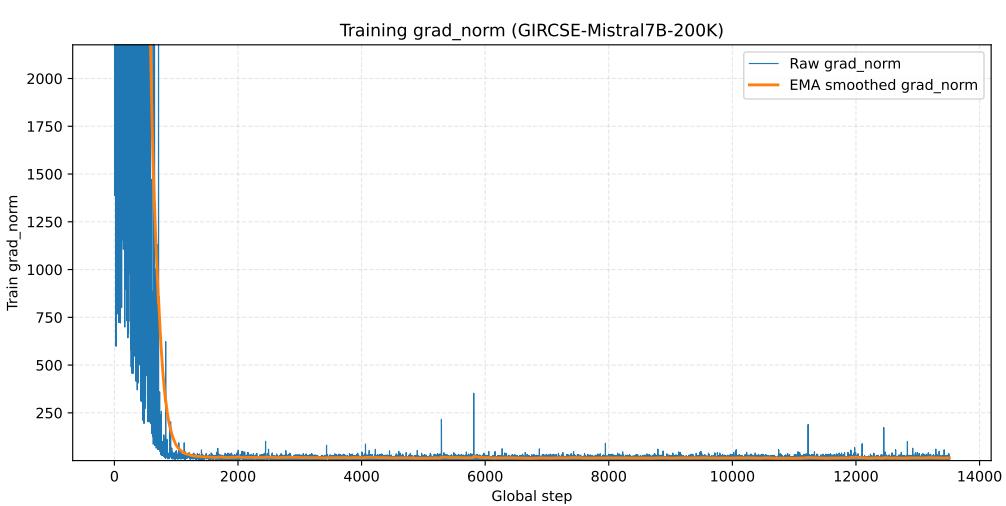


Figure 5: Training gradient norm (L2) of GIRCSE, plotted with the top 2% of outliers removed for clarity.

## I MORE EVALUATION ON NANOBEIR AND TREC BENCHMARKS

In this section, we provide additional evaluation results on the NanoBEIR and TREC benchmarks. These benchmarks complement the main paper by covering a wider range of retrieval tasks and domains. The results, presented in Table 8 and Table 9, highlight consistent trends with our main findings, further demonstrating the robustness and generalization ability of the proposed model compared to strong baselines.

Table 8: Performance comparison on NanoBEIR benchmark.

| Dataset      | E5-Mistral | SFR-Embedding-2 | gte-Qwen2 | LLM2Vec | GritLM  | NV-Embed-v1 | GIRCSE  | GIRCSE |
|--------------|------------|-----------------|-----------|---------|---------|-------------|---------|--------|
| Size         | 7B         | 7B              | 7B        | 7B      | 7B      | 7B          | 7B      | 7B     |
| Vol.         | 1.8M       | 1.7M            | 800M      | 1.5M    | 2M      | 1.1M        | 0.2M    | 0.2M   |
| Backbone     | Mistral    | Mistral         | QWEN2     | Mistral | Mistral | Mistral     | Mistral | QWEN2  |
| ArguAna      | 60.13      | 64.33           | 72.37     | 54.41   | 67.72   | 68.00       | 70.18   | 70.88  |
| ClimateFever | 41.75      | 44.12           | 33.83     | 38.09   | 37.45   | 42.93       | 36.83   | 31.66  |
| DBpedia      | 71.59      | 73.81           | 72.14     | 70.78   | 68.15   | 71.44       | 71.01   | 69.81  |
| FEVER        | 95.30      | 95.18           | 80.71     | 96.94   | 94.38   | 96.15       | 94.23   | 95.41  |
| FiQA         | 60.50      | 65.08           | 68.23     | 61.46   | 65.98   | 68.07       | 60.79   | 55.90  |
| HotpotQA     | 86.16      | 91.64           | 82.06     | 88.14   | 91.09   | 91.05       | 88.10   | 88.31  |
| MSMARCO      | 66.58      | 66.51           | 70.67     | 64.30   | 62.82   | 67.80       | 64.03   | 61.85  |
| NFCorpus     | 32.36      | 38.99           | 37.67     | 39.19   | 40.39   | 38.54       | 40.75   | 36.57  |
| NQ           | 76.64      | 82.20           | 80.99     | 83.81   | 82.91   | 87.11       | 78.57   | 70.01  |
| Quora        | 96.28      | 95.48           | 97.44     | 95.64   | 95.76   | 91.59       | 92.73   | 88.76  |
| SCIDOCs      | 36.00      | 48.18           | 50.76     | 43.72   | 46.32   | 38.11       | 44.27   | 43.97  |
| SciFact      | 78.30      | 89.67           | 67.58     | 79.41   | 81.18   | 78.95       | 80.90   | 81.70  |
| Touche2020   | 51.72      | 56.66           | 39.44     | 49.46   | 51.89   | 58.51       | 46.09   | 39.03  |
| Avg.         | 65.64      | 70.14           | 65.68     | 66.57   | 68.16   | 69.10       | 66.81   | 64.14  |

## J FULL MTEB PERFORMANCE

In the main paper, we reported averaged performance across task categories for clarity. Here, we provide the full per-dataset results on the MTEB benchmark, covering all tasks included in our evaluation. The

799 Table 9: Performance comparison on TREC datasets. <sup>†</sup> Results obtained from (Weller et al., 2025) Best  
 800 results per task (i.e., column) are in **bold**, with second best results are in underline.  
 801

| 802<br>803<br>804<br>805<br>806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818<br>819<br>820<br>821<br>822<br>823<br>824<br>825<br>826<br>827<br>828<br>829<br>830<br>831<br>832<br>833<br>834<br>835<br>836<br>837<br>838<br>839<br>840<br>841<br>842<br>843<br>844<br>845 | 802<br>803<br>804<br>805<br>806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818<br>819<br>820<br>821<br>822<br>823<br>824<br>825<br>826<br>827<br>828<br>829<br>830<br>831<br>832<br>833<br>834<br>835<br>836<br>837<br>838<br>839<br>840<br>841<br>842<br>843<br>844<br>845 | 802<br>803<br>804<br>805<br>806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818<br>819<br>820<br>821<br>822<br>823<br>824<br>825<br>826<br>827<br>828<br>829<br>830<br>831<br>832<br>833<br>834<br>835<br>836<br>837<br>838<br>839<br>840<br>841<br>842<br>843<br>844<br>845 | 802<br>803<br>804<br>805<br>806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818<br>819<br>820<br>821<br>822<br>823<br>824<br>825<br>826<br>827<br>828<br>829<br>830<br>831<br>832<br>833<br>834<br>835<br>836<br>837<br>838<br>839<br>840<br>841<br>842<br>843<br>844<br>845 | 802<br>803<br>804<br>805<br>806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818<br>819<br>820<br>821<br>822<br>823<br>824<br>825<br>826<br>827<br>828<br>829<br>830<br>831<br>832<br>833<br>834<br>835<br>836<br>837<br>838<br>839<br>840<br>841<br>842<br>843<br>844<br>845 |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                  | <b>Model</b>                                                                                                                                                                                                                                                                                                     | <b>Robust04</b><br>MAP                                                                                                                                                                                                                                                                                           | <b>News21</b><br>nDCG                                                                                                                                                                                                                                                                                            | <b>Core17</b><br>MAP                                                                                                                                                                                                                                                                                             | <b>Avg.</b> |
|                                                                                                                                                                                                                                                                                                                  | <b>No-Instruction IR</b>                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |             |
|                                                                                                                                                                                                                                                                                                                  | E5-base-v2 <sup>†</sup>                                                                                                                                                                                                                                                                                          | 13.4                                                                                                                                                                                                                                                                                                             | 20.9                                                                                                                                                                                                                                                                                                             | 14.0                                                                                                                                                                                                                                                                                                             | 16.1        |
|                                                                                                                                                                                                                                                                                                                  | Contriever <sup>†</sup>                                                                                                                                                                                                                                                                                          | 19.7                                                                                                                                                                                                                                                                                                             | 22.9                                                                                                                                                                                                                                                                                                             | 15.3                                                                                                                                                                                                                                                                                                             | 19.3        |
|                                                                                                                                                                                                                                                                                                                  | MonoBERT <sup>†</sup>                                                                                                                                                                                                                                                                                            | 21.0                                                                                                                                                                                                                                                                                                             | 25.1                                                                                                                                                                                                                                                                                                             | 18.4                                                                                                                                                                                                                                                                                                             | 21.5        |
|                                                                                                                                                                                                                                                                                                                  | BM25 <sup>†</sup>                                                                                                                                                                                                                                                                                                | 12.1                                                                                                                                                                                                                                                                                                             | 19.3                                                                                                                                                                                                                                                                                                             | 8.1                                                                                                                                                                                                                                                                                                              | 13.2        |
|                                                                                                                                                                                                                                                                                                                  | MonoT5-base <sup>†</sup>                                                                                                                                                                                                                                                                                         | 15.7                                                                                                                                                                                                                                                                                                             | 11.0                                                                                                                                                                                                                                                                                                             | 12.2                                                                                                                                                                                                                                                                                                             | 13.0        |
|                                                                                                                                                                                                                                                                                                                  | E5-large-v2 <sup>†</sup>                                                                                                                                                                                                                                                                                         | 17.4                                                                                                                                                                                                                                                                                                             | 24.3                                                                                                                                                                                                                                                                                                             | 17.0                                                                                                                                                                                                                                                                                                             | 19.6        |
|                                                                                                                                                                                                                                                                                                                  | MonoT5-3B <sup>†</sup>                                                                                                                                                                                                                                                                                           | 27.3                                                                                                                                                                                                                                                                                                             | 16.5                                                                                                                                                                                                                                                                                                             | 18.2                                                                                                                                                                                                                                                                                                             | 20.7        |
|                                                                                                                                                                                                                                                                                                                  | <b>Instruction-IR</b>                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |             |
|                                                                                                                                                                                                                                                                                                                  | TART-Contriever <sup>†</sup>                                                                                                                                                                                                                                                                                     | 14.3                                                                                                                                                                                                                                                                                                             | 21.8                                                                                                                                                                                                                                                                                                             | 13.3                                                                                                                                                                                                                                                                                                             | 16.5        |
|                                                                                                                                                                                                                                                                                                                  | INSTRUCTOR-base <sup>†</sup>                                                                                                                                                                                                                                                                                     | 17.2                                                                                                                                                                                                                                                                                                             | 22.1                                                                                                                                                                                                                                                                                                             | 15.5                                                                                                                                                                                                                                                                                                             | 18.3        |
|                                                                                                                                                                                                                                                                                                                  | E5-mistral <sup>†</sup>                                                                                                                                                                                                                                                                                          | 23.1                                                                                                                                                                                                                                                                                                             | 27.8                                                                                                                                                                                                                                                                                                             | 18.3                                                                                                                                                                                                                                                                                                             | 23.1        |
|                                                                                                                                                                                                                                                                                                                  | BGE-base <sup>†</sup>                                                                                                                                                                                                                                                                                            | 16.8                                                                                                                                                                                                                                                                                                             | 20.0                                                                                                                                                                                                                                                                                                             | 14.6                                                                                                                                                                                                                                                                                                             | 17.1        |
|                                                                                                                                                                                                                                                                                                                  | INSTRUCTOR-xl <sup>†</sup>                                                                                                                                                                                                                                                                                       | 19.7                                                                                                                                                                                                                                                                                                             | 26.1                                                                                                                                                                                                                                                                                                             | 16.8                                                                                                                                                                                                                                                                                                             | 20.9        |
|                                                                                                                                                                                                                                                                                                                  | BGE-large <sup>†</sup>                                                                                                                                                                                                                                                                                           | 17.5                                                                                                                                                                                                                                                                                                             | 22.3                                                                                                                                                                                                                                                                                                             | 15.0                                                                                                                                                                                                                                                                                                             | 18.3        |
|                                                                                                                                                                                                                                                                                                                  | GritLM-7B <sup>†</sup>                                                                                                                                                                                                                                                                                           | <b>28.6</b>                                                                                                                                                                                                                                                                                                      | 24.4                                                                                                                                                                                                                                                                                                             | 20.8                                                                                                                                                                                                                                                                                                             | 24.6        |
|                                                                                                                                                                                                                                                                                                                  | TART-FLAN-T5-xl <sup>†</sup>                                                                                                                                                                                                                                                                                     | 24.6                                                                                                                                                                                                                                                                                                             | 12.8                                                                                                                                                                                                                                                                                                             | 17.0                                                                                                                                                                                                                                                                                                             | 18.1        |
|                                                                                                                                                                                                                                                                                                                  | <b>APIs</b>                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |             |
|                                                                                                                                                                                                                                                                                                                  | OpenAI v3 Large <sup>†</sup>                                                                                                                                                                                                                                                                                     | 27.2                                                                                                                                                                                                                                                                                                             | 27.2                                                                                                                                                                                                                                                                                                             | 21.6                                                                                                                                                                                                                                                                                                             | <u>25.3</u> |
|                                                                                                                                                                                                                                                                                                                  | Cohere v3 English <sup>†</sup>                                                                                                                                                                                                                                                                                   | 22.3                                                                                                                                                                                                                                                                                                             | 28.3                                                                                                                                                                                                                                                                                                             | 20.6                                                                                                                                                                                                                                                                                                             | <u>23.7</u> |
|                                                                                                                                                                                                                                                                                                                  | Google Gecko <sup>†</sup>                                                                                                                                                                                                                                                                                        | 23.3                                                                                                                                                                                                                                                                                                             | <u>29.5</u>                                                                                                                                                                                                                                                                                                      | <b>23.2</b>                                                                                                                                                                                                                                                                                                      | <u>25.3</u> |
|                                                                                                                                                                                                                                                                                                                  | <b>Instruct LMs</b>                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |             |
|                                                                                                                                                                                                                                                                                                                  | FLAN-T5-base <sup>†</sup>                                                                                                                                                                                                                                                                                        | 6.4                                                                                                                                                                                                                                                                                                              | 6.1                                                                                                                                                                                                                                                                                                              | 6.5                                                                                                                                                                                                                                                                                                              | 6.3         |
|                                                                                                                                                                                                                                                                                                                  | Llama-2-7B-chat <sup>†</sup>                                                                                                                                                                                                                                                                                     | 6.3                                                                                                                                                                                                                                                                                                              | 1.7                                                                                                                                                                                                                                                                                                              | 5.4                                                                                                                                                                                                                                                                                                              | 4.5         |
|                                                                                                                                                                                                                                                                                                                  | FLAN-T5-large <sup>†</sup>                                                                                                                                                                                                                                                                                       | 14.7                                                                                                                                                                                                                                                                                                             | 8.0                                                                                                                                                                                                                                                                                                              | 11.4                                                                                                                                                                                                                                                                                                             | 11.4        |
|                                                                                                                                                                                                                                                                                                                  | GritLM-Reranker <sup>†</sup>                                                                                                                                                                                                                                                                                     | 9.7                                                                                                                                                                                                                                                                                                              | 10.2                                                                                                                                                                                                                                                                                                             | 9.8                                                                                                                                                                                                                                                                                                              | 9.9         |
|                                                                                                                                                                                                                                                                                                                  | Mistral-7B-instruct <sup>†</sup>                                                                                                                                                                                                                                                                                 | 23.2                                                                                                                                                                                                                                                                                                             | 27.2                                                                                                                                                                                                                                                                                                             | 19.7                                                                                                                                                                                                                                                                                                             | 23.4        |
|                                                                                                                                                                                                                                                                                                                  | FollowIR-7B <sup>†</sup>                                                                                                                                                                                                                                                                                         | 24.8                                                                                                                                                                                                                                                                                                             | <b>29.6</b>                                                                                                                                                                                                                                                                                                      | 20.0                                                                                                                                                                                                                                                                                                             | 24.8        |
|                                                                                                                                                                                                                                                                                                                  | <b>End2End Generative Embedding</b>                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |             |
|                                                                                                                                                                                                                                                                                                                  | GIRCSE-Mistral-7B                                                                                                                                                                                                                                                                                                | <u>27.9</u>                                                                                                                                                                                                                                                                                                      | 26.8                                                                                                                                                                                                                                                                                                             | <u>23.0</u>                                                                                                                                                                                                                                                                                                      | <b>25.9</b> |
|                                                                                                                                                                                                                                                                                                                  | GIRCSE-Qwen2-7B                                                                                                                                                                                                                                                                                                  | 23.9                                                                                                                                                                                                                                                                                                             | 24.1                                                                                                                                                                                                                                                                                                             | 21.0                                                                                                                                                                                                                                                                                                             | 23.0        |

843 detailed scores in Table 10 allow a more granular comparison across individual datasets and complement the  
 844 averaged results presented in the main section.  
 845

846  
847 Table 10: Full evaluation results across MTEB tasks for GIRCSE, Causal-EOS, and Bidirectional-Avg with  
848 Mistral and Qwen backbones. Best results per task (i.e., row) are in **bold**.

| Task                                   | GIRCSE       |              | Causal-EOS   |              | Bidirectional-Avg |              |
|----------------------------------------|--------------|--------------|--------------|--------------|-------------------|--------------|
|                                        | Mistral      | Qwen         | Mistral      | Qwen         | Mistral           | Qwen         |
| MindSmallReranking                     | 0.294        | <b>0.321</b> | 0.307        | 0.308        | 0.302             | 0.311        |
| AskUbuntuDupQuestions                  | <b>0.684</b> | 0.664        | 0.677        | 0.642        | 0.673             | 0.631        |
| TwitterSemEval2015                     | 0.769        | 0.747        | 0.760        | 0.732        | <b>0.786</b>      | 0.707        |
| StackExchangeClusteringP2P.v2          | 0.499        | <b>0.508</b> | 0.457        | 0.463        | 0.439             | 0.479        |
| BiorxivClusteringP2P.v2                | 0.487        | <b>0.497</b> | 0.439        | 0.431        | 0.459             | 0.472        |
| SICK-R                                 | 0.727        | 0.742        | 0.731        | 0.741        | <b>0.753</b>      | 0.746        |
| ToxicConversationsClassification       | 0.841        | <b>0.870</b> | 0.781        | 0.735        | 0.811             | 0.760        |
| TweetSentimentExtractionClassification | 0.762        | <b>0.775</b> | 0.730        | 0.703        | 0.744             | 0.723        |
| TwentyNewsgroupsClustering.v2          | 0.611        | <b>0.627</b> | 0.598        | 0.582        | 0.624             | 0.569        |
| STS15                                  | <b>0.845</b> | 0.833        | 0.835        | 0.817        | 0.839             | 0.815        |
| MTOPDomainClassification               | 0.957        | <b>0.967</b> | 0.958        | 0.960        | 0.963             | 0.944        |
| STSBenchmark                           | <b>0.832</b> | 0.820        | 0.807        | 0.814        | 0.823             | 0.773        |
| STS17                                  | 0.801        | 0.795        | 0.774        | <b>0.821</b> | 0.805             | 0.806        |
| ClimateFEVERHardNegatives              | 0.268        | 0.261        | 0.220        | 0.222        | 0.227             | <b>0.269</b> |
| HotpotQAHardNegatives                  | 0.729        | <b>0.737</b> | 0.738        | 0.708        | 0.735             | 0.686        |
| FiQA2018                               | <b>0.552</b> | 0.489        | 0.486        | 0.480        | 0.521             | 0.440        |
| CQA DupstackGamingRetrieval            | 0.641        | <b>0.656</b> | 0.587        | 0.576        | 0.615             | 0.574        |
| SprintDuplicateQuestions               | 0.943        | <b>0.949</b> | 0.946        | 0.940        | 0.939             | 0.942        |
| ArguAna                                | 0.699        | 0.692        | 0.694        | 0.574        | <b>0.703</b>      | 0.662        |
| MassiveIntentClassification            | 0.772        | <b>0.781</b> | 0.775        | 0.757        | 0.772             | 0.756        |
| SCIDOCs                                | 0.237        | <b>0.250</b> | 0.234        | 0.231        | 0.242             | 0.231        |
| STS22.v2                               | <b>0.690</b> | 0.665        | 0.607        | 0.447        | 0.645             | 0.679        |
| STS12                                  | 0.730        | <b>0.740</b> | 0.724        | 0.731        | 0.738             | 0.708        |
| STS13                                  | 0.717        | 0.725        | 0.704        | <b>0.762</b> | 0.714             | 0.581        |
| MedrxivClusteringP2P.v2                | 0.429        | <b>0.433</b> | 0.386        | 0.338        | 0.387             | 0.418        |
| MassiveScenarioClassification          | 0.793        | <b>0.802</b> | 0.807        | 0.778        | 0.798             | 0.790        |
| STS14                                  | <b>0.746</b> | 0.744        | 0.710        | 0.739        | 0.741             | 0.665        |
| ArXivHierarchicalClusteringP2P         | 0.645        | 0.630        | 0.639        | <b>0.646</b> | 0.634             | 0.639        |
| ImdbClassification                     | 0.960        | <b>0.962</b> | 0.955        | 0.906        | 0.959             | 0.949        |
| Banking77Classification                | 0.855        | <b>0.861</b> | 0.849        | 0.838        | 0.853             | 0.823        |
| Touche2020Retrieval.v3                 | 0.478        | 0.391        | <b>0.490</b> | 0.459        | 0.452             | 0.470        |
| SummEvalSummarization.v2               | 0.336        | 0.354        | <b>0.363</b> | 0.332        | 0.361             | 0.353        |
| TwitterURLCorpus                       | <b>0.873</b> | 0.859        | 0.864        | 0.862        | 0.865             | 0.850        |
| AmazonCounterfactualClassification     | 0.887        | <b>0.918</b> | 0.893        | 0.731        | 0.896             | 0.867        |
| MedrxivClusteringS2S.v2                | 0.423        | <b>0.428</b> | 0.421        | 0.409        | 0.423             | 0.403        |
| StackExchangeClustering.v2             | 0.759        | <b>0.772</b> | 0.758        | 0.747        | 0.755             | 0.742        |
| FEVERHardNegatives                     | 0.853        | <b>0.857</b> | 0.786        | 0.702        | 0.809             | 0.835        |
| CQA DupstackUnixRetrieval              | 0.522        | <b>0.545</b> | 0.493        | 0.455        | 0.504             | 0.450        |
| TRECCOVID                              | 0.731        | 0.640        | <b>0.797</b> | 0.702        | 0.733             | 0.682        |
| BIOSSES                                | 0.786        | 0.804        | 0.765        | <b>0.851</b> | 0.771             | 0.781        |
| ArXivHierarchicalClusteringS2S         | 0.648        | 0.634        | 0.644        | 0.645        | 0.645             | <b>0.657</b> |

## K FULL DATASET INSTRUCTIONS

888  
889 This section provides the complete set of natural language instructions used with the datasets in our experiments.  
890 We include both the instructions for the MTEB benchmark datasets and those for the Instruction

893 Following tasks. These instructions define the intended task for each dataset and serve as the input prompts  
 894 during embedding evaluation. The full text of the instructions is listed in Table 11 and Table 12, respectively.  
 895

896 Table 11: Instructions for the corresponding datasets in the MTEB benchmark. We mainly follow the  
 897 instructions from the **GritLM** paper. Note that for retrieval and reranking datasets, queries (Q) and corpus  
 898 (C) documents may require different instructions, denoted as {dataset}-Q and {dataset}-C, respectively. For  
 899 datasets with query instructions only (i.e., {dataset}-Q), no instructions are applied to the corpus.

| Dataset                                | Instruction                                                                                                                              |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| SummEvalSummarization                  | Given a news summary, retrieve other semantically similar summaries.                                                                     |
| ArXivHierarchicalClusteringP2P         | Identify the main and secondary category of Arxiv papers based on the titles and abstracts.                                              |
| ArXivHierarchicalClusteringS2S         | Identify the main and secondary category of Arxiv papers based on the titles.                                                            |
| Touche2020Retrieval.v3-Q               | Given a question, retrieve passages that answer the question.                                                                            |
| ClimateFEVERHardNegatives-Q            | Given a claim about climate change, retrieve documents that support or refute the claim.                                                 |
| FEVERHardNegatives-Q                   | Given a claim, retrieve documents that support or refute the claim.                                                                      |
| HotpotQAHardNegatives-Q                | Given a multi-hop question, retrieve documents that can help answer the question.                                                        |
| AmazonCounterfactualClassification     | Classify a given Amazon customer review text as either counterfactual or not-counterfactual.                                             |
| AmazonPolarityClassification           | Classify Amazon reviews into positive or negative sentiment.                                                                             |
| AmazonReviewsClassification            | Classify the given Amazon review into its appropriate rating category.                                                                   |
| Banking77Classification                | Given a online banking query, find the corresponding intents.                                                                            |
| EmotionClassification                  | Classify the emotion expressed in the given Twitter message into one of the six emotions: anger, fear, joy, love, sadness, and surprise. |
| ImdbClassification                     | Classify the sentiment expressed in the given movie review text from the IMDB dataset.                                                   |
| MassiveIntentClassification            | Given a user utterance as query, find the user intents.                                                                                  |
| MassiveScenarioClassification          | Given a user utterance as query, find the user scenarios.                                                                                |
| MTOPDomainClassification               | Classify the intent domain of the given utterance in task-oriented conversation.                                                         |
| MTOPIntentClassification               | Classify the intent of the given utterance in task-oriented conversation.                                                                |
| ToxicConversationsClassification       | Classify the given comments as either toxic or not toxic.                                                                                |
| TweetSentimentExtractionClassification | Classify the sentiment of a given tweet as either positive, negative, or neutral.                                                        |
| ArxivClusteringP2P                     | Identify the main and secondary category of Arxiv papers based on the titles and abstracts.                                              |
| ArxivClusteringS2S                     | Identify the main and secondary category of Arxiv papers based on the titles.                                                            |
| BiorxivClusteringP2P                   | Identify the main category of Biorxiv papers based on the titles and abstracts.                                                          |
| BiorxivClusteringS2S                   | Identify the main category of Biorxiv papers based on the titles.                                                                        |
| MedrxivClusteringP2P                   | Identify the main category of Medrxiv papers based on the titles and abstracts.                                                          |
| MedrxivClusteringS2S                   | Identify the main category of Medrxiv papers based on the titles.                                                                        |
| RedditClustering                       | Identify the topic or theme of Reddit posts based on the titles.                                                                         |
| RedditClusteringP2P                    | Identify the topic or theme of Reddit posts based on the titles and posts.                                                               |
| StackExchangeClustering                | Identify the topic or theme of StackExchange posts based on the titles.                                                                  |
| StackExchangeClusteringP2P             | Identify the topic or theme of StackExchange posts based on the given paragraphs.                                                        |
| TwentyNewsgroupsClustering             | Identify the topic or theme of the given news articles.                                                                                  |
| SprintDuplicateQuestions               | Retrieve duplicate questions from Sprint forum.                                                                                          |

939 Continued on next page

**Table 11 – continued from previous page**

| <b>Dataset</b>                      | <b>Instruction</b>                                                                                                                |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| TwitterSemEval2015                  | Retrieve tweets that are semantically similar to the given tweet.                                                                 |
| TwitterURLCorpus                    | Retrieve tweets that are semantically similar to the given tweet.                                                                 |
| AskUbuntuDupQuestions- <b>Q</b>     | Retrieve duplicate questions from AskUbuntu forum.                                                                                |
| AskUbuntuDupQuestions- <b>C</b>     | Retrieve duplicate questions from AskUbuntu forum.                                                                                |
| MindSmallReranking- <b>Q</b>        | Retrieve relevant news articles based on user browsing history.                                                                   |
| MindSmallReranking- <b>C</b>        | Retrieve relevant news articles based on user browsing history.                                                                   |
| SciDocsRR- <b>Q</b>                 | Given a title of a scientific paper, retrieve the titles of other relevant papers.                                                |
| SciDocsRR- <b>C</b>                 | Given a title of a scientific paper, retrieve the titles of other relevant papers.                                                |
| StackOverflowDupQuestions- <b>Q</b> | Retrieve duplicate questions from StackOverflow forum.                                                                            |
| StackOverflowDupQuestions- <b>C</b> | Retrieve duplicate questions from StackOverflow forum.                                                                            |
| ArguAna- <b>Q</b>                   | Given a claim, find documents that refute the claim.                                                                              |
| ClimateFEVER- <b>Q</b>              | Given a claim about climate change, retrieve documents that support or refute the claim.                                          |
| CQADupstackRetrieval- <b>Q</b>      | Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question.           |
| DBpedia- <b>Q</b>                   | Given a query, retrieve relevant entity descriptions from DBpedia.                                                                |
| FEVER- <b>Q</b>                     | Given a claim, retrieve documents that support or refute the claim.                                                               |
| FiQA2018- <b>Q</b>                  | Given a financial question, retrieve user replies that best answer the question.                                                  |
| HotpotQA- <b>Q</b>                  | Given a multi-hop question, retrieve documents that can help answer the question.                                                 |
| MSMARCO- <b>Q</b>                   | Given a web search query, retrieve relevant passages that answer the query.                                                       |
| NFCorpus- <b>Q</b>                  | Given a question, retrieve relevant documents that best answer the question.                                                      |
| NQ- <b>Q</b>                        | Given a question, retrieve Wikipedia passages that answer the question.                                                           |
| QuoraRetrieval- <b>Q</b>            | Given a question, retrieve questions that are semantically equivalent to the given question.                                      |
| SCIDOCs- <b>Q</b>                   | Given a scientific paper title, retrieve paper abstracts that are cited by the given paper.                                       |
| SciFact- <b>Q</b>                   | Given a scientific claim, retrieve documents that support or refute the claim.                                                    |
| Touche2020- <b>Q</b>                | Given a question, retrieve detailed and persuasive arguments that answer the question.                                            |
| TRECCOVID- <b>Q</b>                 | Given a query on COVID-19, retrieve documents that answer the query.                                                              |
| STS12                               | Retrieve semantically similar text.                                                                                               |
| STS13                               | Retrieve semantically similar text.                                                                                               |
| STS14                               | Retrieve semantically similar text.                                                                                               |
| STS15                               | Retrieve semantically similar text.                                                                                               |
| STS16                               | Retrieve semantically similar text.                                                                                               |
| STS17                               | Retrieve semantically similar text.                                                                                               |
| STS22                               | Retrieve semantically similar text.                                                                                               |
| BIOSSES                             | Retrieve semantically similar text.                                                                                               |
| SICK-R                              | Retrieve semantically similar text.                                                                                               |
| STSBenchmark                        | Retrieve semantically similar text.                                                                                               |
| SummEval                            | Given a news summary, retrieve other semantically similar summaries.                                                              |
| CQADupstackTexRetrieval- <b>Q</b>   | Represent the title of a user question to find a duplicate user question title with body from the Tex StackExchange forum.        |
| CQADupstackTexRetrieval- <b>C</b>   | Represent the question title with body posted by a user to find a duplicate user question title from the Tex StackExchange forum. |

Continued on next page

987  
988 **Table 11 – continued from previous page**  
989

| 990 <b>Dataset</b>                     | 991 <b>Instruction</b>                                                                                                                         |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 992 CQADupstackWebmastersRetrieval-Q   | 993 Represent the title of a user question to find a duplicate user question title with body from the Webmasters StackExchange forum.          |
| 994 CQADupstackWebmastersRetrieval-C   | 995 Represent the question title with body posted by a user to find a duplicate user question title from the Webmasters StackExchange forum.   |
| 996 CQADupstackEnglishRetrieval-Q      | 997 Represent the title of a user question to find a duplicate user question title with body from the English StackExchange forum.             |
| 998 CQADupstackEnglishRetrieval-C      | 999 Represent the question title with body posted by a user to find a duplicate user question title from the English StackExchange forum.      |
| 1000 CQADupstackGamingRetrieval-Q      | 1001 Represent the title of a user question to find a duplicate user question title with body from the Gaming StackExchange forum.             |
| 1002 CQADupstackGamingRetrieval-C      | 1003 Represent the question title with body posted by a user to find a duplicate user question title from the Gaming StackExchange forum.      |
| 1004 CQADupstackGisRetrieval-Q         | 1005 Represent the title of a user question to find a duplicate user question title with body from the Gis StackExchange forum.                |
| 1006 CQADupstackGisRetrieval-C         | 1007 Represent the question title with body posted by a user to find a duplicate user question title from the Gis StackExchange forum.         |
| 1008 CQADupstackUnixRetrieval-Q        | 1009 Represent the title of a user question to find a duplicate user question title with body from the Unix StackExchange forum.               |
| 1010 CQADupstackUnixRetrieval-C        | 1011 Represent the question title with body posted by a user to find a duplicate user question title from the Unix StackExchange forum.        |
| 1012 CQADupstackMathematicaRetrieval-Q | 1013 Represent the title of a user question to find a duplicate user question title with body from the Mathematica StackExchange forum.        |
| 1014 CQADupstackMathematicaRetrieval-C | 1015 Represent the question title with body posted by a user to find a duplicate user question title from the Mathematica StackExchange forum. |
| 1016 CQADupstackStatsRetrieval-Q       | 1017 Represent the title of a user question to find a duplicate user question title with body from the Stats StackExchange forum.              |
| 1018 CQADupstackStatsRetrieval-C       | 1019 Represent the question title with body posted by a user to find a duplicate user question title from the Stats StackExchange forum.       |
| 1020 CQADupstackPhysicsRetrieval-Q     | 1021 Represent the title of a user question to find a duplicate user question title with body from the Physics StackExchange forum.            |
| 1022 CQADupstackPhysicsRetrieval-C     | 1023 Represent the question title with body posted by a user to find a duplicate user question title from the Physics StackExchange forum.     |
| 1024 CQADupstackProgrammersRetrieval-Q | 1025 Represent the title of a user question to find a duplicate user question title with body from the Programmers StackExchange forum.        |
| 1026 CQADupstackProgrammersRetrieval-C | 1027 Represent the question title with body posted by a user to find a duplicate user question title from the Programmers StackExchange forum. |
| 1028 CQADupstackAndroidRetrieval-Q     | 1029 Represent the title of a user question to find a duplicate user question title with body from the Android StackExchange forum.            |
| 1030 CQADupstackAndroidRetrieval-C     | 1031 Represent the question title with body posted by a user to find a duplicate user question title from the Android StackExchange forum.     |
| 1032 CQADupstackWordpressRetrieval-Q   | 1033 Represent the title of a user question to find a duplicate user question title with body from the Wordpress StackExchange forum.          |
| 1034 CQADupstackWordpressRetrieval-C   | 1035 Represent the question title with body posted by a user to find a duplicate user question title from the Wordpress StackExchange forum.   |

1027 **Table 12: Instructions for two Instruction Following datasets used in **Inbedder** paper.**

| 1029 <b>Dataset</b>           | 1030 <b>Instruction</b>                                 |
|-------------------------------|---------------------------------------------------------|
| 1031 IntentEmotion (Intent)   | 1032 Represent the intent of this text.                 |
| 1033 IntentEmotion (Emotion)  | 1034 Represent the emotion of this text.                |
| 1035 NYTClustering (Location) | 1036 Represent the text based on where the news happen. |

Continued on next page

**Table 12 – continued from previous page**

| <b>Dataset</b>        | <b>Instruction</b>                                  |
|-----------------------|-----------------------------------------------------|
| NYTClustering (Topic) | Represent the text based on the main news category. |

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080