
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

LET LLMS SPEAK EMBEDDING LANGUAGES:
GENERATIVE TEXT EMBEDDINGS VIA ITERATIVE CON-
TRASTIVE REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing large language model (LLM)-based embeddings typically adopt an encoder-only
paradigm, treating LLMs as static feature extractors and overlooking their core gener-
ative strengths. We introduce GIRCSE (Generative Iterative Refinement for Contrastive
Sentence Embeddings), a novel framework that leverages autoregressive generation to iter-
atively refine semantic representations. By producing sequences of soft tokens optimized
under contrastive objective, GIRCSE captures latent concepts and implicit semantics that
encoder-only methods often miss. To guide this process, we propose an Iterative Con-
trastive Refinement (ICR) objective that encourages each refinement step to yield better
representations. Extensive experiments show that GIRCSE outperforms strong LLM-
based embedding baselines on the MTEB benchmark and instruction-following tasks.
Moreover, GIRCSE exhibits an emergent test-time scaling property: generating more to-
kens at inference steadily improves embedding quality. Our results establish generative
iterative refinement as a new paradigm for representation learning.

1 INTRODUCTION

Text embeddings are fundamental to a wide range of natural language processing (NLP) applications, in-
cluding information retrieval, semantic search, clustering, and recommendation (Karpukhin et al., 2020; Liu
et al., 2024; Xiong et al., 2021). With the rise of large language models (LLMs), representation learning has
advanced further: fine-tuning LLMs on large corpora now yields superior performance on several embedding
benchmarks (Tao et al., 2024).

However, current LLM-based embeddings typically operate as single-pass feature extractors: embeddings
are extracted in a single forward pass with contrastive learning objectives, without leveraging the gener-
ative capacity of LLMs. This overlooks a key strength of pretrained LLMs—their ability to reason and
iteratively refine through autoregressive generation (Wei et al., 2022; Muennighoff et al., 2025). This raises
a fundamental question: Can LLM-based embedding models also benefit from iterative generation? We
hypothesize that generation enables iterative refinement of embeddings, allowing models to progressively
consolidate semantics over multiple steps rather than encoding all semantics in a single pass.

Challenges. Designing effective generative embeddings presents several challenges. First, naive genera-
tion degrades embedding quality since pretrained LLMs are optimized for fluent text, not tokens aligned
with semantic similarity (see Section 5.1). Second, unlike traditional language modeling, there is no clear
generation target: it is unclear what content the model should generate to obtain universally useful embed-
dings. Third, existing embedding learning frameworks do not accommodate multi-step generative refine-
ment. Therefore, it is necessary to develop new training paradigms that provide meaningful supervision for
generative embeddings.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

The emotion in this text is

Hidden States Text Embedding

Performance improves through longer reasoning

…

Can Embedding Quality benefit
from iterative generation ?

Pre-trained LLM

Outputs fluent,
human readable context

Embedding LLM
Outputs semantic

text representation

Why is it so hard to
track down this card?

Text

Represent the
emotion of this text.

Task
Static and unexpandable

Iterative Contrastive Refinement (ICR)GIRCSE: Generative Embedding

…

Shared LLM Encoder

…

Why is this card?

Soft TokenInput Token H.S. of Input Token

H.S. of Soft Token Text Embeddings

Soft Token Gen.

Emb. Quality improves with more gen. stepsSoft token stores more semantic
information and retain gradient flow

struggle

frustrated

Soft Token Generation

LM
Head

Soft Token Distribution

Token Emb. Table

Weighted sum

Expands beyond surface-level discriminative emb.

LLM* Shared LLM Enc.

LLM* LLM* LLM*

Generative Pooling

Figure 1: Top: Comparison between embedding LLMs that extract static representations and generative
LLMs that can iteratively refine through reasoning. Bottom: Overview of GIRCSE. Our framework com-
bines Soft Token Generation and Iterative Contrastive Refinement to enable end-to-end generative training.

Motivation. We argue that LLMs should learn to speak an embedding language: generating tokens not
constrained by human readability but optimized for semantic representation. Crucially, these tokens should
be discovered through end-to-end training jointly with contrastive objectives, enabling the model to
generate semantically meaningful tokens for iterative embedding refinement.

Building on this motivation, we propose GIRCSE—Generative Iterative Refinement for Contrastive Sen-
tence Embeddings—a novel framework that bridges this gap between generative LLM capabilities and em-
bedding optimization. GIRCSE consists of two major innovations: (1) Soft Token Generation preserves
differentiability for end-to-end contrastive training and captures richer semantics by retaining the diversity
of the full probability distribution. (2) Iterative Contrastive Refinement (ICR) provides contrastive super-
vision at every generation step, forcing the early generated tokens to capture useful semantics while later
tokens progressively refine representations. As illustrated in Fig. 1 and detailed in Section 5.2, this paradigm
enables GIRCSE to generate instruction-aware refinement tokens (e.g.,”frustrated” and ”struggle”) that cap-
ture the implicit emotion beyond the surface text. In summary, we make the following contributions:

• Novel embedding framework. We propose GIRCSE, a novel end-to-end framework that integrates au-
toregressive generation with contrastive learning. Unlike prior methods, GIRCSE generates soft refinement
tokens without explicit targets, progressively distilling semantics into high-quality embeddings.

• Superior performance. We compare GIRCSE with 18 state-of-the-art embedding models. By generating
only up to 5–20 additional tokens, GIRCSE ranks within top 5–6 on MTEB and top 2–3 on instruction
following, leading to the best overall ranking across benchmarks. Meanwhile, GIRCSE consistently shows
stable improvements over reproduced fair baselines on different backbone and varying data scales.

• Test-time scaling ability for text embedding. We demonstrate that GIRCSE exhibits consistent embed-
ding quality improvements with increased refinement steps at inference time, representing a novel scaling
paradigm for embedding models analogous to test-time compute scaling in reasoning LLMs.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Early Embedding Models. Text embedding methods have evolved from traditional word-level repre-
sentations to sophisticated neural approaches. Early methods like Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014) captured basic semantic relationships but lacked contextual understand-
ing. The introduction of transformer-based models marked a significant advancement, with BERT-based
approaches like Sentence-BERT (Reimers & Gurevych, 2019) and SimCSE (Gao et al., 2021) establishing
contrastive learning as the dominant paradigm for learning sentence representations.

LLM-based Embedding models. Recent works have successfully adapted LLMs for representation learn-
ing through various architectural and training modifications. E5-mistral (Wang et al., 2024) is one of
the early works that demonstrated that fine-tuning LLM could significantly outperform early stage meth-
ods. Recognizing that the unidirectional attention mechanism in LLMs may limit text embedding quality,
LLM2Vec (BehnamGhader et al., 2024) introduces a bidirectional attention mechanism combined with av-
erage pooling to enhance embedding quality. NV-Embed (Lee et al., 2024) further improves the pooling
method by incorporating an additional Latent Attention Layer and implements a two-stage training strategy
to address the challenge of false negatives in non-retrieval tasks. BGE-en-icl (Li et al., 2025) suggests that
retaining the original framework of LLMs and leveraging in-context learning is the optimal approach for
generating text embeddings.

Towards Generative Text Embedding. A smaller line of research has explored generative approaches for
text embeddings. For example, Inbedder (Peng et al., 2024) combines instruction finetuning with token
generation, achieving strong performance on instruction-following tasks but showing limited generalization
to broader tasks (see Table 2). As summarized in Table 1, most existing approaches differ only in pooling
strategies or auxiliary training techniques, while generative embeddings remain largely underexplored.

Table 1: Comparison of LLM-based embedding models. “Bidir.” indicates bidirectional attention, “GP”
means generated tokens pooling, “TTS” refers to test-time scaling capability.

Method Attention Pooling LoRA Generation TTS Gen. Token Training Obj.

E5-MISTRAL Causal EOS ✓ ✗ ✗ N/A sup. CL
SFR-EMBEDDING Causal EOS ✗ ✗ ✗ N/A sup. CL
BGE-EN-ICL Causal EOS ✓ ✗ ✗ N/A ICL & sup. CL

GRITLM Bidir. Avg. ✗ ✗ ✗ N/A NTP & sup. CL
LLM2VEC Bidir. Avg. ✓ ✗ ✗ N/A MLM & sup. CL
GTE-QWEN2 Bidir. Avg. ✗ ✗ ✗ N/A unsup. CL & sup. CL
NV-EMBED-V1 Bidir. LAT ✓ ✗ ✗ N/A Two-stage sup. CL

INBEDDER Causal GP ✓ ✓ ✗ Hard Token Instruction Tuning
GIRCSE Causal GP ✓ ✓ ✓ Soft Token sup. CL & ICR

3 GIRCSE: FROM DISCRIMINATIVE TO GENERATIVE EMBEDDING

We now detail our proposed generative embedding framework. Section 3.1 first establishes our core au-
toregressive embedding generation process, introducing the fundamental concepts and notation. Section 3.2
then details the soft token generation mechanism that enables differentiable optimization within this frame-
work. Finally, Section 3.3 presents our iterative contrastive refinement objective, guiding the model towards
progressively higher-quality representations.

3.1 GENERATIVE EMBEDDING FRAMEWORK

We consider a pretrained language model with parameters ψ = {E, θ, ϕ}, where E ∈ R|V|×d is the token
embedding matrix, θ denotes the parameters of the Transformer decoder, and ϕ corresponds to the parameters

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

of the LM head for next token generation. Here d is the embedding dimension and |V| is the vocabulary
size. Given an input sequence of N tokens T = {t1, t2, . . . , tN} from vocabulary V , we first obtain token
embeddings X as:

X = (E[t1],E[t2], . . . ,E[tN]) ∈ RN×d. (1)
Next, our goal is to autoregressively generate a sequence of K auxiliary soft tokens S = (s1, s2, . . . , sK) ∈
RK×|V| that iteratively refines the representation space. Each soft token sk is generated autoregressively
conditioned on the input sequence and previously generated tokens:

pψ(S | T) =

K∏
k=1

pψ(sk | T,S<k), (2)

where pψ represents the generative distribution and S<k = (s1, . . . , sk−1) are the previously generated soft
tokens. The soft tokens are then mapped into embedding space1, producing D = (d1, . . . ,dk) ∈ RK×d,
and is concatenated with input embeddings X to further feed into the Transformer decoder fθ:

H = fθ([X;D]) = (h
(L)
1 ,h

(L)
2 , . . . ,h

(L)
N+K) ∈ R(N+K)×d, (3)

where h
(L)
i denotes the hidden state of the i-th token at the final (i.e., L-th) layer. We then extract the

representations corresponding to the generated soft tokens, and aggregate them into a single representation
z via a pooling operation:

z = P(G) =
1

K

K∑
i=1

gi, G = (g1, . . . ,gK) = (h
(L)
N+1, . . . ,h

(L)
N+K) ∈ RK×d, (4)

where P denotes a general pooling function, with mean pooling as our default choice.

Computational Considerations. Since our approach involves iterative generation with K steps, it naturally
incurs a higher computational cost compared to single-step baselines (Appendix F). However, we find that
generating only a small number of tokens (e.g., K = 5 or 10) is sufficient to achieve strong performance
(Section 5.1). Moreover, this cost could be largely mitigated via KV caching (Appendix E), where the
FLOPs are reduced to nearly the same level as standard embedding models (within ∼1.0–1.1×).

3.2 SOFT TOKEN GENERATION

A critical challenge in our autoregressive framework is to maintain the differentiability throughout the gen-
eration process during training. Traditional discrete token sampling would break gradient flow, preventing
end-to-end optimization. We address this through a novel soft token generation mechanism that preserves
continuous optimization while capturing rich semantic information.

At each generation step k ∈ {1, . . . ,K}, the generative distribution pψ is instantiated via the LM head ϕ.
Let h′

k−1 = h
(L)
N+k−1 denote the last layer hidden representation produced by the encoder given the input

sequence and the previously generated soft tokens up to step k − 1, the LM head then produces a soft token
sk ∈ R|V| as a probability distribution over the vocabulary:

sk = softmax(Wϕh
′
k−1 + bϕ), (5)

where Wϕ ∈ R|V|×d is the LM head weight matrix and bϕ is the bias term. Given the soft token sk, its
embedding dk ∈ Rd is obtained by computing a convex combination of all token embeddings according to
their predicted probabilities:

dk =

|V|∑
i=1

sk,iei, (6)

1We defer the detailed soft token generation mechanism to Section 3.2, while here we focus on the overall framework

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

where sk,i is the i-th component of sk and ei is the i-th row of the embedding matrix E. This soft token
generation approach offers two advantages: (1) Differentiability: The weighted combination preserves
gradients throughout the generation process, enabling end-to-end training with contrastive objectives. (2)
Semantic Richness: Rather than collapse the next-token distribution into a single token, soft tokens capture
the semantic diversity of the full probability distribution.

3.3 GUIDING GENERATIVE EMBEDDING WITH ITERATIVE CONTRASTIVE REFINEMENT

To guide the generative embedding process towards high-quality representations, we introduce an iterative
contrastive refinement (ICR) objective that encourages each generation step to yield increasingly refined
representations. ICR combines (1) Stepwise Contrastive Loss, which supervises each generation step with
contrastive loss, and (2) Iterative Refinement Regularization, which enforces progressive embedding qual-
ity improvement for each step.

Stepwise Contrastive Loss. In autoregressive soft token generation, supervising only the final embedding
(i.e.,K-th generation step) might collapse intermediate steps into trivial or noisy representations. We instead
apply contrastive supervision at every generation step. Concretely, for step k, we pool the first k generated
tokens to form an intermediate embedding zk = P(G1:k) following Eq. (4). Given a query–document pair
(q, d+), we compute the contrastive loss for all generation steps as:

Lcontrast =

K∑
k=1

Lk, Lk = − log
exp

(
σ(zqk, z

d+

k)/τ
)∑

d∈B exp
(
σ(zqk, z

d
k)/τ

) , (7)

whereB denotes the document set (both positive and negative documents), σ is the cosine similarity function,
and τ is the temperature hyperparameter. This stepwise supervision ensures all intermediate representations
align with the contrastive objective, preventing early steps from drifting and providing richer supervision.

Iterative Refinement Regularization. We empirically observe that simply increasing the number of gen-
eration steps does not guarantee improved embedding quality, as LLMs often produce highly similar tokens
which leads to redundant information in the multi-step process. To address this, we introduce a regularization
term that encourages monotonic improvement across generation steps:

Lreg =
1

K − 1

K−1∑
k=1

max
(
logLk+1 − logLk, 0

)
. (8)

This regularization term penalizes cases where later generation steps fail to outperform earlier ones. Finally,
the overall fine-tuning objective for generative embeddings combines the two terms: Ltotal = Lcontrast+λLreg,
where λ is a hyperparameter that balances contrastive alignment and refinement regularization.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Backbone LLM. Following prior works (Wang et al., 2024; Muennighoff et al., 2024), we adopt Mistral-
7B (Jiang et al., 2023) as the primary backbone and further validate it on Qwen2.5-7B (Yang et al., 2024).

Training Details. For training data, we use the dataset from (Li et al., 2025), which integrates supervised
pairs and hard negatives for contrastive learning across diverse tasks. Due to computational limits, we
sample 20% (0.2M) data for training. Following (Wang et al., 2024; Li et al., 2025), we fine-tune the
LLM as an embedding model with LoRA and contrastive loss, applying task-specific instruction templates.
Specifically, for a given query q, we format it as q+ = Instruct: {task definition}\nQuery: {q}. Detailed
hyperparameters and instructions are in Appendices C and K.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

Evaluation. We evaluate on MTEB (English, v2) (Enevoldsen et al., 2025), covering 41 datasets across 7
task types, reporting official leaderboard scores when available. Following InBedder (Peng et al., 2024),
we also evaluate on INTENTEMOTION and NYTCLUSTERING to test the instruction-following ability of
embedding models. For more extensive comparison, we have also evaluated on TREC datasets used in
FollowIR (Weller et al., 2025) and BEIR (Thakur et al., 2021), detailed results can be found in Appendix I.

Comparison Methods. We compare GIRCSE against four categories of text embedding models. (1)
Non-LLM methods including encoder-based models such as E5-Large (Wang et al., 2022), GTE-
Large (Li et al., 2023b), BGE-Large (Li et al., 2023a), and UAE-Large (Li & Li, 2024). (2)
LLM-based methods are instruction-tuned LLM embeddings, including LLM2Vec (BehnamGhader et al.,
2024), GritLM (Muennighoff et al., 2024), E5-Mistral (Wang et al., 2024), NV-Embed-v1 (Lee
et al., 2024), SFR-Embedding-2 (Meng* et al., 2024), and gte-Qwen2 (Li et al., 2023b). (3)
Generative embeddings cover (i) two-stage approaches that expand text with an auxiliary LLM before
re-encoding (see Appendix G for detail) and (ii) the end-to-end generative model Inbedder (Peng et al.,
2024). (4) Fair Baselines are included by re-implementing two paradigms on the same training data for
fair comparison: (i) Causal-EOS (causal attention + EOS pooling) and (ii) Bidirectional-Avg (bidirectional
attention + average pooling), equivalent to E5-Mistral and GritLM respectively but trained with less data.

4.2 MAIN RESULTS

Table 2 reports the performance comparison across MTEB tasks and instruction-following benchmarks. We
highlight the following observations:

Trade-off between generic tasks and instruction following. State-of-the-art non-generative embedding
models achieve strong results on generic MTEB tasks but lag behind on instruction-following benchmarks.
For example, gte-QWEN2 performs competitively on MTEB (rank 1) but drops notably on instruction-
following tasks (rank 18). Similarly, E5-Mistral ranks 4 on MTEB but falls to 10 on instruction following.
In contrast, generative embedding approaches such as Inbedder reverse this trend, achieving top instruction-
following performance (rank 1), since it is explicitly trained for this setting, but performing poorly on MTEB
(rank 20). A comparable trade-off is also observed in two-stage generative variants of non-generative mod-
els. For instance, E5-Mistral (w/ gen) improves on instruction following (rank 10 → 5) but degrades on
MTEB (rank 4→ 12). Similar patterns are also observed for E5-Large (w/ gen) and GritLM (w/ gen).

GIRCSE overcomes trade-off and strikes a balanced performance. Unlike prior methods, GIRCSE
delivers consistently strong results across both task categories. It not only outperforms fair baselines and
competitive embedding models (e.g., GritLM, LLM2Vec), but also avoids the severe trade-offs observed in
existing approaches. Specifically, GIRCSE ranks within the top 5–6 on MTEB and top 2–3 on instruction-
following tasks, leading to the best overall rankings of 3.5 and 4.5 across benchmarks. Remarkably, while
prior SOTA methods rely on multi-million–scale training datasets, GIRCSE achieves comparable or better
performance with only 0.2M training examples. These results highlight GIRCSE as an efficient embedding
model that achieves both strong general-purpose performance and robust instruction-following ability.

4.3 ABLATION STUDY

To better understand the contributions of different components in GIRCSE, Table 3 represents an ablation
study on generative embedding, stepwise loss (SL), and iterative refinement (IR). Starting from the variant
without generation (i.e., the Causal-EOS baseline), we observe a substantial drop in performance across
both MTEB and instruction-following tasks. Incorporating generative embedding alone yields consistent
improvements across nearly all tasks. Adding SL provides further gains, particularly for classification and
summarization, while the combination of SL and IR achieves the strongest overall performance. Overall,
these results validate the effectiveness of our design in GIRCSE.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Table 2: Performance on MTEB and instruction-following tasks. † Results obtained from the official MTEB
leaderboard. Causal-EOS: causal attention with EOS pooling; Bidirectional-Avg: bidirectional attention
with average pooling. Highlighted rows are our reproductions, trained on a smaller dataset (0.2M) for fair
comparison. Bold = better than fair baselines with same backbone; * = statistically significant (p < 0.05).
For detailed performance of each MTEB dataset, please refer to Appendix J.

MTEB (English, v2) Instruct Following Overall
RankTask Size Vol. Backbone Retr. Rerank. Clust. PairClass. Class. STS Summ. Avg. (Rank) IntEmo NYT Avg. (Rank)

of datasets→ - - - 10 2 8 3 8 9 1 41 1 1 2

Non-LLM Methods
E5-Large† 0.3B 1B BERT 49.31 45.72 45.23 86.06 76.44 80.67 32.34 62.79 (18) 48.63 50.96 49.80 (14) 16.0
GTE-Large† 0.3B 2B BERT 53.29 47.84 48.20 85.08 75.47 83.27 32.90 64.77 (14) 52.62 17.52 35.07 (18) 16.0
BGE-Large† 0.3B 200M BERT 55.44 48.26 48.01 87.13 78.34 82.79 33.13 65.89 (13) 51.66 61.38 56.52 (8) 10.5
UAE-Large† 0.3B 1M RoBERTa 55.91 48.35 47.86 87.25 79.08 84.37 30.13 66.40 (9) 50.49 60.54 55.52 (11) 10.0

LLM-based: Causal-EOS
E5-Mistral† 7B 1.8M Mistral 57.62 49.78 51.44 88.42 79.85 84.32 36.57 67.97 (4) 48.84 65.06 56.95 (10) 7.0
SFR-Embedding-2† 7B 1.7M Mistral 53.75 48.99 59.39 88.09 90.54 80.86 35.54 69.82 (2) 50.49 60.54 55.52 (11) 6.5
gte-Qwen2† 7B 800M QWEN2 58.09 50.47 58.97 85.90 88.52 82.69 35.74 70.72 (1) 52.62 17.52 35.07 (18) 9.5
Fair Baseline 7B 0.2M Mistral 55.24 49.21 54.28 85.65 84.36 73.98 36.31 66.32 (10) 35.33 58.76 47.05 (15) 12.5
Fair Baseline 7B 0.2M QWEN2 51.10 47.49 55.26 84.46 80.10 74.71 33.21 64.18 (17) 66.14 14.71 40.42 (17) 17.0

LLM-based: Bidirectional-Avg
LLM2Vec† 7B 1.5M Mistral 51.27 47.74 44.10 87.99 79.74 83.70 31.05 64.57 (15) 51.66 61.38 56.52 (8) 11.5
GritLM† 7B 2M Mistral 54.95 49.59 50.82 87.29 81.25 83.03 35.65 67.07 (7) 39.30 79.25 59.28 (6) 6.5
NV-Embed-v1† 7B 1.1M Mistral 60.13 49.16 49.50 87.05 84.11 82.20 31.40 68.32 (3) 52.61 60.62 56.62 (7) 5.0
Fair Baseline 7B 0.2M Mistral 55.41 48.74 54.57 86.34 84.94 75.87 36.09 66.96 (8) 21.45 66.42 43.94 (16) 12.0
Fair Baseline 7B 0.2M QWEN2 52.99 47.11 54.75 83.31 82.66 72.81 35.30 64.97 (16) 43.26 65.21 54.24 (13) 14.5

LLM-based: Two-Stage Generative Embedding
E5-Large (w/ gen.) 0.3B 1B BERT 45.06 43.87 45.37 81.02 72.70 77.35 31.59 59.85 (19) 51.34 51.67 51.51 (12) 15.5
E5-Mistral (w/ gen.) 7B 1.8M Mistral 57.20 49.18 53.02 84.26 75.97 79.52 31.73 65.92 (12) 58.64 60.89 59.77 (5) 8.5
GritLM (w/ gen.) 7B 2M Mistral 56.48 49.45 52.03 83.36 77.77 79.66 32.82 65.90 (11) 51.16 70.50 60.83 (4) 7.5

LLM-based: End2End Generative Embedding
Inbedder 7B 0.2M LLaMA2 12.50 39.21 51.24 61.17 72.41 74.41 17.24 50.32 (20) 89.68 64.65 77.17 (1) 10.5
GIRCSE 7B 0.2M Mistral 57.10 48.88 56.26 86.18 85.33 76.37 33.56 67.83* (5) 52.19 73.75 62.97 (2) 3.5
GIRCSE 7B 0.2M QWEN2 55.16 49.28 56.62 85.17 86.69 76.30 35.42 67.67* (6) 64.92 60.04 62.48 (3) 4.5

Table 3: Ablation study of GIRCSE with generative embedding (Gen.), stepwise loss (SL), and iterative re-
finement (IR). The variant without generation corresponds to the Causal-EOS baseline. Results are reported
using the Mistral-7B backbone trained on 50K samples.

MTEB (English, v2) Instruct Following
Gen. SL IR Retr. Rerank. Clust. PairCls. Class. STS Summ. Avg. IntEmo NYT Avg.

✗ ✗ ✗ 50.55 48.97 49.91 85.27 80.36 75.76 34.02 63.84 33.11 58.76 47.05
✓ ✗ ✗ 53.17 48.32 52.74 84.75 78.34 78.70 33.86 65.21 48.00 64.93 56.47
✓ ✓ ✗ 54.97 48.86 52.07 85.04 78.63 78.87 35.28 65.69 53.88 66.37 60.13
✓ ✓ ✓ 55.53 48.26 53.71 84.87 79.53 78.93 34.19 66.27 62.70 73.75 62.97

5 ANALYSIS ON GENERATED TOKENS

While Section 4.3 highlights the importance of generative embedding, it remains unclear how the generation
process itself translates to the improved performance. To address this, we present a thorough analysis of
the generation process. In Section 5.1, we first discuss how the embedding quality changes by varying the
number of generated tokens at inference. Next, in Section 5.2, we conduct a qualitative analysis to under-
stand what tokens are generated and how they evolve under different instructions. This analysis clarifies how
iterative generation improves performance and what semantic signals are encoded in the embedding space.

5.1 EFFECT OF GENERATION LENGTH AT INFERENCE

We first examine how performance varies with the number of generated tokens K at inference. We evaluate
K ∈ {1, 3, 5, 10, 15, 20} and compare against the non-generative baseline Causal-EOS. Results (Fig. 2)

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

1 3 5 10 15 20
Generated Tokens

0.00

0.01

0.02

0.03

Re
la

tiv
e

Im
pr

ov
.

GIRCSE: STS

1 3 5 10 15 20
Generated Tokens

0.000

0.005

0.010

GIRCSE: Clustering

1 3 5 10 15 20
Generated Tokens

0.0000

0.0025

0.0050

0.0075

GIRCSE: Classification

0 1 3 5 10 20
Generated Tokens

0.2

0.1

0.0

Re
la

tiv
e

Im
pr

ov
.

Causal-EOS: STS

0 1 3 5 10 20
Generated Tokens

0.10

0.05

0.00
Causal-EOS: Clustering

0 1 3 5 10 20
Generated Tokens

0.100

0.075

0.050

0.025

0.000
Causal-EOS: Classification

QWEN-0.5B (GIRCSE)
QWEN-0.5B (Causal-EOS)
LLaMA-3B (GIRCSE)
LLaMA-3B (Causal-EOS)
Mistral-7B (GIRCSE)
Mistral-7B (Causal-EOS)

Figure 2: Effect of generation length at inference. Top: GIRCSE consistently improves with longer gener-
ations (10–20 tokens) despite been trained on only 5 tokens. Bottom: Baseline models show degraded or
fluctuated performance across generation lengths. Gray area indicates configurations beyond training length.

are reported on three LLM backbones and three representative MTEB tasks, with relative improvements
measured against K = 1 for GIRCSE and against the no-generation baseline for Causal-EOS. For a more
comprehensive analysis, we further evaluate GIRCSE trained with two additional backbones: QWEN2.5-
0.5B (Yang et al., 2024) and LLaMA3.2-3B (Dubey et al., 2024). We have the following two key findings:

(1) GIRCSE exhibits test-time scaling for embeddings. Increasing K consistently improves performance
across diverse tasks (e.g., STS, clustering, classification) and across model sizes. In contrast, the non-
generative method (Causal-EOS) does not benefit from additional generation and often degrades in per-
formance. This suggests that GIRCSE successfully learns an iterative refinement mechanism that converts
additional inference computation into stronger semantic representations—analogous to test-time compute
scaling in reasoning LLMs (Muennighoff et al., 2025), but novel in the context of embedding models.

(2) ICR enables GIRCSE to generalize beyond training configurations. Although GIRCSE is trained
withK = 5, its performance improves monotonically within the training regime (K = 1, 3, 5) and continues
to improve even beyond it (K = 10, 15, 20). This extrapolation capability suggests that our ICR training
objective enables the learned refinement process to generalize beyond the training configuration, allowing
GIRCSE to continue improving with additional inference steps. Overall, GIRCSE establishes test-time
scaling as a new paradigm for embedding models, enabling controllable and training-free performance gains
through adjustable generation length.

5.2 QUALITATIVE ANALYSIS ON GENERATED TOKENS

Having shown that generating more tokens improves performance, we next ask: what do these tokens cap-
ture? We analyze generations for the sentence “Why is it so hard to track down this card?” under two
prompts: representing intention and emotion. At each generation step k, we collect the top-30 candidates
from the soft token distribution sk, aggregate across steps, and report most frequent tokens in Table 4,
alongside results from GIRCSE before contrastive fine-tuning. Before fine-tuning, GIRCSE (before FT)
often yields generic or semantically weak tokens. After fine-tuning, we observe progressive semantic re-
finement that aligns with the results in Section 5.1. At early steps (1–5), GIRCSE generates core content
words (e.g., why, hard, card). While at later steps, the outputs diverge by different instructions: intention
produces tokens such as seek, elusive, inquiry, and emotion yields tokens like frustrating, struggle . This
suggests multi-step generation acts as a semantic chain of thought, iteratively steering representations toward
nuanced, instruction-aligned regions of the embedding space.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Table 4: Qualitative analysis of generated tokens. Gray indicates generic/stopword-like tokens. Yellow
marks core input-related tokens shared across instructions. Instruction-specific expansions are shown in
Green (intention) and Red (emotion).

Input Sentence “Why is it so hard to track down this card?”

Instruction “Represent the intention of this text.” “Represent the emotion of this text.”

GIRCSE (Before FT) this , so, do, how, i, is, it , the, we, what why, how, what, this, it, is , you, can

GIRCSE (Step 1–5) why, is , it , hard, track/ tracking, card, this why, is , it , hard, track, tracking, card, this , so, difficult

GIRCSE (Step 6–10) [prev.] + seek, elusive, so [prev.] + frustrating, tough, persistent , struggle , challenging

GIRCSE (Step 11–20) [prev.] + question, inquiry [prev.] + perseverance, stuck, complicated

6 DISCUSSION OF ROBUSTNESS AND LEARNING EFFICIENCY

To assess the robustness and learning efficiency of our method, we conduct comprehensive experiments
across varying data scales and backbone architectures. Specifically, we train different models with {50K,
100K, 200K} training samples using three widely adopted open-source LLMs as base models: Qwen-0.5B,
Llama-3B, and Mistral-7B. We compare GIRCSE against two fair baselines: Causal-EOS and Bidirectional-
Avg. Fig. 3 shows that our method consistently outperforms both baselines across all data scales and model
sizes. In particular, when trained with only 50K samples, our method improves over Causal-EOS by +5.7
points on Qwen-0.5B (61.2% vs. 55.5%) and by +2.8 points on Llama-3B (65.5% vs. 62.7%). Even with
stronger backbones such as Mistral-7B, our approach still yields gains of +2.4 points (66.2% vs. 63.8%).
The performance gap becomes more pronounced when the training data is limited. These findings indicate
that our approach not only achieves superior performance across different scales of model size but also learns
more effectively under limited training data.

50K 100K 200K
Training Samples

50%

55%

60%

65%

70%

Av
g.

 M
TE

B
Sc

or
e

(%
)

55.5
57.9

60.2
58.2 59.2

61.061.2 62.0 62.7

Qwen-0.5B

50K 100K 200K
Training Samples

50%

55%

60%

65%

70%

62.7
64.5

65.9

63.1
65.5 66.465.5 66.3 66.9

LLaMA-3B

50K 100K 200K
Training Samples

50%

55%

60%

65%

70%

63.8 64.8
66.3

63.8

66.6 67.066.2 66.8 67.8
Mistral-7B

Causal-EOS Bidirectional-Avg GIRCSE

Figure 3: Comparison of average MTEB scores (%) between GIRCSE and two fair baselines across three
backbone LLMs and varying training sample sizes. GIRCSE consistently delivers superior performance,
especially under limited-data settings.

7 CONCLUSION

We presented GIRCSE, a generative embedding framework that leverages autoregressive refinement to move
beyond single-pass LLM encoders. By generating soft refinement tokens and training with iterative con-
trastive refinement, GIRCSE enables embeddings to progressively distill semantics rather than compressing
them in one step. Experiments show that GIRCSE achieves state-of-the-art or competitive performance
across benchmarks while introducing a novel scaling property: embedding quality improves with additional
refinement steps at test time. These results highlight autoregressive generation as a powerful mechanism for
embedding optimization and open new directions for scalable, semantically rich representations.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. In First Conference
on Language Modeling, 2024.

Alessio Devoto, Yu Zhao, Simone Scardapane, and Pasquale Minervini. A simple and effective l 2 norm-
based strategy for kv cache compression. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pp. 18476–18499, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pp. arXiv–2407, 2024.

Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Márton Kardos, Ashwin Mathur, David Stap, Jay Gala,
Wissam Siblini, Dominik Krzeminski, Genta Indra Winata, et al. Mmteb: Massive multilingual text em-
bedding benchmark. In International Conference on Learning Representations. International Conference
on Learning Representations, 2025.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence embeddings.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6894–
6910, 2021.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard
Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée
Lacroix, and William El Sayed. Mistral 7b. ArXiv, abs/2310.06825, 2023. URL https://api.
semanticscholar.org/CorpusID:263830494.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781, 2020.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models. In The
Thirteenth International Conference on Learning Representations, 2024.

Chaofan Li, Minghao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Defu Lian, Yingxia Shao, and Zheng
Liu. Making text embedders few-shot learners. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=wfLuiDjQ0u.

Xianming Li and Jing Li. Aoe: Angle-optimized embeddings for semantic textual similarity. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1825–1839, 2024.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards general
text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281, 2023a.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards general
text embeddings with multi-stage contrastive learning. arXiv preprint arXiv:2308.03281, 2023b.

10

https://openreview.net/forum?id=nZeVKeeFYf9
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://openreview.net/forum?id=wfLuiDjQ0u

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Qijiong Liu, Nuo Chen, Tetsuya Sakai, and Xiao-Ming Wu. Once: Boosting content-based recommendation
with both open-and closed-source large language models. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining, pp. 452–461, 2024.

Rui Meng*, Ye Liu*, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Sfr-embedding-
2: Advanced text embedding with multi-stage training, 2024. URL https://huggingface.co/
Salesforce/SFR-Embedding-2_R.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, and Douwe
Kiela. Generative representational instruction tuning. In The Thirteenth International Conference on
Learning Representations, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettle-
moyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple test-time scaling. In
Workshop on Reasoning and Planning for Large Language Models, 2025.

Letian Peng, Yuwei Zhang, Zilong Wang, Jayanth Srinivasa, Gaowen Liu, Zihan Wang, and Jingbo Shang.
Answer is all you need: Instruction-following text embedding via answering the question. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 459–477, 2024.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word repre-
sentation. In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp. 1532–1543, 2014.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992,
2019.

Chongyang Tao, Tao Shen, Shen Gao, Junshuo Zhang, Zhen Li, Zhengwei Tao, and Shuai Ma. Llms are
also effective embedding models: An in-depth overview. arXiv preprint arXiv:2412.12591, 2024.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A het-
erogeneous benchmark for zero-shot evaluation of information retrieval models. In Thirty-fifth Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021. URL
https://openreview.net/forum?id=wCu6T5xFjeJ.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533, 2022.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving text
embeddings with large language models. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 11897–11916, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural infor-
mation processing systems, 35:24824–24837, 2022.

11

https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://openreview.net/forum?id=wCu6T5xFjeJ

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Orion Weller, Benjamin Chang, Sean MacAvaney, Kyle Lo, Arman Cohan, Benjamin Van Durme, Dawn
Lawrie, and Luca Soldaini. Followir: Evaluating and teaching information retrieval models to follow
instructions. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
11926–11942, 2025.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text retrieval.
In International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=zeFrfgyZln.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng
Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren,
Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.
Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

12

https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

A USE-OF-LLMS

In this work, we utilized large language models (LLMs) as part of the core research methodology. Specifi-
cally, we fine-tuned existing open-source LLMs (e.g., LLaMA-3 and Mistral) to develop embedding models.
These pre-trained models served as the foundation for our experiments, and our main contributions build
upon their architectures and representations. Additionally, an LLM-based assistant (OpenAI GPT-5) was
used for minor writing support, including grammar checking and improving manuscript readability. All de-
cisions regarding research design, fine-tuning strategies, experimental setup, and final interpretations were
made solely by the authors.

B REPRODUCIBILITY FOR EMBEDDING MODELS

To facilitate reproducibility of our experiments, we provide links to all open-sourced embedding models
used in this paper in Table 5. These links allow researchers to directly access the exact model checkpoints
we relied on.

Table 5: List of models with links for reproducibility.

Model Link

E5-Large huggingface.co/intfloat/e5-large
GTE-Large huggingface.co/thenlper/gte-large
BGE-Large huggingface.co/BAAI/bge-large-en
UAE-Large huggingface.co/WhereIsAI/UAE-Large-V1
E5-Mistral huggingface.co/intfloat/e5-mistral-7b-instruct
SFR-Embedding-2 huggingface.co/Salesforce/SFR-Embedding-2 R
gte-Qwen2 huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
LLM2Vec github.com/McGill-NLP/LLM2Vec
GritLM huggingface.co/GritLM/GritLM-7B
NV-Embed-v1 huggingface.co/nvidia/NV-Embed-v1

C HYPERPARAMETER SETTINGS

For both GIRCSE and the baseline models we re-implement for comparison, we use nearly identical fine-
tuning hyperparameters across different model sizes (QWEN-0.5B, Llama-3B, and Mistral-7B) and training
data scales (50k, 100k, and 200k examples).

We adopt Low-Rank Adaptation (LoRA) (Hu et al., 2022) for efficient fine-tuning, setting the rank to 64
and the scaling factor α to 32. The default learning rate is 1e-5 with a warmup ratio of 0.1. The only
exception is Llama-3B, for which we use a learning rate of 1e-4 to address convergence issues. For other
hyperparameters, we set the temperature of the contrastive loss (Eq. (7)) to 0.02 across all models, and the
weighting coefficient λ in GIRCSE for balancing contrastive alignment and refinement regularization to 1.
Due to limited computational resources, we train with a batch size of 2 and accumulate gradients over 8
steps, resulting in an effective batch size of 16. All models are fine-tuned for a single epoch.

For GIRCSE, we set the number of generated tokens K to 5 during training to avoid the high computational
cost of multiple autoregressive forward passes. During inference, we increase K to 20 to enable longer

13

https://huggingface.co/intfloat/e5-large
https://huggingface.co/thenlper/gte-large
https://huggingface.co/BAAI/bge-large-en
https://huggingface.co/WhereIsAI/UAE-Large-V1
https://huggingface.co/intfloat/e5-mistral-7b-instruct
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
https://github.com/McGill-NLP/LLM2Vec
https://huggingface.co/GritLM/GritLM-7B
https://huggingface.co/nvidia/NV-Embed-v1

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

generations and improved embedding refinement, while mitigating the computational overhead using KV-
cache techniques.

D PSEUDO CODE FOR GIRCSE

Algorithm 1 provides a pseudo-code summary of GIRCSE. We include this block to clarify the core com-
putation steps and facilitate reproducibility. The algorithm specifies how input tokens are embedded, how
soft embeddings are autoregressively generated across multiple steps, and how the final representation is
obtained through pooling. While implementation details may vary, this summary highlights the essential
components needed to reproduce our method.

Algorithm 1: GIRCSE: Autoregressive Generative Embedding
Input: Input tokens (t1, . . . , tN), generation steps K, embedding matrix E, LLM decoder fθ, LM head

parameters Wϕ and bϕ, pooling function P
Output: Final embedding z ∈ Rd

X← (E[t1], . . . ,E[tN]) // Embed the input tokens
D← [] // Initialize the list of generated embeddings
for k = 1 to K do

H← fθ([X;D]) // Forward with input and generated tokens
h′
k−1 ← H[N + k − 1] // Last hidden state for next-token prediction

sk ← softmax(Wϕh
′
k−1 + bϕ) // Compute soft token distribution

dk ←
∑|V|
i=1 sk,iei // Compute soft embedding

D← D∥dk // Append soft embedding for next step

H← fθ([X;D])
G← (H[N + 1], . . . ,H[N +K]) // Collect the last K hidden states
z← P(G) // Pool generated representations into a single embedding
return z

E SCALABILITY ANALYSIS

While GIRCSE offers superior representation quality, a natural concern arises regarding its computational
efficiency. We acknowledge that GIRCSE introduces additional overhead compared to traditional embed-
ding models due to its generative process; a detailed analysis of theoretical computation and memory costs
relative to the discriminative embedding paradigm is provided in Appendix F. Nevertheless, this overhead
can be substantially mitigated through the use of KV caching techniques (Devoto et al., 2024). As shown in
Table 6, GIRCSE without caching requires 2.0–6.0× more FLOPs across different sequence lengths due to
auto-regressive computation. In contrast, with caching enabled, the FLOPs are effectively reduced to base-
line levels (≈1.0×), while memory consumption remains comparable to traditional methods. These results
demonstrate that caching not only ensures scalability but also makes our approach practical for real-world
deployment.

F THEORETICAL COMPUTATIONAL AND MEMORY COST ANALYSIS

To better analyze the additional training and inference cost introduced by GIRCSE, we compare the compu-
tational and memory complexity of the proposed generative embedding framework against the conventional

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Table 6: Computational efficiency comparison across sequence lengths (512, 1024, 2048) and generation
budgets k. Lower is better (↓) for both FLOPs and memory. GIRCSE without caching (red) incurs signif-
icant computational overhead due to auto-regressive processing, whereas KV caching (blue) dramatically
mitigates this cost. Multipliers in parentheses show overhead relative to Causal-EOS method.

FLOPs (T) ↓ Memory (GB) ↓
Method k 512 1K 2K 512 1K 2K
Causal-EOS – 7.33 14.65 29.30 13.89 14.34 15.11
Bidirectional-Avg – 7.33 14.65 29.30 14.03 14.45 15.24

GIRCSE (w/o cache)
1 14.67 (2.00×) 29.32 (2.00×) 58.62 (2.00×) 13.72 13.90 14.28
3 29.39 (4.01×) 58.70 (4.01×) 117.31 (4.00×) 13.74 13.92 14.29
5 44.17 (6.02×) 88.13 (6.02×) 176.04 (6.01×) 13.75 13.94 14.30

GIRCSE (w/ cache)
1 7.34 (1.00×) 14.67 (1.00×) 29.32 (1.00×) 13.73 13.91 14.32
3 7.37 (1.01×) 14.70 (1.00×) 29.35 (1.00×) 13.75 13.93 14.34
5 7.40 (1.01×) 14.73 (1.01×) 29.38 (1.00×) 13.77 13.96 14.35

discriminative embedding paradigm. In the baseline discriminative case, the encoder processes an input of
length N , leading to a per-layer cost dominated by self-attention of order O(N2d) and memory footprint
O(LN2), where d is the embedding dimension and L is the number of layers.

In the generative framework, K auxiliary soft tokens are generated autoregressively. Each generation step
requires an encoder forward pass over N + j tokens (j = 0, . . . ,K − 1) followed by a vocabulary softmax
of cost O(d|V|). After generation, a final encoder pass is performed over the extended sequence of length
N +K. The total attention-dominated computation ratio with respect to the baseline is:

Rcomputation =
Cgen

Cbase
=

(K + 1)N2 +NK(K + 1) + K(K+1)(2K+1)
6

N2
, (9)

which simplifies to Rcomputation ≈ K + 1 when K ≪ N . The additional softmax operations contribute
KO(d|V|), which is typically small compared to the quadratic encoder cost unless N is short or |V| is very
large.

In terms of memory, peak training-time activation usage is dominated by the final encoder pass over N +K
tokens. Thus, the relative peak memory ratio is:

Rmemory =
Mgen

Mbase
≈ (N +K)2

N2
. (10)

This indicates that while the generative embedding framework incurs roughly K additional encoder passes
in computation, the increase in peak memory is modest, scaling quadratically with the extended sequence
length N +K.

G DETAIL IMPLEMENTATION OF TWO-STAGE GENERATION EMBEDDING

The two-stage generation embedding approach enhances representation quality by introducing an interme-
diate expansion step before re-encoding.

In the first stage, an auxiliary large language model (LLM) is prompted to generate a short augmentation
of the input, detailed expansion prompt can be found in Table 7. The prompt instructs the model to output
only the augmentation, within a fixed token budget, without explanations or additional formatting. This

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

augmentation is designed to highlight or enrich semantic information that may be useful for downstream
tasks.

In the second stage, the original instruction and text is concatenated with the generated augmentation, and the
combined sequence is re-encoded into an embedding. This two-step process allows the encoder to capture a
more informative and contextually aligned representation than directly embedding the raw text alone.

Table 7: LLM expansion prompt used for two-stage generation methods.

Input:
Given the INSTRUCTION and the TEXT, produce a helpful augmentation that, when concatenated to
the original TEXT and embedded, is likely to improve embedding quality for the instruction’s task.
Do not explain yourself or output anything other than the augmentation.
Your answer must be written within {256} tokens.

INSTRUCTION: {instruction}
TEXT: {text}

H TRAINING STABILITY ANALYSIS

A potential concern when optimizing models that involve the generation of soft tokens is the risk of gradient
instability. To empirically validate the stability of our proposed model, GIRCSE, we monitor its training
dynamics. We present the training loss curve in Figure 4 and the L2 norm of the gradients in Figure 5.

As shown in the figures, the training loss (Figure 4) demonstrates a smooth and consistent decrease, indi-
cating stable convergence. Furthermore, the gradient norm (Figure 5) converges normally throughout the
training process.

0 2000 4000 6000 8000 10000 12000 14000
Global step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Tr
ai

n
lo

ss

Training loss (GIRCSE-Mistral7B-200K)
Raw loss
EMA smoothed loss

Figure 4: Training loss curve of GIRCSE.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000 12000 14000
Global step

250

500

750

1000

1250

1500

1750

2000
Tr

ai
n

gr
ad

_n
or

m

Training grad_norm (GIRCSE-Mistral7B-200K)
Raw grad_norm
EMA smoothed grad_norm

Figure 5: Training gradient norm (L2) of GIRCSE, plotted with the top 2% of outliers removed for clarity.

I MORE EVALUATION ON NANOBEIR AND TREC BENCHMARKS

In this section, we provide additional evaluation results on the NanoBEIR and TREC benchmarks. These
benchmarks complement the main paper by covering a wider range of retrieval tasks and domains. The
results, presented in Table 8 and Table 9, highlight consistent trends with our main findings, further demon-
strating the robustness and generalization ability of the proposed model compared to strong baselines.

Table 8: Performance comparison on NanoBEIR benchmark.

Dataset E5-Mistral SFR-Embedding-2 gte-Qwen2 LLM2Vec GritLM NV-Embed-v1 GIRCSE GIRCSE
Size 7B 7B 7B 7B 7B 7B 7B 7B
Vol. 1.8M 1.7M 800M 1.5M 2M 1.1M 0.2M 0.2M
Backbone Mistral Mistral QWEN2 Mistral Mistral Mistral Mistral QWEN2

ArguAna 60.13 64.33 72.37 54.41 67.72 68.00 70.18 70.88
ClimateFever 41.75 44.12 33.83 38.09 37.45 42.93 36.83 31.66
DBPedia 71.59 73.81 72.14 70.78 68.15 71.44 71.01 69.81
FEVER 95.30 95.18 80.71 96.94 94.38 96.15 94.23 95.41
FiQA 60.50 65.08 68.23 61.46 65.98 68.07 60.79 55.90
HotpotQA 86.16 91.64 82.06 88.14 91.09 91.05 88.10 88.31
MSMARCO 66.58 66.51 70.67 64.30 62.82 67.80 64.03 61.85
NFCorpus 32.36 38.99 37.67 39.19 40.39 38.54 40.75 36.57
NQ 76.64 82.20 80.99 83.81 82.91 87.11 78.57 70.01
Quora 96.28 95.48 97.44 95.64 95.76 91.59 92.73 88.76
SCIDOCS 36.00 48.18 50.76 43.72 46.32 38.11 44.27 43.97
SciFact 78.30 89.67 67.58 79.41 81.18 78.95 80.90 81.70
Touche2020 51.72 56.66 39.44 49.46 51.89 58.51 46.09 39.03

Avg. 65.64 70.14 65.68 66.57 68.16 69.10 66.81 64.14

J FULL MTEB PERFORMANCE

In the main paper, we reported averaged performance across task categories for clarity. Here, we provide
the full per-dataset results on the MTEB benchmark, covering all tasks included in our evaluation. The

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Table 9: Performance comparison on TREC datasets. † Results obtained from (Weller et al., 2025) Best
results per task (i.e., column) are in bold, with second best results are in underline.

Robust04 News21 Core17 Avg.Model MAP nDCG MAP

No-Instruction IR
E5-base-v2† 13.4 20.9 14.0 16.1
Contriever† 19.7 22.9 15.3 19.3
MonoBERT† 21.0 25.1 18.4 21.5
BM25† 12.1 19.3 8.1 13.2
MonoT5-base† 15.7 11.0 12.2 13.0
E5-large-v2† 17.4 24.3 17.0 19.6
MonoT5-3B† 27.3 16.5 18.2 20.7

Instruction-IR
TART-Contriever† 14.3 21.8 13.3 16.5
INSTRUCTOR-base† 17.2 22.1 15.5 18.3
E5-mistral† 23.1 27.8 18.3 23.1
BGE-base† 16.8 20.0 14.6 17.1
INSTRUCTOR-xl† 19.7 26.1 16.8 20.9
BGE-large† 17.5 22.3 15.0 18.3
GritLM-7B† 28.6 24.4 20.8 24.6
TART-FLAN-T5-xl† 24.6 12.8 17.0 18.1

APIs
OpenAI v3 Large† 27.2 27.2 21.6 25.3
Cohere v3 English† 22.3 28.3 20.6 23.7
Google Gecko† 23.3 29.5 23.2 25.3

Instruct LMs
FLAN-T5-base† 6.4 6.1 6.5 6.3
Llama-2-7B-chat† 6.3 1.7 5.4 4.5
FLAN-T5-large† 14.7 8.0 11.4 11.4
GritLM-Reranker† 9.7 10.2 9.8 9.9
Mistral-7B-instruct† 23.2 27.2 19.7 23.4
FollowIR-7B† 24.8 29.6 20.0 24.8

End2End Generative Embedding
GIRCSE-Mistral-7B 27.9 26.8 23.0 25.9
GIRCSE-Qwen2-7B 23.9 24.1 21.0 23.0

detailed scores in Table 10 allow a more granular comparison across individual datasets and complement the
averaged results presented in the main section.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Table 10: Full evaluation results across MTEB tasks for GIRCSE, Causal-EOS, and Bidirectional-Avg with
Mistral and Qwen backbones. Best results per task (i.e., row) are in bold.

Task GIRCSE Causal-EOS Bidirectional-Avg

Mistral Qwen Mistral Qwen Mistral Qwen

MindSmallReranking 0.294 0.321 0.307 0.308 0.302 0.311
AskUbuntuDupQuestions 0.684 0.664 0.677 0.642 0.673 0.631
TwitterSemEval2015 0.769 0.747 0.760 0.732 0.786 0.707
StackExchangeClusteringP2P.v2 0.499 0.508 0.457 0.463 0.439 0.479
BiorxivClusteringP2P.v2 0.487 0.497 0.439 0.431 0.459 0.472
SICK-R 0.727 0.742 0.731 0.741 0.753 0.746
ToxicConversationsClassification 0.841 0.870 0.781 0.735 0.811 0.760
TweetSentimentExtractionClassification 0.762 0.775 0.730 0.703 0.744 0.723
TwentyNewsgroupsClustering.v2 0.611 0.627 0.598 0.582 0.624 0.569
STS15 0.845 0.833 0.835 0.817 0.839 0.815
MTOPDomainClassification 0.957 0.967 0.958 0.960 0.963 0.944
STSBenchmark 0.832 0.820 0.807 0.814 0.823 0.773
STS17 0.801 0.795 0.774 0.821 0.805 0.806
ClimateFEVERHardNegatives 0.268 0.261 0.220 0.222 0.227 0.269
HotpotQAHardNegatives 0.729 0.737 0.738 0.708 0.735 0.686
FiQA2018 0.552 0.489 0.486 0.480 0.521 0.440
CQADupstackGamingRetrieval 0.641 0.656 0.587 0.576 0.615 0.574
SprintDuplicateQuestions 0.943 0.949 0.946 0.940 0.939 0.942
ArguAna 0.699 0.692 0.694 0.574 0.703 0.662
MassiveIntentClassification 0.772 0.781 0.775 0.757 0.772 0.756
SCIDOCS 0.237 0.250 0.234 0.231 0.242 0.231
STS22.v2 0.690 0.665 0.607 0.447 0.645 0.679
STS12 0.730 0.740 0.724 0.731 0.738 0.708
STS13 0.717 0.725 0.704 0.762 0.714 0.581
MedrxivClusteringP2P.v2 0.429 0.433 0.386 0.338 0.387 0.418
MassiveScenarioClassification 0.793 0.802 0.807 0.778 0.798 0.790
STS14 0.746 0.744 0.710 0.739 0.741 0.665
ArXivHierarchicalClusteringP2P 0.645 0.630 0.639 0.646 0.634 0.639
ImdbClassification 0.960 0.962 0.955 0.906 0.959 0.949
Banking77Classification 0.855 0.861 0.849 0.838 0.853 0.823
Touche2020Retrieval.v3 0.478 0.391 0.490 0.459 0.452 0.470
SummEvalSummarization.v2 0.336 0.354 0.363 0.332 0.361 0.353
TwitterURLCorpus 0.873 0.859 0.864 0.862 0.865 0.850
AmazonCounterfactualClassification 0.887 0.918 0.893 0.731 0.896 0.867
MedrxivClusteringS2S.v2 0.423 0.428 0.421 0.409 0.423 0.403
StackExchangeClustering.v2 0.759 0.772 0.758 0.747 0.755 0.742
FEVERHardNegatives 0.853 0.857 0.786 0.702 0.809 0.835
CQADupstackUnixRetrieval 0.522 0.545 0.493 0.455 0.504 0.450
TRECCOVID 0.731 0.640 0.797 0.702 0.733 0.682
BIOSSES 0.786 0.804 0.765 0.851 0.771 0.781
ArXivHierarchicalClusteringS2S 0.648 0.634 0.644 0.645 0.645 0.657

K FULL DATASET INSTRUCTIONS

This section provides the complete set of natural language instructions used with the datasets in our exper-
iments. We include both the instructions for the MTEB benchmark datasets and those for the Instruction

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Following tasks. These instructions define the intended task for each dataset and serve as the input prompts
during embedding evaluation. The full text of the instructions is listed in Table 11 and Table 12, respectively.

Table 11: Instructions for the corresponding datasets in the MTEB benchmark. We mainly follow the
instructions from the GritLM paper. Note that for retrieval and reranking datasets, queries (Q) and corpus
(C) documents may require different instructions, denoted as {dataset}-Q and {dataset}-C, respectively. For
datasets with query instructions only (i.e., {dataset}-Q), no instructions are applied to the corpus.

Dataset Instruction
SummEvalSummarization Given a news summary, retrieve other semantically similar summaries.
ArXivHierarchicalClusteringP2P Identify the main and secondary category of Arxiv papers based on the

titles and abstracts.
ArXivHierarchicalClusteringS2S Identify the main and secondary category of Arxiv papers based on the

titles.
Touche2020Retrieval.v3-Q Given a question, retrieve passages that answer the question.
ClimateFEVERHardNegatives-Q Given a claim about climate change, retrieve documents that support or

refute the claim.
FEVERHardNegatives-Q Given a claim, retrieve documents that support or refute the claim.
HotpotQAHardNegatives-Q Given a multi-hop question, retrieve documents that can help answer the

question.
AmazonCounterfactualClassification Classify a given Amazon customer review text as either counterfactual

or not-counterfactual.
AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment.
AmazonReviewsClassification Classify the given Amazon review into its appropriate rating category.
Banking77Classification Given a online banking query, find the corresponding intents.
EmotionClassification Classify the emotion expressed in the given Twitter message into one of

the six emotions: anger, fear, joy, love, sadness, and surprise.
ImdbClassification Classify the sentiment expressed in the given movie review text from the

IMDB dataset.
MassiveIntentClassification Given a user utterance as query, find the user intents.
MassiveScenarioClassification Given a user utterance as query, find the user scenarios.
MTOPDomainClassification Classify the intent domain of the given utterance in task-oriented con-

versation.
MTOPIntentClassification Classify the intent of the given utterance in task-oriented conversation.
ToxicConversationsClassification Classify the given comments as either toxic or not toxic.
TweetSentimentExtractionClassification Classify the sentiment of a given tweet as either positive, negative, or

neutral.
ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based on the

titles and abstracts.
ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based on the

titles.
BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles and ab-

stracts.
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles.
MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles and

abstracts.
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles.
RedditClustering Identify the topic or theme of Reddit posts based on the titles.
RedditClusteringP2P Identify the topic or theme of Reddit posts based on the titles and posts.
StackExchangeClustering Identify the topic or theme of StackExchange posts based on the titles.
StackExchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the given

paragraphs.
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles.
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum.

Continued on next page

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Table 11 – continued from previous page
Dataset Instruction
TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet.
TwitterURLCorpus Retrieve tweets that are semantically similar to the given tweet.
AskUbuntuDupQuestions-Q Retrieve duplicate questions from AskUbuntu forum.
AskUbuntuDupQuestions-C Retrieve duplicate questions from AskUbuntu forum.
MindSmallReranking-Q Retrieve relevant news articles based on user browsing history.
MindSmallReranking-C Retrieve relevant news articles based on user browsing history.
SciDocsRR-Q Given a title of a scientific paper, retrieve the titles of other relevant

papers.
SciDocsRR-C Given a title of a scientific paper, retrieve the titles of other relevant

papers.
StackOverflowDupQuestions-Q Retrieve duplicate questions from StackOverflow forum.
StackOverflowDupQuestions-C Retrieve duplicate questions from StackOverflow forum.
ArguAna-Q Given a claim, find documents that refute the claim.
ClimateFEVER-Q Given a claim about climate change, retrieve documents that support or

refute the claim.
CQADupstackRetrieval-Q Given a question, retrieve detailed question descriptions from Stackex-

change that are duplicates to the given question.
DBPedia-Q Given a query, retrieve relevant entity descriptions from DBPedia.
FEVER-Q Given a claim, retrieve documents that support or refute the claim.
FiQA2018-Q Given a financial question, retrieve user replies that best answer the

question.
HotpotQA-Q Given a multi-hop question, retrieve documents that can help answer the

question.
MSMARCO-Q Given a web search query, retrieve relevant passages that answer the

query.
NFCorpus-Q Given a question, retrieve relevant documents that best answer the ques-

tion.
NQ-Q Given a question, retrieve Wikipedia passages that answer the question.
QuoraRetrieval-Q Given a question, retrieve questions that are semantically equivalent to

the given question.
SCIDOCS-Q Given a scientific paper title, retrieve paper abstracts that are cited by

the given paper.
SciFact-Q Given a scientific claim, retrieve documents that support or refute the

claim.
Touche2020-Q Given a question, retrieve detailed and persuasive arguments that answer

the question.
TRECCOVID-Q Given a query on COVID-19, retrieve documents that answer the query.
STS12 Retrieve semantically similar text.
STS13 Retrieve semantically similar text.
STS14 Retrieve semantically similar text.
STS15 Retrieve semantically similar text.
STS16 Retrieve semantically similar text.
STS17 Retrieve semantically similar text.
STS22 Retrieve semantically similar text.
BIOSSES Retrieve semantically similar text.
SICK-R Retrieve semantically similar text.
STSBenchmark Retrieve semantically similar text.
SummEval Given a news summary, retrieve other semantically similar summaries.
CQADupstackTexRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Tex StackExchange forum.
CQADupstackTexRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Tex StackExchange forum.
Continued on next page

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Table 11 – continued from previous page
Dataset Instruction
CQADupstackWebmastersRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Webmasters StackExchange forum.
CQADupstackWebmastersRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Webmasters StackExchange forum.
CQADupstackEnglishRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the English StackExchange forum.
CQADupstackEnglishRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the English StackExchange forum.
CQADupstackGamingRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Gaming StackExchange forum.
CQADupstackGamingRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Gaming StackExchange forum.
CQADupstackGisRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Gis StackExchange forum.
CQADupstackGisRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Gis StackExchange forum.
CQADupstackUnixRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Unix StackExchange forum.
CQADupstackUnixRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Unix StackExchange forum.
CQADupstackMathematicaRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Mathematica StackExchange forum.
CQADupstackMathematicaRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Mathematica StackExchange forum.
CQADupstackStatsRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Stats StackExchange forum.
CQADupstackStatsRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Stats StackExchange forum.
CQADupstackPhysicsRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Physics StackExchange forum.
CQADupstackPhysicsRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Physics StackExchange forum.
CQADupstackProgrammersRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Programmers StackExchange forum.
CQADupstackProgrammersRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Programmers StackExchange forum.
CQADupstackAndroidRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Android StackExchange forum.
CQADupstackAndroidRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Android StackExchange forum.
CQADupstackWordpressRetrieval-Q Represent the title of a user question to find a duplicate user question

title with body from the Wordpress StackExchange forum.
CQADupstackWordpressRetrieval-C Represent the question title with body posted by a user to find a duplicate

user question title from the Wordpress StackExchange forum.

Table 12: Instructions for two Instruction Following datasets used in Inbedder paper.

Dataset Instruction
IntentEmotion (Intent) Represent the intent of this text.
IntentEmotion (Emotion) Represent the emotion of this text.
NYTClustering (Location) Represent the text based on where the news happen.

Continued on next page

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Table 12 – continued from previous page
Dataset Instruction
NYTClustering (Topic) Represent the text based on the main news category.

23

	Introduction
	Related Work
	GIRCSE: From Discriminative to Generative Embedding
	Generative Embedding Framework
	Soft Token Generation
	Guiding Generative Embedding with Iterative Contrastive Refinement

	Experiment
	Experiment Setup
	Main Results
	Ablation Study

	Analysis on Generated Tokens
	Effect of Generation Length at Inference
	Qualitative Analysis on Generated Tokens

	Discussion of Robustness and Learning Efficiency
	Conclusion
	Use-of-LLMs
	Reproducibility for Embedding Models
	Hyperparameter Settings
	Pseudo Code for GIRCSE
	Scalability Analysis
	Theoretical Computational and Memory Cost Analysis
	Detail Implementation of Two-stage Generation Embedding
	Training Stability Analysis
	More Evaluation on NanoBEIR and TREC benchmarks
	Full MTEB Performance
	Full Dataset Instructions

