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Abstract

Document-level information extraction is a flex-001
ible framework compatible with applications002
where information is not necessarily localized003
in a single sentence. For example, key fea-004
tures of a diagnosis in radiology a report may005
not be explicitly stated, but nevertheless can006
be inferred from the report’s text. However,007
document-level neural models can easily learn008
spurious correlations from irrelevant informa-009
tion. This work studies how to ensure that these010
models make correct inferences from complex011
text and make those inferences in an auditable012
way: beyond just being right, are these models013
“right for the right reasons?” We experiment014
with post-hoc evidence extraction in a predict-015
select-verify framework using feature attribu-016
tion techniques. While this basic approach can017
extract reasonable evidence, it can be regular-018
ized with small amounts of evidence supervi-019
sion during training, which substantially im-020
proves the quality of extracted evidence. We021
evaluate on two domains: a small-scale labeled022
dataset of brain MRI reports and a large-scale023
modified version of DocRED (Yao et al., 2019)024
and show that models’ plausibility can be im-025
proved with no loss in accuracy.026

1 Introduction027

Document-level information extraction (Yao et al.,028

2019; Christopoulou et al., 2019; Xiao et al., 2020;029

Guoshun et al., 2020) has seen great strides due to030

the rise of pre-trained models (Devlin et al., 2019).031

But in high-stakes domains like medical informa-032

tion extraction (Irvin et al., 2019; McDermott et al.,033

2020; Smit et al., 2020), machine learning models034

are still too error-prone to use broadly. Since they035

are not perfect, they typically play the role of as-036

sisting users in tasks like building cohorts (Pons037

et al., 2016) or in providing clinical decision sup-038

port (Demner-Fushman et al., 2009). To be most039

usable in conjunction with users, these systems040

should not just produce a decision, but a correctly-041

Transformer

[0] Severe encephalomalacia in the temporal lobes and 
frontal lobes bilaterally with reactive gliosis in the left 
frontal lobe. [1] Moderate enlargement of the ventricular 
system. [2] No abnormal enhancement. [3] Near complete 
opacification of the left maxillary sinus. …

evidence	sents:	0,	1

Interpret

label	(mass	effect):	
posi)ve

Accurate?

Plausible? (model 
evidence agrees w/human-
labeled evidence)

Faithful? (model prediction 
on evidence agrees w/full doc)

Figure 1: Our basic model setup. A Transformer-based
model makes document-level predictions on an example
of our brain MRI reports. An interpretation method ex-
tracts the evidence sentences used by the model. Three
criteria (accuracy, faithfulness, and plausibility) govern
our system.

sourced justification that can be checked (Rudie 042

et al., 2019). 043

Our goal is to study document-level informa- 044

tion extraction systems that are both accurate and 045

which make predictions based on the correct infor- 046

mation (Doshi-Velez and Kim, 2017). This process 047

involves identifying what evidence the model actu- 048

ally used, verifying the model’s prediction based 049

on that evidence, and checking whether that evi- 050

dence aligns with what humans would use, which 051

would allow a user to more quickly see if the sys- 052

tem is correct. For example, in Figure 1, localizing 053

the prediction of mass effect (a feature expressing 054

whether there is evidence of brain displacement 055

by a mass like a tumor) to the first two sentences 056

allows a trained user in a clinical decision support 057

setting to easily verify what was extracted here. 058

Our evidence extraction hews to principles of both 059
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faithfulness and plausibility (Jain et al., 2020; Ja-060

covi and Goldberg, 2020; Miller, 2019).061

Rather than use complex approaches with inter-062

mediate latent variables for extraction (Lei et al.,063

2016), we focus on what can be done with off-the-064

shelf pre-trained models (Liu et al., 2019) using065

post-hoc interpretation. We explore various tech-066

niques for attribution but primarily use DeepLIFT067

(Shrikumar et al., 2019) to find key parts of each068

document that were used by the model. We ask069

two questions: first, can we identify the document070

sentences that truly contributed to the prediction071

(faithfulness)? Using the ranking of sentences pro-072

vided by DeepLIFT, we extract a set of sentences073

where the model returns nearly the same prediction074

as before, thus verifying that these sentences are a075

sufficient explanation for the model. Second, do076

these document sentences align with what users077

annotated (plausibility)? Unsurprisingly, we find078

that this alignment is low in a basic Transformer079

model.080

To further improve the alignment with human081

annotation, we consider injecting small amounts082

of token-level labeled data. Critically, in the brain083

MRI extraction setting we consider (see Table 1),084

large-scale token-level annotation is not available;085

most instances in the dataset only have document-086

level labels from existing clinical decision support087

systems, making it a weakly-supervised setting088

(Pruthi et al., 2020a; Patel et al., 2020). We ex-089

plore two methods for using this small amount of090

annotation, chiefly based around supervising or091

regularizing the model’s behavior. One notion is092

entropy maximization that the model should be un-093

certain when it isn’t exposed to sufficient evidence094

(Feng et al., 2019). Another is attention regular-095

ization where the model’s attentions should focus096

on the key pieces of evidence; while not a perfect097

cue (Jain and Wallace, 2019), we can investigate098

whether this then leads to a model whose explana-099

tions leverage this information more heavily.100

We validate our methods first on a small dataset101

of radiologists’ observations from brain MRIs.102

These reports are annotated with document-level103

key features related to different aspects of the re-104

port, which we want to extract in a faithful way. We105

see positive results here even in a small-data con-106

dition, but to understand how this method would107

scale with larger amounts of data, we adapt the108

DocRED relation extraction task to be a document-109

level classification task. The question of which110

Report Finding
[0] Severe encephalomalacia in the temporal lobes and
frontal lobes bilaterally with reactive gliosis in the left
frontal lobe. [1] Moderate enlargement of the ventric-
ular system. [2] No abnormal enhancement. [3] Near
complete opacification of the left maxillary sinus. ...

mass_effect: negative evid: [0, 1] implicit
side: bilateral evid: [0] explicit
t2: increased evid: [0] implicit
contrast_enhancement: No evid: [2] explicit

Table 1: Example from annotated brain MRI reports.
Labels and supporting evidence for 4 key features are
annotated for this example report presented. “Explicit”
means the label of given key feature can be directly
inferred by the highlighted terms; “implicit” instead in-
dicates that it requires domain knowledge and potential
reasoning skills to label. We want the model to identify
implicit features while not leveraging dataset biases or
reasoning incorrectly about explicit ones.

sentence in the document describes the relation be- 111

tween the two entities, if there even is one, is still 112

quite challenging, and we show our techniques can 113

lead to improvements in a weakly-labeled setting 114

here as well. 115

Our contributions are (1) We apply evidence ex- 116

traction methods to document-level IE, emphasiz- 117

ing a new brain MRI dataset that we annotate. (2) 118

We explore using weak sentence-level supervision 119

in two techniques adapted from prior work; (3) We 120

evaluate pre-trained models and evidence extrac- 121

tion through DeepLIFT for plausibility compared 122

to human annotation, while ensuring faithfulness 123

of the evidence. 124

2 Background 125

2.1 Motivation 126

We start with an example from brain MRI reports 127

in Table 1. Medical information extraction involves 128

tasks such as identifying important medical terms 129

from text (Irvin et al., 2019; Smit et al., 2020) and 130

normalizing names into standard concepts using 131

domain-specific ontologies (Cho et al., 2017). One 132

application in clinical decision support, shown here, 133

requires extracting the values of certain key fea- 134

tures (clinical findings) from these reports or medi- 135

cal images (Rudie et al., 2021; Duong et al., 2019). 136

This extraction should be accurate, but it should 137

also make predictions that are correctly-sourced, to 138

facilitate review by a radiologist or someone else 139

using the system (Rauschecker et al., 2020; Cook 140

et al., 2018). 141
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The finding section of a brain MRI radiology142

report often describes these key features in both143

explicit and implicit ways. For instance, contrast144

enhancement, one of our key features, is mentioned145

explicitly much of the time; see no abnormal en-146

hancement in the third sentence. A rule-based sys-147

tem can detect this type of evidence easily. But148

some key features are harder to identify and require149

reasoning over context and draw on implicit cues.150

For example, severe encephalomalacia in the first151

sentence and enlargement of the ventricular system152

in the following sentence are both implicit signs of153

positive mass effect and either is sufficient to infer154

the label. It is significantly harder to built a rule-155

based extractor for this case. Learning-based sys-156

tems have the potential to do much better here, but157

lack of understanding about their behavior can lead158

to hard-to-predict failure modes, such as acausal159

prediction of key features (e.g., inferring evidence160

about mass effect from a hypothesized diagnosis161

somewhere in the report, where the causality is162

backwards).163

Our work aims to leverage the ability of learning-164

based systems to capture implicit features while165

improving their ability to make correctly-sourced166

predictions.167

2.2 Problem Setting168

The problem we tackle in this work is document-169

level information extraction. Let D =170

{x1, . . . , xn} be a document consisting of n sen-171

tences. The document is annotated with a set of172

labels (ti, yi) where ti is an auxiliary input specify-173

ing a particular task for this document (e.g., mass174

effect) and yi is the label associated with that task175

from a discrete label space. In our adaptation of the176

DocRED task, we consider t = (e1, e2) to classify177

the relationship (if any) between a pair of entities178

(e1, e2) in a document, defined in Section 4.1.2.179

Our method takes a pair (D, t) and then com-180

putes the label yt from a predictor yt = f(D, t).181

We can then extract evidence post-hoc using a182

separate procedure g such as a feature attribution183

method: Et = g(f,D, t)184

Supervision In addition to the labels yt, we as-185

sume access to a small number of examples with186

additional supervision in each domain. That is, for187

a (D, t, yt) triple, we also assume we are given a188

set E = {xi1 , . . . , xim} of ground-truth evidence189

with sentence indices {i1, . . . , im}. This evidence190

should be sufficient to compute the label, but not al-191

ways necessary; for example, if multiple sentences 192

can contribute to the prediction, they might all be 193

listed as supporting evidence here. See Section 3.3 194

for more details. 195

2.3 Related Work 196

Our work fits into a broader thread of relation 197

extraction (Han et al., 2020). Due to the cost 198

of collecting large-scale data with good quality, 199

distant supervision (DS) (Mintz et al., 2009) and 200

ways to denoise auto-labeled data from DS (Sur- 201

deanu et al., 2012; Wang et al., 2018) have been 202

widely explored. However, the sentence-level set- 203

ting typically features much less ambiguity about 204

evidence needed to predict a relation compared to 205

the document-level setting we explore. Several 206

document-level RE datasets (Li et al., 2016a; Peng 207

et al., 2017) have been proposed as well as efforts 208

to tackle these tasks (Christopoulou et al., 2019; 209

Xiao et al., 2020; Guoshun et al., 2020), which we 210

explicitly build off of. 211

Explanation techniques To identify the sen- 212

tences that the model considers as evidence, we 213

draw on a recent body of work in explainable 214

NLP focused on identifying salient features of 215

the input. These primarily consist of input attri- 216

bution techniques, such as LIME (Ribeiro et al., 217

2016), input reductions (Li et al., 2016b; Feng 218

et al., 2018), attention-based explanations (Bah- 219

danau et al., 2015) and gradient-based methods 220

(Simonyan et al., 2014; Selvaraju et al., 2017; Sun- 221

dararajan et al., 2017; Shrikumar et al., 2017). 222

In present work, we extract rationales using the 223

DeepLIFT (DL) method (Sundararajan et al., 2017). 224

Rather than focus on comparing techniques, we in- 225

stead focus on doing a thorough evaluation of the 226

capabilities of DL.1 227

Frameworks for interpretable pipelines Our 228

goal of building a system grounded in evidence 229

draws heavily on recent work on attribution tech- 230

niques and model explanations, particularly notions 231

of faithfulness and plausibility. Faithfulness refers 232

to how accurately the explanation provided by the 233

model truly reflects the information it used in the 234

reasoning process (Jain et al., 2020). On the other 235

hand, plausibility indicates to what extent the inter- 236

pretation provided by the model makes sense to a 237

1We found our qualitative conclusions to be the same with
integrated gradients (Sundararajan et al., 2017), but DeepLIFT
overall performed better.
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“Select-then-predict” approaches are one way to239

enforce faithfulness in pipelines (Jain et al., 2020):240

important snippets from inputs are extracted and241

passed through a classifier to make predictions.242

Past work has used hard (Lei et al., 2016) or soft243

(Zhang et al., 2016) rationales, and other work has244

explicitly looked at tradeoffs in the amount of text245

extracted (Paranjape et al., 2020).246

Jacovi and Goldberg (2020) note several prob-247

lems with this setup. Our work aims to align model248

behavior with what cues we expect a model to249

use (plausibility), but uses the predict-select-verify250

paradigm (Jacovi and Goldberg, 2020) to ensure251

that these are actually sufficient cues for the model.252

Like our work, Pruthi et al. (2020a) simultaneously253

trained a BERT-based model (Devlin et al., 2019)254

for the prediction task and a linear-CRF (Lafferty255

et al., 2001) module on top of it for the evidence ex-256

traction task with shared parameters. Compared to257

their work, we focus explicitly on what can be done258

with pre-trained models alone, not augmenting the259

model for evidence extraction.260

3 Methods261

The systems we devise take (D, t) pairs as input262

and return (a) predicted labels yt for each t; (b)263

sets of extracted evidence sentences Et from an264

interpretation method. Figure 1 shows the basic265

setting.266

3.1 Transformer Classification Model267

We use RoBERTa (Liu et al., 2019) as our doc-268

ument classifier due to its strong performance in269

classification, training to minimize log loss in a270

standard way. For each of our two domains, we use271

different pre-trained weights, as described in the272

training details in Appendix A.1. The task inputs273

are described in Section 4.1274

3.2 Interpretation for Evidence Extraction275

Our base technique for evidence extraction uses276

the DeepLIFT method (Shrikumar et al., 2019)277

to identify key input tokens. From our model278

yt = f(D, t), we compute attribution scores with279

respect to the predicted class yt for each token in280

2The ERASER benchmark (DeYoung et al., 2020) is a
notable recent effort to evaluate explanation plausibility. How-
ever, we do not consider it here; we focus on the document-
level IE setting, and many of the ERASER tasks are not suit-
able or relevant for the approaches we consider, either being
not natural (FEVER) or not having the same challenges as
document-level classification.

Transformer

[CLS] [0] Severe encephalomalacia 
… [1] Moderate enlargement … [2] 
No abnormal … [3] Near complete …

Final attention layer

Label Distribution 
P(y|D)

Entropy maximization: (ENTROPY) 

Attention regularization  (ATTN)

Transformer

deletes relevant sentence; 
maximizes prediction entropy

Transformer

encourages attentions on 
supporting evidence

[CLS] [0] Severe… [1] Moderate … 
[2] No … [3] Near…

[CLS] [0] Severe… [1] Moderate … 
[2] No … [3] Near…

Standard Supervised  
Training:  

max log P(y|D)

Figure 2: An illustration of attention regularization and
entropy maximization using the example in Table 1. The
model is predicting the label for key feature t2.

the RoBERTa input representation. DeepLIFT at- 281

tributes the change in the output from a reference 282

output in terms of the difference in input from the 283

reference input 3. 284

We average over the absolute value of attribu- 285

tion score for each token in that sentence to give 286

sentence-level scores {s1, . . . , sn}. These give us 287

a ranking of the sentences. Given a fixed number 288

of evidence sentences k to extract, we can extract 289

the top k sentences by these scores. 290

To verify the extracted evidence (Jacovi 291

and Goldberg, 2020), our main technique 292

(SUFFICIENT) feeds the model increasingly large 293

subsets of the document ranked by attribution 294

scores (e.g., first {smax}, then {smax, s2nd-max}, 295

etc.) until it (a) makes the same prediction as when 296

taking the whole document as input and (b) assigns 297

that prediction at least α times the probability4 298

when the whole document is taken as input. We 299

consider this attribution faithful: it is a subset of 300

the input supporting the model’s decision judged 301

as important by the attribution method. 302

3.3 Improving Evidence Extraction 303

While many document-level extraction settings do 304

not have token-level attributions labeled for every 305

decision, one can in practice annotate a small frac- 306

tion of a dataset with such ground-truth rationales. 307

This is indeed the case for our brain MRI case study. 308

Past work has shown significant benefits from inte- 309

3Our reference consists of replacing the inputs in D with
[MASK] tokens from RoBERTa.

4The value of α is a tolerance hyper-parameter for select-
ing sentences and it set to 0.8 throughout the experiments.
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grating this supervision into learning (Strout et al.,310

2019; Dua et al., 2020; Pruthi et al., 2020b).311

Assume that a subset of our labeled data consists312

of (D, t, yt, Et) tuples with ground truth evidence313

sentence indices Et = {i1, ..., im}. We consider314

two modifications to our model training, namely315

attention regularization (Pruthi et al., 2020b), en-316

tropy maximization (Feng et al., 2018), and their317

combination. An illustration of both methods is318

shown in Figure 2.319

Attention regularization Attention regulariza-320

tion encourages our model f(D, t) to leverage321

more information from Et. Specifically, let A =322

{α1, ..., αn} be a set of attentions from the [CLS]323

token in the final layer to all tokens in D, where αi324

is a vector of attentions for each token in sentence325

xi. During learning, we add the following loss over326

all evidence sentences xi to the training objective:327

ℓattn = − log
∑

i,j αij , encouraging the model to328

attend to the labeled evidence sentences.329

Entropy maximization When there is no suffi-330

cient information contained in the text to infer any331

predictions, entropy maximization encourages a332

model to be uncertain, represented by a uniform333

probability distribution across all classes (DeYoung334

et al., 2020; Feng et al., 2019). Doing so should335

encourage the model to not make predictions based336

on irrelevant sentences. We can achieve this by337

taking a reduced document D′ = D \ E as in-338

put by removing evidence E from original docu-339

ment D. We treat (D′, t) pairs as extra training340

examples where we aim to maximize the entropy341

−
∑

y P (y|D′) logP (y|D′) over all possible y.342

4 Experiments343

4.1 Datasets and Evaluation Metrics344

We investigate our methods on (a) a small collec-345

tion of brain MRI reports from radiologists’ obser-346

vations; and (b) a modified version of the DocRED347

datatset. The statistics for both datatsets are in-348

cluded in Appendix B. For both datasets, we evalu-349

ate on task accuracy (captured by either accuracy or350

prediction macro-F1) as well as evidence selection351

accuracy (macro-F1) or precision, measuring how352

well the model’s evidence selection aligns with353

human annotations. We will use the SUFFICIENT354

method defined in Section 3.2 to select evidence355

sentences which guarantee that our predictions on356

the given evidence subsets will match the model’s357

predictions on the full document. For the brain358

MRI report dataset, we evaluate evidence extrac- 359

tion by precision since human annotators typically 360

only need to refer to one sentence to reach the con- 361

clusion but our model and baselines may extract 362

more than one sentence. 363

4.1.1 Brain MRI Reports 364

We present a new dataset of radiology reports from 365

brain MRIs. It consists of the “findings” sections 366

of reports, which present observations about the 367

image, with labels for pre-selected key features by 368

attending physicians and fellows. Crucially, these 369

features are labeled based on the original radi- 370

ology image, not the report. The document-level 371

labels are therefore noisy because the radiologists’ 372

labels may disagree with the findings written in the 373

report. 374

A key feature is an observable variable t, which 375

can take on nt emission values. We focus on the 376

evaluation of two key features, namely contrast 377

enhancement and mass effect, since they appear 378

in most of manually annotated reports. For our 379

RoBERTa classification model, we only feed the 380

document and train separate classifiers for each key 381

feature, with no shared parameters between these. 382

Annotation We have a moderate number (327) 383

of reports that have noisy labels from the process 384

above. We treat these as our training set. However, 385

all of these labels are document-level. 386

To evaluate models’ performance on more fine- 387

grained evidence labels, we randomly select 86 388

unlabeled reports (not overlapping with the 327 389

for training) and asked four radiology residents to 390

(1) assign key feature labels and reach consensus, 391

while (2) highlighting sentences that support their 392

decision making. We use Prodigy5 as our annota- 393

tion interface. See Appendix C for more details 394

about our annotation instructions. 395

Pseudo sentence-level supervision Since we 396

have limited number of annotated reports for eval- 397

uation, we need a way to prepare weak sentence- 398

level supervision while training. To achieve this, 399

we use sentences selected by a rule-based system 400

as pseudo evidence to supervise models’ behavior. 401

We use 10% of this as supervision while training 402

for consistency with the DocRED setting. 403

Rule-based system Our rule-based system uses 404

keyword matching to identify instances of mass 405

5https://prodi.gy
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effect and contrast enhancement in the reports, and406

negspaCy to detect negations of these key features.407

Data split For the results in Section 5, we evalu-408

ate on reports that contain ground truth fine-grained409

annotations for either contrast enhancement or410

mass effect, respectively. There are 64 and 68 out411

of 86 documents total in each of these categories.412

We call this the BRAINMRI set. When we restrict413

to this set for evaluation, all of the documents we414

study where the annotators labeled something re-415

lated to contrast enhancement end up having an416

explicit mention of it. However, for mass effect,417

this is not always the case; Table 6 shows an exam-418

ple where mass effect is discussed implicitly in the419

first sentence.420

4.1.2 Adapted DocRED421

DocRED (Yao et al., 2019) is a document-level rela-422

tion extraction (RE) dataset with large scale human423

annotation of relevant evidence sentences. Unlike424

sentence-level RE tasks (Qin et al., 2018; Alt et al.,425

2020), it requires reading multiple sentences and426

reasoning about complex interactions between en-427

tities. We adapt this to a document-level relation428

classification task: a document D and two entity429

mentions e1, e2 within the document are provided430

and the task is to predict the relation r between e1431

and e2. We synthesize these examples from the432

original dataset and sample random entity pairs433

from documents to which we assign an NA class to434

construct negative pairs exhibiting no relation.435

The model input is represented as:436

[CLS]<ent-1>[SEP]<ent-2>[SEP]<doc>[SEP].437

To make the setting more realistic, we do not438

use the large-scale evidence annotation and assume439

there is limited sentence-level supervision avail-440

able. To be specific, we include 10% fine-grained441

annotations in our adapted DocRED dataset.442

4.2 Models443

Due to richer and higher-quality supervisions in the444

DocRED setting, we conduct a larger set of abla-445

tions and comparisons there. We compare against446

a subset of these models in the radiology setting.447

Baselines We consider a number of baselines for448

adapted DocRED which return both predicted la-449

bels and evidence. (1) DIRECT predicts the relation450

directly from the entity pairs without any sentences451

as input, using a model trained with just these in-452

puts. (2) FULLDOC takes the full document as se-453

lected evidence and uses the base RoBERTa model454

Model Names Input Text

DIRECT None
FULLDOC Full document
ENT Sentences containing at least one of

the two query entities
FIRST2 First two sentences
FIRST3 First three sentences
BESTPAIR Two sentences yielding highest pre-

diction prob. (incl. variants using reg-
ularization)

SUFFICIENT Sufficient sentences selected by DL
(incl. variants using regularization)

Table 2: Model names used in the experiments and their
associated evidence given as inputs.

(3) ENT takes all sentences with entity mentions e1 455

and e2 as input; (4) FIRST2, FIRST3 retrieve the 456

first 2 and 3 sentences, respectively; and (5) BEST- 457

PAIR chooses the best sentence pair by first taking 458

each individual sentence as input to the model and 459

then picking top two sentences having highest prob- 460

abilities on their predictions. This approximates 461

an erasure-based method like LIME (Ribeiro et al., 462

2016) in contrast to our DeepLIFT method. 463

SUFFICIENT is our main method for both 464

datasets, which we then augment with additional 465

supervision as described in Section 3.3. We use 466

subscripts attn, entropy, both and none 467

to represent attention regularization, entropy maxi- 468

mization, the combination of two, and neither. 469

Table 2 summarizes the abbreviated names of 470

models and their inputs. Training details are de- 471

scribed in Appendix A.1. 472

Metrics We report both the accuracy and F1 for 473

the model as well as the evidence selection F1 com- 474

paring to human judgments. We also report results 475

in the reduced setting, where only the selected ev- 476

idence sentences are fed to the RoBERTa model 477

(trained over whole documents) as input. For our 478

SUFFICIENT method, this accuracy is the same as 479

the full method by construction, but note that it 480

can differ for other methods. This reduced setting 481

serves as a sanity check for the faithfulness of our 482

explanation techniques. 483

5 Results 484

5.1 Results on Brain MRI 485

Table 3 shows the performance of our models and 486

baselines in terms of label prediction and evidence 487

extraction. In the mass effect setting, our SUF- 488

FICIENTboth model achieves the highest evidence 489

extraction precision of the learning-based models 490
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Model
Label Evidence

Full Doc Reduced Doc
Acc F1 Acc F1 Pre Len

Mass Effect

RULE 77.9 11.8 77.9 11.8 84.8 1.46

SUFFICIENTnone 66.6 42.1
Identical to
Full Doc

16.5 2.84
SUFFICIENTattn 69.2 47.6 65.6 2.31
SUFFICIENTentropy 45.3 0.0 15.8 2.50
SUFFICIENTboth 76.7 60.0 77.8 1.51

Contrast Enhancement

RULE 68.8 56.5 68.8 56.5 87.1 1.67

SUFFICIENTnone 69.5 60.9
Identical to
Full Doc

33.5 2.84
SUFFICIENTattn 85.8 81.0 60.7 2.48
SUFFICIENTentropy 71.5 59.5 25.2 2.55
SUFFICIENTboth 90.8 87.2 71.7 1.50

Table 3: Model performance on BRAINMRI. Models
are evaluated under two settings by taking (a) full docu-
ment (Full Doc); (b) selected evidence (Reduced Doc)
as inputs. RULE is the baseline mentioned in Section
4.1.1. Pre stands for the precision of evidence selection,
and Len is the average number of sentences extracted.

and nearly matches that of the rule-based system.491

It is difficult to be more reliable than a rule-based492

system, which will nearly always make correctly-493

sourced predictions. But this model is able to494

combine that reliability with the higher F1 of495

a learned model. Note that due to the high base496

rates of certain findings, we focus on F1 instead of497

accuracy. We see a similar pattern on contrast en-498

hancement as well, although the evidence precision499

is lower in that case.500

These results show that learning-based systems501

make accurate predictions in this domain, and that502

their evidence extraction can be improved with bet-503

ter training, even in spite of the small size of the504

training set. In section 5.2, we focus on the adapted505

DocRED setting, which allows us to examine our506

model’s performance in a higher-data regime.507

Attribution scores are more peaked at the oc-508

currence of key terms. We conduct analysis on509

how the attribution scores from SUFFICIENTboth are510

peaked around the correct evidence compare to that511

from SUFFICIENTnone using our manually anno-512

tated set BRAINMRI. To quantify this analysis, we513

take the mean of instance-wise average and maxi-514

mum of the normalized attribution mass falling into515

a few explicit tokens. In particular, we consider en-516

hancement for contrast enhancement and effect for517

mass effect, which are common explicit indicators518

in the context of specified key features. The results519

Model
Label Evidence

Full Doc Reduced Doc
Acc F1 Acc F1 F1 Len

DIRECT − − 66.4 45.3 − −
FULLDOC 83.0 66.0 83.0 66.0 34.9 8.03
FIRST2 − − 75.3 58.1 47.9 2.00
FIRST3 − − 77.5 60.7 44.6 3.00
ENT − − 82.4 65.4 61.5 3.93

BESTPAIRnone 83.0 66.0 73.9 55.3 39.2 2.00
BESTPAIRattn 83.2 65.0 73.4 53.5 43.9 2.00
BESTPAIRentropy 81.8 64.2 78.5 58.2 52.3 2.00
BESTPAIRboth 82.7 66.5 81.6 65.3 66.2 2.00

SUFFICIENTnone 83.0 66.0
Identical to
Full Doc

67.2 1.42
SUFFICIENTattn 83.2 65.0 70.3 1.45
SUFFICIENTentropy 81.8 64.2 69.9 1.65
SUFFICIENTboth 82.7 66.5 73.1 1.65

human − − − − − 1.59

Table 4: Model performance on adapted DocRED. Mod-
els are evaluated under two settings as in BRAINMRI.

Model Mass Effect Ctr. Enhance.
Mean Max Mean Max

SUFFICIENTnone 7.3 7.4 28.6 29.8
SUFFICIENTboth 18.9 19.2 37.9 42.0

Table 5: Distributions of attribution mass over explicit
cues (“enhancement” for contrast enhancement and
“effect” for mass effect) for our best model and the
baseline. Mean/Max is the mean of instance-wise aver-
age/maximum of the normalized attribution mass falling
on the given token.

in Table 5 show attribution scores being peaked 520

around the correct terms, highlighting that these 521

models can be guided to not only make correct 522

predictions but attend to the right information. 523

Table 6 shows visualizations of attribution scores 524

for an example in BRAINMRI using DeepLIFT. 525

Notice that even though baseline models make cor- 526

rect predictions, their attribution mass is diffused 527

over the document. With the help of regulariza- 528

tion, our model is capable of capturing implicit 529

cues such as downward displacement of the brain 530

stem, although it is trained on an extremely small 531

training set with only explicit cues like mass effect 532

in a weak sentence-level supervision framework. 533

5.2 Results on Adapted DocRED 534

Comparison to baselines We see that the ENT 535

baseline is quite strong at DocRED evidence ex- 536

traction. However, our best method still exceeds 537

this method on both label accuracy as well as ev- 538

idence extraction while extracting more succinct 539

explanations. We see that the ability to extract a 540
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Model An Example of mass effect, label: positive, evidence: 0 or 6

SUFFICIENTnone [0] These images show evidence of downward displacement of the brain stem with collapse of the
interpeduncular cistern and caudal displacement of the mammary bodies typical for intracran ial
hypertension . [1] There is diffuse pachymeningeal enhancement evident . [2] B ilateral extra axial col-
lections are evident the do not conform to the imaging characteristics of CSF are seen over lying the
hemispheres. [3] These likely reflect blood t inged hyg romas and there does appear to be a blood products
in the deep tendon portion of the right sided collection on the patient ’s left see image 14 series 2 .
[4]There does appear to be a discrete linear subdural hematoma along the right tentorial leaf. [5] Sub dural
collection is noted on both sides of the falx as well . [6] There is mass effect at the level of the tentorial
inc isure due to transtentorial hern iation with deformity of the midbrain . [7] There is no evidence
an acute inf ar ct . [8] No parenchymal hemorrhage is evident . [9] Apart from the meningeal enhancement
there is no abnormal enhancement noted.

SUFFICIENTboth [0] These images show evidence of downward displacement of the brain stem with collapse of the
interpeduncular cis tern and caudal displacement of the mammary bodies typical for intracranial
hypertension . [1] There is diffuse pachymeningeal enhancement evident. [2] Bilateral extra axial collections
are evident the do not conform to the imaging characteristics of CSF are seen overlying the hemispheres.
[3] These likely reflect blood tinged hygromas and there does appear to be a blood products in the deep
tendon portion of the right sided collection on the patient’s left see image 14 series 2. [4] There does appear
to be a discrete linear subdural hematoma along the right tentorial leaf. [5] Subdural collection is noted
on both sides of the falx as well. [6] There is mass effect at the level of the tentorial inc isure due to
transtentorial hern iation with deformity of the midbrain . [7] There is no evidence an acute infarct.
[8] No parenchymal hemorrhage is evident. [9] Apart from the meningeal enhancement there is no abnormal
enhancement noted.

Table 6: An illustration of models’ attribution scores over a report from BRAINMRI using DeepLift with and w/o
regularization techniques. SUFFICIENTboth appears to leverage more information from right sentences.

variable-length explanation is key, with FIRST2,541

FIRST3 and BESTPAIR performing poorly. No-542

tably, these methods exhibit a drop in accuracy in543

the reduced doc setting for each method compared544

to the full doc setting, showing that the explana-545

tions extracted are not faithful.546

Learning-based models with appropriate reg-547

ularization perform relatively better in this548

larger-data setting From Table 3 and Table 4,549

we can observe that various regularization tech-550

niques applied to SUFFICIENT models maintain or551

improve overall model performance on both key552

feature and relation classification. We see that our553

SUFFICIENT methods do not compromise on ac-554

curacy but make predictions based on plausible555

evidence sets, which is more evident when we have556

richer training data. We perform further error anal-557

ysis in Appendix D.558

Faithfulness of techniques One may be con-559

cerned that, like attention values (Jain and Wallace,560

2019), our feature attribution methods may not561

faithfully reflect the computation of the model. We562

emphasize again that the SUFFICIENT paradigm on563

top of the DeepLIFT method is faithful by our defi-564

nition. For a model f , we measure the faithfulness565

by checking the agreement between y = f(D, t)566

and y′ = f(Et, t), where Et is the extracted evi-567

dence we feed into the same model under the re- 568

duced document setting. This is shown for all meth- 569

ods in the “Reduced doc” columns in Tables 3 and 570

4. We see a drop in performance from techniques 571

such as BESTPAIR: the full model does not make 572

the same judgment on these evidence subsets, but 573

by definition it does in the SUFFICIENT setting. 574

As further evidence of faithfulness, we note that 575

only a relatively small number of evidence sen- 576

tences, in line with human annotations, are ex- 577

tracted in the SUFFICIENT method. These small 578

subsets are indicated by feature attribution meth- 579

ods and sufficient to reproduce the original model 580

predictions with high confidence. We believe this 581

constitutes strong evidence that these explanations 582

are faithful. 583

6 Conclusion 584

In this work, we develop techniques to employ 585

small amount of token-annotated data to improve 586

reliability of document-level IE systems in two 587

domains. We systematically evaluate our model 588

from perspectives of faithfulness and plausibility 589

and show that we can substantially improve models’ 590

capability in focusing on supporting evidence while 591

maintaining their prediction performance, leading 592

to models that are “right for the right reasons” and 593

avoid learning spurious patterns. 594
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A Reproducibility897

A.1 Implementation Details898

We train all RoBERTa models for 15 epochs with899

early stopping using 1 TITAN-Xp GPU. We use900

AdamW (Loshchilov and Hutter, 2019) as our op-901

timizer and initialize the model with roberta-902

base for DocRED and biomed-roberta-903

base (Gururangan et al., 2020) for brain MRI data,904

both with 125M parameters. The batch size is set to905

16, and the learning rate is 1e-5 with linear schedule906

warmup.907

The maximum number of tokens in each docu-908

ment is capped at 296 for modified DocRED and909

360 for radiology reports. These numbers are cho-910

sen such that the number of tokens for around 95%911

of the documents is within these limits. We do not912

perform extensive hyperparameter tuning in this913

work. The hidden state of the [CLS] token from914

the final layer is fed as input to a linear projection915

head to make predictions.916

B Dataset statistics917

We provide the statistics for both adapted DocRED918

and brain MRI reports dataset in Table 7. Both919

datasets are in English and the DocRED dataset is920

publicly available at https://github.com/921

thunlp/DocRED.922

C Annotation Instructions923

The annotation instructions are provided in Fig-924

ure 3. These were developed jointly with the anno-925

tators. In particular, decisions to exclude normal926

brain activity and confounders such as SVID were927

made to increase interannotator agreement after928

an initial round of annotation, making it easier for929

the labeling to focus on a single core disease or930

diagnosis per report.931

D Error Analysis932

The first example in Table 8 shows a representa-933

tive case where our model predicts the correct re-934

lation and extracts reasonable supporting evidence.935

Unsurprisingly, this happens most often in simple936

cases when reasoning over the interaction of sen-937

tences is not required.938

We observe a few common types of errors. First,939

are potential alternatives for relations or evi-940

dence extraction. From around 60% of our ran-941

domly selected error cases, our model either pre-942

dicts debatably correct relations or picks up sen-943

tences that are related but not perfectly aligned 944

with human annotations. The second row in Table 945

8 illustrates an example where the two entities ex- 946

hibit multiple relationships; the model’s prediction 947

is correct (Vienna is place where Martinelli was 948

both born and died), but differs from the annotated 949

ground truth and supporting evidence. Such rela- 950

tions are relatively frequent in this dataset; a more 951

complex multi-label prediction format is necessary 952

to fully support these. 953

Another type of error is complex logical reason- 954

ing. Even if our model can extract right evidence, 955

it still fails in around 10% of random error cases 956

requiring high-level reasoning capability. For ex- 957

ample, to correctly predict the relation between 958

Theobald Tiger and 21 December 1935 in the third 959

example in Table 8, a model needs to recognize 960

that Theobald Tiger and Kurt Tucholsky are in fact 961

the same entity by referring to pseudonym, which 962

is a challenging relation to recognize. 963

Finally, the model sometimes selects more sen- 964

tences than we truly need. Interestingly, this is 965

an error in terms of evidence plausibility but not in 966

terms of prediction. The number of extracted sen- 967

tences is very high in around 25% of the random 968

error cases. The last row from Table 8 is one of 969

representative examples with this kind of error. Al- 970

though our model possibly has already successfully 971

extracted right evidence in the first two steps, it con- 972

tinues selecting unnecessary sentences because the 973

prediction confidence is not high enough, a draw- 974

back in our way of selecting evidence mentioned 975

in Section 4.2. Moreover, our model extracts one 976

more sentence on average when predicting incor- 977

rect relations, suggesting that in these cases it does 978

not cleanly focus on the correct information. 979
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Dataset Setting # doc. # inst. # word/inst. # sent./inst. # relation # NA%

Adapted DocRED train 3053 38180 203 8.1 96+1 33
val 1000 12323 203 8.1 96+1 33

Brain MRI train 327 327 177 11.6 − −
val 86 86 132 10.1 − −

Table 7: Statistics of the two document-level IE datasets. Each document may have multiple entity pairs of interest,
giving rise to multiple instances in the adapted DocRED setting. For adapted DocRED, we have 96 relations from
the data plus an NA relation that we introduce for 1/3 of the data.

Figure 3: Annotation instructions.
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Type Example

Predicts correctly
and extracts right
evidence

[0] Delphine “Delphi” Greenlaw is a fictional character on the New Zealand soap opera Shortland
Street, who was portrayed by Anna Hutchison between 2002 and 2004. ...

Predicted relation: country of origin Relation: country of origin
Extracted Evidence: [0] Annotated Evidence: [0]

Predicts debatably
correct answer,
extracts reasonable
evidence

[0] Anton Erhard Martinelli (1684 – September 15 , 1747) was an Austrian architect and master
- builder of Italian descent. [1] Martinelli was born in Vienna. ... [3] Anton Erhard Martinelli
supervised the construction of several important buildings in Vienna, such as ... [4] He designed ... [6]
He died in Vienna in 1747.

Predicted relation: place of birth Relation: place of death
Extracted Evidence: [1] Annotated Evidence: [0, 6]

Predict incorrect
example on
examples requiring
high amount of
reasoning

[0] Kurt Tucholsky (9 January 1890 – 21 December 1935) was a German - Jewish journalist, satirist,
and writer. [1] He also wrote under the pseudonyms Kaspar Hauser (after the historical figure), Peter
Panter, Theobald Tiger and Ignaz Wrobel. ...

Predicted relation: NA Relation: date of death
Extracted Evidence: [0] Annotated Evidence: [0]

Selecting more
sentences than are
needed

[0] Henri de Boulainvilliers ... was a French nobleman, writer and historian. ... [2] Primarily
remembered as an early modern historian of the French State, Boulainvilliers also published an early
French translation of Spinoza’s Ethics and ... [3] The Comte de Boulainvilliers traced his lineage to
... [5] Much of Boulainvilliers’ historical work ...

Predicted relation: country of citizenship Relation: country of citizenship
Extracted Evidence: [2, 0, 1, 5, 4, 3] Annotated Evidence: [0, 2]

Table 8: Four types of representative examples that show models’ behavior. In our adapted DocRED task, models
are asked to predict relations among heads and tails. Here we use model SUFFICIENTboth for illustrations, which
has the best evidence extraction performance. Sentences in extracted evidence are ranked by DL.
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