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Abstract

Recently, sequential recommendation with gen-001
erative retrieval has garnered significant atten-002
tion. However, the training of such generative003
recommenders typically maximizes the predic-004
tion probability of the next item. This approach005
explicitly considers the accuracy of the recom-006
mendation results, but in reality, lacks aware-007
ness of other feasible items. Although lever-008
aging large language models (LLMs) that in-009
corporate world knowledge and introducing010
various auxiliary tasks can mitigate this is-011
sue, the high inference costs associated with012
these LLM-based recommenders make them013
challenging to deploy in practical scenarios.014
In this paper, we propose a novel learning015
framework, LOHRec, which exploits the or-016
der and hierarchy in generative recommenda-017
tions using quantized identifiers to further ex-018
plore the effectiveness ceiling of lightweight019
generative recommenders. Under fair compar-020
isons with similar parameter sizes, compre-021
hensive experiments demonstrate that gener-022
ative recommenders employing our framework023
consistently outperform previous state-of-the-024
art (SOTA) models across different datasets.025
Additionally, we also empirically show that026
LOHRec can effectively align lightweight gen-027
erative recommenders with LLM recommen-028
dation preferences in low-resource scenarios.029
Our code is available at https://anonymous.030
4open.science/r/LOHRec/.031

1 Introduction032

Recommender systems are increasingly popular033

in addressing the information overload problem034

on web platforms such as shopping sites, video035

platforms, and social media. These systems can036

help users discover items of interest and enhance037

their experience and engagement (Fayyaz et al.,038

2020; Ko et al., 2022). Among these recommenda-039

tion paradigms, sequential recommendation (Kang040

and McAuley, 2018; Li et al., 2020) has recently041

garnered considerable attention due to its superior042
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Figure 1: (Left): A demonstrated correlation between
the beam width and diverse evaluation metrics on public
Amazon-Games data. The Diversity@10 represents the
intra-list diversity in the top 10 of the recommendation
list. (Right): Percentage of invalid IDs on the test set of
Amazon-Games dataset when generating item semantic
IDs in a beam search manner with various beam widths.

performance in modeling the dynamic evolving 043

pattern of the chronological item sequence. 044

In recent years, neural recommenders have 045

achieved remarkable progress, such as using CNNs 046

(Tang and Wang, 2018), RNNs (Hidasi and Karat- 047

zoglou, 2018), or attention-based models (Kang 048

and McAuley, 2018) to capture users’ evolving 049

interests over time. With the Transformer architec- 050

ture having demonstrated astonishing performance 051

in a spectrum of domains (Vaswani et al., 2017), 052

the Transformer-based sequential recommender is 053

increasingly popular in research and practical ap- 054

plication (Kang and McAuley, 2018). However, 055

as previous works commonly use atomic and ran- 056

dom item IDs to represent various items (HidasiB 057

et al., 2015), the abundant information from diverse 058

modalities is not integrated adequately to achieve 059

sound performance. In addition, as there are a gi- 060

gantic number of items in the practical application 061

(billion or even more), traditional sequential recom- 062

mendation frameworks necessitate the same size 063

of vocabulary for the item set, which makes them 064

hard to apply in industrial scenarios. 065

To address the challenges in the sequential rec- 066

ommendation, recent research has moved towards 067

a generative retrieval paradigm by adopting neural 068

quantized representations. Specifically, Rajput et al. 069
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Figure 2: The overall framework of our LOHRec. We enhance generative sequential recommenders by leveraging
the order information for contrastive learning and conducting constrained decoding via the hierarchy of quantized
semantic item IDs.

(2024) proposes a residual quantization method070

that converts item embeddings into multiple code-071

words, rather than using low-information numerical072

IDs. This approach allows the number of repre-073

sentable items to be the product of the cardinal-074

ity of each level in semantic IDs, thereby signifi-075

cantly alleviating the scalability issues in large item076

corpora. Additionally, modeling sequences of se-077

mantic item IDs facilitates the discovery of deeper078

correlations between items, enhancing the learning079

of sequence transitions and improving the perfor-080

mance of recommenders. Further, rather than op-081

timizing Transformer-based models from scratch,082

Zheng et al. (2024) proposes leveraging the ro-083

bust language comprehension capabilities of large084

language models (LLMs) for the sequential recom-085

mendation. They adapt LLMs for sequential recom-086

menders through a series of alignment tasks, further087

boosting the effectiveness of recommenders.088

While the generative recommendation paradigm089

has shown promising performance across vari-090

ous public real-world datasets, several weaknesses091

are blocking the availability and reliability of the092

method. Firstly, since the generative models are093

commonly trained with maximum likelihood esti-094

mation (MLE), the probability score assigned to095

the next target item is maximized given a user in-096

teraction sequence. In this case of Figure 1 (Left),097

we observe that the diversity of the top 10 recom-098

mended items tends to stabilize and even decline099

as the beam width increases, indicating that the rec-100

ommendations generated by the generative recom-101

mender system are prone to homogenization. How-102

ever, we contend that in real-world applications,103

there is typically a collection of acceptable candi-104

date items in recommendation tasks. A sequential105

recommender that lacks diversity is therefore inade-106

quate for delivering personalized recommendations107

and meeting user expectations. While LLM-based108

sequential recommenders may alleviate this issue 109

by incorporating rich language semantics, their ex- 110

cessively high training and inference costs render 111

them impractical for industrial use. 112

This work proposes LOHRec, Leveraging the 113

Order and Hierarchy in the generative sequential 114

Recommendation, to address the limitations men- 115

tioned above. To enable the generative sequential 116

recommender to consider the ordered item correla- 117

tion rather than a single target item, we introduce a 118

margin ranking loss. This assists the model in learn- 119

ing the characteristics of the ordered correlation 120

between semantic IDs. On the other hand, consid- 121

ering the characteristics of hierarchical semantics, 122

we propose optimized training paradigms to enable 123

generative recommenders to perceive more feasible 124

items, thereby comprehensively taking into account 125

both the accuracy and diversity of the recommen- 126

dation results. To sum up, the main contributions 127

of this paper can be presented as follows: 128

• To the best of our knowledge, We are the first to 129

propose leveraging hierarchical semantics and 130

ordered relationships of quantized item identi- 131

fiers to explore the upper limits of model perfor- 132

mance in the sequential recommendation with 133

the generative retrieval paradigm. 134

• We explored a range of approaches to enable 135

lightweight generative recommenders to effi- 136

ciently align with the preference of LLM-based 137

recommenders. Experiments demonstrate that 138

with our method, a model with 13 million param- 139

eters can achieve performance close to that of a 140

7 billion parameter LLM-based recommender. 141

• We conduct comprehensive experiments illus- 142

trating that all variants derived from LOHRec 143

consistently surpasses previous baselines. Fur- 144

thermore, We provide ablation studies and fur- 145

ther analyses to substantiate the superior perfor- 146

mance of our method. 147
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2 Preliminaries148

2.1 Training Definition for Sequential149

Recommendation150

In general, the sequential recommendation aims151

to predict the users’ next interaction with an item152

according to their historical interaction sequences153

that are arranged chronologically. Given the user154

set U = {u1, u2, · · · , u|U|} and item set V =155

{v1, v2, · · · , v|V|}, the interaction history of one156

user u can be written as Su = [vu1 , v
u
2 , · · · , vuTu

],157

where Tu = |Su| and vut ∈ V denotes the t-th inter-158

acted item in the chronological sequence. Formally,159

the next item prediction is defined as follows:160

vuTu+1 = argmax
vu∈V

P (vu|Su; θ). (1)161

2.2 RQ-VAE for Item Semantic IDs162
As for the sequential recommendation, a key op-163

eration is how to represent each item in a large164

collection of items in a distinguishable way. A165

vanilla method is to associate each item with a166

random unique ID. However, such a scheme usu-167

ally introduces too large a vocabulary of item IDs168

when there is a gigantic item set. Furthermore, this169

method is difficult to adapt to the actual scenario170

where a dynamic collection of constantly updated171

valid items is necessary.172

To address these problems, some works intro-173

duce the Residual-Quantized Variational AutoEn-174

coder (RQ-VAE), a multi-level vector quantizer175

that recursively quantizes the residual vectors from176

coarse to fine, to generate the semantic ID con-177

sisting of several tokens (i.e., codewords), where178

each discrete token can be shared by diverse items.179

The basic idea is that similar items tend to be180

assigned with a portion of common semantic181

codewords, such that each unique semantic ID can182

be aligned to latent semantics.183

Following Zheng et al. (2024), to derive these184

semantic IDs, the first step is to encode the text185

information of items as text embedding. Further,186

the vector quantization approach is leveraged to187

create discrete codewords based on item embed-188

dings. Specifically, we take the item embeddings189

as input and then train RQ-VAE, which consists190

of the residual quantizer with D-level codebooks191

and the DNN encoder-decoder, to generate item192

IDs. Given an item embedding x, RQ-VAE first193

encodes it into a latent representation z. During194

the residual vector quantization, at the d-th level195

(start from 0), we have a codebook Cd = {edn}
Nd
n=1,196

where Nd is the size of the d-th level codebook and 197

each codebook vector edn is learnable. Then the 198

residual quantization process can be expressed as: 199

cd = argmin
n
||rd − edn||, (2) 200

rd+1 = rd − edcd , (3) 201

where cd is the d-th codeword of the semantic item 202

ID and rd is the residual vector in the d-th level, 203

and we set r0 = z. 204

During the decoding stage, the quantization 205

representation of z can be obtained according to 206

ẑ =
∑D−1

d=0 edcd . Then ẑ will be used as decoder 207

input to reconstruct the item embedding x̂. The 208

overall loss function is as follows: 209

Lrecon = ||x− x̂||2, (4) 210

Lcb =

D−1∑
d=0

||sg[rd]− edcd ||
2 + β||rd − sg[edcd ]||

2,

(5)

211

LRQ-VAE = Lrecon + Lcb, (6) 212

where sg[·] is the stop-gradient operator, and the 213

straight-through estimator is used for the backprop- 214

agation through the RQ module. β is a loss co- 215

efficient, usually set to 0.25. Note that Lcb is the 216

sum of quantization errors from every level of the 217

residual quantizer. Lrecon is the reconstruction loss, 218

and Lcb is the residual quantization loss used to 219

minimize the distance between codebook vectors 220

and residual vectors. 221

3 Proposed Method 222

Specifically, this section first elucidates three train- 223

ing variants of generative recommendation that uti- 224

lize hierarchical semantics. Subsequently, we in- 225

troduce two- and one-stage methods that further 226

enhance the recommender’s performance by incor- 227

porating ordered relationships. 228

3.1 Leveraging Hierarchical Semantics for 229

Generative Recommendation 230

Through the residual quantization operation, we 231

can acquire the corresponding codebook-based 232

identifier consisting of multiple tokens (i.e., multi- 233

ple codewords) for each item. Accordingly, we can 234

conduct the generative recommendation in an auto- 235

regressive manner. Mathematically, given a seman- 236

tic identifier sequence S = [v(1), v(2), · · · , v(|S|)], 237

where the i-th semantic item identifier v(i) = 238

(c
(i)
1 , c

(i)
2 , · · · , c(i)D ) ∈ V , we model the following 239

3



conditional probability:240

Pθ(v
(i)|S<i) =

D∏
j=1

p(c
(i)
j |v(i)<j ,S<i; θ), (7)241

where S<i represents the sub-sequence prior to242

the item v(i), v(i)<j contains these codewords before243

c
(i)
j . Especially, v(i)<1 is a special begin-of-sequence244

token. The training objective of generative rec-245

ommendation can be transformed to minimize the246

following negative log-likelihood loss (NLL):247

Lnll = −
∑D

j=1 log p(c
(i)
j |v

(i)
<j ,S<i; θ)

D
, (8)248

where the model is required to maximize the condi-249

tional log-likelihood of the target item v(i).250

Label Smoothing via Hierarchical Semantics.251

As the NLL loss in Equation 8 tends to assign252

all probabilities to the reference items, generative253

recommenders often only focus on items similar254

to them, while ignoring other items that the user255

might currently be interested in. To mitigate the256

phenomenon and regularize the model for general-257

ization, we adjust the standard generative objective258

to consider the conditional probabilities of all pos-259

sible codewords in the item semantic space further:260

Lls = −
∑D

j=1

∑V
k=1w

(i)
jk log p(ĉ

(i)
jk |v

(i)
<j , S<i; θ)

D
,

(9)261

where V represents the number of all codewords262

instead of the whole vocabulary size to reduce the263

memory footprint during training. wjk is the con-264

ditional weight:265

w
(i)
jk =

{
1− ξj , ĉ

(i)
jk = c

(i)
j ;

ξj
V−1 , ĉ

(i)
jk ̸= c

(i)
j ,

(10)266

where ξj adjusts the probabilities assigned to code-267

words not in target items. While ξj at j-th level is268

independent, to reduce the complexity of our ex-269

periments, we consistently set it to 0.1.270

Hierarchical Semantics from LLM-based Rec-271

ommender. In this work, we propose a vocabulary-272

agnostic method for efficiently leveraging the hier-273

archical semantics of LLM-based recommenders.274

Specifically, unlike previous model distillation275

methods, we collect the probability distributions276

only of the additional tokens (codewords) of LLM-277

based recommenders by employing a teacher-278

forcing strategy (Bengio et al., 2015). By using279

these additional tokens as intermediaries, we can280

learn the preferences from the LLM-based recom- 281

mender even if our model’s initial vocabulary is 282

incompatible. Considering that KL divergence 283

and cross-entropy are equivalent in training in 284

this context, following Equation 9, we can simplify 285

the training objective to: 286

Ldis = −
∑D

j=1

∑V
k=1 q

(i)
jk log p(ĉ

(i)
jk |v

(i)
<j , S<i; θ)

D
,

(11)

287

q
(i)
jk =

p(ĉ
(i)
jk |v

(i)
<j , S<i; θLLM)∑V

k=1 p(ĉ
(i)
jk |v

(i)
<j , S<i; θLLM)

. (12) 288

3.2 Coordinating Generative 289

Recommendation 290

To improve recommenders beyond the standard 291

generative recommendation paradigm, we adopt 292

a learning-to-rank objective that can optimize the 293

recommendation performance on the acceptable 294

ordered candidates instead of a single target item. 295

Specifically, given an input interaction sequence S 296

and the corresponding ordered collection of can- 297

didate semantic item IDs {vci }ki=1, where vcp is su- 298

perior to vcq, ∀p < q. To perceive the ordered 299

correlation among the item collection, we intro- 300

duce a modification to Equation 7 in the reference- 301

free scenario. To be specific, given the generative 302

sequential recommender θ, the model-predicted 303

probabilities M̂θ of the target semantic ID vci with 304

respect to the input sequence S can be defined as 305

follows: 306

M̂θ(v
c
i ,S) =

logPθ(v
c
i |S)

|vci |η
, (13) 307

where |vci | is the number of codewords for the item 308

vci and the hyper-parameter η controls the degree 309

of length penalty. Especially, as we use the equal- 310

length semantic IDs in our experiments, η is set 311

to 1.0 uniformly. Accordingly, we note that the 312

model-predicted probability ranges from −∞ to 0. 313

Finally, we formulate the ranking objective: 314

Lrank =

k∑
i=1

k∑
j=i+1

max{M̂θ(v
c
j ,S)−

M̂θ(v
c
i ,S) + (j − i)× λ, 0}

(14) 315

where λ is the threshold judging whether the dif- 316

ference of model-predicted probabilities of diverse 317

semantic IDs engages in backpropagation. 318

Constructing Order Prior. In generative recom- 319

mendation, a critical factor in leveraging benefits 320
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from the aforementioned ranking paradigms lies in321

constructing a well-ordered set of candidate items.322

In this work, we demonstrate the effectiveness of323

building ordered prior information based on rec-324

ommendations from LLM-based recommenders.325

Additionally, for comparative experiments as base-326

lines, we also explore the effectiveness of two alter-327

native schemes for constructing ordered candidate328

sets (See Appendix B).329

To construct prior information implying LLM330

preference, we employ a representative LLM-based331

recommender with the beam search strategy dur-332

ing the inference phase to generate a candidate333

semantic ID collection. As the generation process334

uses cumulative probability for sampling, if the335

beam width is greater than 1, these generated can-336

didates can effectively align with the preference337

of the LLM-based recommender, providing more338

information relative to a single target item:339

C1 = {vi}bi=1 = Beam_Search(b,S, θLLM),

C2 = {vci }ki=1 = Correct(C1),
(15)340

where b represents the preset beam width, and S341

is the user’s historical interaction sequence. Note342

that the results recommended by the LLM are often343

not optimal. We have implemented an additional344

correction process to further improve them. In this345

“Correct” process, we perform operations such as re-346

moving invalid semantic IDs, placing the reference347

at the forefront, removing duplicates, and select-348

ing the top k items, to design a more reasonable349

ordered list.350

Two-stage Generative Recommendation. Our351

two-stage recommendation process comprises a re-352

trieval stage and a ranking stage, employing two353

lightweight generative models as the retriever and354

the ranker, respectively. Specifically, for the re-355

triever, we investigate the training objectives in356

Equation 9 and 11 to enable the model to acquire357

generative retrieval capabilities. For the ranker,358

we use Equation 14 to train the model to learn359

from the ordered results generated by the LLM,360

thereby aligning with the LLM’s preferences. As-361

sume that the retriever generates b candidate items362

using beam search, which are then fed to the ranker,363

which selects the top k items based on probability364

scores as the final recommendation (b≫ k).365

One-stage Recommendation with Ranking.366

Since the multiple results generated by the au-367

toregressive model using the beam search strategy368

already exhibit an ordered relationship based on369

probability scores, the ranking training described370

in Equation 14 can be naturally integrated into the 371

generative recommendation training for the genera- 372

tive recommendation with ranking. Therefore, we 373

combine the generative loss (Equation 8, 9, or 11) 374

and the ranking loss (Equation 14) into a universal 375

loss function: 376

Lall = Lgen + γLrank, (16) 377

where γ is the weight of the ranking loss and is set 378

to 1.0 in our experiments. 379

4 Experiments 380

4.1 Datasets and Baselines 381

We evaluate the proposed approach using three sub- 382

sets of Amazon review data: “Musical Instruments 383

(Instruments)”, “Arts, Crafts and Sewing (Arts)”, 384

and “Video Games (Games)”. These datasets en- 385

compass user reviews from May 1996 to October 386

2018, with each item having a title and descrip- 387

tion. Consistent with previous research, we exclude 388

users and items with fewer than five interactions. 389

Subsequently, we generate user behavior sequences 390

in chronological order, setting the maximum item 391

sequence length uniformly to 20 to align with all 392

baseline requirements. The statistics of the prepro- 393

cessed datasets are shown in Table 3. 394

We employ several representative recommenda- 395

tion models as baselines for comparison, with de- 396

tails provided in the Appendix C.2. Among them, 397

FDSA (Zhang et al., 2019), S3-Rec (Zhou et al., 398

2020), P5-CID (Geng et al., 2022; Hua et al., 2023), 399

and TIGER (Rajput et al., 2024) are some of the 400

strong baselines that have demonstrated state-of- 401

the-art results in previous studies. 402

4.2 Implementation Details 403

Semantic Quantization. For the generation of se- 404

mantic item IDs, following the setting of (Zheng 405

et al., 2024), we first use the pre-trained LLaMA 406

model to encode textual title and description of 407

items in the dataset as its embeddings of 4096 di- 408

mension and use mean pooling to aggregate multi- 409

ple token hidden representations. During the quan- 410

tization process, the level of semantic IDs is set to 411

4, with each level consisting of 256 codebook vec- 412

tors, and each vector has a dimension of 32. The 413

RQ-VAE contains three components: a DNN en- 414

coder that encodes the input semantic embedding 415

into a latent representation, a residual quantizer 416

that outputs a quantized representation, and a DNN 417
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decoder that decodes the quantized latent represen-418

tation back to the semantic input embedding space.419

Both the encoder and decoder of RQ-VAE are420

implemented as Multi-Layer Perceptrons (MLPs)421

with ReLU activation functions. The model is op-422

timized using the AdamW optimizer, employing a423

learning rate of 0.001 and a batch size of 1024.424

Ordered Candidate Construction. To gather425

LLM preferences, following the LC-Rec setting426

(Zheng et al., 2024), we first adapt LLaMA-7B into427

a sequential recommender model using semantic428

IDs during training. At the inference stage, the429

recommender employs a beam search with a beam430

width of 25 for sampling and outputs candidate se-431

mantic item IDs based on cumulative probability432

scores. Due to the lack of constraints during de-433

coding, the generated collection of semantic IDs434

may contain invalid IDs, and the reference item ID435

might not exist or be in the first position. Therefore,436

we correct the model’s output to remove invalid IDs437

and ensure the target item is in the first position.438

Finally, we select the top 16 semantic IDs as candi-439

dates for each sample.440

LOHRec Details. We utilize the open-source441

Transformers library to implement our sequential442

recommenders, adhering to the implementation443

details provided by Rajput et al. (2024). In the444

learning-to-rank paradigm of our LOHRec frame-445

work, for each user interaction sequence, we use 16446

candidate semantic IDs and employ margin rank-447

ing loss (Liu et al., 2021) to enable the genera-448

tive recommendation to learn ordered relationships449

among them. All the training process is based on450

the AdamW optimizer, alongside a cosine learning451

rate scheduler with the warmup.452

During inference, the sequential recommender453

functions as a standard auto-regressive generator454

and employs a beam search strategy to retrieve455

multiple possible semantic IDs. Following pre-456

vious works (Hua et al., 2023), we implement a457

prefix tree-based constrained decoding approach458

to ensure that all model outputs for item IDs are459

valid. The detailed constrained decoding process460

is elaborated in the Appendix A. Unless otherwise461

specified, we uniformly set the beam width to 20462

across all datasets.463

4.3 Evaluation Metrics464

To comprehensively evaluate the performance of465

diverse sequential recommenders, we adopt two466

widely used evaluation metrics, including top-K467

Recall (Recall@K) and Normalized Discounted468
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Figure 3: Diversity performance evaluation across
TIGER and three variants of LOHRec on the three
datasets, with beam width 10, 20, 50, and 100.
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Figure 4: (Left): 2D visualization of embeddings of
diverse item semantic IDs via UMAP. (Right): Compar-
ative analysis of different methods for aligning LLM-
based sequential recommender.

Cumulative Gain (NDCG@K) with K = 5, 10. 469

In addition, we are also interested in measur- 470

ing and promoting diversity across recommended 471

items. Here we consider intra-list diversity for the 472

measure. Given the top-K recommended items 473

{vi}K
i=1 and the corresponding embedding list 474

[ev1 , ev2 , · · · , evK ], considering the paired item co- 475

sine similarity cos(evi , evj ) =
e⊤vievj

∥evi∥∥evj ∥
, the intra- 476

list diversity can be formulated as: 477

Diversity@K =
2

K(K + 1)

K∑
i=1

K∑
j=i

1− cos(evi , evj ), (17) 478

which takes values in [0, 1]. 479

4.4 Performance Comparison 480

With the methodological designs outlined in Sec- 481

tion 3, we explore the experimental performance of 482

four variants derived from the LOHRec framework. 483

These variants include generalization through label 484

smoothing (SMOOTH), model distillation (DIS- 485

TILL), distillation-then-rank (DTR, two stages), 486

and distillation with ranking (DWR, one stage). 487
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METHODS
INSTRUMENTS ARTS GAMES

R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10 R@5 R@10 N@5 N@10

CASER .0543 .0710 .0355 .0409 .0379 .0541 .0262 .0313 .0367 .0617 .0227 .0307
HGN .0813 .1048 .0668 .0744 .0622 .0875 .0462 .0544 .0517 .0856 .0333 .0442
GRU4REC .0821 .1031 .0698 .0765 .0749 .0964 .0590 .0659 .0586 .0964 .0381 .0502
BERT4REC .0671 .0822 .0560 .0608 .0559 .0713 .0451 .0500 .0482 .0763 .0311 .0401
SASREC .0751 .0947 .0627 .0690 .0757 .1016 .0508 .0592 .0581 .0940 .0365 .0481
FMLP-REC .0786 .0988 .0638 .0704 .0757 .1046 .0541 .0634 .0571 .0930 .0361 .0476
FDSA .0834 .1046 .0681 .0750 .0734 .0933 .0595 .0660 .0644 .1041 .0404 .0531
S3-REC .0863 .1136 .0626 .0714 .0767 .1051 .0521 .0612 .0606 .1002 .0364 .0491
P5-CID .0827 .1016 .0708 .0768 .0724 .0902 .0607 .0664 .0506 .0803 .0342 .0437
TIGER .0863 .1064 .0738 .0803 .0788 .1012 .0631 .0703 .0599 .0939 .0392 .0501

SMOOTH .0882 .1086 .0752 .0810 .0807 .1030 .0645 .0717 .0618 .0962 .0415 .0522
+2.2% +2.1% +1.9% +0.9% +2.4% +1.8% +2.2% +2.0% +3.2% +2.5% +5.9% +4.2%

DISTILL .0949 .1151 .0814 .0870 .0914 .1113 .0725 .0799 .0680 .1018 .0435 .0540
+10.0% +8.2% +10.3% +8.3% +16.0% +10.0% +14.9% +13.7% +13.5% +8.4% +11.0% +7.8%

DTR .1021 .1254 .0875 .0920 .0970 .1212 .0795 .0860 .0729 .1103 .0515 .0586
+18.3% +22.5% +18.6% +14.6% +23.1% +19.8% +26.0% +22.3% +21.7% +17.5% +31.4% +17.0%

DWR .1013 .1230 .0868 .0912 .0945 .1202 .0766 .0842 .0716 .1088 .0499 .0569
+17.4% +15.6% +17.6% +13.6% +19.9% +18.8% +21.4% +19.8% +19.5% +15.9% +27.3% +13.6%

Table 1: Accuracy performance evaluation across all methods on the three datasets. The best results and best results
from previous baselines are denoted in bold and underlined, respectively. R@K represents Recall@K and N@K
represents NDCG@K.

We present the accuracy performance and diver-488

sity performance of the sequential recommendation489

models in Table 1 and Figure 3, respectively.490

Considering these experimental results in Ta-491

ble 1, we observe that our proposed variants can492

significantly improve the accuracy performance493

of generative sequential recommenders. Specifi-494

cally, compared to the representative generative rec-495

ommender TIGER, all four variants derived from496

LOHRec outperform across the utilized metrics,497

demonstrating the strong generalization and poten-498

tial of our approach. Among them, the accuracy499

performance of SMOOTH, DISTILL, and DWR in-500

creases sequentially, with DTR showing a substan-501

tial lead, indicating that LOHRec effectively aligns502

with the preferences of LLM-based recommenders.503

We believe that the leading performance of DTR504

is due to generating more candidate items during505

the retrieval stage, compared to DWR. Addition-506

ally, we observe that DWR outperforms previous507

state-of-the-art results across all metrics, indicating508

that by leveraging LLM knowledge, our method509

achieves the best performance even with compara-510

ble model sizes.511

On the other hand, by analyzing the experimental512

results in Figure 3, we observe that the three vari-513

ants exhibit similar superiority in diversity perfor-514

mance compared to TIGER. Specifically, in addi-515

tion to setting the beam width to 20, we conducted516

additional diversity performance experiments with517

beam widths of 10, 50, and 100. We observed518

that TIGER’s diversity@10 results significantly de- 519

clined as the beam width increased, indicating that 520

standard generative recommenders are prone to 521

the problem of recommendation homogenization. 522

In contrast, our methods exhibit a slower overall 523

decline in diversity performance with increasing 524

beam width, demonstrating the effectiveness of 525

LOHRec in mitigating recommendation homoge- 526

nization. Moreover, unlike the leading position 527

of DTR in accuracy performance, we noticed that 528

DWR excels in diversity performance and is able to 529

maintain this advantage even as the beam width in- 530

creases. We believe this is because DWR integrates 531

the retrieval and ranking processes, resulting in fi- 532

nal recommendations that are less homogenized 533

compared to those of DTR that are selected from 534

retrieved candidate items. 535

4.5 Ablation Study 536

In this section, we investigate the contributions of 537

each component of DWR to the final recommenda- 538

tion performance. Specifically, DWR is composed 539

of two components: model distillation for genera- 540

tive recommendation (DISTILL) and ranking ob- 541

jective learning ordered correlation (RANK). To 542

investigate the contributions of each component, 543

we independently removed each one. Moreover, 544

we concurrently eliminated both of them, thereby 545

regressing it to the state of standard generative se- 546

quential recommendation in an autoregressive man- 547

ner. As demonstrated in Table 2, compared with 548
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“w/o DISTILL”, “w/o RANK”, and “w/o All”, we549

have the following observations: (1) Employing hi-550

erarchical semantics of LLM-based recommenders551

for distillation can significantly enhance the overall552

performance of generative recommendations; (2)553

Utilizing our learning-to-rank paradigm for LLM554

preference can significantly enhance the accuracy555

and diversity of recommended results.556

4.6 Further Analyses557

Embedding Visualization Analysis. To further558

investigate the effectiveness of our proposed frame-559

work in aligning LLM preferences, we delve into560

the relationships among embeddings of semantic561

item IDs encoded by different sequential recom-562

menders. In this work, we utilize UMAP (McInnes563

et al., 2018) to visualize the item embeddings.564

Specifically, the 4096-dimensional vectors from565

the LLM-based recommender LC-Rec and the 384-566

dimensional vectors from both LOHRec variants567

SMOOTH and DISTILL are reduced to 2 dimen-568

sions for visualization. In Figure 4 (Left), we can569

observe that compared to SMOOTH, the item repre-570

sentations of DISTILL are closer to the distribution571

area of LC-Rec, indicating the effectiveness of DIS-572

TILL to align with LC-Rec.573

LLM Alignment Analysis In addition, we ex-574

plored the impact of different strategies on learn-575

ing LLM preferences. In the experiment, we used576

the top 20 results recommended by LC-Rec as the577

ground truth and compared the effects of the fol-578

lowing four methods: (1) using the next item as579

the label (Ref); (2) using the top 1 output of LC-580

Rec as the label (Top); (3) randomly sampling one581

from the LC-Rec outputs as the label (Random);582

and (4) using our ranking paradigm to learn the583

order relationships of the LC-Rec outputs (Rank).584

Inspired by the commonly used metrics in NLG585

tasks, ROUGE-1 and ROUGE-L (Lin, 2004), we586

proposed two metrics, “Coverage” and “Coordina-587

tion”, to measure the alignment effectiveness of588

our model from the perspectives of the intersection589

with the LLM recommended set and the longest590

common subsequence, respectively. As observed591

in Figure 4 (Right), the Rank method significantly592

outperforms other methods in terms of alignment593

performance, indicating the effectiveness of Equa-594

tion 14 in aligning with LLM preferences.595

5 Related Works596

Large Language Model For Recommendation.597

Large language models have gained attention in598

recommendation systems, with various efforts to 599

use them for modeling user behavior (Kang et al., 600

2023). LLMs have been employed in diverse rec- 601

ommendation tasks, including rating prediction, 602

sequential recommendation, and direct recommen- 603

dation(Bao et al., 2023; Zhang et al., 2023). Some 604

efforts also tried to utilize LLMs to model struc- 605

ture relations. However, most approaches directly 606

use LLMs as recommenders, which results in high 607

costs and makes practical application difficult. 608

Self-Supervised Learning in Recommendation 609

Recently, self-supervised learning has become pop- 610

ular in recommender system research. In collabora- 611

tive filtering (CF), SSL4Rec (Yao et al., 2021) em- 612

ploys data augmentation on item features and intro- 613

duces a contrastive pretraining objective to improve 614

learned representations in the two-tower model. In 615

knowledge-aware recommendation, KGCL (Yang 616

et al., 2022) develops a knowledge graph con- 617

trastive learning framework to aid denoising and 618

integration between CF learning and knowledge 619

graph encoding. For the socially-aware recommen- 620

dations, MHCN (Yu et al., 2021) designs a graph 621

infomax task to accommodate cascading seman- 622

tic information from social graphs, enhancing user 623

representation learning. In the field of sequential 624

recommendation, ICLRec (Chen et al., 2022) con- 625

ducts clustering and contrastive learning on user 626

intents, and it enhances sequential recommendation 627

by improving the representation of user interests. 628

6 Conclusion and Future Work 629

In this paper, we study improving generative recom- 630

mendation performance via leveraging the ubiqui- 631

tous ordered correlation and hierarchical semantics 632

in quantized item IDs. Specifically, we demon- 633

strate the effectiveness of LOHRec in aligning the 634

recommendation preferences of lightweight gen- 635

erative recommenders with those of LLM-based 636

recommenders. Additionally, since LOHRec only 637

uses additional tokens from the semantic item ID 638

set, it can be applied to models with incompati- 639

ble original vocabularies, demonstrating the sound 640

generalizability. 641

For future work, our approach can be naturally 642

extended to larger parameter scales and even vari- 643

ous pre-trained language models. Additionally, our 644

method can be applied to learning more types of 645

sequential information to adapt to specific down- 646

stream tasks. 647
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Limitations648

Due to the extra GPU memory required for learning649

to rank candidate results in our framework, we were650

only able to evaluate our method on lightweight651

models. Experiments on larger models such as 7B652

were infeasible, as out-of-memory (OOM) errors653

occurred even with a batch size of 1. This limits the654

validation of our approach on large language mod-655

els (LLMs). Furthermore, although we validated656

our method on three public datasets, evaluating the657

method on more and larger datasets is necessary to658

further demonstrate its generalizability.659

Ethics Statement660

All datasets used in this research are from pub-661

lic benchmark open-access datasets, which are662

anonymized and do not pose privacy concerns.663
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A Constrained Decoding via Hierarchy 811

In general, the autoregressive model samples possi- 812

ble tokens from the whole vocabulary space at each 813

time step during the decoding phase. However, 814

for the sequential recommenders that incorporate 815

generative retrieval paradigm and structured item 816

semantic IDs, directly using such a decoding strat- 817

egy often generates useless semantic IDs (i.e., no 818

corresponding real item) since there are many in- 819

valid codeword combinations, leading to a waste 820

of inference resources and low recommendation 821

performance. Considering the distinct hierarchical 822

structure of semantic item IDs via the residual quan- 823

tization of RQ-VAE, it is intuitive to leverage these 824

structured characteristics to constrain the sampling 825

process during the decoding phase. Specifically, 826

we first build a prefix tree based on the semantic 827

IDs of all effective items in the dataset. For each 828

node in the tree, we maintain a hash table from 829

codewords to the corresponding child nodes. Dur- 830

ing the inference phase, we apply a beam search 831

strategy for autoregressive decoding. Particularly, 832

at each time step, we sample from all keys (i.e., all 833

valid codewords currently) of the hash table of the 834

current node, rather than from the entire vocabulary 835

space. The more detailed process of our decoding 836

strategy is shown in Algorithm 1. 837

B More Constructions of Ordered Prior 838

as Baselines 839

In this paper, we mainly explore two additional 840

types of ordered information mining methods for 841

the generative sequential recommendation, lever- 842

aging the heuristic distance and global statistics, 843

respectively. 844

B.1 Ordered Priors with Heuristic Distance 845

As we mentioned above, we use RQ-VAE to con- 846

struct the semantic item ID, which has a coarse- 847

to-fine hierarchy. Accordingly, we can consider 848

that the earlier codewords in the semantic ID are 849

more important because errors in the earlier parts 850

greatly disrupt the semantic information that fol- 851

lows. Therefore, intuitively, we propose a heuristic 852

method to measure the distance between seman- 853

tic IDs. Specifically, given two semantic IDs of 854

length D, v(p) = (c
(p)
1 , c

(p)
2 , · · · , c(p)D ) and v(q) = 855

(c
(q)
1 , c

(q)
2 , · · · , c(q)D ), we measure their differences 856

by considering the matches and weights at corre- 857
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Settings
Instruments Arts Games

Recall@10 NDCG@10 Div@10 Recall@10 NDCG@10 Div@10 Recall@10 NDCG@10 Div@10

DWR 0.1278 0.0944 0.3711 0.1288 0.0892 0.3740 0.1179 0.0639 0.3553

w/o DISTILL 0.1092 0.0821 0.3423 0.1036 0.0724 0.3490 0.0964 0.0534 0.3161
w/o RANK 0.1169 0.0877 0.3525 0.1176 0.0808 0.3533 0.1090 0.0535 0.3355
w/o All 0.1078 0.0797 0.2913 0.1030 0.0712 0.2971 0.0928 0.0492 0.3116

Table 2: Ablation study results on the development sets of all datasets. Performance changes compared with our
best model (DWR) are reported. Div@10 represents the intra-list diversity@10.

Algorithm 1 Beam Search with the Prefix Tree
1: Input: Top-k k, beam width b, prefix tree T
2: Output: Sequences {S1, S2, . . . , Sk}
3: Initialize with start token B = {(⟨s⟩, root of T, 1.0)}
4: repeat
5: B′ ← ∅
6: for all (sequence s, node n, prob p) ∈ B do
7: Get the hash table H from the current node n
8: codewords← keys of the hash table H
9: for all token t ∈ codewords do

10: s′ ← s concatenated with t
11: Compute probability P (t|s)× p for the new sequence s′

12: n′ ← next node after taking token t from H
13: Add (s′, n′, P (t|s)× p) to B′

14: end for
15: end for
16: B ← top b sequences from B′ by total probability
17: until Stopping condition
18: Sort B by probability in descending order
19: return Top k sequences from B

sponding positions:858

Distance =

D∑
i=1

2D−iI(c(p)i ̸= c
(q)
i ), (18)859

where I(·) is the indicative function. The range860

of distances is from 0 to 2D − 1. In other words,861

given a reference semantic ID, we can construct a862

pseudo-semantic ID list of length 2D − 1, ordered863

by distance from smallest to largest.864

B.2 Ordered Priors from Global Statistics865

Sequential recommendation models tend to learn866

local sequential patterns during the training phase.867

We believe that enhancing the perception of their868

association with globally ordered information can869

improve the model’s performance. To this end,870

we first construct the interaction matrix M ∈871

R|U|×|V| between users and items by setting the872

entry Mu,v = 1 if user u has interacted with item873

v and Mu,v = 0 otherwise. With the operation874

AG = M⊤M, we obtain the initial correlation 875

strength between items in AG based on their co- 876

interaction frequency. Then given the target item, 877

we apply top-k(·) function to collect the top-k rele- 878

vant items. 879

C More Experimental Details 880

C.1 Dataset Statistics 881

C.2 Baselines 882

We adopt the following representative models as 883

baselines for comparison. 884

• Caser (Tang and Wang, 2018): It employs CNN 885

in both horizontal and vertical ways to model 886

high-order MCs for sequential recommendation 887

• HGN (Ma et al., 2019): It uses the hierarchical 888

gating network to capture the long- and short- 889

form interest from the user behavior sequence. 890
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Dataset #Users #Items #Interactions Sparsity Avg. Length

Instruments 24,773 9,923 205,153 99.92% 8.32
Arts 45,142 20,957 390,832 99.96% 8.66
Games 50,547 16,860 452,989 99.95% 8.96

Table 3: Statistics of used datasets.

• GRU4Rec (Hidasi et al., 2016): It uses GRU891

with ranking-based loss to model user sequences892

for the session-based recommendation.893

• BERT4Rec (Sun et al., 2019): It adopts a bi-894

directional Transformer-based model and com-895

bines it with a mask prediction task for the mod-896

eling of item sequences.897

• SASRec (Kang and McAuley, 2018): It uses898

a left-to-right Transformer language model to899

model user behavior sequence and predict the900

next item.901

• FMLP-Rec (Zhou et al., 2022): It proposes an902

all-MLP model with learnable filters, which en-903

sures efficiency and reduces noise signals.904

• FDSA (Zhang et al., 2019): It focuses on the905

transformation patterns between item features,906

modeling both item-level and feature-level se-907

quences separately through self-attention net-908

works.909

• S3-Rec (Zhou et al., 2020): utilizes mutual910

information maximization to pre-train a self-911

supervised sequential recommendation model,912

learning the correlation between items and attri-913

butions.914

• P5-CID (Geng et al., 2022; Hua et al., 2023):915

The authors organize multiple recommendation916

tasks in a text-to-text format, uniformly model-917

ing these tasks using the T5 model. They then918

investigate methods for constructing item IDs for919

sequential recommendation, including sequen-920

tial indexing and collaborative indexing. In our921

work, we use P5 with collaborative indexing as922

the baseline, following the implementation pro-923

vided by the authors.924

• TIGER (Rajput et al., 2024): It adopts the gener-925

ative retrieval paradigm for the sequential recom-926

mendation and introduces the quantized seman-927

tic IDs based on RQ-VAE to uniquely identify928

items.929

D Case Study 930

To further qualitatively analyze the effectiveness of 931

our method, we present two cases of recommenda- 932

tion results on the Amazon-Games test set using 933

the sequence recommendation models TIGER and 934

DWR. In Table 4, we observe that the recommen- 935

dation results generated by TIGER contain an entry 936

“ERROR” highlighted in red, indicating an invalid 937

semantic ID that cannot be mapped to the actual 938

item. Additionally, there is a repeated occurrence 939

of the item “Metroid: Other M” (highlighted in 940

orange), suggesting that TIGER, while avoiding 941

identical semantic IDs, still tends to recommend 942

highly similar semantic IDs that may map to the 943

same item instance. In contrast, DWR ensures 944

valid semantic IDs, with the recommendation re- 945

sults being more accurate and diverse. In Table 5, 946

the recommendation results from TIGER exhibit 947

severe repetition, whereas our recommender main- 948

tains good diversity in its recommendations. 949
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Case 1

Input Sequence:
Final Fantasy Crystal Chronicles: Echoes of Time - Nintendo Wii.
My Fitness Coach - Nintendo Wii.
Super Mario Galaxy 2.
Final Fantasy Fables: Chocobo’s Dungeon - Nintendo Wii.
Super Mario Galaxy.
Castlevania Judgment.
Kingdom Hearts Re:Chain of Memories.
Final Fantasy X-2.
The Legend of Zelda: Skyward Sword with Music CD.
Summoner.
Beyond Good & Evil.

Target:
Tales Of Symphonia: Dawn of the New World.

Results of TIGER:
Metroid: Other M.
Super Mario Galaxy 2.
Sin and Punishment: Star Successor - Nintendo Wii.
The Last Story - Nintendo Wii.
ERROR.
Super Paper Mario (Nintendo Selects).
Lunar: Dragon Song - Nintendo DS.
Metroid: Other M.
Knights in the Nightmare - Nintendo DS.
Super Smash Bros. Brawl.

Results of LOHRec-LLM:
The Legend of Zelda: Twilight Princess.
Final Fantasy IV.
Metroid: Other M.
The Legend of Zelda: The Wind Waker.
Super Mario Galaxy 2.
Final Fantasy Tactics A2: Grimoire of the Rift.
Rune Factory: Frontier - Nintendo Wii.
Final Fantasy XII.
Tales Of Symphonia: Dawn of the New World.
Dragon Quest IV: Chapters of the Chosen - Nintendo DS.

Table 4: Items recommended by TIGER and LOHRec-DWR trained on Amazon-Games dataset.
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Case 2

Input Sequence:
Vacation Quest: Australia - PC.
Mystery P.I. Portrait of a Thief - Nintendo DS.
Amazing Adventures: Around The World - PC.
Mystery P.I.: The Lottery Ticket - PC.
Amazing Adventures The Riddle Of Two Knights.
Mystery P.I.: The London Caper.
Amazing Adventures: The Forgotten Dynasty.
Mahjong Escape: Ancient China - PC.
Bejeweled - PC.

Target:
Escape the Emerald Star - PC/Mac.

Results of TIGER:
Ancient Secrets: Quest for the Golden Key.
Big Fish: Sable Maze 1: Sullivan River and Sable Maze 2: Norwich Caves - PC.
Dark Tales 3:Edgar Allen Poe’s The Premature Burial - PC.
Mystery P.I: The Curious Case of Counterfeit Cove.
Amazing Adventures: The Lost Tomb - PC.
Holiday Pack - 3 in 1 - Hidden Object Game [Download].
Chinatown Chronicles - Hidden Objects Game [Download].
Ancient Secrets: Quest for the Golden Key.
Big Fish: Sable Maze 1: Sullivan River and Sable Maze 2: Norwich Caves - PC.
Dark Tales 3:Edgar Allen Poe’s The Premature Burial - PC.

Results of LOHRec-LLM:
Mystery P.I: The Curious Case of Counterfeit Cove.
Vacation Quest: Australia - PC.
Mystery P.I.: The London Caper.
Golden Trails: The New Western Rush [Download].
Dark Tales 3:Edgar Allen Poe’s The Premature Burial - PC.
100% Hidden Objects [Download].
Awakening: Moonfell Wood.
Mystic Diary: Haunted Island.
Super Market - Hidden Object Game [Download].
Travel Pack - 3 in 1 - Hidden Object Game [Download].

Table 5: Items recommended by TIGER and LOHRec-DWR trained on Amazon-Games dataset.
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