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Abstract
Decoding methods for large language models
often trade-off between diversity of outputs
and parallelism of computation. Methods such
as beam search and Gumbel top-k sampling
can guarantee a different output for each
element of the beam, but are not easy to
parallelize. Alternatively, methods such as
temperature sampling and its modifications (top-k
sampling, nucleus sampling, typical decoding,
and others), are embarrassingly parallel, but have
no guarantees about duplicate samples. We
present a framework for sampling according
to an arithmetic code book implicitly defined
by a large language model, compatible with
common sampling variations, with provable beam
diversity under certain conditions, as well as being
embarrassingly parallel and providing unbiased
and consistent expectations from the original
model. We demonstrate the effectiveness of
our approach on WMT machine translation,
more than halving the standard deviation when
estimating expected BLEU score reward, and
closing the BLEU score gap between independent
sampling and beam search by up to 63%.

1. Introduction
Large language models (LLMs) based on transformers
are crucial to modern natural language processing. The
ability of LLMs to capture knowledge from massive
pretraining datasets is useful for applications such as
machine translation and predictive text (Raffel et al., 2020;
Brown et al., 2020; Radford et al., 2019) as well as for
automated speech recognition (Martinez et al., 2021) and
image captioning (Devlin et al., 2015). However, because
of the powerful nonlinear dependencies in the architecture,
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Figure 1: Sequence model over sequences of length two
and a vocabulary of three symbols mapping points in the
unit interval to each sequence. An even lattice of code
points parallelizes decoding into diverse high-probability
sequences.

options for inference are limited.

While LLM inference can be performed exactly for the case
of drawing independent samples, practical systems often
use inexact search—often modifications to beam search—to
guarantee high-quality and diverse (either in n-gram overlap
or semantic difference) samples. Search-based approaches
including beam search, stochastic beam search (Gumbel
top-k) (Kool et al., 2019), determinantal beam search
(Meister et al., 2021b), and others, can produce diverse
samples by construction, at the cost of being difficult to
efficiently parallelize, as they must examine the entire set of
partial predictions (known as the beam) at each time step.

Intuitively, there seems to be a trade-off between
parallelizability of a sampling algorithm and ability
to guarantee non-duplicate samples. Methods based
on ancestral sampling parallelize very well as they
turn a random number generation seed into a sample
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independently. However, high probability sequences are
often generated multiple times. Conversely, search-style
methods inherently avoid generating duplicate samples but
when parallelized require synchronizing across replicas to
sort the candidates at each step.

In response to this, we introduce arithmetic sampling,
a technique for sampling from large language models
that produces a set of non-independent samples from the
model, based on a coding scheme implicitly defined by the
model. With this coding scheme, distant codes in code
space represent different sequences. Further, decoding
each code can be done independently from all other codes.
Arithmetic sampling boasts provable beam diversity under
certain conditions, produces unbiased expectations from the
original model, and is embarrassingly parallel and as simple
to implement as normal sampling.

In addition to analyzing bias and consistency of estimators
based on arithmetic sampling, we present results on the
metric properties of the codebook space and the conditions
under which it improves sample diversity, as well as an
analysis of the estimator variance.

Comparing against equivalent hyperparameters for standard
sampling, we show improvements of nearly 1 point of BLEU
in oracle experiments for En/Fr WMT translation, closing
the gap between independent sampling and beam search
by up to 63%, reducing estimation variance by more than
half and improving beam diversity. We see comparable
improvements in En/Ro translation and variance reduction
for ROUGE score on CNN/DailyMail summarization. We
release an open-source implementation of our algorithm1 in
the popular T5X transformer library (Roberts et al., 2022).

2. Related Work
This paper draws on three main threads of related work.
Coding theory, diverse sampling, and quasi-Monte Carlo.

The use of latent “codes” to represent data has a long
history in the neural network and representation learning
literature, from autoencoders (LeCun, 1987) to sparse
coding algorithms like K-SVD (Aharon et al., 2006). Rather
than using a high dimensional code learned from data using
an iterative algorithm or backpropagation, we design a
simple one dimensional arithmetic code (Cover & Thomas,
2006) post-hoc from a trained language model.

Diverse sampling inference techniques for large language
models fall into two categories: techniques for producing
a diverse beam (sample of sequences), and techniques
for discouraging overlap (n-gram repetition) within a

1Code is available at https://github.com/
google-research/google-research/tree/
master/arithmetic_sampling

single sequence. The former encompasses methods like
determinantal beam search (Meister et al., 2021b), parallel
approximate decoding (Cho, 2016), stochastic beam search
(Kool et al., 2019), and conditional poisson stochastic
beam search (Meister et al., 2021a). Our method differs
from (determinantal) beam search or parallel approximate
decoding in that it is designed to faithfully sample from
the underlying probability model in that sample means can
be used to compute unbiased expectations. Unlike beam
search or sampling-without-replacement based variants, our
algorithm is embarassingly parallel.

Methods such as temperature sampling, top-k sampling (Fan
et al., 2018), nucleus sampling (Holtzman et al., 2019),
Mirostat (Basu et al., 2020), and typical decoding (Meister
et al., 2022) are useful both for increasing diversity over
standard beam search both across the beam and within a
single long generation. These methods, and any others
that modify conditional logits, are fully compatible with
and complementary to our algorithm, and we provide
experiments with temperature sampling and top-k sampling
demonstrating improvements.

There is also work on changing the training objective using
unlikelihood (Welleck et al., 2019) or reinforcement learning
(Lagutin et al., 2021) so that standard generation schemes
produce more diverse outputs, which is also orthogonal to
our methods.

The final thread of related work is quasi-Monte Carlo
integration. (Randomized) Quasi-Monte Carlo techniques
(l’Ecuyer, 2016) combine the adaptive anytime properties of
Monte Carlo estimation with the reduced variance of lattice
integration methods (L’Ecuyer & Lemieux, 2000), and have
been used in machine learning applications such as lowering
the variance of randomized kernel approximations (Yang
et al., 2014) and neural latent variable models (Buchholz
et al., 2018). Quasi-Monte Carlo has not been applied to
the standard neural autoregressive discrete distributions we
describe here, to our knowledge.

3. Background
3.1. Arithmetic Coding

An arithmetic code is an optimal lossless coding
scheme—that is, a coding scheme with minimal expected
code length—for when the exact joint distribution of the
data is known. Given a total ordering of the items being
encoded and defining wi =

∑
j<i P (X = xj) the

cumulative probability of item xi, an arithmetic code for
xi is a number in the interval (wi, wi+1). To represent
this code as a sequence of bits it’s usual to pick a rational
number in the interval (wi, wi+1) whose binary fraction
representation requires a small number of digits. Larger
intervals then tend to contain more numbers with short
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representations. Decoding an arithmetic code c requires
finding the unique value of i such that wi < c < wi+1. In
this way, codewords are assigned with a length which is
inversely (logarithmically) proportional to the probability
of an outcome, providing an optimal compression rate for
the average message, roughly equivalent to the entropy of
the distribution.

Definition 1 (Arithmetic codebook). By a slight abuse of
terminology, we will use the term arithmetic codebook to
refer not only to the map from symbols to binary fractional
representations, but also to the map from symbols to
subintervals of the unit interval, f : V → 2[0,1].

An example of an arithmetic codebook is he most common
method for sampling from categorical distributions in
practice. First one constructs a codebook assigning each
symbol to a subinterval of the unit interval, and then samples
uniformly at random from the unit interval and inverts the
map to find the symbol sampled.

3.2. Randomized Quasi-Monte Carlo

A common problem when working with probability
distributions is to compute the expectation of functions
under the distribution. The family of Monte Carlo
algorithms is commonly used for this purpose. A simple
Monte Carlo algorithm for estimating the expectation of a
function s under a probability distribution is to first obtain n
i.i.d. samples xi from the distribution and then approximate
E[s(X)] ∼ 1

n

∑
i s(xi). Without loss of generality, these

methods are often formulated in terms of evaluating an
expectation of a function defined on the unit hypercube.

E[s(X)] =

∫
x∈[0,1]d

s(x)dx (1)

≈ 1

N

N∑
i

s(ui), ui ∼ Uniform([0, 1]d)

Because many integrals can be interpreted as expectations
of functions of a uniform distribution on the unit hypercube,
Monte Carlo algorithms have been fairly useful for
numerical integration as alternatives to quadrature methods
which approximate functions using grids and other regular
structures, often providing higher expected accuracy when
controlling for computational cost.

When dependent random variables are used in Monte Carlo
estimation of probabilistic quantities, it is commonly called
Randomized Quasi-Monte Carlo (RQMC). These methods
include the use of low-discrepancy sequences, lattice
rules, antithetic sampling, and stratification, among others
(l’Ecuyer, 2016). In this work, we are most concerned with
lattice-based RQMC (L’Ecuyer & Lemieux, 2000) methods,
which use perturbed lattices. A simple lattice-based RQMC
rule replaces the uniform sampling in Equation 1 with a

regular lattice of points that has been randomly shifted by a
single uniform random vector.

E[s(X)] ≈ 1

N

N∑
i

s(li + u), u ∼ Uniform([0, 1]d). (2)

3.3. Ancestral Sampling

While Section 3.1 makes it clear that given a codebook for
a discrete distribution, sampling from that distribution can
be done by simply generating a uniform random number, in
practice explicitly constructing such a codebook is often not
feasible as for example in probabilistic sequence models the
codomain includes all sequences of symbols up to some
large length. Instead, one models the joint probability
of a sequence of tokens as the product of the conditional
probabilities of each token given all of the preceding tokens,

P (XT , ..., X1) = ΠT−1
t=0 P (XT |X1, ..., Xt). (3)

Each of these conditional probability functions can then be
modeled using a neural network. Analogously, sampling in
large language models is done through ancestral sampling,
wherein each token is sampled successively from the
conditional probability after conditioning on all previous
tokens,

xT ∼ P (XT |X1, ..., XT−1). (4)

Definition 2 (Prefix of a sequence). For a sequence of
symbols x1, ..., xT , we call a contiguous subsequence
x1, ..., xt for t < T a prefix of the sequence.

When working with these probabilistic sequence models, it
is natural to think in terms of prefixes. In fact, implicit
in our definition of the ancestral sampling scheme and
product-of-conditionals architecture is that it allows us to
compute probabilities not only over complete sequences,
but also over partial prefixes, i.e. the probability P (X1 =
x1, ..., XT = xT ) is the sum of probabilities of every
sequence longer than T sharing that prefix. There are
two ways that practical neural sequence models distinguish
between a prefix and a complete sequence. The first,
common in decoder-only models, is to decode every
sequence to some maximum length, and define the
distribution as applying only to sequences of that length.
The second is to include a special EOS (end-of-sentence)
token, and define a sequence as complete if it ends with
EOS. So the prefix (x1, ..., xT ) is distinguished from the
sequence (x1, ..., xT ,EOS). Padding tokens are added to
the end of the sequence after EOS to make every sequence
of a uniform length.

In our work we exploit this prefix structure in order to
construct an alternative to ancestral sampling for these
neural sequence models.

3
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4. Method
The core idea of our method is to improve the diversity of
samples by (1) reinterpreting an ancestral sampling scheme
as defining an arithmetic codebook, where distance in code
space correlates (in a sense to be made precise later) with
prefix distance in sentence space, and (2) using non-IID
random numbers to sample from the codebook. This allows
us to guarantee that the codewords are “far apart” in code
space, while preserving unbiasedness of our estimation.

4.1. Constructing the codebook

The algorithm has a geometric flavor and will be easiest to
follow while making reference to the toy example in Figure
1. As noted in Section 3.3, in real world sequence models
over a vocabulary V , it is impractical to explicitly construct
an arithmetic codebook (a mapping from sequences to
disjoint subintervals of [0, 1]). What we will demonstrate
here is that it is possible to implicitly define an arithmetic
codebook for a given sequence model such that we can
(1) given a sequence or prefix, compute the corresponding
interval in the codebook, and (2) given a point (a “code”) in
the unit interval, to compute the the corresponding sequence.
Further, these computations can be done with complexity
no greater than that of normal likelihood computation or
ancestral sampling.

Without loss of generality, we can assume the sequences all
have uniform length L as described in Section 3.3. Given
an ordered vocabulary V , we use the standard dictionary
ordering on V L. Given two sequences (a1, a2, ..., aL) and
(b1, b2, ..., bL), their ordering depends on the order between
the two symbols in the first place i on which the two
sequences differ.

Because our dictionary ordering puts all sequences sharing
a given prefix into contiguous blocks, we can define the
codebook in terms of prefixes and only lazily materialize
the codes for longer prefixes as we need them.

Concretely, we compute the CDF of the first token in the
sequence wi1 =

∑
j<i1

P (X1 = vj), and assign to each
choice of prefix X1 = vi1 the subinterval (wi1 , wi1+1). All
codes for sequences starting with vi1 will lie in this interval.
We recursively define the codebook for prefixes of length
two, computing

wi1i2 = wi1+

P (X1 = vi1)
∑
j<i2

P (X2 = vj |X1 = vi1)

This gives the subinterval corresponding to sequences that

start with vi1vi2 . We extrapolate the following formula:

wi1...iL = wi1..iL−1
+∑

j<iL

P (X1 = vi1 , ..., XL−1 = viL−1
, XL = vj) (5)

For a given sequence or prefix i1...iL, we assign it to
the subinterval (wi1...iL , wi1...iL+1). By inspecting this
equation we can see several things:

• The intervals defined by wi’s are a valid codebook
for the space of sequences. The subintervals
corresponding to any given prefix are disjoint from
those that do not share that prefix, so every sequence
ends up in a disjoint interval, and the length of each
interval is exactly the probability of the sequence.

• The computation of a code for a given sequence has
the same FLOPS as evaluating the probability of that
sequence under the model using Equation 3. The only
probabilities involved in computing the wi’s all involve
the conditional probabilities used to calculate a single
prefix and can be computed step-by-step.

• Given a code point in the unit interval, discovering
its subinterval requires the same FLOPS as standard
ancestral sampling using Equation 4. This is described
in Algorithm 1 and follows the same recursive
construction as used to define the codebook in Equation
5.

An immediate corollary of the third point is
Proposition 1. If the code point c is chosen randomly from
the unit interval, Algorithm 1 samples from the distribution
P (X) = P (X1, ..., XT ).
Remark. Conditioned on a set of codes c1, ..., cN , sampling
using Algorithm 1 is embarrassingly parallel across
sequences. Because it uses the same FLOPS and follows
the same structure, we find that this has zero appreciable
computational overhead in practice compared to standard
sampling. We further discuss practicalities of parallel LLM
inference in Section 5.3 and Appendix A.

4.2. Sampling consistency and bias

So far we have only reproduced the standard algorithm
for ancestral sampling using an additional latent
uniform variable (which is similar to most practical
implementations). This latent variable however lets us
introduce some structure in how we pick our codes.

A naive codebook of maximal diversity can be obtained by
dividing the unit interval in a regular lattice. That is, for N
codes, we pick so ci is the i’th quantile i/N . Since this is
deterministic, Proposition 1 does not apply, but this gives a
consistent estimator.
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Algorithm 1 Sampling from a Code Point

Input: code point c ∈ [0, 1], ordered vocabulary V ,
sequence model P (X1, ..., XT )

set c0 = c, X = {}, t = 0
repeat

set wi =
∑

j<i P (Xt = vj |X<t)
for vj ∈ V

set Xt = vi
s.t. wi < ct < wi+1

set (m,M) = (wi, wi+1)
s.t. wi < ct < wi+1

set ct+1 = ct−m
M−m

set t = t+ 1
until Xt−1 = EOS
return X

Proposition 2 (Naive arithmetic sampling). Let a set of
N codes be picked such that ci = i/(N + 1). Let f(ci)
represent the sequence obtained from applying Algorithm
1 to ci. Let s be a function from the codomain of X to R.
Then

lim
N→∞

1

N

∑
i

s(f(ci)) = E[s(X)], (6)

that is, the estimator 1
N

∑
i s(f(ci)) is consistent.

This deterministic method is biased, however.
Example. Consider the distribution over sequences of
length one, over two symbols. Let the first symbol A have
probability 0.6 and the second symbol B have probability
0.4. The naive arithmetic sampling scheme for N = 1
would have us compute our sample mean with the code
c1 = 0.5, which is biased.

A simple technique to remove this bias it to add a single
random uniform shift to each code point and taking the
result modulo 1. This is a randomly shifted lattice rule in
the RQMC literature.
Definition 3 (Arithmetic sampling). Let {ci} be a set of N
codes given by i

N+1 + b mod 1 where b ∼ U(0, 1) is a
shared uniform random sample. Apply algorithm 1 to each
of the codes to receive sequences {xi}.
Proposition 3. Let {xi} be a set of sequences picked by
arithmetic sampling. Let s be a function from the codomain
of X to R. Then

E[
1

N

∑
i

s(xi)] = E[s(X)]

plim
N→∞

1

N

∑
k

s(xi) = E[s(X)]

that is, the estimator 1
N

∑
i s(xi) is unbiased and

consistent.

Proofs of these statements can be found in Appendix C.

4.3. Metric properties and diversity

Intuitively, more evenly spaced out codes in code space
should lead to more diverse sequences and/or more even
coverage of the set of sequences. We note the following

Proposition 4 (Monotonicity). Consider an arithmetic
codebook mapping code points in [0, 1] onto a space V L

containing sequences of length L. Let (c3, c4) ⊂ (c1, c2)
be two intervals in [0, 1]. Let xi = f(ci) be the sequence
decoded from code point ci, and let d(xi, xj) = L − p
where p is the length of the maximum matching prefix of
the two sequences (this is a distance in a prefix tree). Then
we have d(x1, x2) > d(x3, x4), that is, the the function f
is a monotonic (order-preserving) embedding between the
poset of subsets of [0, 1] ordered by set inclusion, and the
poset of subsets of V L ordered by set radius under the prefix
distance metric.

The choice of a prefix-ordered code space is of course
necessitated by our construction of the codebook from
the ancestral sampling scheme but it might be beneficial
in practical applications, where overlapping prefixes often
indicate simple or extraneous variations on the same word
(such as pluralization and other inflections), while different
prefixes indicate entirely different words.

We can also precisely characterize when arithmetic sampling
will yield duplicate samples and prefixes.

Proposition 5. Arithmetic sampling with size N will never
sample the same prefix x more than n times if P (X = x) <
n/(N + 1).

Proof. Each sequence x maps to a contiguous interval with
length equal to P (X = x). Since each code word is 1/(N+
1) away from any other code word, more than n of them
cannot fit in an interval of that size and thus cannot generate
the same sequence.

Proposition 6. Arithmetic sampling with size N must
always sample a prefix x at least n times if P (X = x) >
n/(N + 1).

Proof. The code book maps each sequence x to a
contiguous interval with length equal to P (X = x).
Since each code word is 1/(N + 1) away from its nearest
other code word, at least n of them must appear in an
interval of length greater than n/(N +1) by the pigeonhole
principle.

4.4. Variance of estimator

We would like to characterize the variance reduction
properties of this method when used as an estimator. While

5
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this is not simple to characterize in general, we show a
simple and reasonably realistic class of functions for which
shifted lattice rules reduce variance, and offer a heuristic
argument that real world quantities of interest for estimation,
such as BLEU, exhibit these properties. This offers a partial
theoretical explanation for the variance reduction properties
we observe in our empirical experiments.

Definition 4 (Step function). A function f : [0, 1] → R is a
step function if it is a finite linear combination of indicator
functions of disjoint intervals, which cover all of [0, 1]

f(c) =

N∑
i

ai1[x∧
i ,x∨

i ](c)

Note that the function whose expectation we desire to
estimate, s(f(c)), is a step function.

s(f(c)) =

N∑
i

f(xi)1f−1(xi)(c)

Proposition 7. Let f be a step function, and let the width of
each interval x∨

i −x∧
i be a multiple of 1/N . Then arithmetic

sampling with N samples exactly estimates this expectation
with zero variance.

Proof. Subdivide every interval component of size n/N
(wlog) up into n intervals of width 1/N . Then exactly one
randomly shifted lattice point will end up in each interval
by the pigeonhole principle.

Though it is unsurprising that taking exactly the right
number N will give zero variance, adding more samples
may actually increase the variance a bit as some intervals
end up with more points in them than others. Let’s examine
what happens to this term when we add one extra lattice
point, that is, we integrate using N + 1 samples.

Proposition 8. Let f be a step function, and let the width of
each interval x∨

i −x∧
i be a multiple of 1/N . Then arithmetic

sampling with N + 1 samples has lower variance than the
naive Monte Carlo estimator.

The proof of this statement is provided in Appendix B.

As we add more lattice points, we can expect the variance
to change even more, but the analysis of the addition of one
extra lattice point is instructive as to how we can expect
sampling on a shifted lattice to improve over naive Monte
Carlo for these kinds of functions.

Practical functions on the space of sequences obviously
have too many interval components, which are not perfect
multiples of 1/N , for these results to apply directly.
However, if we assume that the vast majority of probability
mass lies on a reasonably small number of sequences,

and the value of f outside of such sequences is quite
low, such as when calculating BLEU score for a trained
translation model, the function s(f(c)) should be very well
approximated by a function satisfying these conditions with
a reasonably fine mesh. Small differences in approximation
error could still result in significant increases in estimator
variance, but our empirical results suggest this is not
necessarily the case for real world applications. We leave
analysis of the exact approximation error and effects of
additional lattice points to future work.

5. Experiments
We perform several experiments on sequence-to-sequence
models trained for machine translation (WMT14
English-French and WMT16 English-Romanian) and
summarization (CNN DailyMail) tasks following a setup
similar to (Raffel et al., 2020). We use the T5-base model
(Raffel et al., 2020) initialized from a public pre-trained
checkpoint, which we fine-tune on each task separately
using the T5X library (Roberts et al., 2022). We do 260,000
fine-tuning steps with batch size 128. Using a beam search
with beam size 4 leads to 42.39 BLEU score on the WMT14
EnFr test set, 28.34 BLEU score on EnRo, and 20.75
ROUGE-2 on CNN DailyMail.

For the subsequent sampling experiments we run all
methods on equivalent accelerator platforms. The
computational considerations of running large scale LLM
inference with different algorithms possessing different
parallelism and synchronization properties are discussed
further in Section 5.3 and Appendix A.

5.1. Diverse beam generation

We compare arithmetic sampling to normal ancestral
sampling on the task of generating multiple diverse
translations for a single input sentence. In the context of a
real-world system, this kind of diverse generation is often
useful when combined with a reranker model that can select
the best translation from a set of candidates. We control
diversity using the softmax temperature parameter T =
0.1, 0.2, ..., 0.8. Following (Kool et al., 2019), within the
set of K translations generated by each sampling method,
we take the average, min, and max of the BLEU score
against the average n-gram diversity score, and then macro
average this across the whole test set. The n-gram diversity
score is defined as d =

∑4
n=1 dn where

dn =
# of unique n-grams in N translations

total # of n-grams in N transations
.

Results on WMT14 English-French for N = 5, 10, 20
are documented in Figure 2. We can see that for a
given temperature setting, arithmetic sampling achieves
comparable BLEU score on average to regular sampling,

6
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Figure 2: BLEU score on the WMT14 EnFr test set vs n-gram diversity.
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Figure 3: Sentence BLEU score estimates for a sample sentence (2500 in the test set) estimated using different decoding
methods (sampling and arithmetic sampling) for different temperatures T . The filled area corresponds to a region from 2.5
to 97.5 percentile of BLEU estimate amongst 100 attempts. We use fine-tuned T5-base model to generate predictions.
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Figure 4: Average standard deviation of various estimates (sentence BLEU for WMT14 EnFr and WMT16 EnRo, and
ROUGE2 for CNN/DailyMail) for the two sampling methods averaged over 100 samples. For each sample we compute
estimate 100 times and then calculate standard deviation.
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with slightly improved diversity. This is expected, because
our sampling method is unbiased and cannot mathematically
do better than standard sampling when simply averaging
results.

However, when we allow an oracle to pick the
highest-scoring element of the beam, arithmetic sampling
achieves nearly one additional point of BLEU, showing that
the diversity is not just random noise but is actually helping
to generate better candidates. This oracle experiment is
relevant to the case where we have a reranker and wish to
generate the best set of candidates.

We include additional results for WMT16
English-Romanian in Appendix D (see Figure 7).

Comparison to beam search One way to think of
arithmetic sampling is as trying to approach the diversity
of a search-based method while remaining embarrassingly
parallel. For beam search, we found the maximum BLEU
score within a beam, averaged over examples, to be 44.15,
47.0, and 49.94, respectively, for beam sizes of 5, 10, and
20. Temperature does not affect beam search, but for
ancestral sampling and arithmetic sampling, in order to
get a single number across the whole curve of temperatures,
we simply took the maximum over all temperatures and
beam elements (not necessarily the temperature for which
arithmetic sampling most outperforms ancestral sampling),
and averaged over examples. For arithmetic sampling,
these numbers were 43.20, 46.62, and 49.39, and for
ancestral sampling, 42.74, 45.90, and 48.68. This means
that arithmetic sampling closes the gap between standard
ancestral sampling and beam search by 33%, 63%, and 56%
respectively for those beam sizes in this particular oracle
setting, without requiring any more synchronization.

Top-k sampling We conduct experiments on combining
arithmetic sampling with the top-k modification, wherein
all conditional probabilities besides the k highest are zero’d
out during the ancestral sampling scheme. Moreover,
arithmetic sampling is compatible with all such inference
schemes that modify conditional logits, such as nucleus
sampling and typical decoding. We see that standard
sampling and arithmetic sampling perform similarly with
the top-k modification for k ∈ {2, 10} as they do without
the modification, with arithmetic sampling providing a boost
to the maximum BLEU score (full results in Appendix D).

5.2. Estimator variance reduction

In addition to generating diverse beams for reranking, our
method is also useful for constructing reduced-variance
estimators. We estimate the conditional expected
sentence-level BLEU score of the trained translation and
ROUGE-2 for summarization models for various input

sentences. In addition to demonstrating statistical properties,
such sentence-level estimators are useful for training
regimes that directly optimize averaged metrics as an
expected reward, such as directly optimizing BLEU score
for translation models. (Ranzato et al., 2016; Wu et al.,
2016). More recently, training LLMs with expected reward
has become especially important in the context of reward
functions learned from human annotators, known as RLHF
(reinforcement learning from human feedback) (Christiano
et al., 2017; Stiennon et al., 2020), used in e.g. the
InstructGPT model (Ouyang et al., 2022).

Let M be a some sentence-level estimator, for example
sentence BLEU or ROUGE-2 score. The expected estimator
value for a given sentence x with ground truth reference
labels y∗ is the conditional expectation

E[M(Y, y∗)|X = x] =
∑
y

M(y, y∗)P (Y = y|X = x),

where P (Y = y|X = x) is defined by the model.
We compare traditional ancestral sampling to arithmetic
sampling by using each to construct a sample mean
estimator for these expectations as in Section 4.2.

Following (Kool et al., 2019) we compute the estimate
100 times for a sample test sentence. The results for
WMT14 English-French are shown in Figure 3. We vary the
temperature parameter T = 0.1, 0.2, 0.5 and the sample
size from 2 to 64. We report the empirical 2.5-th and
97.5-th percentiles to demonstrate the variance. We present
results on three other sentences in Appendix D, and see
similar results, most noticeable in the low temperature
regime. This is consistent with our theory as the lower
temperature regimes put probability mass on a smaller
number of higher-BLEU sequences, especially when using
a base-sized T5 model that can easily degenerate at higher
sampling temperatures, as we see in Figure 2.

Finally, we average the standard deviations of expected
BLEU and ROUGE-2 scores (computed over 100 runs as
above) over 100 sample sentences from the WMT and
CNN DailyMail test sets, comparing standard sampling
with arithmetic sampling. The results are plotted in Figure
4, and we see that the standard deviation under arithmetic
sampling is always lower, and is cut in half once we reach
N ≈ 16 samples.

5.3. Parallelization properties of arithmetic sampling

As discussed in more detail in Appendix A, exactly how
arithmetic sampling and beam search compare in terms
of parallelism depends on the topology of the underlying
hardware setup. To investigate the parallel properties of
arithmetic sampling on real hardware, we use the publicly
available mt5 XXL model in the T5X library (Roberts
et al., 2022), a 13B parameter encoder-decoder model, and
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Figure 5: Each solid line represents the minimal # of TPU v4 chips in a single platform to perform a beam search (BS) with
a given number of samples (beam size). Each dotted line represents the minimal # of TPU v4 chips in a platform replica
to perform arithmetic sampling (AS) with a given number of samples, while maintaining the same overall samples/chip
efficiency as beam search across replicas.

between 1 and 8 Google Cloud TPU v4 accelerator chips
with 32GB memory each, arranged in a 3D toroidal topology
of either 1x1, 1x2x1, 2x2x1, or 2x2x2. For different sizes of
models, sample sizes, and other (especially less powerful)
accelerators, the exact numbers will differ, but this is a fairly
realistic setting at the time of publication. We examine the
number of chips in a topology needed to perform beam
search or sampling with 1,2,4,8,..,1024 samples, for model
input/output sizes of 128, 256, 512, and 1024, up to the full
2x2x2 topology.

In Figure 5, we plot the minimum # of chips in a topology
needed to get a given number of samples for each of the 4
input/output sizes, for beam search and arithmetic sampling.

Each of these scenarios permits a sample size of at least 1 to
be drawn using only one v4 chip. As the number of samples
increases, we plot the minimum platform size needed by
beam search on the y axis, as measured by number of
chips connected in either 1x1x1, 1x2x1, 2x2x1, or 2x2x2
topologies (1,2,4, or 8). For arithmetic sampling, since it
is embarrassingly parallel and we know at least a single
sample can be drawn from a 1x1x1, we technically never
need more than one chip to draw any number of samples.

However, this requires an entire copy of the models
parameters per 1x1x1 replica, and might be wasteful in
some applications. In this spirit, Figure 5 also presents a
set of dotted lines below the solid ones, which represent the

minimal # of chips in a topology necessary for arithmetic
sampling to generate that # of samples, while maintaining
the same samples/chip as beam search for that situation.

6. Conclusion and Future Work
We introduce a method for parallel sampling from large
language models that improves beam diversity and retains
unbiased expectations from the original model. It is
simple to implement and compatible with many existing
modifications to LLM inference. Our method, based on
creating a code space that makes it easier to search through
sequences, opens up many avenues for future work.

We are most excited to explore the construction of more
sophisticated multi-dimensional coding schemes which are
still structured to allow easy sampling, while capturing even
more geometric structure latent in the space of sequences,
including the construction of coding schemes to improve
inference with respect to a given reward function.
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Appendix

A. Computational considerations in parallel inference for LLMs
In discussions of the relative parallelizability of different inference algorithms for LLMs (e.g. our claims that arithmetic
sampling is parallel while beam search is not), the careful reader might notice that even beam search itself has many parallel
components in its computation. Indeed, at each time step, predictions of the next token can be done for each element of the
beam in parallel. However, while it is parallel in this sense, it is not embarrassingly parallel, requiring a synchronization
step between all beams after predicting each token, in order to sort and broadcast the new beams (called all-gather).

Modern large models are spread across 10s, 100s, or even 1000s of accelerator chips connected by very fast memory
interconnects, essentially forming a large and topologically complex supercomputer (a platform). Bigger models or bigger
computation graphs require bigger platforms. Whether something is a beam search which must all happen in shared memory
with a synchronization between each step, or an embarrassingly parallel algorithm like arithmetic sampling, it will all happen
mostly in parallel, the question is really about the size of platform which it can be used on, which itself is determined by the
frequency of synchronizations, because repeated fine-grained synchronizing across the network is prohibitively slow for
LLM inference. These concerns also apply to other search-based inference methods such as Gumbel top-k sampling.

Large platforms can be very hard to schedule and very expensive, while embarrassingly parallel jobs can happen on small
and cheap platforms. Hence, the motivation for producing embarrassingly parallel algorithms is not just about the speed
with which something can be computed, but whether it can be practically computed at all on available hardware. To compute
a very large beam search with any standard implementation might require an impractically large platform, whereas any
number of samples (or arithmetic sampling samples) can be computed as long as we have enough small platforms available,
because we simply need to distribute the RNG seeds (and/or codes) once at the beginning and then proceed completely
independently.

B. Variance for step functions
We can analyze by looking at the contributions to the variance of the estimator. The variance of a sample mean estimator
µ̂ = 1

N

∑
i f(ci) over N + 1 samples ci = u+ i/N mod 1 can be decomposed as

Var[µ̂] =
Var[f(u)]
N + 1

+
1

(N + 1)2

∑
i ̸=j

Cov[f(ci), f(cj)]

In order for this variance to be lower than the naive estimator, the covariance term has to be negative. Intuitively, when
integrating indicator functions of intervals, this term should be negative, since the values of f for lattice points within the
interval are greater than the mean while the values outside are less, and distant lattice points are anticorrelated in terms of
which bucket they can fall into. The values for lattice points in the same bucket are co-vary positively though, so we have to
ensure the former is a bigger factor than the latter carefully.

Plugging our formula for step functions with N components into this covariance term we get

∑
i ̸=j

Cov[
N∑
k

ak1[x∧
k ,x∨

k ](ci),

N∑
l

al1[x∧
l ,x∨

l ](cj)] =

∑
i ̸=j

N∑
k

N∑
l

akalCov[1[x∧
k ,x∨

k ](ci),1[x∧
l ,x∨

l ](cj)]

Now, assuming that each interval has a width that is a multiple of 1/N , without loss of generality, we can analyze the terms
corresponding to the entire pair of indicator functions by analyzing what happens with a function of the form

f(c) = 1[0, 1
N ](c) + 1[ 1

N , 2
N ](c).
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The full sum for general step functions will follow by a bit of matrix algebra. So we need to examine the terms of∑
i ̸=j

(
Cov[1[0, 1

N ](ci),1[0, 1
N ](cj)] + Cov[1[ 1

N , 2
N ](ci),1[ 1

N , 2
N ](cj)]

+ Cov[1[0, 1
N ](ci),1[ 1

N , 2
N ](cj)] + Cov[1[ 1

N , 2
N ](ci),1[0, 1

N
(cj)]

)
By symmetry, the first and second terms have the same value, as do the third and fourth, and in fact, with any number of such
functions the pairwise terms will always look one way and the self interaction terms the other way. So we are concerned
with the values of the expressions ∑

i ̸=j

Cov[1[0, 1
N ](ci),1[0, 1

N ](cj)] (7)

and ∑
i ̸=j

Cov[1[0, 1
N ](ci),1[ 1

N , 2
N ](cj)] (8)

We are concerned about the covariance structure of the lattice points, so we examine their behavior jointly. Let’s name the
intervals as following

L = [0,
1

N
], R = [

1

N
,
2

N
], O = [

2

N
, 1], E = [

1

N
, 1]

For a randomly shifted lattice of N + 1 points, three different things can happen. Either the extra lattice point shows up
in L, R, or O. Since the marginal distribution of a lattice point is uniform, this occurs with probabilities 1/N , 1/N , and
(N − 2)/N .

p1 =
1

N
, p2 =

1

N
, p3 =

N − 2

N

Let li, ri, oi, ei be the counts of points in each interval in each scenario (so ei = ri + oi), so we have

(l1, r1, o1, e1) = (2, 1, N − 2, N − 1)

(l2, r2, o2, e2) = (1, 2, N − 2, N)

(l3, r3, o3, e3) = (1, 1, N − 1, N)

Now we can examine the sum in expression 7, summed over all unequal pairs of variables. Since we are only looking at the
first indicator, we are concerned with quantities involving L and E (either within the support of the first indicator, or without
it).

For a given pair of distinct points (ci, cj), they are each either in L or E. The number of such pairs depends on the
configuration (l, r, o, e). Call the number of such pairs mLE , etc.

mLL = l(l − 1),mLE = mEL = le = l(r + o),mEE = e(e− 1) = (r + o)(r + o− 1)

Finally we have the summand, the actual covariance term between the two variables (ci, cj). The expectation of the function
1[0, 1

N ](c) is µf = 1
N , so the covariance terms for pairs of points look like one of three ways, either the points are both in the

support of an indicator, both outside, or mixed.

sLL = (1− 1

N
)2 =

(N − 1)2

N2
= s1

sLE = sEL = (1− 1

N
)(0− 1

N
) =

1−N

N2
= s2

sEE = (0− 1

N
)2 =

1

N2
= s3
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So the the sum in expression 7 is equal to

3∑
i=1

pi(mLL,is1 + 2mLE,is2 +mEE,is3)

=

3∑
i=1

pi(li(li − 1)s1 + 2li(ri + oi)s2 + (ri + oi)(ri + oi − 1)s3)

=
1

N
− 1 = con

To analyze expression 8, we can proceed in a similar way. For a given pair of distinct points (ci, cj), they are each either in
L, R, or O. The number of such pairs depends on the configuration (l, r, o, e).

mLL = l(l − 1),mRR = r(r − 1),mOO = o(o− 1)

mLR = mRL = lr,mLO = mOL = lo,mRO = mOR = ro

And the covariance terms look like

sLL = sLO = sRR = sOR =
1−N

N2
= s2

sLR =
(N − 1)2

N2
= s1

sOO = sRL = sOL = sRO =
1

N2
= s3

So expression 8 is equal to

3∑
i=1

pi(mLL,is2 +mRR,is2 +mOO,is3 +mLR,is1 +mRL,is3 +mLO,is2 +mOL,is3 +mRO,is3 +mOR,is2)

=

3∑
i=1

pi(mLR,is1 + (mLL,i +mRR,i +mLO,i +mOR,i)s2 + (mOO,i +mRL,i +mOL,i +mRO,i)s3)

=

3∑
i=1

pi(lrs1 + (l(l − 1) + r(r − 1) + lo+ ro)s2 + (o(o− 1) + lr + lo+ ro)s3)

=
1

N
= coff

Now we turn to examine the full sum

∑
i ̸=j

N∑
k

N∑
l

akalCov[1[x∧
k ,x∨

k ](ci),1[x∧
l ,x∨

l ](cj)] (9)

To show that this is nonpositive for any vector of coefficients ak, we need to show that the matrix C with coff on the
off-diagonal terms and con for the diagonal terms is negative semidefinite.

C = coff11
⊤ + (con − coff)I.

The first term of this summand has one eigenvalue equal to N−1
N and N − 1 eigenvalues equal to 0. Since the second term

of the summand is a spherical matrix, it shifts all the eigenvalues by the constant amount con − coff. So C has one eigenvalue
equal to N−1

N − 1 + 1
N = 0 and the rest equal to −1 + 1

N − 1
N = −1.

So C is negative semidefinite, as required, and the sum in expression 9 is nonpositive for any vector of coefficients ak.
The eigenvector corresponding to the zero eigenvalue has an intuitive interpretation as corresponding to the vector a1, the
constant function with zero variance and thus zero covariance.
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Figure 6: BLEU score vs ngram diversity.

C. Bias and consistency
Proof of Proposition 2. Since we know that the pushforward measure induced by the random variable f applying Algorithm
1 on a uniform measure on the unit interval gives the distribution P (X), we can write the RHS of equation 6 as

E[s(X)] =

∫ 1

0

s(f(c))dc,

and since s(f(c)) is a step function (a linear combination of indicators of preimages in [0, 1] for each sequence x), it is
Riemann integrable, and the LHS is a Riemann sum with mesh size 1/(N + 1) for the integral.

Proof of Proposition 3. The consistency of the estimator can be proven in the same way as naive arithmetic sampling, since
it is also a valid Riemann sum with mesh size 1/(N +1), no matter what offset is sampled. To show unbiasedness, note that
for any constant c, the marginal distribution of c + u mod 1 for u ∼ U(0, 1) is just U(0, 1) again, the rest proceeds by
linearity of expectation.

D. Additional Experiments
D.1. WMT English-Romanian sampling diversity

We show additional results for the WMT English-Romanian test set in Figure 7.

D.2. Arithmetic sampling with top-k modification

Further results of BLEU vs. n-gram diversity for the WMT English-French test set using arithmetic sampling with the top-k
sampling modification are shown in Figure 6.
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Figure 7: BLEU score vs n-gram diversity for WMT16 English-Romanian for various beam sizes N .
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Figure 8: Average standard deviation of sentence BLEU estimate for the two sampling methods and different temperatures
T averaged over 100 samples. For each sample we estimate sentence BLEU 100 times and compute standard deviation.

D.3. Arithmetic sampling with temperature modification

We verify that arithmetic sampling reduces variance of sentence BLEU estimation for various sampling temperature levels.
We repeat the experiment from Figure 4 for WMT English-French task, now varying the temperature parameter. Figure 8
shows that the standard deviation of sentence BLEU estimation is always lower with arithmetic sampling regardless of the
temperature used.

D.4. Sentence BLEU estimation variance

Results on sentence BLEU estimation variance for 3 other arbitrary WMT English-French test set sentences are shown in
Figure 9.
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Figure 9: Sentence BLEU score estimates for three different sentences (1501, 2001 and 2501) estimated using different
decoding methods (sampling and arithmetic sampling) for different temperatures T . The filled area corresponds to a
region from 2.5 to 97.5 percentile of BLEU estimate amongst 100 attempts. We use fine-tuned T5-base model to generate
predictions.
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