POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Yaoyang Liu! Junlin Li’ Yinjun Wu? Zhen Chen*

Abstract

Although Multi-Vector Retrieval (MVR) has
achieved the state of the art on many information
retrieval (IR) tasks, its performance highly de-
pends on how to decompose queries into smaller
pieces, say phrases or tokens. However, optimiz-
ing query decomposition for MVR performance is
not end-to-end differentiable. Even worse, jointly
solving this problem and training the downstream
retrieval-based systems, say RAG systems could
be highly inefficient. To overcome these chal-
lenges, we propose Performance-Oriented Query
Decomposer (POQD), a novel query decomposi-
tion framework for MVR. POQD leverages one
LLM for query decomposition and searches the
optimal prompt with an LLM-based optimizer.
We further propose an end-to-end training algo-
rithm to alternatively optimize the prompt for
query decomposition and the downstream mod-
els. This algorithm can achieve superior MVR
performance at a reasonable training cost as our
theoretical analysis suggests. POQD can be inte-
grated seamlessly into arbitrary retrieval-based
systems such as Retrieval-Augmented Genera-
tion (RAG) systems. Extensive empirical stud-
ies on representative RAG-based QA tasks show
that POQD outperforms existing query decom-
position strategies in both retrieval performance
and end-to-end QA accuracy. POQD is available
athttps://github.com/PKU-SDS—-1lab/
POQD-ICML25.

1. Introduction

Dense retrieval retrieves documents by evaluating their sim-
ilarity scores with user queries (Mitra et al., 2018; Gao &

'School of Infomation, Renmin University 2School of
Computer Science, Peking University *Fundamental Indus-
try Training Center, Tsinghua University. Correspon-
dence to: Yinjun Wu <wuyinjun@pku.edu.cn>, Zhen Chen
<zhenchen@tsinghua.edu.cn>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Callan, 2021; Zhao et al., 2024c). It underpins many sys-
tems, in particular, retrieval-augmented generation (RAG)
frameworks (Karpukhin et al., 2020), where retrieval accu-
racy is paramount. Multi-Vector Retrieval (MVR) enhances
retrieval accuracy by leveraging multiple representations for
finer-grained matching (Khattab & Zaharia, 2020). MVR
methods, e.g., CoIBERT (Khattab & Zaharia, 2020), decom-
pose queries and documents into smaller units, say tokens.
For each query token, we identify the most similar doc-
ument piece to it and calculate their similarity, which is
referred to as the MaxSim operation in (Khattab & Zaharia,
2020). Such scores are then aggregated across all query to-
kens as the overall query-document similarity. Compared to
standard dense retrieval solutions, this strategy more effec-
tively captures the fine-grained similarities between queries
and documents, enhancing performance in information re-
trieval (IR) tasks (Khattab & Zaharia, 2020; Santhanam
et al., 2022b) and retrieval-based systems like RAG (Xu
et al., 2024).

In this paper, we aim to develop a new MVR strategy to
enhance the performance of arbitrary retrieval-based sys-
tems, with a particular focus on RAG systems. Note that
traditional MVR approaches, in particular, ColBERT (Khat-
tab & Zaharia, 2020), decompose queries at the token level.
However, as revealed in Section 2, decomposing queries
into slightly more coarse-grained units, such as phrases,
can yield better results for tasks like retrieval-augmented
generation (RAG). Furthermore, we observe that the perfor-
mance of these tasks highly depends on how we decompose
queries. Considering that the space of all possible decom-
posed sub-queries is exponentially large, this thus raises one
critical question, i.e., how can we effectively generate sub-
queries of arbitrary granularity to optimize the performance
of downstream retrieval-based systems?

Query decomposition has been widely studied in question
answering (QA), especially in multi-hop QA. It aims to
break down complicated questions into simpler components,
allowing Large Language Models (LLMs) to reason step by
step, thereby enhancing QA accuracy. Various question de-
composition strategies exist, such as (Li et al., 2024), which
prompts LLMs with manually crafted prompts for query
decomposition. However, as shown in Figure 1, applying
the resulting sub-queries to MVR could retrieve an incor-
rect image, ultimately generating a wrong answer in the

https://github.com/PKU-SDS-lab/POQD-ICML25
https://github.com/PKU-SDS-lab/POQD-ICML25

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Query decomposition

p
ColBERT | Victoria Hong Kon

1

1

many what :
[

1
Decompose | has
“ by tokens ': o o]
I i e of buildings i
RN] S)
| ¢ ———— -
l 0 Victoria

NGy Toecctoooooo 1

1

Victoria Hong Kong has many /_’ LL Manual o

what type of buildings? N\ prompting 1
\ ' type NI |

\
I\ V
- | >

\ 1

| Optimized 1 [mamn|
* prompting == Long|Kond i i
by POQD ! buildings EEEM |

\ J

Multi-vector retrieval

Retrieved Image
Image 1 al

Answer

‘ Generator (& z> Office
X
«

M Vv

Figure 1. Motivating example from ManyModalQA dataset (Hannan et al., 2020). We aim to answer the question “Victoria Hong Kong
has many what type of buildings?” using retrieval-augmented generation (RAG). To enhance the retrieval accuracy and thus ensure
the answer correctness, we employ Multi-Vector Retrieval (MVR), which decomposes the query into sub-queries and embeds them.
MaxSim operations (as defined in (Khattab & Zaharia, 2020)) are then applied to compute similarity scores for retrieval. Traditional
query decomposition strategies, which are primarily based on heuristics, such as decomposing by tokens (Khattab & Zaharia, 2020) or by
prompting LLMs with manually crafted prompts (Li et al., 2024), often retrieve irrelevant images, thus resulting in incorrect answers. In
contrast, we optimize LLM prompts to generate more effective sub-queries, improving QA accuracy. This approach enables MVR to
retrieve images of Victoria Harbour with skyscrapers, leading to the correct answer: “Skyscrapers”.

RAG-based QA tasks.

To address this issue, it would be ideal to train a model
for searching the decomposed sub-queries that can opti-
mize the downstream performance. However, two critical
technical challenges arise. First, the search process is non-
differentiable, as sub-queries cannot propagate gradients
from the downstream performance score. Second, evalu-
ating candidate sub-queries requires training downstream
RAG models, which is computationally expensive.

To tackle these two challenges, we proposed Performance-
Oriented Query Decomposer (POQD for abbreviation), a
novel performance-driven query decomposition framework.
To address the non-differentiability issue, we first prompt
one LLM to generate decomposed sub-queries for one input
query, which can be iteratively refined by an LLM-based
optimizer (Yang et al., 2024) to enhance downstream perfor-
mance. But evaluating a candidate prompt p requires train-
ing the downstream model, ©, with its induced sub-queries.
Hence, we propose a training algorithm to alternatively re-
fine the prompt p while only training the model © for a
few epochs. Our theoretical analysis confirms the effec-
tiveness of this approach with appropriate hyper-parameter
configurations.

Note that such performance optimization process is con-
ducted in a weakly-supervised manner since the downstream
RAG performance rather than the intermediate retrieval per-
formance is optimized. This strategy is even effective in
applications such as Multi-hop QA (Yang et al., 2018), in
which the queries are dynamically generated during the
reasoning process.

We further perform extensive empirical studies to evaluate
the effectiveness of POQD on a variety of RAG-based QA
tasks, covering both image and text QA tasks. The empirical
studies suggest that POQD can outperform the state-of-the-
art in both retrieval and QA accuracy by a large margin.

Our contributions can be summarized as follows:

1. We introduce POQD, a novel query decomposition frame-
work that can perform query decomposition for optimiz-
ing multi-vector retrieval performance.

2. We design a training algorithm, which alternates between
training the downstream RAG models and refining the
prompt used for query decomposition. Theoretical anal-
ysis demonstrates the effectiveness of this training algo-
rithm with appropriate hyper-parameter configurations.

3. We perform extensive experiments on RAG-based QA
tasks, covering both image QA and text QA, which sug-
gests that POQD can outperform the state-of-the-art in
both retrieval and QA accuracy by a large margin.

2. Motivation

We conduct an in-depth analysis of the motivating example
shown in Figure 1 to further motivate our method.

2.1. Why does ColBERT fail?

To understand why ColBERT fails in the example shown in
Figure 1, we perform MVR with a mini-query “Hong Kong”.
For this query, ColBERT tokenizes it into two individual
tokens, “Hong” and “Kong”. For each image, we then per-
form the MaxSim operation between these two tokens and

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Figure 2. Further analysis on the motivating example: the token
“kong” is relevant to the photo of a black gorilla-like monster,
which is mostly black. Coincidentally, in the photo of Lee Kuan
Yew, the patch identified as the most relevant to the token "kong’
is also mostly black.

the fine-grained image patches, i.e., determine the similarity
score between one token and its most similar image patch.
Such similarity scores are subsequently aggregated across
all tokens to obtain the overall query-document similarity
score. As depicted in Figure 2, a surprising result emerges:
despite its visual irrelevance to Hong Kong, the photo of
Lee Kuan Yew, the 1st Prime Minister of Singapore exhibits
higher similarity to the mini-query “Hong Kong” than the
ground-truth image. A deep investigation suggests that the
token “kong” could refer to a black gorilla-like monster,
it thus yields unrealistically high similarity to the image
patch highlighted with a green bounding box since both
this patch and the figure of “Kong” are mostly black. This
coincidence thus leads to a higher ranking of the Lee Kuan
Yew’s image than the ground truth. In contrast, by treating
“Hong Kong” as a unified phrase and evaluating its similar-
ity to each image, the ground-truth image achieves a higher
similarity score than other images. This example thus un-
derscores the necessity of decomposing queries at a slightly
coarser-grained level, rather than at the token level for MVR.

2.2. Why is it essential to optimize query
decomposition?

As mentioned in Figure 1, we can manually craft prompts
for LLMs so that they can generate decomposed sub-queries
(Li et al., 2024). These sub-queries include critical phrases
such as “Victoria Hong Kong” and “building”. However,
performing MVR with these sub-queries still incorrectly
retrieves a less relevant image (see the second row of Figure
1). In comparison to the optimal sub-queries discovered by
our solutions, this method generates one extra sub-query
“type”. This extra sub-query is less informative than the
other two sub-queries. Thus incorporating this sub-query
into MVR may lead to inaccurate similarity scoring. There-
fore, optimizing the query decomposition process by elimi-
nating non-essential sub-queries, such as “type,” is crucial
for improving retrieval accuracy. Hence, the problem to be
addressed is formally defined as follows.

Problem definition Given one query @ =
{c1,¢c2,...,¢m} composed of m tokens, we aim to
decompose it into n sub-queries {¢; } X ; in which each g;
is composed of tokens from {cy, ca, ..., ¢y, }. The goal of
performing this query decomposition is to maximize the
performance of downstream retrieval-based systems.

3. Preliminary

3.1. Multi-vector retrieval

To evaluate the similarity score between a query @), and a

document or image D, Multi-vector retrieval first decom-
poses @ and D into fine-grained pieces, denoted by {¢; } XX ;
and {d; }/L,, applies MaxSim operation to identify the most
similar d; to each ¢; and then aggregates these similarity
scores across all ¢; with the following formula:

SIM(Q, D) = 4 Z L, max Eo(q:) "Eo(dj). (1)

As mentioned in Section 2, we primarily study how to
optimize the query decomposition process. But how to de-
compose documents or images may also matter. Therefore,
to ensure a fair comparison between different query decom-
position strategies, we decompose documents or images in
the same way across all baseline methods and POQD. One
exception is ColBERT for text retrieval, which is configured
to decompose documents into tokens.

3.2. Retrieval-Augmented Generation (RAG)

As introduced in Section 1, we primarily study the effec-
tiveness of POQD on RAG tasks. For this task, we aim to
optimize the following objective function:

=-log(}_ _ P(alQ D)Ps(DIQ), (@)

in which © = (6, 8) and Dk represents the set of Top-K
most relevant documents to a query () according to the sim-
ilarity score defined in Equation (1). Additionally, Py rep-
resents the likelihood of the ground-truth answer a, which
is parameterized by the generator model parameter 6. Note
that this objective function relies on the similarity function
defined in Equation (1) to determine the Top-K most rele-
vant documents, thus implicitly dependent on how queries
are decomposed. Also, we follow prior studies such as
(Barnett et al., 2024), to only train § while maintaining the
retrieval model, (3, in RAG systems fixed to ensure training
efficiency. This is because updating retrieval models usually
requires rebuilding indexes and re-embedding corpus, which
could be highly time-consuming.

4. Methodology

This section starts with the framework overview in Section
4.1, which is followed by illustrating how to generate opti-
mal sub-queries with POQD in Section 4.2 and describing

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

our end-to-end training algorithm in Section 4.3. We con-
clude this section with a theoretical analysis of the training
algorithm in Section 4.4.

4.1. Framework overview

Given a query (), we aim to perform query decomposition by
prompting one LLM (referred to as the Query Decomposer)
with a prompt p. Those sub-queries are then employed to
perform multi-vector retrieval. Therefore, the quality of
the sub-queries produced by the Query Decomposer highly
depends on the prompt p. In light of this, we propose to
adopt an LLM-based optimizer (referred to as the Prompt
Optimizer) to generate p and iteratively refine it for opti-
mizing the downstream performance (see Section 4.2). The
pipeline of generating prompt p and producing decomposed
sub-queries with this prompt is visualized in Figure 3.

As mentioned in Section 1, the performance to be optimized
in our setup would not only depend on O, but also depend
on the decomposed sub-queries, which is further dependent
on the prompt p. Hence, the loss function defined in (2)
is reformulated as £(©; p). To optimize this loss function,
we proposed an end-to-end training algorithm to jointly
optimize p and O (see Section 4.3).

In Section 4.4, we further provide a theoretical analysis of
this end-to-end training algorithm. It suggests that with
appropriate hyper-parameter configurations, this algorithm
can effectively optimize the prompt p and minimize the loss
L(©;p) at a reasonable training cost.

4.2. Optimize query decomposition with a fixed ©

Algorithm 1 Optimize query decomposition

1: Input: A set of training queries: Q"", a retrieval-based sys-
tem parameterized by ©, the old prompt p°.

2: Initialize the solution-score pairs LS = [(p°, £(©; p°9)))

3: while not converge do

4 Prompt the Prompt Optimizer by leveraging LS to generate
a new prompt p with Step 1 of Section 4.2. _

5: Execute Step 2 to decompose each query in Q™" by
prompting the Query Decomposer with p.)

6: Evaluate the training loss, £(©;p), over Q™" and add
(p, £(©;p)) to LS

7: if L(O;p) — L(O;p") < « or repeated for k iterations

then
8: Break
9: end if

10: end while
11: return p and decomposed sub-queries

Given a retrieval-based system with a fixed parameter O,
we elaborate on how to search optimal decomposed sub-
queries in this section. Recall that solving this optimization
problem is not differentiable, we overcome this challenge
by leveraging Algorithm 1, which iteratively executes the

following two steps. The goals of these two steps are to
generate a candidate prompt for the Query Decomposer by
invoking the Prompt Optimizer, and to evaluate the quality
of the prompt with the training loss £(O; p) respectively.

Step 1: By following (Yang et al., 2024), the Prompt Op-
timizer aims to produce a prompt prefix pg, say, “Design a
query decomposition framework that...” as shown in Figure
3, which is then concatenated with a fixed prompt template,
including the description of the query decomposition task
and one input query @, to construct a complete prompt p
for the Query Decomposer. Hence, searching optimal p
is equivalent to searching optimal prompt prefix py. The
generation of one candidate prompt prefix pg is conducted
by prompting the Prompt Optimizer with two pieces of
meta-prompts and a dynamically constructed solution-score
pair list (see Figure 3). This list is initially empty and then
gradually populated with the pairs of the prompt prefix pg
produced by the Prompt Optimizer and the corresponding
training loss £(O; p) as Algorithm 1 is executed. Intuitively
speaking, pg is regarded as the solution to this optimizer
while £(0; p) is viewed as the score of this solution.

Step 2: To construct the above solution-score pairs, in par-
ticular, attaining the training loss £(©; p) for one candidate
prompt p, we thus prompt the Query Decomposer with p
to generate the decomposed sub-queries for each query in
the training set. These sub-queries are then used to perform
MVR in the downstream retrieval-based system and evalu-
ate the training loss £(0O;p) on all training queries. Then
the pair (p, £(O;p)) is appended to the solution-score pair
list as shown in Line 6.

According to (Yang et al., 2024), as more solution-score
pairs are included from prior iterations of Algorithm 1, the
Prompt Optimizer can gradually refine the prompt p for the
Query Decomposer which may produce smaller training
loss. In the end, Algorithm 1 terminates if the training loss
with the updated prompt, £(O; p), is at least smaller than
that with the initial prompt p° by « or the while loop is
repeated for « iterations (see Line 7 in Algorithm 1).

Note that the Query Decomposer may hallucinate, in par-
ticular, the generated sub-queries may contain tokens that
do not exist in the input query. To mitigate this, we filter
out irrelevant tokens in these sub-queries. The effect of this
filtering step is empirically evaluated in Appendix D.3.

4.3. End-to-end training algorithm

Note that in Section 4.2, we optimize the prompt with a
fixed ©. Indeed, the sub-queries produced by Algorithm 1
impact the input to ©, thus motivating the need to further
update ©. As a consequence, we propose an end-to-end
training algorithm outlined in Algorithm 2. This algorithm
aims to alternatively optimize the prompt p for the query

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

/# meta-prompt \

Your task is to generate the instruction <INS>.

Below are some previous instructions with their
scores. The score ranges from 0 to 100.

solution-score pairs

text:

Decompose query Q into a set of semantically
connected....

score: 45

text:
You are a query decomposition assistant
score: 46

meta-prompt

Generate an instruction that is different from all

the instructions <INS> above, and has a higher
score than all the instructions <INS> above..... /

N\

Prompt Optimizer

(# prompt prefix)
Design a query decomposition
framework that seamlessly
integrates logical soundness...

task decription Query Decomposer

e
U

‘columns on Southampton
buildings | color'

For the query below, split it
into semantically aligned sub-
queries, separated by |, and
only output the sub-queries.
Do not include any other
information or explanation.

input query l

What color are the columns on
Southampton buildings?
2 ~/

Figure 3. The pipeline of generating decomposed sub-queries. This pipeline primarily consists of two LLMs, one serving as the Prompt
Optimizer while the other one serving as the Query Decomposer. The prompt optimizer first takes two pieces of meta-prompts as
well as solution-score pairs collected during the execution of Algorithm 1 as input and produces the optimized solution, which is an
essential prompt prefix for the Query Decomposer. In addition, the query decomposer further incorporates the description of the query
decomposition task and one input query in the prompts. The decomposed sub-queries (separated by vertical lines ‘|”) are then generated

by the Query Decomposer.

Algorithm 2 Training POQD

1: Input: A set of training queries: Q"™", a retrieval-based sys-
tem parameterized by ©.
: Initialize one random p°°.
: while not converge do
Invoke Algorithm 1 by inputting p
p™" and optimized sub-queries.
if pnew — pold then
Break
end if
Train © for 7 iterations with optimized sub-queries by
minimizing £(O; p"") with p™*" fixed.
9: pold «— pnew
10: end while
11: Train © until convergence with optimized sub-queries by min-

imizing £(0; p"") with p"" fixed.

old

BN

to obtain a new prompt

PR

decomposer and train © until convergence.

Note that at each iteration of Algorithm 2, we could option-
ally train © until convergence given sub-queries produced
by Algorithm 1. However, in many retrieval-based systems
such as RAG systems, performing full training on © could
be highly expensive. For instance, training the RAG model
with a large image QA dataset takes up to 1 hour per epoch
as revealed in Section 5, which usually needs at least 5
epochs to converge. Hence, in Algorithm 2, we alternatively
optimize the prompt and sub-queries in Line 4 and update
O for 7 iterations with the optimized sub-queries in Line
8. This is repeated until the prompt cannot be updated any-

more. In the end, we optimize the loss £(0; p) with a fixed
p until convergence, resulting in an optimized parameter
©*(p) (see Line 11 of Algorithm 2). We use the notation
©*(p) to denote its dependency on the prompt p.

Note that in Algorithm 1, the training loss gets reduced by
a when the prompt is updated from p°'¢ to p"". However,
this may not necessarily guarantee decreased training loss at
convergence, i.e., £(©*(p°); pd) > L(O* (p"V); p"v),
which is critical to ensure the optimality of the derived
prompt p"®¥. Otherwise, it would be meaningless to update
this prompt. Hence, in Section 4.4, we provide a rigorous
theoretical analysis to show that the above inequality holds
with appropriate o and 7 without hurting training efficiency.

4.4. Theoretical analysis

In this sub-section, before formally presenting the theoreti-
cal results, we list some essential assumptions below.

Assumption 4.1 (u-PL* condition and L-smoothness).
L(0;p) satisfies the u-Polyak-Fojasiewicz star (u-PL*)
condition (Liu et al., 2022) and L-smoothness for any ©
with a given p, i.e.,:

IVeL(©;p)l3 > nL(O;p), (PL* condition)
L

L(©2;p) < L(O15p) + Vo L(O15p)(02 — 1) + T (|62 — o1l

(L-smoothness)

Indeed, according to recent theoretical results (Liu et al.),

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

for pre-trained over-parameterized large language models,
if they are fine-tuned with the state-of-the-art optimization
method, GaLore (Zhao et al., 2024b), their training loss
satisfies the above PL* condition.

Assumption 4.2 (Bounded loss). For arbitrary © and p, the
loss £(©; p) is upper bounded by a constant M, i.e.:

L(©;p) < M.

Assumption 4.3 (Gradient Descent updates). Suppose up-
dating © in F(©;p) with a fixed p is performed through
gradient descent, i.e.,

O141 = O —nVL(Oy;p), (3
in which 7 is the learning rate.

Given the above assumptions, the following theorem holds.

Theorem 4.4. Suppose the prompt p°'? is updated to p"®" in

Line 4 of Algorithm 2, then the following inequality holds:

LO" (") ™) — £O") p™) 2 a— (1- L),
in which L(0*(p°'?); p°'®) and L(0*(p""); p"®") denote
the converged training loss when the prompt is fixed to p°
and p"® respectively.
In the above theorem, the term (1 — %) is a constant be-
tween O and 1. Therefore, we can configure 7 such that
o — (1 — £4)7M is a positive value, e.g., 2o by setting
7 = log;_ u (557). As mentioned in Section 4.3, we con-
figure 7 as 3 by default which strikes a balance between the
training efficiency and performance as empirically verified
by Section 5.

This theorem states that with appropriate 7 and «, Algorithm
2 can effectively optimize the prompt p for decomposing
sub-queries at a reasonable training cost, thus achieving
superior downstream performance than that by employing
other query decomposition strategies. The complete proof
of this theorem is provided in Appendix A.

5. Experiments
5.1. Experimental setup

Baseline We compare POQD against the following query
decomposition methods from prior studies:

» Conventional dense retrieval encodes each query and
document with one single embedding.

* ColBERT (Khattab & Zaharia, 2020) which decomposes
queries into individual tokens.

* Supervised Query Decomposition (S-QD for short): A
series of works (Xue et al., 2024; Yang & Zhu, 2021;
Zhou et al., 2022; Zhu et al., 2023; Guo et al., 2022) train
a sequence-to-sequence model in a supervised manner

to generate decomposed sub-questions for each question.
We follow (Zhou et al., 2022; Zhu et al., 2023; Guo et al.,
2022; Wu et al., 2024a) to fine-tune Llama3.1-8B with
StrategyQA dataset (Geva et al., 2021b) which contains
human-annotated sub-queries.

* Unsupervised Query Decomposition (U-QD for short):
This aims to train a query decomposition model in an un-
supervised manner. The representative method is OUNS
(Perez et al., 2020) which aims to identify sub-queries that
are similar to original questions but also diverse enough.

e In-Context Learning-based Query Decomposition
(ICL-QD for short): Some recent works (Li et al., 2024;
Pereira et al., 2023; Niu et al., 2023; Ye et al., 2023; Xue
et al.; Wu et al., 2024b; Chen et al., 2024; Bhattacharya
et al., 2023) prompt LLMs to perform in-context learning
for query decompositions with manually crafted prompts.
These prompts are included in Appendix D.1.

* In-Context Learning with Feedback for Query Decom-
position (ICLF-QD): Some recent works (Qi et al.; Gao
et al., 2024; Sidhoum et al., 2024) improve ICL-QD by
providing feedback to LL.Ms regarding the quality of the
decomposed sub-queries. In particular, we follow (Qi
et al.) to evaluate whether a sub-query is relevant to the re-
trieved document or not. This is for determining whether
to further decompose this sub-query. The prompts used in
this method are included in Appendix D.1.

Datasets and models We employ Web Questions (We-
bQA) (Berant et al., 2013; Chang et al., 2021), Multi-
ModalQA (Talmor et al.), ManyModalQA (Hannan et al.,
2020) and StrategyQA (Geva et al., 2021a) dataset for ex-
periments. Among these datasets, the former three include
questions requiring retrieval from multi-modal data. We
focus on two RAG-based QA tasks throughout the experi-
ments, i.e., image QA and text QA. For image QA, we select
only questions requiring image retrieval from WebQA, Mul-
tiModalQA, and ManyModalQA. For text QA, we select
only questions requiring text documents from all of these
four datasets. Notably, StrategyQA is used for multi-hop
QA, while the others only support single-hop QA.

Regarding the retrieval process, it is critical to determine
which embedding model to use. For text QA, we employ
the Sentence-Bert model (Reimers, 2019) by default for
encoding sub-queries and corpus for other baseline meth-
ods as well as POQD. On the other hand, for image QA,
the CLIP model (Radford et al., 2021) is employed as the
default model for embedding text queries and image corpus.
In Section 5.3, we further perform ablation studies on the
retrieval model. But note that CoIBERT and its counterpart
for image retrieval, ColPali (Faysse et al., 2024), have their
own encoding models. Hence, we report the results of two
versions of ColBERT, one taking its own embedding model
(denoted by ColBERT-orig) while the other leverages the

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

mmm Invoke Algorithm 1

W 40000 Train 6
[}
£ 30000
[
2 20000
£
g 10000
0 [| | -
\ age\ ““age\ A 39 a \‘e* \P “‘e*‘.\ “‘e*‘.\
p\ p\ a0 v
Web da\o» da\Q Wwe' WO da “\oda
N\a“"m et werd ot

Figure 4. Overall training time of Algorithm 2

same default embedding model as others.

For the generator models, we leverage Llama3.1-8B (Dubey
et al., 2024) and Llava-v1.5-7B (Liu et al., 2024) as genera-
tors for single-hop text QA and image QA, respectively. In
the experiments, only these generator models are fine-tuned
while keeping the retrieval models frozen. On the other
hand, regarding multi-hop text QA, i.e., StrategyQA dataset,
we follow the state-of-the-art (Xu et al., 2024) to utilize
the frozen GPT-4 (Achiam et al., 2023) model and merely
replace its default retrieval method with baseline methods
and POQD.

Throughout the experiments, the default values of o, 7 and
r are configured as 0.02, 3 and 5, respectively. Regarding
the configuration for the retrieval process, we retrieve the
Top-1 most relevant images and the Top-2 most relevant
documents in the image QA and text QA tasks, respec-
tively. More details on experimental setup are provided in
Appendix B, which include how to decompose and embed
documents or images.

5.2. Quantitative results

Performance analysis We perform end-to-end RAG train-
ing on the QA datasets introduced in Section 5.1. For this
experiment, we not only report the end-to-end QA accu-
racy in Table 2 but also compare the ground-truth relevant
documents or images against the retrieved ones by POQD
and baseline methods in Table 1. Regarding the retrieval
accuracy metric, we report Hit@ 1 and Hit@2 (see the for-
mal definition in (Croft et al., 2010)) for image QA and text
QA, respectively, since the Top-1 relevant image and Top-2
relevant text documents are retrieved in these two tasks, re-
spectively. Note that since StrategyQA is primarily used for
multi-hop QA in which the queries for retrieving documents
are dynamically generated during the reasoning process, the
ground-truth relevant documents are thus not available for
this dataset. Hence, we do not report the retrieval accuracy
for this dataset.

As Table 1 and Table 2 suggest, POQD outperforms all
baseline methods in both the retrieval performance and end-
to-end QA accuracy by a large margin across all datasets.
Notably, the retrieval accuracy is increased by up to 5.28%
(see the last column in Table 1) while POQD boosts QA
accuracy by up to 12.61% (see the MultiModalQA column
under Image QA in Table 2). This thus indicates that per-
forming multi-vector retrieval with the sub-queries derived
by POQD, can enhance the retrieval performance, and con-
sequently the QA accuracy. Note that POQD consistently
beats both ColBERT and ColBERT-orig, thus indicating the
poor performance of ColBERT regardless of the underlying
embedding model.

Time analysis We further analyze both the training time
and inference time of POQD for the RAG-based QA
pipeline. First, regarding the training time, we record the
overall running time of Algorithm 2 on all datasets except
StrategyQA. StrategyQA is excluded since, as noted earlier,
the generator model is not fine-tuned for this multi-hop QA
dataset. The results, presented in Figure 4, also decompose
the total running time into two components: the time for
invoking Algorithm 1 to optimize the prompt p in £(©; p)
and that for training the parameter O. As illustrated by this
figure, the dominant training overhead is from the generator
training phase, while optimizing the prompt adds negligible
training cost. Considering that POQD also yields significant
performance gains as Table 2 shows, these findings thus
highlight both the effectiveness and efficiency of POQD.

We also report the inference time of POQD in Figure 5.
Similar to the breakdown in Figure 4, the total inference
time is decomposed into three components, including the
generator model inference time, retrieval time, and the time
spent on decomposing queries. As illustrated in Figure 5,
the model inference time contributes the largest portion of
the overall inference overhead, significantly exceeding the
query decomposition time. This finding indicates that in-
corporating query decomposition does not adversely impact
the overall inference speed.

5.3. Ablation studies

We also perform a series of ablation studies to evaluate the
effect of the hyperparameters and the superiority of POQD
under various configurations with the WebQA dataset in the
text QA task.

Effect of « We also vary the value of « in Algorithm 1
to evaluate its effect on the training loss, which produces
Figure 6. In this figure, the prompt used for decomposing
queries is updated three times by Algorithm 1 (indicated by
the inverted triangle symbols). As this Figure suggests, if «
is too large (say a=0.05), POQD would struggle to find a
suitable p"*¥ in Algorithm 1, thus causing the underfitting

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Image QA Text QA
Dataset WebQA MultiModalQA ManyModalQA | WebQA MultiModalQA ManyModalQA

\ Hit@1 Hit@1 Hit@1 \ Hit@2 Hit@2 Hit@2

Dense retrieval 41.38 50.00 27.38 43.52 66.44 49.25

ColBERT 11.98 25.22 16.30 50.72 40.92 40.37

ColBERT-orig 38.95 36.96 21.05 52.16 79.89 87.07

S-QD 40.93 52.61 28.15 48.56 56.17 68.07

U-QD 33.89 51.74 26.86 46.04 45.21 67.89

ICL-QD 39.39 54.34 27.76 41.37 71.43 85.14

ICLF-QD 41.69 51.74 27.89 51.80 69.76 66.49

POQD \ 42.33 58.26 28.67 \ 53.24 80.58 92.35

Table 1. Retrieval Accuracy on QA datasets
Image QA Text QA
Dataset WebQA MultiModalQA ManyModalQA | WebQA MultiModalQA ManyModalQA StrategyQA

w/o RAG 80.31 16.52 30.98 56.47 40.36 32.28 58.76
Dense retrieval 81.43 46.09 34.12 59.35 59.36 41.25 61.43
ColBERT 82.14 42.61 29.80 60.79 53.95 22.08 62.45
ColBERT-orig 81.96 49.13 32.29 61.14 61.73 77.66 65.50
S-QD 81.73 48.70 35.82 58.99 54.92 62.62 73.33
U-QD 82.26 47.73 33.73 60.79 49.24 60.95 71.11
ICL-QD 82.37 46.78 34.70 58.63 61.86 76.69 60.70
ICLF-QD 81.54 46.55 34.77 60.42 63.52 60.07 72.34
POQD(7=3) \ 82.83 61.74 37.92 \ 62.22 68.10 81.27 75.55

Table 2. End-to-End QA (Exact Match) Accuracy. We bold the best and underline the second best accuracy number respectively

EE Generator Time
Retrieval Time

3000 .)
—_ mmm Query Decomposition Time
D)

@ 2000
E
=
1000 I
0 —— N e .
ge\ age\ ge\ eyj.\ te*“ ‘ey&\
) \«\a a2 (v \ \
‘aeboh :xa\o :sa\Qp‘ \\N oo d"‘\Qh ga\”
“\{‘la‘\" M“\“ “"“\‘j\\l e

Figure 5. Overall inference time of POQD

issue. In contrast, if «v is too small (say a=0.01), POQD con-
verges much slower than our default with «=0.02. Hence,
the default configuration of «, i.e., 0.02, can balance the con-
vergence speed and the final performance. In addition, with
«=0.02, the training loss decreases smoothly throughout the
training process, exhibiting no abrupt spikes.

Effect of 7 We measure the training loss £(©; p) and the
total training time by varying 7 between 0 to 5, which is
plotted in Figure 7. Notably, the performance trend ex-
hibited in this figure matches the analysis in Section 4.4,
i.e., larger 7 leading to longer training time but better per-

a=0.01
0.40 ¥ Invoke Algrithm 1 for a =0.01
—— a=0.02
0.38{ Y Invoke Algrithm 1 for a=0.02
—— a=0.05
[} 25 50 75 100 125 150 175 200

Number of iterations

Figure 6. Effect of « on the training loss on the WebQA dataset in
text QA

formance. As this figure suggests, configuring 7 as 3 is a
reasonable choice since it balances the training efficiency
and performance well.

Effect of using varied LLLMs for decomposing queries
Unlike other methods, ICL-QD, ICLF-QD, and POQD rely
on one LLM for generating decomposed sub-queries. Hence,
we also compare their performance with alternative LLMs

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Figure 7. Training time of POQD with varied values of 7

for query decomposition. Specifically, this experiment is
conducted by leveraging the GPT-4 model (Achiam et al.,
2023) and DeepSeek-V3 (DeepSeek Team, 2024) as the
query decomposer, which leads to the results in Table 3.
As this table shows, with varied LLLMs used for query de-
composition, POQD consistently outperforms ICL-QD and
ICLF-QD.

‘ Top-2 retrieval accuracy ‘ QA accuracy

GPT-4 DeepSeek GPT-4 DeepSeek
ICL-QD | 56.83 55.40 57.91 58.27
ICLF-QD | 49.28 48.92 56.47 57.55
POQD | 58.99 55.40 | 59.71 60.43

Table 3. Performance on the WebQA dataset in text QA with varied
LLM:s for query decomposition

Additional ablation studies Due to space limit, other
ablation studies are reported in Appendix D.3, including
the study on the effect of the varied number of retrieved
items, the filtering step, the varied generator models, and
the varied embedding models for retrieval.

5.4. Qualitative studies

We expand the example shown in Figure 1 to show the dif-
ferences between the baseline methods and POQD. Specifi-
cally, we report the decomposed sub-queries generated by
other baseline methods in Table 4. In comparison to POQD,
these baseline methods produce sub-queries that either con-
tain irrelevant information, say the word “what” and “type”
generated by S-QD, or miss key information, say “Hong
Kong” by U-QD. As a consequence, the most relevant im-
ages retrieved with those sub-queries (shown in Appendix
D.4) do not match the ground-truth image shown in Figure
1. These retrieval errors can thus be attributed to the un-
reasonable sub-queries produced by the baseline methods.

| Decomposed sub-queries

S-QD [“What Victoria, Hong Kong”, “type buildings”]
U-QD [“Victoria” ,“bulidings”]
ICL-QD [“Victoria Hong Kong”, “buildings”, “type”]
ICLF-QD [“buildings Victoria, Hong Kong”]
POQD \ [“Victoria Hong Kong”,“buildings”]

Table 4. Performance on the WebQA dataset in text QA by using
the Roberta model as the embedding model for retrieval

6. Related work

Multi-Vector Retrieval Multi-Vector Retrieval (MVR),
first introduced by ColBERT (Khattab & Zaharia, 2020),
employs a late-interaction mechanism to evaluate query-
document similarity. This approach can overcome the repre-
sentational limitations of dense retrieval methods that use
single embeddings for queries and documents. Subsequent
works have focused on accelerating retrieval (Santhanam
et al., 2022b;a; Gao et al., 2021; Li et al., 2023) or im-
proving score aggregation strategies (Qian et al.). Notably,
most solutions decompose queries into individual tokens,
leaving the optimization of query decomposition for MVR
underexplored.

LLM-based optimizer (Yang et al., 2024; Pryzant et al.;
Wang et al.) have shown the potential of large language
models (LLMs) as a generic optimizer, which aims to search
the prompts for a given LLM based on a history of a history
of past instructions and performance scores on the training
set. Later on, this strategy is further extended for optimizing
the configurations of LLM agents (Zhang et al.; Zhao et al.,
2024a). This strategy is highly effective since it is free of
gradient computation (Lin et al., 2024).

Due to the space limit, we discuss other relevant related
works in Appendix C.

7. Conclusion

In this paper, we studied how to decompose queries into sub-
queries for multi-vector retrieval such that the performance
of retrieval-based systems, in particular, RAG systems is
optimized. To solve this problem, we propose to prompt
an LLM to decompose queries into sub-queries and opti-
mize its prompt with an LLM-based optimizer. We further
propose an efficient end-to-end training algorithm. Exten-
sive experiments on a variety of RAG-based QA benchmark
datasets demonstrate the effectiveness and efficiency of our
method.

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Acknowledgements

This work is supported by “The Fundamental Research
Funds for the Central Universities, Peking University”. We
are grateful to the GPU Cluster support with AIBD platform
from Fundamental Industry Training Center of Tsinghua
University.

Impact Statement

This paper presents work whose goal is to enhance the end-
to-end performance of the retrieval-based systems, in partic-
ular, the Retrieval-Augmented Generation (RAG) systems,
through optimizing their retrieval process. This is achieved
by utilizing multiple-vector retrieval and optimizing the
way of decomposing queries into sub-queries. We believe
that the proposed method could be seamlessly employed
to enhance the performance of arbitrary RAG systems in
a lightweight manner, but without imposing any negative
impacts.

References

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
Siisstrunk, S. Slic superpixels. 2010.

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, L.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Barnett, S., Kurniawan, S., Thudumu, S., Brannelly, Z., and
Abdelrazek, M. Seven failure points when engineering a
retrieval augmented generation system. In Proceedings
of the IEEE/ACM 3rd International Conference on Al
Engineering-Software Engineering for Al, pp. 194—-199,
2024.

Berant, J., Chou, A., Frostig, R., and Liang, P. Semantic
parsing on freebase from question-answer pairs. In Pro-
ceedings of the 2013 conference on empirical methods in
natural language processing, pp. 1533-1544, 2013.

Bhattacharya, S., Anand, A., et al. In-context ability transfer
for question decomposition in complex qa. arXiv preprint
arXiv:2310.18371, 2023.

Chang, Y., Narang, M., Suzuki, H., Cao, G., Gao, J., and
Bisk, Y. WebQA: Multihop and Multimodal QA. 2021.
URL https://arxiv.org/abs/2109.00590.

Chen, J., Kim, G., Sriram, A., Durrett, G., and Choi, E.
Complex claim verification with evidence retrieved in the
wild. In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational

Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 3569-3587, 2024.

10

Croft, W. B., Metzler, D., and Strohman, T. Search engines:
Information retrieval in practice, volume 520. Addison-
Wesley Reading, 2010.

DeepSeek Team. Deepseek-v3: Technical report. Tech-
nical report, DeepSeek, 2024. URL https://www.
deepseek.com.

Devlin, J. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Faysse, M., Sibille, H., Wu, T., Omrani, B., Viaud, G.,
Hudelot, C., and Colombo, P. Colpali: Efficient document
retrieval with vision language models. In The Thirteenth

International Conference on Learning Representations,
2024.

Gandhi, M., Gul, M. O., Prakash, E., Grunde-McLaughlin,
M., Krishna, R., and Agrawala, M. Measuring compo-
sitional consistency for video question answering. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5046-5055, 2022.

Gao, L. and Callan, J. Condenser: a pre-training architecture
for dense retrieval. In Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing,
pp- 981-993, 2021.

Gao, L., Dai, Z., and Callan, J. Coil: Revisit exact lex-
ical match in information retrieval with contextualized
inverted list. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pp- 3030-3042, 2021.

Gao, Y., Zhu, Y., Cao, Y., Zhou, Y., Wu, Z., Chen, Y., Wu,
S., Hu, H., and Dai, X. Dr3: Ask large language models
not to give off-topic answers in open domain multi-hop
question answering. arXiv preprint arXiv:2403.12393,
2024.

Geva, M., Khashabi, D., Segal, E., Khot, T., Roth, D., and
Berant, J. Did aristotle use a laptop? a question answering
benchmark with implicit reasoning strategies. Transac-

tions of the Association for Computational Linguistics, 9:
346-361, 2021a.

Geva, M., Khashabi, D., Segal, E., Khot, T., Roth, D., and
Berant, J. Did Aristotle Use a Laptop? A Question An-
swering Benchmark with Implicit Reasoning Strategies.

Transactions of the Association for Computational Lin-
guistics (TACL), 2021b.

https://arxiv.org/abs/2109.00590
https://www.deepseek.com
https://www.deepseek.com

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Guo, X.-Y,, Li, Y.-F,, and Haffari, G. Complex reading
comprehension through question decomposition. In Pro-
ceedings of the 20th Annual Workshop of the Australasian
Language Technology Association, pp. 31-40, 2022.

Hannan, D., Jain, A., and Bansal, M. Manymodalqa: Modal-
ity disambiguation and qa over diverse inputs. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 7879-7886, 2020.

Huang, X., Qi, J., Sun, Y., and Zhang, R. Latent reasoning
for low-resource question generation. In Findings of the
Association for Computational Linguistics: ACL-IJCNLP
2021, pp. 3008-3022, 2021.

Jiang, Z., Araki, J., Ding, H., and Neubig, G. Understanding
and improving zero-shot multi-hop reasoning in gener-
ative question answering. In Proceedings of the 29th
International Conference on Computational Linguistics,

pp. 1765-1775, 2022.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov,
S., Chen, D., and Yih, W.-t. Dense passage retrieval
for open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 6769-6781, 2020.

Khattab, O. and Zaharia, M. Colbert: Efficient and effective
passage search via contextualized late interaction over
bert. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information
Retrieval, pp. 3948, 2020.

Khot, T., Trivedi, H., Finlayson, M., Fu, Y., Richardson, K.,
Clark, P., and Sabharwal, A. Decomposed prompting:
A modular approach for solving complex tasks. In The
Eleventh International Conference on Learning Repre-
sentations.

Khot, T., Khashabi, D., Richardson, K., Clark, P., and Sab-
harwal, A. Text modular networks: Learning to decom-
pose tasks in the language of existing models. In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 1264-1279, 2021.

Li, M., Lin, S.-C., Oguz, B., Ghoshal, A., Lin, J., Mehdad,
Y., Yih, W.-t., and Chen, X. Citadel: Conditional token
interaction via dynamic lexical routing for efficient and
effective multi-vector retrieval. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 11891-11907,
2023.

Li, Y., Song, D., Zhou, C., Tian, Y., Wang, H., Yang, Z., and
Zhang, S. A framework of knowledge graph-enhanced
large language model based on question decomposition

11

and atomic retrieval. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 11472—
11485, 2024.

Liao, Z., Li, J., Niu, L., and Zhang, L. Align and aggre-
gate: Compositional reasoning with video alignment and
answer aggregation for video question-answering. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13395-13404, 2024.

Lin, M., Sheng, J., Zhao, A., Wang, S., Yue, Y., Wu, Y.,
Liu, H., Liu, J., Huang, G., and Liu, Y.-J. Llm-based
optimization of compound ai systems: A survey. arXiv
preprint arXiv:2410.16392, 2024.

Liu, C., Zhu, L., and Belkin, M. Loss landscapes and opti-
mization in over-parameterized non-linear systems and
neural networks. Applied and Computational Harmonic
Analysis, 59:85-116, 2022.

Liu, H,, Li, C., Wu, Q., and Lee, Y. J. Visual instruction tun-
ing. Advances in neural information processing systems,
36, 2024.

Liu, X.-H., Du, Y., Wang, J., and Yu, Y. On the optimiza-
tion landscape of low rank adaptation methods for large
language models. In The Thirteenth International Con-
ference on Learning Representations.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Ma, X., Gong, Y., He, P., Zhao, H., and Duan, N. Query
rewriting in retrieval-augmented large language mod-
els. In Proceedings of the 2023 Conference on Empiri-

cal Methods in Natural Language Processing, pp. 5303—
5315, 2023.

Mitra, B., Craswell, N., et al. An introduction to neural
information retrieval. Foundations and Trends® in Infor-
mation Retrieval, 13(1):1-126, 2018.

Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary,
S., Majumder, R., and Deng, L. Ms marco: A human-
generated machine reading comprehension dataset. 2016.

Niu, Y., Huang, F,, Liu, W., Cui, J., Wang, B., and Huang, M.
Bridging the gap between synthetic and natural questions
via sentence decomposition for semantic parsing. Trans-
actions of the Association for Computational Linguistics,
11:367-383, 2023.

Pereira, J., Fidalgo, R., Lotufo, R., and Nogueira, R. Vis-
conde: Multi-document ga with gpt-3 and neural rerank-

ing. In European Conference on Information Retrieval,
pp. 534-543. Springer, 2023.

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Perez, E., Lewis, P., Yih, W.-t., Cho, K., and Kiela, D. Unsu-
pervised question decomposition for question answering.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp.
8864-8880, 2020.

Press, O., Zhang, M., Min, S., Schmidt, L., Smith, N. A.,
and Lewis, M. Measuring and narrowing the composi-
tionality gap in language models. In Findings of the As-
sociation for Computational Linguistics: EMNLP 2023,
pp. 5687-5711, 2023.

Pryzant, R., Iter, D., Li, J,, Lee, Y. T., Zhu, C., and Zeng, M.
Automatic prompt optimization with” gradient descent”
and beam search. In The 2023 Conference on Empirical
Methods in Natural Language Processing.

Qi, J., Xu, Z., Shen, Y., Liu, M., Jin, D., Wang, Q., and
Huang, L. The art of socratic questioning: Recursive
thinking with large language models. In The 2023 Con-
ference on Empirical Methods in Natural Language Pro-
cessing.

Qian, Y., Lee, J., Duddu, K., Dai, Z., Lei, T., Brahma, S.,
Naim, I., and Zhao, V. Y. Multi-vector retrieval as sparse
alignment.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural

language supervision. In International conference on
machine learning, pp. 8748-8763. PMLR, 2021.

Reimers, N. Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:1908.10084,
2019.

Santhanam, K., Khattab, O., Potts, C., and Zaharia, M.
Plaid: an efficient engine for late interaction retrieval. In
Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, pp. 1747-1756,
2022a.

Santhanam, K., Khattab, O., Saad-Falcon, J., Potts, C., and
Zaharia, M. Colbertv2: Effective and efficient retrieval
via lightweight late interaction. In Proceedings of the
2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 3715-3734, 2022b.

Sidhoum, A. H., Mataoui, M., Sebbak, F., Hosni, A. I. E.,
and Smaili, K. Scoring multi-hop question decomposition
using masked language models. ACM Transactions on

Asian and Low-Resource Language Information Process-
ing, 23(7):1-21, 2024.

12

Talmor, A., Yoran, O., Catav, A., Lahav, D., Wang, Y.,
Asai, A., Ilharco, G., Hajishirzi, H., and Berant, J. Multi-
modalqga: complex question answering over text, tables
and images. In International Conference on Learning
Representations.

Wang, X., Li, C., Wang, Z., Bai, F., Luo, H., Zhang, J., Jojic,
N., Xing, E., and Hu, Z. Promptagent: Strategic plan-
ning with language models enables expert-level prompt
optimization. In The Twelfth International Conference on
Learning Representations.

Wu, J., Yang, L., Ji, Y., Huang, W., Karlsson, B. F., and
Okumura, M. Gendec: A robust generative question-
decomposition method for multi-hop reasoning. arXiv
preprint arXiv:2402.11166, 2024a.

Wu, Z., Bai, H., Zhang, A., Gu, J., Vydiswaran, V., Jaitly,
N., and Zhang, Y. Divide-or-conquer? which part should
you distill your llm? arXiv preprint arXiv:2402.15000,
2024b.

Xu, J., Guo, Z., He, J., Hu, H., He, T., Bai, S., Chen, K.,
Wang, J., Fan, Y., Dang, K., et al. Qwen2. 5-omni techni-
cal report. arXiv preprint arXiv:2503.20215, 2025.

Xu, S., Pang, L., Shen, H., Cheng, X., and Chua, T.-S.
Search-in-the-chain: Interactively enhancing large lan-
guage models with search for knowledge-intensive tasks.
In Proceedings of the ACM on Web Conference 2024, pp.
1362-1373, 2024.

Xue, S., Huang, Z., Liu, J., Lin, X., Ning, Y., Jin, B., Li, X.,
and Liu, Q. Decompose, analyze and rethink: Solving in-
tricate problems with human-like reasoning cycle. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems.

Xue, S., Huang, Z., Lin, X., Liu, J., Qin, L., Su, T, Liu, H.,
and Liu, Q. Enhancing the completeness of rationales
for multi-step question answering. In Proceedings of the

33rd ACM International Conference on Information and
Knowledge Management, pp. 27532763, 2024.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and
Chen, X. Large language models as optimizers. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=Bb4VGOWELI.

Yang, L., Kong, Q., Yang, H.-K., Kehl, W., Sato, Y., and
Kobori, N. Deco: Decomposition and reconstruction
for compositional temporal grounding via coarse-to-fine
contrastive ranking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp- 23130-23140, 2023.

https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Yang, X. and Zhu, X. Exploring decomposition for table-
based fact verification. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pp. 1045—
1052, 2021.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W., Salakhut-
dinov, R., and Manning, C. D. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2369-2380,
2018.

Ye, Y., Hui, B, Yang, M., Li, B., Huang, F,, and Li, Y. Large
language models are versatile decomposers: Decompos-
ing evidence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pp. 174—-184, 2023.

Zhang, S., Zhang, J., Liu, J., Song, L., Wang, C., Krishna,
R., and Wu, Q. Offline training of language model agents
with functions as learnable weights. In Forty-first Inter-
national Conference on Machine Learning.

Zhang, X., Wang, M., Yang, X., Wang, D., Feng, S., and
Zhang, Y. Hierarchical retrieval-augmented generation
model with rethink for multi-hop question answering.
arXiv preprint arXiv:2408.11875, 2024.

Zhao, H., Ma, C., Wang, G., Su, J., Kong, L., Xu, J.,
Deng, Z.-H., and Yang, H. Empowering large language
model agents through action learning. arXiv preprint
arXiv:2402.15809, 2024a.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar, A.,
and Tian, Y. Galore: Memory-efficient llm training by
gradient low-rank projection. In International Conference
on Machine Learning, pp. 61121-61143. PMLR, 2024b.

Zhao, W. X, Liu, J., Ren, R., and Wen, J.-R. Dense text
retrieval based on pretrained language models: A survey.
ACM Transactions on Information Systems, 42(4):1-60,
2024c.

Zhou, B., Richardson, K., Yu, X., and Roth, D. Learn-
ing to decompose: Hypothetical question decomposition
based on comparable texts. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language
Processing, pp. 2223-2235, 2022.

Zhu, W., Thomason, J., and Jia, R. Chain-of-questions
training with latent answers for robust multistep question
answering. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp.
8845-8860, 2023.

13

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

A. Theoretical analysis

The proof of Theorem 4.4 depends on the following essential Lemma from prior studies.

Lemma A.1 (Linear convergence). For a model parameterized by © satisfying the ji-PL* condition and the L-smoothness,
suppose it is trained with the gradient descent method and converges to ©*, then the following inequality defined on the loss
Sunction L(©) holds for the model parameter at the kyy, iteration (denoted by ©y,):

L(61) = L(©") < (1= 22 (L(O0) — £(67)).
The above inequality indicates that the model © converges at a linear rate.

Proof. First, according to the ;-PL* condition shown in Assumption 4.1, i.e., ||[£(0;)]|3 > pL(©,), the following inequality

holds:

L@ > pL(Or) > p(L(Or) — L(OY)).)
Then according to the smoothness property of £(0;), the following formula holds:

L
L(O41) < L(Oy) + VL(O; p)(Or41 — O) + §H@t+1 — 643,
According to Formula (3), ©;11 — Oy in the above formula can be substituted by —nL(0;), leading to:
Ln2

e
= £(0) - (1 - ZD)IVE©I3

L(O¢41) < L(Oy) — || VLO) 5 + IVL(©:)]]3

According to Equation (4), the above formula can be transformed to:
» Ln® 2
L(Op41) < L(Oy) =l VLO) I3 + THVa@t)Hz

= £(0) - (1 - ZH)IVE©I3

< £(0) ~ (= T5) - pl£(O) - £(67))

Then by subtracting £(©*) on both sides of the above formula, we can obtain:

L(Or41) = L(O7) < L(O1) = L(O7) = (n— =) - nl(£(Or) — £(6))
L *
= [L— (1 = Z)(L(O) — L))
Then by setting n = %, 1—pun(l- %) = 1 — 47, and thus the above formula is bounded by:

<(1- %)(5(90 ~ L(©"))

O

Recall that according to Assumption 4.1, the training loss satisfies the p-PL* condition and L-smoothness with arbitrary
fixed p. Hence, by substituting £(©) with £(O;p), the following inequality holds for £(O; p) when O is updated with
gradient descent:

£(k:p) ~ £(67:p) < (1~ 57)*(L(€0ip) — L(©":p))-)

Then we formally provide the proof to Theorem 4.4 as follows.

14

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Proof. With a fixed prompt p°¢ (or p"*¥ resp.), suppose the model parameter at the ¢, iteration of the training process

shown in Line 4 of Algorithm 2 is ©9'4 (or ©°¥ resp.). By representing A = 1 — 4+ Equation (3) can be rewritten as:

c(ggld;pold) _ E((_)*(pold);pold) _ E(@gld;pold) _ Gold
S At[ﬁ(@gld;pold) _ E(@*(pold);pold)] _ At[ﬁ(@(éld;pold) _ Gold];

in which we use Goyg to represent £(0*(p°!); p°¢) and substitute the ratio 1 — 4 with a constant A(0 < A < 1)

Then when ¢ = 7, the above formula is transformed into:
L0 M) — Gog < AT[L(O7%p) — Goa). (6)

old

Recall that when p°“ is updated to p"®¥, the training loss is reduced by «. Therefore, the following formula holds:

E(@gld;pold) _ E(@?_Id;pneW) > a,
which can be integrated into Formula (6), resulting in:

L(@:ld;pnew) +o— Gold _ L(@gew;pnew) +oa— Gold S AT(ﬁ(@gld;pOId) o Gold)- (7)

By subtracting G4 and adding Gy, on the left side of the above formula, we can obtain:

E(@gew;pnew) - Gnew + Gnew - GO]d + a S AT (ﬁ(@g}d;pold) - C;(old)-

Since Ghew minimizes £(O; ppew) for any O, this means that L(OF™; p"*V) — Gpew > 0. This thus can be leveraged to lower
bound the left side of the above formula, leading to:

Gnew - G(old +a< AT (ﬁ(@gld;pold) - Gold)-

By leveraging the fact that £(03'%; p°4) < M and Gog > 0, then the above formula is further bounded by:

Gold - CTvnew >a—A"M.

B. Additional experimental setups

Datasets and models As introduced in Section 1, we primarily conduct experiments on RAG-based QA tasks covering
both image QA and text QA tasks, in which we evaluate both the retrieval performance and end-to-end QA accuracy.
Specifically, we employ Web Questions (WebQA) (Berant et al., 2013; Chang et al., 2021), MultiModalQA (Talmor et al.),
ManyModalQA (Hannan et al., 2020) and StrategyQA (Geva et al., 2021a) dataset for experiments. The WebQA dataset
consists of Image QA dataset (Chang et al., 2021) and Text QA dataset (Berant et al., 2013). Among these datasets, WebQA,
MultiModalQA and ManyModalQA contain questions that may require retrieving data from different modalities. Hence,
for image QA, in particular, for WebQA, MultiModalQA and ManyModalQA dataset, we only select questions requiring
retrieving images while for text QA, we only select questions requiring text documents as input. Among these datasets,
StrategyQA is employed for multi-hop QA while others are used for single-hop QA.

Regarding the retrieval model for text QA, we employ the pre-trained model developed by (Santhanam et al., 2022b)
for ColBERT, which fine-tunes the Bert model (Devlin, 2018) on the MSMARCO dataset (Nguyen et al., 2016). Since
ColBERT decomposes queries at the token level, which may not be suitable for decomposed sub-queries, we thus employ
the Sentence-Bert model (Reimers, 2019) for encoding sub-queries and corpus for other baseline methods as well as POQD.
On the other hand, for image QA, the CLIP model (Radford et al., 2021) is employed to embed text queries and images.

For the generator models, we leverage Llama3.1-8B (Dubey et al., 2024) and Llava-v1.5-7B (Liu et al., 2024) as generators
for single-hop text QA and image QA respectively. In the experiments for these tasks, only the generator models are

15

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

fine-tuned in our experiments for baseline methods while POQD jointly fine-tunes the generator model and optimizes the
prompt for query decomposition. On the other hand, regarding multi-hop text QA, i.e., StrategyQA dataset, we follow the
state-of-the-art (Xu et al., 2024) to utilize frozen GPT-4 (Achiam et al., 2023) model and merely replace its default retrieval
model, i.e., ColBERT, with other baseline and POQD.

Also, to facilitate multi-vector retrieval, it is essential to construct multiple vectors appropriately for each document or image
in the corpus. Since queries are decomposed into sub-queries composed of multiple tokens, it is thus not appropriate to
follow (Khattab & Zaharia, 2020) to embed individual tokens in documents, which is even impossible for images in the
context of image QA. Hence, for text QA, except ColBERT, we embed individual sentences for other baseline methods and
POQD while for image QA, we segment each image into superpixels with existing image segmentation tools, say, SLIC
(Achanta et al., 2010), and embed these superpixels with CLIP model.

C. Additional related work

Question decomposition in Question Answering How to decompose queries or questions has been extensively studied in
the Question-Answering (QA) literature but from a different perspective. Specifically, various strategies have been devised
to decompose complex questions into multiple sub-questions to facilitate multi-hop QA. Indeed, these strategies could be
adapted for decomposing queries for multi-vector retrieval. For instance, a series of works (Xue et al., 2024; Yang & Zhu,
2021; Zhou et al., 2022; Zhu et al., 2023; Guo et al., 2022; Wu et al., 2024a; Geva et al., 2021b; Khot et al., 2021) train a
sequence-to-sequence model in a supervised manner over a set of training queries with human-annotated sub-queries such
that this model can generate decomposed sub-queries directly. Considering the lack of human annotations for sub-queries
in most data, one can either train a query decomposition model in an unsupervised way (Perez et al., 2020) or employ
heuristics (Jiang et al., 2022; Gandhi et al., 2022; Yang et al., 2023) (say syntax rules (Yang et al., 2023)), or perform
in-context learning with LLMs (Li et al., 2024; Pereira et al., 2023; Niu et al., 2023; Ye et al., 2023; Xue et al.; Wu et al.,
2024b; Chen et al., 2024; Bhattacharya et al., 2023; Liao et al., 2024; Khot et al.; Press et al., 2023; Zhang et al., 2024)
for query decomposition. To further enhance the decomposition performance, one can optionally collect feedback on the
decomposed sub-queries and incorporate it into the above in-context learning-based methods. Typical feedback includes
confidence scores (Qi et al.), quality scores provided by a powerful enough LLM (Gao et al., 2024), or relevance scores
between the generated answers and an expected topic (Sidhoum et al., 2024). Some other works even model the target
sub-queries as latent variables (Huang et al., 2021; Zhu et al., 2023). However, to our knowledge, none of these solutions
determine sub-queries for optimizing the downstream retrieval-based task performance.

D. Additional experimental results
D.1. Prompts used for ICL-QD, ICLF-QD and POQD

We present the prompts used for query decomposition in ICL-QD and ICLF-QD in Figure 8 and Figure 9, respectively. For
the latter one, we reuse the prompt from (Qi et al.).

Regarding the prompts used for query decomposition in POQD, we present what prompts are used as the input for the LLM
optimizer and that for the LLM-based query decomposer in Figure 10, which also displays how these prompts evolve in the
first four iterations of Algorithm 1.

Figure 8. The prompt used for query decomposition in ICL-QD

D.2. Comparison against the query rewrite strategy

There is an emerging trend in the literature for rewriting user queries to maximize the RAG performance. Considering that
both POQD and this line of work aim to manipulate the user queries for performance enhancement, we thus also compare
POQD against one of such representative work (Ma et al., 2023). This experiment is conducted on the WebQA dataset in

16

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Imagine that you are a thoughtful and logical problem solver. You will get a question. However, this question is too
complex or lacking information to answer. You need to break down the original question into several simpler
subquestions to help the information retrieval system retrieve the relevant information. Important: Do not use
pronouns or indefinite pronoun phrases in generated questions. The questions asked must be self-contained
questions. Each question can contain only one parameter. Don't just ask yes/no questions."

"For example, Question: Could the Great Wall of China connect the Dodgers to the White Sox? Note: The raised
question has to be a self-contained question. Do not use pronouns or indefinite pronoun phrases in the generated
questions. Copy context from the original question if needed. Deep Questions: 1. What is the most commonly cited
figure for the total length of the Great Wall? 2. What is the straight-line distance between Chicago, lllinois, and Los
Angeles, California?

Figure 9. The prompt used for query decomposition in ICLF-QD

text QA, which produces results in Table 5. Note that since the query rewrite method still relies on the traditional dense
retrieval strategy to retrieve relevant items, it thus suffers from poor retrieval performance, which eventually underperforms
POQD by a large margin concerning the end-to-end QA accuracy.

| Top-2 retrieval accuracy End-to-end QA accuracy

Query rewrite 28.42 52.16
POQD 53.96 61.87

Table 5. Comparison between POQD and query rewrite strategy

D.3. Additional ablation studies

We include additional ablation studies in this section. Considering the generally poor performance of CoIBERT compared to
ColBERT-orig as reported in Section 5, we ignore the results of CoIBERT below.

Effect of the varied number of retrieved items We varied the number of retrieved Top-K relevant items in the retrieval
process between 1 and 5 on the WebQA dataset in text QA, which leads to the results in Table 6. These results again show
that with varied numbers of relevant items, POQD consistently beat other methods regarding the QA accuracy numbers.

| 1 2 5

w/o RAG 56.47 5647 5647
Dense retrieval | 58.63 59.35 61.51
ColBERT-orig | 59.70 61.14 63.66
S-QD 58.99 5899 6223
U-QD 5827 60.79 62.23
ICL-QD 5791 58.63 59.35

ICLF-QD 59.71 6042 62.58

POQD | 6115 6222 64.03

Table 6. End-to-end QA accuracy on the WebQA dataset in text QA by varying the number of retrieved relevant documents in the retrieval
process

Effect of the filtering step Considering that LLMs may produce irrelevant tokens during the query decomposition process,
POQD filters out these irrelevant tokens in the generated sub-queries. We therefore further evaluate how this filtering step
influences the performance of POQD as well as baseline methods.

Effect of varied generator models We repeat the text QA experiments on the WebQA dataset by replacing its default
generator model, Llama3.1-8B, with Qwen2.5 (Xu et al., 2025). The resulting end-to-end QA accuracy is reported in Table
8, which suggests that POQD outperforms the baseline methods regardless of the generator model used.

17

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

Without filtering step With filtering step
Top-2 retrieval accuracy End-to-end QA accuracy | Top-2 retrieval accuracy End-to-end QA accuracy
S-QD 41.37 58.63 48.56 58.99
U-QD 39.20 5791 46.04 60.79
ICL-QD 35.97 57.55 41.37 58.63
ICLF-QD 41.01 58.27 51.80 60.42
POQD | 52.51 61.87 | 53.24 62.22

Table 7. Performance on the WebQA dataset in text QA with VS without the filtering step

| Llama3.1-8B Qwen2.5

w/o RAG 56.47 54.32
Dense retrieval 59.35 57.19
ColBERT-orig 61.14 57.55

S-QD 58.99 51.44
U-QD 60.79 50.72
ICL-QD 58.63 5791
ICLF-QD 60.42 56.47
POQD \ 62.22 59.35

Table 8. End-to-End QA Accuracy with varied generator models on the WebQA dataset in the text QA task

Effect of varied embedding models for retrieval We also compare POQD against baseline methods by using the
RoBERTa model (Liu et al., 2019) rather than the Sentence-Bert model as the embedding model for retrieval. The results of
this experiment are summarized in Table 9, which again indicate the performance advantage of POQD compared to other
methods.

\ Top-2 retrieval accuracy QA accuracy

w/o RAG - 54.32
Dense retrieval 22.29 58.63
ColBERT-orig 43.53 60.43

S-QD 22.30 58.99
U-QD 20.86 57.91
ICL-QD 39.57 59.71
ICLF-QD 34.89 60.07
POQD \ 43.88 61.51

Table 9. Performance on the WebQA dataset in text QA by using the ROBERTa model as the embedding model for retrieval

D.4. Additional details on qualitative studies

As mentioned in Section 5.4, we decompose the query appearing in Figure 1 using POQD and baseline methods and retrieve
images with the decomposed sub-queries. The retrieved images by these methods are shown in Figure 11, which suggests
that those images do not match the buildings in Victoria, Hong Kong. Hence, this misalignment between these retrieved
images and the ground-truth indicates that the decomposed sub-queries by baseline methods (shown in Table 4) are not
reasonable.

18

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

s
(" # meta-prompt N # prompt prefix

Your task is to generate the instruction <INS>. Below are some previous

Prompt Optimizer You are a query optimization
assistant. Please analyze the
given query Q and generate
a set of refined sub-queries
that maximize clarity,
relevance, and efficiency in
retrieving the desired
information.

instructions with their scores. The score ranges from 0 to 100.

solution-score pairs

meta-prompt

Generate an instruction that is different from all the instructions <INS> above,

and has a higher score than all the instructions <INS> above

Score: 0.75

(a) Iteration O of Algorithm 1

/# meta-prompt)

-~
Your task is to generate the instruction <INS>. Below are some previous # prompt prefix
instructions with their scores. The score ranges from 0 to 100.
q . You are a query optimization
solution-score pairs

Prompt Optimizer assistant. Analyze the given
query Q and generate a set

of refined sub-queries that
maximize clarity, relevance,

Text: You are a query optimization assistant. Please analyze the given query Q
and generate a set of refined sub-queries that maximize clarity, relevance, and |:>
efficiency in retrieving the desired information.

Score: 0.75

meta-prompt

and efficiency in retrieving
the desired information.

Generate an instruction that is different from all the instructions <INS> above, Score: 0.74
and has a higher score than all the instructions <INS> above..... o
/

(b) Iteration 1 of Algorithm 1

/4)
meta-prompt (# prompt prefix

Your task is to generate the instruction <INS>. Below are some previous

You are a query optimization
and decomposition

solution-score pairs assistant. Analyze the given
query Q and generate a set
Prompt Optimizer of refined, logically
independent sub-queries
that enhance clarity,
relevance, and efficiency,
ensuring each sub-query is
semantically coherent and
can be processed

instructions with their scores. The score ranges from 0 to 100.

Text: You are a query optimization assistant. Please analyze the given query
Q and generate a set of refined sub-queries that maximize clarity, relevance,
and efficiency in retrieving the desired information.

Score: 0.75

Text: You are a query optimization assistant. Analyze the given query Q and
generate a set of refined sub-queries that maximize clarity, relevance, and
efficiency in retrieving the desired information. . .
Score: 0.74 |ndepen_dent|y Wh”?
preserving the original
meta-prompt query's intent.

Generate an instruction that is different from all the instructions <INS> above,
and has a higher score than all the instructions <INS> above

Score: 0.73

>

(c) Iteration 2 of Algorithm 1

(— Y

Your task is to generate the instruction <INS>. Below are some previous
instructions with their scores. The score ranges from 0 to 100.

solution-score pairs

Text: You are a query optimization assistant. Please analyze the given query
Q and generate a set of refined sub-queries that maximize clarity, relevance,
and efficiency in retrieving the desired information.

Score: 0.75

prompt prefix

You are a query optimization
assistant. Please analyze the
Text: You are a query optimization assistant. Analyze the given query Q and given query Q and generate
generate a set of refined sub-queries that maximize clarity, relevance, and
efficiency in retrieving the desired information.

Score: 0.74

Prompt Optimizer a set of refined sub-queries
that improve clarity,
efficiency, and relevance
while maintaining semantic

Text: You are a query optimization and decomposition assistant. Analyze the coherence.

given query Q and generate a set of refined, logically independent sub-

queries that enhance clarity, relevance, and efficiency, ensuring each sub-

query is semantically coherent and can be processed independently while Score: 0.72

preserving the original query's intent.

Score: 0.73

meta-prompt

Generate an instruction that is different from all the instructions <INS> above,
d has a higher score than all the instructions <INS> above..... /

(d) Iteration 3 of Algorithm 1

Figure 10. Prompts produced in the first four iterations by Algorithm 1
19

POQD: Performance-Oriented Query Decomposer for Multi-vector retrieval

(b) U-QD

(c) ICL-QD

Figure 11. Retrieved images by using decomposed sub-queries produced by baseline methods

20

