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ABSTRACT

Accurate prediction of urban traffic flow is essential for optimizing traffic man-
agement, enhancing urban planning, and promoting the development of smart
cities. Due to the difficulty of data acquisition in many cities, data scarcity arises,
significantly impeding the practical application of deep learning techniques. Con-
sequently, researchers have turned to transfer learning for mitigating data scarcity
through cross-city knowledge interaction. However, existing transfer learning meth-
ods lack precision and discrimination in spatio-temporal feature extraction, thereby
restricting the predictive performance. Moreover, these approaches frequently fail
to adequately account for the disparities between the source and target cities, result-
ing in the loss of essential knowledge and, at times, the introduction of detrimental
knowledge into the target city. To overcome these challenges, we novelly introduce
A hierarchical adaptive Transfer Learning Framework (AhaTrans), which ensures
precise feature learning as well as effective, non-detrimental knowledge transfer in
cross-city traffic flow prediction by focusing on three key levels: model architec-
ture, feature representation, and data adaptation. Specifically, AhaTrans consists of
the following three core modules: i) Guarded Transfer Experts Network (GTEN),
which clearly distinguishes between shared and city-specific experts, enabling the
target city to access beneficial knowledge from the source city while preventing
harmful knowledge; ii) Spatial-Temporal Contrastive Embedding Module (STCE),
which enhances the representation of spatio-temporal features through contrastive
learning; iii) Transfer-Based Reweighting Module (TBR), which dynamically ad-
justs source city samples to extract knowledge most relevant for the target city’s
traffic patterns. Extensive experiments demonstrate that AhaTrans significantly
outperforms existing methods, substantially improving the accuracy of traffic flow
prediction while exhibiting excellent robustness and generalization capabilities.

1 INTRODUCTION

Urban traffic flow prediction plays a vital role in the development of smart cities and the optimization
of intelligent traffic systems (Zheng, 2015; Mazimpaka & Timpf, 2016; Yuan et al., 2020). It
constitutes a typical spatio-temporal prediction task, aimed at forecasting future patterns through the
analysis of historical traffic data (Fang et al., 2022). Modern urban areas generate spatio-temporal data
via GPS, mobile devices, and remote sensing technologies (Gonzalez et al., 2008; Zheng et al., 2008;
Weng, 2012). These data sources are diverse and multimodal, encompassing trajectories of bikes and
taxis, along with public transit usage. Traditional statistical and regression models (Zhang, 2003;
Lippi et al., 2013) often face challenges when dealing with these complex and correlated datasets.
Hence, effectively understanding and utilizing these data is crucial for accurate predictions. Recently,
deep learning methods have shown remarkable performance in traffic flow prediction. Researchers
have utilized increasingly sophisticated networks, such as Convolutional Neural Networks, Recurrent
Neural Networks, and Graph Neural Networks, to improve predictive capabilities (Zhang et al.,
2017; Shi et al., 2015; Lan et al., 2022). However, these methods heavily depend on large-scale
training data, such as extensive vehicle trip records or auxiliary weather information, which are
often unavailable in real-world scenarios (De Montjoye et al., 2013; Zheng et al., 2008; Wang et al.,
2018). Consequently, there has been an increasing focus on transfer learning to improve traffic flow
prediction in data-limited cities (Yao et al., 2019a; Wang et al., 2021; Fang et al., 2022). These
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Figure 1: Limitations of existing methods. (left) Feature distribution of NYCBike data by STAN,
with blue for morning peak (8:00-10:00) and red for afternoon (14:00-16:00) average flow. (right)
Loss curves of source and target cities during the DCBike to DCTaxi transfer task using STAN.

methods generally involve training models using supervised learning or meta-learning on the source
city, which has abundant data, and then fine-tuning the models on the target city with limited data.
However, existing methods still exhibit certain limitations: i) Limited discrimination of extracted
spatio-temporal features. As shown in Figure 1 (left), we visualize the dimensionality-reduced
features of morning and afternoon traffic patterns extracted from the NYCBike dataset using STAN
(where “Feature 1” and “Feature 2” denote two dimensions of the combined features). The results
reveal that different traffic patterns are poorly separated in the feature space, indicating that the learned
spatio-temporal representations lack precision and discriminative power. ii) Negative knowledge
transfer. In the DCBike to DCTaxi using STAN, the loss of the source city decreases steadily and
converges during training, while the loss of the target city continues to increase (see Figure 1 (right)).
This suggests that irrelevant or harmful information from the source city may be transferred to the
target city, resulting in performance degradation due to negative transfer (Wang et al., 2019b).
To address these challenges, we novelly propose A hierarchical adaptive Transfer Learning Frame-
work, i.e., AhaTrans. For the first challenge, we introduce a Spatio-Temporal Contrastive Embedding
(STCE) module at the feature level. By enhancing the similarity of samples within the spatio-temporal
feature space, STCE encourages the learned representations to better align with actual traffic flow,
thus facilitating more accurate and discriminative spatio-temporal feature learning. According to the
second challenge, we design a Guarded Transfer Experts Network (GTEN) at the architectural level,
which explicitly distinguishes between shared and city-specific experts. This approach enables the
target city to effectively leverage informative knowledge from the source city while mitigating the
influence of potentially harmful information. At the data adaptation level, we propose a Transfer-
based Reweighting (TBR) strategy for dynamic weighting of source city samples. In contrast to
CrossTReS (Jin et al., 2022), which applies weighting solely along the spatial dimension, TBR jointly
considers both temporal and spatial similarities. This enables robust cross-task transfer even between
cities with similar spatial configurations. In summary, the main contributions are as follows:

• We design STCE to integrate contrastive learning into cross-city traffic flow prediction tasks,
aiming to learn more precise and discriminative spatio-temporal representations. STCE achieves
effective feature learning without relying on extensive data or detailed road network topologies,
significantly reducing the costs of data acquisition and preprocessing. Furthermore, STCE
establishes a generalized contrastive learning framework for spatio-temporal data, adaptively
handling spatial and temporal variations across different cities.

• We alleviate the negative transfer issue from two complementary perspectives: model architecture
and data adaptation. Specifically, during the transfer process, TBR accounts for temporal and
spatial similarities between source and target cities to facilitate the acquisition of valuable
knowledge. In addition, to prevent interference among different knowledge sources, GTEN
employs a decoupled expert mechanism that allows the target city to effectively leverage useful
knowledge from the source city while suppressing potentially harmful transfer.

• Extensive experimental results demonstrate that AhaTrans significantly outperforms existing
methods, thereby validating its effectiveness in cross-city traffic flow prediction. We conduct
comprehensive evaluations on multiple real-world datasets, including main experiments, ablation
studies, hyperparameter analysis, efficiency comparisons, case studies, and generalization studies,
systematically verifying our framework and the superiority of our overall approach.
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2 PRELIMINARIES

2.1 NOTATIONS AND DEFINITIONS

Definition 1 (Region). Following previous research (Fang et al., 2022), we divide a city c into a
grid of size h× w, e.g., 16 × 16, based on latitude and longitude. Each cell in this grid represents a
specific region ri,j , which is located at the i-th row and j-th column. Collectively, all regions in this
grid form a complete region image of the city, denoted by Rc = {r1,1, · · · , ri,j , · · · , rh,w}.

Definition 2 (Inflow/Outflow). In urban settings, each region ri,j experiences two types of flows,
i.e., inflow and outflow, within a specified time interval t. These flows can be calculated using
historical data of vehicle trajectories:
x
(ri,j ,in)
t =

∑
τ∈T

∣∣gt−1 /∈ ri,j and gt ∈ ri,j
∣∣, x

(ri,j ,out)
t =

∑
τ∈T

∣∣gt−1 ∈ ri,j and gt /∈ ri,j
∣∣. (1)

Here, T is the set of all trajectories, where each trajectory τ = {g1, · · · , gt, · · · , gn} spans n GPS
locations, with gt indicating the location at time t for that trajectory.

Definition 3 (Urban Traffic Flow Image). For a given region set R = {r1,1, · · · , ri,j , · · · , rh,w},
which represents a city, we define an “urban traffic flow image” for any time interval t by combining
inflow and outflow values across all regions. This urban flow image is represented as Xt ∈ Rh×w×2.

Definition 4 (Urban Traffic Flow Image Time-Series). Given the latest time interval t and a
historical time range k, we denote X = {Xt−k+1, · · · , Xt−1, Xt} ∈ Rk×h×w×2 as the “urban traffic
flow image time-series”, where X (i, j, t, ∗) represents the inflow and outflow in region ri,j during t.

2.2 PROBLEM FORMULATION

When sufficient data is available in a source city but limited data in a target city (i.e., |X source| ≫
|X target|), the objective of cross-city traffic flow prediction is to develop a function f(·, ·) that
forecasts future patterns in all regions of the target city T for the upcoming time interval t+ 1:

min
f

∑
t+1

Loss
(
Y target
t+1 , Ŷ target

t+1

)
, s.t. Ŷ target

t+1 = f
(
X source,X target

)
, (2)

where Y target
t+1 and Ŷ target

t+1 represent the actual observed data and predicted traffic flow values,
respectively. The function Loss(·, ·), measuring prediction accuracy, can be calculated using metrics
like Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and similar approaches.

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW

We propose AhaTrans, a novel hierarchical adaptive transfer learning framework for cross-city traffic
flow prediction, as depicted in Figure 2. AhaTrans comprises three core components: a Guarded
Transfer Experts Network, a Spatio-Temporal Contrastive Embedding module, and a Transfer-based
Reweighting module, which jointly enhance the system in terms of model architecture, feature
representation, and data adaptation. For better understanding, we provide detailed specifications of
the model’s input-output dimensions in Appendix B.2 and the pseudocode in Appendix B.3.

3.2 GUARDED TRANSFER EXPERTS NETWORK

As shown in Figure 2 (left), GTEN explicitly differentiates between a shared layer and city-specific
layers, defining three types of experts—source, shared, and target—and two cities (source and target).
The shared expert is responsible for learning common patterns, while the city-specific experts extract
features unique to each city effectively. Specifically, the source expert is trained exclusively on
source city data, the target expert models on the target city data, and the shared expert learns common
patterns from both source and target city data. To further enhance the model’s adaptability and overall
performance, we introduce a gating network that selectively fuses the outputs of the various experts,
depending on the specific characteristics of each city. This design allows the linear head network for
each city to leverage the combined knowledge acquired from both the shared and city-specific experts
for prediction. As illustrated in Figure 2 (left), the gating network employs a single-layer feedforward
architecture and uses the SoftMax function as its activation. Specifically, the gating network takes the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Guarded Transfer Experts Network (GTEN)

Training loss Validation lossSample weights

Gradient descent

1.
 F

or
w

ar
d 

so
ur

ce
 c

ity

2. B
ackw

ard source city 3.
 F

or
w

ar
d 

ta
rg

et
 c

ity

4. B
ackw

ard target city

5.
 B

ac
kw

ar
d 

on
 b

ac
kw

ar
d

�� � ∇� ��

ℱ � �

�
−�

Source Expert Shared Expert Target Expert

Human
Mobility

˙˙˙ ˙˙˙

Data 
Imbalance

Source City Target City

STCE

FC

Softmax

Feature

Gating Network
Output

Source
Task

Target
Task

Expert 
Layer

Linear 
Head 

a) Overview

b) Spatial-Temporal Contrastive Embedding Module (STCE)

c) Transfer-based Reweighting Module (TBR)

    TBR

C
N
N

C
N
N

C
N
N

Self-Attention

˙˙˙

˙˙˙

Self-Attention

Self-Attention

Feature Em
bedding Layer

MTCL

,

Positive Pair

, ,

Corresponding Negative Pair

MSCLPositive Pair

, , ,

Corresponding Negative Pair

Figure 2: The framework of AhaTrans. a) Overview: This figure illustrates cross-city traffic flow
prediction under data imbalance, emphasizing how GTEN differentiates between shared and city-
specific experts. This design mitigates the influence of negative knowledge from the source city while
facilitating the transfer of useful knowledge to the target city. b) STCE: Incorporates contrastive
learning to enhance the discriminability of spatio-temporal features, thereby improving representation
effectiveness. c) TBR: By dynamically reweighting source city samples, this component facilitates
the extraction of knowledge most relevant to traffic patterns in the target city from the source.

feature representation x as input and outputs weights for each expert. For city c, where c can take the
value of either source or target, the fused output can be expressed as:

gc(x) = wcExpertc(x) + wsharedExpertshared(x), (3)
where Expertc(x) and Expertshared(x) are features from the city-specific and shared experts, re-
spectively, weighted by wc and wshared as computed below:

wc, wshared = Softmax(FC(x)). (4)
Finally, the prediction result for city c is expressed as follows:

yc(x) = LinearHeadc(gc(x)), (5)
where LinearHeadc denotes the linear head corresponding to city c. Let yctrue denote the ground truth
for city c; then, for each city c the prediction loss is defined as

Lc
P = Loss

(
yc(x), yctrue

)
. (6)

Here, Loss(·, ·) denotes MAE, which is used in our implementation as the loss function.
To theoretically support the knowledge isolation mechanism in GTEN, we present the following
generalization bound(The proof and more theoretical support can be found in Appendix C.1):
Theorem 3.1 (Knowledge Isolation Guarantee). The expert separation structure of GTEN ensures
the following upper bound on the generalization error for the target city:

RDt(ht) ≤ R̂Dt(ht) + Ω(mt) + wshared · ηs,t, (7)
where Ω(mt) is the generalization gap related to the number of target city samples, ηs,t is the transfer
error from source city to target city, and wshared is the weight of the shared expert.

This bound captures the trade-off between knowledge reuse and isolation: smaller transfer error
ηs,t and gating weight wshared reduce harmful transfer risk. GTEN ensures target cities benefit from
shared knowledge while maintaining robustness against irrelevant or negative source patterns.

3.3 SPATIAL-TEMPORAL CONTRASTIVE EMBEDDING

3.3.1 FEATURE EXTRACTION

To capture both spatial and local temporal patterns in traffic flow, we adopt a multi-head convolutional
self-attention mechanism (Liu et al., 2020), following (Fang et al., 2022). Specifically, historical

4
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data from P previous days is used, where L intervals before the current time step are selected from
both source and target cities. The input is defined as X = {X1;X2; . . . ;XP } ∈ RL×P×h×w×2,,
where each Xp = {X(p,T−L), . . . , X(p,T )}. This tensor is fed into the multi-head convolutional
self-attention layer. For each time step Xi, a convolutional subnetwork produces the query Qi, key
Ki, and value V i maps. Attention scores are computed via a compatibility function Mθ:

Sij = Mθ(Q
i,Kj), αij =

exp(Sij)∑P
j′=1 exp(Sij′)

, V i =

P∑
j=1

αijV
j .

For H attention heads, the final output is
V MH,i = Concat(V (1),i, V (2),i, . . . , V (H),i). (8)

This multi-head structure enhances the model’s ability to extract diverse patterns in complex scenarios.

3.3.2 SPATIAL AND TEMPORAL CONTRASTIVE LEARNING

To boost both the expressiveness and discriminative strength of our spatio-temporal representations,
we adopt a contrastive-learning framework (Hadsell et al., 2006) and train the network with the
Rank-N-Contrast objective (Zha et al., 2024), which explicitly orders positives against a spectrum of
hard negatives, yielding finer-grained feature separation.

Spatial Contrastive Learning (SCL). Given a batch of B samples, we randomly select N grids
from each h× w spatial map, yielding spatial feature embeddings Vsp = {Vsp

1 ,Vsp
2 , . . . ,Vsp

B } ∈
RL×P×2, where Vsp

i denotes the spatial features of the ith sample. For any pair of samples, we
treat Vsp

m as the anchor and Vsp
n as a comparison. We define Ssp

n,m as the set of samples whose label
distance is greater than or equal to that between Vsp

m and Vsp
n . The similarity between Vsp

m and Vsp
n ,

normalized via softmax over Ssp
n,m, is expressed as:

P (Vsp
n |Vsp

m , Ssp
n,m) = exp (sim(Vsp

m ,Vsp
n )/τ) /

∑
Vsp

k ∈Ssp
n,m

exp (sim(Vsp
m ,Vsp

k )/τ). (9)

Here, sim(·, ·) is a similarity metric (e.g., negative L2 norm), and τ is a temperature parameter. For
each anchor Vsp

m , the loss is computed as the average negative log-likelihood over all other BN − 1
samples. The overall loss is then calculated by averaging across all anchors:

L
(m)
SCL =

BN∑
n=1,n̸=m

− log (P (Vsp
n | Vsp

m )) /(BN − 1), LSCL =

BN∑
m=1

L
(m)
SCL/BN. (10)

Temporal Contrastive Learning (TCL). For each sample, we randomly select M historical
data points per day, resulting in B × M new samples that are aggregated into a batch Vtp =
{Vtp

1 ,Vtp
2 , . . . ,Vtp

B } ∈ Rh×w×2. Similar to the spatial setting, we apply the Rank-N-Contrast Loss,
which ranks all temporal features based on their label-space order to capture underlying temporal
dependencies. For the detailed formulation, see Appendix B.1.

3.3.3 OVERALL LOSS FUNCTION.

To fully integrate feature learning into the model training process, we have developed a composite loss
function comprising prediction loss, spatial contrast loss, and temporal contrast loss. The composite
loss is defined as follows:

L = Lc
P + βLc

SCL + γLc
TCL, c ∈ {source, target}, (11)

where β and γ control the weight of spatial and temporal contrastive loss.

3.3.4 CONVERGENCE ANALYSIS

To ensure the stability and effectiveness of the learned features, we analyze the convergence behavior
of the STCE module. The proof and more theoretical support can be found in Appendix C.2.

Theorem 3.2 (Convergence Guarantee). Given a sufficient number of training samples and an
appropriate learning rate, spatio-temporal contrastive learning in STCE converges to a local optimum
and guarantees that the learned feature representations have sufficient discriminative power.

3.4 TRANSFER-BASED REWEIGHTING

At the data level, we adopt the Transfer-Based Reweighting (TBR) approach for the source city. This
method assigns distinct weights to source city samples, enabling the model to prioritize information
that aligns with the target city’s data distribution during training. Unlike traditional approaches that
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apply uniform weights across all samples, TBR shifts the model’s training objective from minimizing
a standard loss function to minimizing a weighted loss function:

θ∗(W ) = argmin
θ

Qs∑
i=1

WiL
source
i (θ), (12)

where Qs denotes the total number of source city samples, θ represents the model parameters, and
Wi and Lsource

i (θ) denote the weight and loss of the i-th sample, respectively. Initially, each Wi is
treated as a learnable parameter. Based on validation results from evaluating the source city model on
target city data, the optimal weights W are determined as:

W ∗ = arg min
W,W≥0

1

QT

QT∑
i=1

Lsource
i (θ∗(W )), (13)

where QT represents the total number of target city samples used for training.

Gradient-guided Weight Update. To accelerate the training process and refine weight allocation,
we propose a gradient-guided weight update mechanism. In each training batch, we load equal
amounts of data from both source and target cities, reusing data for target cities with scarce samples.
We employ vanilla Stochastic Gradient Descent (SGD). At each step T , the model parameters are
updated as:

θT+1 = θT − α∇

(
1

B

B∑
i=1

Lsource
i (θT )

)
, (14)

where B is the batch size, α is the learning rate, and Lsource
i (θT ) is the loss for the i-th sample at

step T . We introduce a perturbation parameter ϵi to adjust the weights of each source city sample,
expressed as Lsource

i,ϵ (θ) = ϵiL
source
i (θ). The updated model parameters after perturbation are:

θ̂T+1(ϵ) = θT − α

B∑
i=1

∇θL
source
i,ϵ (θT ). (15)

The optimal perturbation ϵ∗T is obtained by minimizing the loss over target city samples:

ϵ∗T = argmin
ϵ

1

QT

QT∑
i=1

Lsource
i (θ̂T+1(ϵ)). (16)

Subsequently, a gradient descent step is performed on ϵT using target city samples to refine the output
while ensuring non-negative weights:

ui,T = −η ∂

∂ϵi,T

1

B

B∑
i=1

Lsource
i (θ̂T+1(ϵ))

∣∣∣
ϵi,T=0′

, (17)

where η denotes the learning rate, and ui,T represents the gradient step size used to update the
perturbation ϵi,T . Finally, to ensure proper scaling of weights, we perform normalization:

Wi,T =
Ŵi,T∑

j Ŵj,T + δ
(∑

j Ŵj,T

) , (18)

where δ is a small constant added to prevent division by zero.
Theoretical Analysis. To validate the effectiveness of TBR—particularly its ability to reduce the
distribution shift between the source and target domains—we further analyze the generalization
capability of its reweighting strategy. The proof and more support can be found in Appendix C.3.

Theorem 3.3 (Reweighting Generalization Bound). LetH be a hypothesis space of VC-dimension d,
and L be a bounded loss function such that 0 ≤ L(fθ(x), y) ≤M . For a model fθ learned through
the reweighting mechanism, with probability at least 1− δ, the following generalization bound holds:

E(x,y)∼PT
[L(fθ(x), y)] ≤ E(x,y)∼PS

[W (x, y)L(fθ(x), y)] + dH∆H(PW
S , PT ) + λ+ ϵ, (19)

where PW
S is the weighted source distribution, dH∆H is theH-divergence, λ is the risk of the ideal

joint hypothesis, and ϵ is a complexity term dependent on the sample sizes QS and QT .

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We utilize six widely used open-source urban traffic datasets: NYCBike, CHIBike,
DCBike, DCTaxi, BJTaxi, and Chengdu. These datasets span different time periods ranging from

6
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Table 1: Performance comparison of selected methods, detailed results of the remaining methods can
be found in Appendix E.5. The best and second-best results are marked in bold and underlined.

Method AhaTrans TransGTR CrossTReS STAN ST-DAAN STSGCN TGCN

Metric RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

NYCBike→
CHIBike

7 days 0.0216 0.0059 0.0241 0.0074 0.0234 0.0069 0.0268 0.0087 0.0317 0.0092 0.0399 0.0103 0.0440 0.0099
15 days 0.0207 0.0051 0.0237 0.0066 0.0227 0.0061 0.0215 0.0061 0.0263 0.0079 0.0327 0.0096 0.0333 0.0089
30 days 0.0195 0.0047 0.0219 0.0058 0.0212 0.0056 0.0209 0.0052 0.0248 0.0073 0.0311 0.0081 0.0292 0.0080

Avg 0.0206 0.0052 0.0232 0.0066 0.0224 0.0062 0.0231 0.0067 0.0276 0.0081 0.0346 0.0093 0.0355 0.0089

DCBike→
NYCBike

7 days 0.0379 0.0125 0.0414 0.0132 0.0408 0.0136 0.0439 0.0157 0.0489 0.0168 0.0512 0.0216 0.0500 0.0179
15 days 0.0373 0.0121 0.0384 0.0127 0.0397 0.0129 0.0406 0.0133 0.0424 0.0132 0.0444 0.0154 0.0484 0.0168
30 days 0.0369 0.0119 0.0378 0.0122 0.0383 0.0125 0.0388 0.0121 0.0408 0.0123 0.0410 0.0129 0.0411 0.0150

Avg 0.0374 0.0122 0.0392 0.0127 0.0396 0.0130 0.0411 0.0137 0.0440 0.0141 0.0455 0.0166 0.0465 0.0166

NYCBike→
DCBike

7 days 0.0276 0.0075 0.0349 0.0106 0.0313 0.0091 0.0335 0.0099 0.0352 0.0108 0.0373 0.0112 0.0374 0.0110
15 days 0.0270 0.0067 0.0317 0.0093 0.0292 0.0078 0.0302 0.0082 0.0328 0.0091 0.0334 0.0091 0.0337 0.0090
30 days 0.0267 0.0062 0.0295 0.0080 0.0275 0.0069 0.0281 0.0076 0.0280 0.0078 0.0293 0.0079 0.0303 0.0078

Avg 0.0271 0.0068 0.0320 0.0093 0.0293 0.0079 0.0306 0.0086 0.0320 0.0092 0.0333 0.0094 0.0338 0.0093

DCBike→
DCTaxi

7 days 0.0280 0.0056 0.0318 0.0068 0.0355 0.0073 0.0327 0.0085 0.0404 0.0106 0.0383 0.0109 0.0402 0.0109
15 days 0.0261 0.0052 0.0301 0.0065 0.0318 0.0069 0.0278 0.0061 0.0337 0.0078 0.0334 0.0081 0.0331 0.0083
30 days 0.0254 0.0049 0.0277 0.0053 0.0289 0.0057 0.0264 0.0054 0.0309 0.0067 0.0307 0.0066 0.0312 0.0069

Avg 0.0265 0.0052 0.0299 0.0062 0.0321 0.0066 0.0290 0.0067 0.0350 0.0084 0.0341 0.0085 0.0348 0.0087

several months to one year and have been extensively used in related research. Table 4 presents the
statistical information of these datasets. For detailed information on the datasets, please refer to
Appendix E.1. To assess the generalizability of the model for spatio-temporal knowledge transfer, we
consider both intra-city tasks and inter-city scenarios. Specifically, at the 16 × 16 grid resolution,
we designate NYCBike and DCBike as source cities, while ChicagoBike, NYCBike, DCBike, and
DCTaxi serve as target cities. For experiments at the 32× 32 grid resolution, we utilize BJTaxi as
the source city and Chengdu as the target city to evaluate the model’s performance across different
spatial scales. The data preprocessing and split method can be found in Appendix D.

Baselines. We compare AhaTrans against fourteen state-of-the-art (SOTA) methods spanning
four main categories: statistical learning, deep learning, transfer learning, and foundation models.
(i) For statistical learning methods, we employ the ARIMA (Zhang, 2003) model as a baseline for
modeling and predicting non-stationary time series. (ii) Regarding deep learning methods, we selected
ConvLSTM (Shi et al., 2015), STResNet (Zhang et al., 2017), STSGCN (Song et al., 2020), and
TGCN (Zhao et al., 2019) as our baselines. These models are initially pre-trained on source city data
and subsequently fine-tuned on target city data. (iii) For the comparison of transfer learning methods,
we selected RegionTrans (Wang et al., 2019a), MetaST (Yao et al., 2019a), ST-DAAN (Wang et al.,
2021), STAN (Fang et al., 2022), CrossTReS (Jin et al., 2022), and TransGTR (Jin et al., 2023) as
baselines for evaluation. (iv) For foundation models, we incorporated three representative methods:
PatchTST (Nie et al., 2022), UrbanGPT (Li et al., 2024), and UniST (Yuan et al., 2024), to evaluate
their capabilities in spatio-temporal prediction tasks. More detailed information in Appendix E.2.

Implementation Details. First, we segment the cities in the study area into predefined regions
(or grids) and divid the temporal dimension into distinct, non-overlapping intervals (see Table 4).
Next, we select three days of historical data, with each day comprising nine time intervals. Based on
Equation 1, we compute the inflow and outflow for each region and normalize the traffic flow data to
the range [0, 1]. For model training, the batch size, dropout rate, and learning rate are set to 32, 0.5, and
1× 10−6, respectively. All experiments are implemented using the PyTorch framework and executed
on NVIDIA A100 80GB GPUs. For more detailed information, please refer to Appendix E.3 and visit
our anonymous repository (https://anonymous.4open.science/r/AhaTrans-A37F).

4.2 PERFORMANCE COMPARISON

This section presents a comprehensive performance evaluation of AhaTrans against statistical learning,
deep learning, and transfer learning baselines across multiple transfer tasks. Note that foundation
model-based approaches follow a fundamentally different paradigm from the aforementioned three
categories and are therefore discussed separately in Appendix E.5.2.

Overall Performance. We evaluate AhaTrans across five transfer tasks, with results averaged over
three independent runs as presented in Tables 1, 2, and 5. The experimental results demonstrate
that AhaTrans achieves significant performance improvements across all test scenarios. Across four
standard transfer tasks employing 16× 16 grid resolution, AhaTrans exhibits consistent advantages.
Compared to the best-performing baseline CrossTReS (Jin et al., 2022), AhaTrans achieves average
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Table 2: Performance comparison
on BJTaxi→ Chengdu task.

Metric MetaST ST-DAAN STAN

RMSE 0.0390 0.0909 0.0345
MAE 0.0275 0.0557 0.0196

Metric CrossTReS TransGTR AhaTrans

RMSE 0.0323 0.0341 0.0307
MAE 0.0187 0.0204 0.0168

Table 3: Comparison with different variants of AhaTrans. The
best results are marked in bold.

Method AhaTrans w/o STCE w/o GTEN w/o TBR

Metric RMSE MAE RMSE MAE RMSE MAE RMSE MAE

NYCBike→ CHIBike 0.0216 0.0059 0.0225 0.0062 0.0235 0.0067 0.0228 0.0063

DCBike→ NYCBike 0.0379 0.0125 0.0388 0.0128 0.0405 0.0133 0.0392 0.0131

NYCBike→ DCBike 0.0276 0.0075 0.0309 0.0085 0.0315 0.0089 0.0303 0.0081

DCBike→ DCTaxi 0.0280 0.0056 0.0313 0.0087 0.0298 0.0064 0.0306 0.0072

reductions of 9.61% in RMSE and 12.83% in MAE. Against all transfer learning methods, im-
provements are more pronounced with RMSE and MAE reductions averaging 19.78% and 25.84%,
respectively. Most remarkably, compared to traditional deep learning models without transfer learn-
ing, AhaTrans achieves breakthrough improvements of 54.01% in RMSE and 80.88% in MAE,
demonstrating the critical importance of cross-city knowledge transfer.
To evaluate scalability across different grid resolutions, we evaluated the Beijing-to-Chengdu task
using 32 × 32 high-resolution grids. Despite facing complex spatial structures and limited data,
AhaTrans maintains its performance advantage, achieving improvements of 4.95% and 10.16%
in RMSE and MAE, respectively, compared to CrossTReS (Table 2). These results validate the
adaptability of AhaTrans across varying grid resolutions. More details are in Appendix F.2.1.

Robustness in Data-Scarce Scenarios. AhaTrans demonstrates superior robustness in data-scarce
scenarios. In the NYCBike-to-CHIBike transfer task, when target city data is reduced from 30 days to
7 days, AhaTrans exhibits only a 10.77% increase in RMSE compared to 17.99% for other transfer
learning methods and up to 74.51% for non-transfer methods. These results indicate that AhaTrans
effectively captures shared characteristics between cities and facilitates robust knowledge transfer
under limited data conditions, making it particularly valuable for practical deployment scenarios.

4.3 MODEL ANALYSIS

4.3.1 ABLATION STUDY

To systematically assess the contributions of key components—STCE, GTEN, and TBR—to the
performance of AhaTrans, we conducted a series of ablation studies by selectively removing each
module. As shown in Table 3, the complete AhaTrans model consistently outperforms all its ablated
variants across all datasets, underscoring the critical role each component plays within the overall
framework. Furthermore, we carried out a more fine-grained ablation analysis focusing on the two
core modules, STCE and GTEN, to examine the impact of spatio-temporal contrastive learning along
both temporal and spatial dimensions, as well as to clarify the individual contributions of different
expert networks. Detailed results of this analysis can be found in Appendix F.1.

4.3.2 HYPERPARAMETER SENSITIVITY

Effect of Data Amount. Under the default configuration, the source and target cities are assigned
12 months and 1 month of data, respectively. To examine the impact of data volume on model
performance, we conduct a controlled experiment by varying the data quantity in the source city
(left) and the target city (right), respectively. As shown in Figure 3, model performance exhibits a
marked improvement with increasing data volume, aligning with expected trends. Notably, AhaTrans
consistently achieves superior accuracy and demonstrates remarkable robustness across all settings.

Tuning β and γ. We conduct a sensitivity analysis by adjusting the weights β and γ in Equation 11.
We fix β (or γ) and vary γ (or β) from 0.1 to {0.3, 0.5, 0.7}. In Figure 4, the optimal setting for both β
and γ is 0.1, and AhaTrans consistently outperforms the baselines under various weight preferences.

Sensitivity to P and L. As shown in Figure 5, AhaTrans demonstrates stable performance under
various settings of P and L, further confirming its superior robustness in dynamic environments.
In contrast, STAN shows greater sensitivity to parameter changes, which further highlights the
advantages of AhaTrans in cross-city traffic flow prediction.

Effect of MLP Layer Number. Finally, we examine the impact of varying the number of MLP
layers in the city-specific expert and linear head on performance, with configurations of 1, 2, 3, and 4
layers. As shown in Figure 6, the optimal number of MLP layers is 2. Too many layers may lead to
overfitting, while too few hinder the model’s ability to effectively capture complex patterns.
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4.3.3 CASE STUDY

In the NYCBike-to-CHIBike transfer task, we employ the STCE to extract spatio-temporal features
from the NYC Bike dataset, followed by dimensionality reduction, as illustrated in Figure 7 (left).
Compared to Figure 1 (left), the learned features exhibit higher precision and stronger discrimination.
As shown in Figure 7 (right), the learned weight distribution concentrates during peak traffic periods,
reflecting similar traffic patterns between cities. This supports the effectiveness of the TBR module
in capturing cross-city transferable knowledge. The spatial perspective case study is in Appendix F.4.

4.3.4 EFFICIENCY STUDY

Moreover, we assess model efficiency on the NYCBike-to-DCBike task. The training loss curve for
AhaTrans in Figure 8 (left) demonstrates rapid convergence, with significant loss reduction within
60 epochs before stabilization. As shown in Figure 8 (right), AhaTrans achieves superior inference
speed compared to existing methods, as it avoids the complex discrimination and multi-city learning
processes required by other models. Comprehensive parameter analysis is presented in Appendix F.5.

4.3.5 GENERALIZATION STUDY

To validate the generalizability of the AhaTrans framework, we conducted additional experiments
on cross-city crime prediction. Using the Chicago crime dataset as the source domain and the NYC
crime dataset as the target domain, with only 10% training data available in the target domain to
simulate data scarcity, AhaTrans achieves substantial reductions of 53.1% in RMSE and 39.2% in
MAE compared to the best baseline method, demonstrating the broad applicability of our framework
beyond traffic prediction (detailed results are in Appendix F.2.2).

5 CONCLUSION

In this paper, we present AhaTrans, a novel hierarchical adaptive transfer learning Framework de-
signed to enhance discriminative spatio-temporal feature learning, optimize knowledge transfer
effectiveness, and mitigate harmful transfer in cross-city traffic flow prediction. Specifically, the
STCE module significantly enhances the discriminative capability of spatio-temporal features through
contrastive learning, while the GTEN and TBR modules work synergistically to ensure efficient
knowledge transfer from source to target cities while effectively suppressing harmful knowledge
interference. Extensive experimental validation demonstrates that AhaTrans achieves substantial
performance improvements over baselines. Moreover, AhaTrans exhibits superior computational
efficiency by eliminating the need for complex data preprocessing steps or extensive computational
resources. Comprehensive model analysis further reveals the remarkable robustness and superior gen-
eralization capability of AhaTrans across different scenarios, while detailed visualization experiments
confirm the framework’s strong interpretability, thereby providing a reliable and efficient solution for
cross-city traffic flow prediction and other spatio-temporal prediction tasks.
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A RELATED WORKS

A.1 URBAN TRAFFIC FLOW PREDICTION

Urban traffic flow prediction analyzes historical traffic data to forecast future spatio-temporal pat-
terns, which is crucial for smart city development and traffic system optimization (Xie et al., 2020).
Traditionally, statistical time series models, such as ARIMA (Zhang, 2003) and regression models
incorporating spatio-temporal regularization, have been extensively used in this domain. However,
these statistical approaches have limited capacity for learning and fail to adequately capture the
complex spatio-temporal dependencies inherent in urban flow data. To improve prediction accuracy,
deep learning methods, including convolutional neural networks (CNNs)(Zhang et al., 2017; 2019),
recurrent neural networks (RNNs)(Shi et al., 2015; Zhou et al., 2018; Yao et al., 2019b), and graph
neural networks (GNNs)(Li et al., 2017; Lan et al., 2022), have been widely employed (Liang et al.,
2019; Pan et al., 2019; Wang et al., 2020). ConvLSTM (Shi et al., 2015) formulates precipitation fore-
casting as a spatio-temporal sequence prediction problem and utilizes convolutional LSTMs to model
inherent dependencies. ST-ResNet (Zhang et al., 2017) adopts a residual neural network architecture
with three specialized branches dedicated to processing distinct temporal properties—short-term
proximity, periodicity, and long-term traffic trends—thereby improving prediction accuracy. Zhang
et al.(Zhang et al., 2019) introduce a multi-task deep learning framework that jointly predicts node
and edge flow in spatio-temporal networks, leveraging inter-task relationships to improve overall
predictive performance. Despite their effectiveness, deep learning models rely heavily on extensive
historical traffic data, which is often scarce in real-world urban environments. Moreover, multi-task
learning approaches are prone to the “seesaw phenomenon,” wherein improving the accuracy of one
task may inadvertently degrade another’s performance (Tang et al., 2020).
On the other hand, inspired by the success of pre-trained models in natural language processing,
researchers have begun exploring the possibility of building universal spatio-temporal pre-trained
models. Methods such as UniST (Yuan et al., 2024) and UrbanGPT (Li et al., 2024) leverage diverse
spatio-temporal data from various scenarios for pre-training, enabling them to capture complex spatio-
temporal dynamics and enhance generalization capabilities through knowledge-guided prompting
mechanisms. The core advantage of these approaches lies in their ability to achieve effective
predictions in few-shot or even zero-shot scenarios, providing new insights for addressing data
scarcity issues in real-world urban sensing applications. However, these pre-training approaches still
face numerous challenges: first, constructing and training large-scale pre-trained models requires
substantial computational resources and costs; second, acquiring sufficiently large-scale and high-
quality multi-source spatio-temporal data is itself a formidable task; moreover, the spatial knowledge
alignment problem across different cities and scenarios remains a critical bottleneck constraining
model generalization capabilities.
To address the challenge of traffic data scarcity in urban environments, researchers have increasingly
leveraged transfer learning methods to facilitate cross-city knowledge transfer, thereby alleviating
data insufficiency issues in target cities. We propose AhaTrans, a novel transfer learning framework
specifically designed for this domain. AhaTrans adopts a dual-task architecture, but unlike traditional
multi-task learning frameworks, it primarily focuses on enhancing prediction performance in target
cities under data-scarce scenarios. Notably, the AhaTrans architecture demonstrates significant
efficiency advantages, requiring only information from a single source city to achieve effective
knowledge transfer. Compared to large-scale pre-trained models, it eliminates the need for massive
computational resources and costs, providing a more economically feasible solution for practical
applications.

A.2 TRANSFER LEARNING FOR TRAFFIC PREDICTION

Data scarcity continues to be a prevalent challenge in traffic flow prediction, arising from disparities
in urban modernization and constraints imposed by data privacy regulations. To address this issue,
researchers have explored a range of deep learning-driven transfer learning strategies, such as Region-
Trans (Wang et al., 2019a), MetaST (Yao et al., 2019a), ST-DAAN (Wang et al., 2021), STAN (Fang
et al., 2022), CrossTReS (Jin et al., 2022), MGAT (Mo & Gong, 2022), and MetaCitta (Sao et al.,
2023). RegionTrans (Wang et al., 2019a) enhances transferability by imposing similarity constraints
on auxiliary data, while MetaST (Yao et al., 2019a) focuses on extracting and transferring long-
term temporal patterns. ST-DAAN (Wang et al., 2021) leverages deep adaptive networks (DAN)
for domain adaptation, enabling cross-city fine-tuning. However, most existing transfer learning
approaches emphasize static knowledge transfer without accounting for the dynamic correlations

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

between cities. STAN (Fang et al., 2022) introduces an adaptive mechanism that dynamically adjusts
to temporal variations in urban data, achieving superior performance in cross-city traffic prediction.
MetaCitta (Sao et al., 2023) employs an adaptive learning strategy to integrate multiple data sources
effectively, thereby improving prediction accuracy in novel environments and data-scarce scenarios.
However, these studies primarily relied on Euclidean relationships between regions, overlooking the
incorporation of complex semantic information. To address this limitation, Lu et al. (2022) proposed
a model based on a graph data structure, where meta-knowledge was extracted using GRU and GAT
modules. To effectively capture structural information, a graph construction loss was introduced.
The node-level meta-knowledge was then utilized in a parameter generation module to produce non-
shared parameters for the feature extractor. To further enhance adaptability across cities, TransGTR
(Jin et al., 2023) was developed to enable the transfer of graph structures between different urban
environments. Additionally, to mitigate the risk of negative transfer, Jin et al. (2022) introduced a
selective cross-city transfer learning approach, which filters out detrimental source knowledge. Their
method incorporated both edge-level and node-level adaptations to train the feature extraction network
and employed a weighting network for loss computation. This method integrates edge-level and
node-level adaptation mechanisms to train the feature extraction network and introduces a weighting
network for loss computation, effectively capturing spatial similarities across cities. However, it
overlooks the temporal dimension, which diminishes its performance advantage in cross-task transfer
scenarios within cities that share similar spatial structures. In the context of multi-granular transfer
learning, MGAT (Mo & Gong, 2022) employed multiple convolutional kernels to extract information
at various granularities and leveraged an attention mechanism to facilitate knowledge sharing across
cities. Nevertheless, their approach remained limited to modeling Euclidean relationships among
regions, without incorporating more complex semantic dependencies.
Leveraging the abundant spatio-temporal information embedded within samples, AhaTrans im-
plements a sample reweighting mechanism that provides a more precise characterization of the
knowledge transfer process, thus ensuring consistent performance across both cross-city and intra-city
prediction tasks. Furthermore, unlike existing approaches, AhaTrans achieves enhanced computa-
tional efficiency without relying on computationally intensive multi-scale convolution operations,
while maintaining comparable predictive accuracy. Notably, the sample reweighting strategy repre-
sents just one of several innovative components within the AhaTrans framework. The architecture
also incorporates the GTEN module, which selectively assimilates valuable knowledge patterns from
source cities while filtering out potentially detrimental information, thereby significantly improving
the robustness of the cross-city knowledge transfer process.

A.3 CONTRASTIVE LEARNING FOR FEATURE EXTRACTION

Contrastive learning enhances representation learning by capturing both similarities and differences
between samples, thereby substantially improving performance in diverse machine learning tasks (Wu
et al., 2018; Zeng et al., 2021). However, existing urban flow prediction methods predominantly
adopt an end-to-end training paradigm without explicitly optimizing spatio-temporal feature learning.
InstDisc (Wu et al., 2018) enhances model discriminability by reducing intra-instance representation
distances while maximizing inter-instance separation. Zeng et al. (2021) employs intra-domain intent
clustering to minimize intra-class variance and maximize inter-class variance, thereby capturing
fine-grained semantic features more effectively.
Recent research has explored the integration of contrastive learning into traffic flow prediction tasks.
ST-SSL (Ji et al., 2023) implements a self-supervised contrastive learning approach that enhances
spatio-temporal graph representations. Through clustering techniques, this method effectively pre-
serves the spatial heterogeneity across different functional urban areas, primarily benefiting traffic
prediction in data-rich environments. Similarly, STCL-AGA (Zhang et al., 2024) introduced a spatio-
temporal contrastive learning framework featuring dynamic graph structures. By incorporating a
flow-aware node masking mechanism, it successfully captures evolving traffic patterns, thus enhanc-
ing predictive performance. Other approaches such as STGL (Zhan et al., 2025) and UrbanGCL (Pan
et al., 2023) rely on detailed road network topologies, conducting contrastive learning at node or
graph levels, but require manually constructed graphs that must be rebuilt when city infrastructure
changes—a significant limitation for dynamic urban environments.
Nevertheless, these methodologies face several critical limitations. First, existing methods predomi-
nantly rely on graph-structured data requiring detailed road network topologies, making them less
adaptable to cities with different infrastructural layouts or when topology changes over time. Second,
most current approaches target single-city traffic prediction in data-abundant scenarios, failing to
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address the fundamental challenge of cross-city transfer learning under data scarcity conditions.
Third, prior works do not adequately address the significant spatio-temporal heterogeneity between
cities, a crucial factor in cross-city prediction tasks.
To address these limitations, our AhaTrans introduces the STCE module, which develops a contrastive
learning mechanism specifically designed for generalized prediction under data-constrained condi-
tions. This innovative module offers several key contributions. Unlike graph-dependent approaches,
STCE is specifically designed for grid-based spatio-temporal data, requiring no graph construction.
This makes it more versatile and efficient, particularly for integrating with raster-format data such as
weather and remote sensing inputs. Furthermore, STCE is tailored for cross-city transfer learning
under data scarcity, specifically addressing the spatio-temporal heterogeneity between different urban
environments.

B ADDITIONAL DETAILS ON METHODS

B.1 TEMPORAL CONTRASTIVE LEARNING IN STCE

For each sample, we randomly select M data points from its historical data on a daily basis. Con-
sequently, B ×M new samples are generated each day and aggregated into a new batch, denoted
as Vtp = {Vtp

1 ,Vtp
2 , . . . ,Vtp

B } ∈ Rh×w×2. In a manner analogous to our treatment of spatial
dimensions, we employ the Rank-N-Contrast Loss. This method orders the complete set of temporal
features according to their sequence in the label space, thereby capturing the inherent temporal
relationships among samples. The corresponding equations can be represented as following:

P (Vtp
n |Vtp

m, Stp
n,m) =

exp
(

sim(Vtp
m ,Vtp

n )
τ

)
∑

Vtp
k ∈Stp

n,m
exp

(
sim(Vtp

m ,Vtp
k )

τ

) (20)

L
(m)
TCL =

1

BM − 1

BM∑
n=1,n̸=m

− log
(
P (Vtp

n |Vtp
m, Stp

n,m)
)

(21)

LTCL =
1

BM

BM∑
m=1

L
(m)
TCL (22)

B.2 MODULE ARCHITECTURE AND TENSOR DIMENSIONS

The AhaTrans framework processes input tensors with dimensions (B,P,L,H,W,C) =
(32, 3, 9, 16, 16, 2), where B represents the batch size, P denotes the number of historical days,
L indicates the time intervals per day, H ×W corresponds to the spatial grid dimensions, and C
represents the number of channels.
In the Spatio-Temporal Context Encoder (STCE) module, we first merge the day (P ) and time (L)
dimensions into a unified temporal sequence of length T = PL = 27, yielding a tensor of shape
(32, 27, 16, 16, 2). Subsequently, we apply a 3× 3 convolutional operation to generate the Query (Q),
Key (K), and Value (V ) feature maps, transforming the tensor to shape (32, 27, 16, 16, 1024). The
multi-head attention mechanism operates along the temporal dimension T , maintaining consistent
input and output shapes of (32, 27, 1024). Following sequence aggregation, the STCE module outputs
a feature vector x with dimensions (32, 1024).
Within the Gated Transfer Expert Network (GTEN) module, the expert networks transform the
feature vector x ∈ R32×1024 to R32×512, while the gating network produces a weight vector of shape
(32, 2), corresponding to the city-specific and shared experts. The prediction head processes the fused
feature representation (32, 512) through a two-layer Multi-Layer Perceptron (MLP) with architecture
512→ 256→ 512, resulting in a tensor of shape (32, 512). In the final stage, this output is reshaped
into a spatial grid of dimensions (32, 16, 16, 2) to produce the model’s prediction.

B.3 PSEUDOCODE OF AHATRANS

The detailed pseudocode of AhaTrans is shown in Algorithm 1.
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Algorithm 1: Traffic Flow Prediction with AhaTrans
Input: source and target traffic flow data Dsource,Dtarget, Batch size B, Learning rate α,

Spatio-temporal weights β, γ
Output: Model parameters θ

1 Initialize model parameters θ;
2 for Bsource ∈ Dsource and Btarget ∈ Dtarget do

// *** Source/Target Forward Processing ***
3 for c ∈ {source, target} do
4 Bc ← FeatureEmbedding(Bc);
5 Lc

SCL, L
c
TCL ← SCL(Bc), TCL(Bc);

6 for (x, y) ∈ Bc do
7 Ec, Eshared ← Expertc(x), Expertshared(x);
8 wc, wshared ← Softmax(Gate(x));
9 gc ← wc · Ec + wshared · Eshared;

10 ŷc ← LinearHeadc(gc);
11 Compute sample loss: Lc

i ← Loss(y, ŷc);
12 if c = source then
13 ϵi ← 0, Lc

i ← ϵiL
c
i ;

14 end
15 end
16 Lc

P ← 1
B

∑
i∈Bc Lc

i ;
17 Lc ← Lc

P + Lc
SCL + Lc

TCL;
18 ∇θc ← Backward(Lc, θc);
19 θ̂c ← θc − α · ∇θc;
20 end

// *** Target Validation Processing ***
21 for (x, y) ∈ Btarget do
22 x← FeatureEmbedding(x, θ̂);
23 Esource

val , Eshared
val ← Expertsource(x, θ̂), Expertshared(x, θ̂);

24 wsource
val , wshared

val ← Softmax(Gate(x, θ̂));
25 gval ← wsource

val · Esource
val + wshared

val · Eshared
val ;

26 ŷval ← LinearHeadsource(gval);
27 Compute sample loss: L(i,val) ← Loss(y, ŷval);
28 L(P,val) ← 1

B

∑
i∈Btarget L(i,val);

29 Lval ← L(P,val) + Ltarget
SCL + Ltarget

TCL ;
30 end
31 ∇ϵ← Backward(Lval, ϵ);
32 Ŵ ← max(−∇ϵ, 0), W = Ŵ∑

k∈Bsource Ŵ+δ
∑

k∈Bsource Ŵ
;

33 L̂source
P ←

∑
i∈Bsource Wi · Lsource

i ;
34 L̂source ← L̂source

P + Lsource
SCL + Lsource

TCL ;
// *** Parameter Update ***

35 ∇θsource ← Backward(L̂source, θ);
36 ∇θtarget ← Backward(Ltarget, θ);
37 θ ← OptimizorStep(θ,∇θsource∪target);
38 end

C THEORETICAL FOUNDATIONS OF MODULE DESIGN

C.1 THEORETICAL ANALYSIS OF GTEN

In this section, we present a theoretical analysis of the Guarded Transfer Experts Network (GTEN) to
demonstrate its effectiveness in facilitating beneficial knowledge transfer while mitigating harmful
interference in cross-city traffic flow prediction.
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C.1.1 PROBLEM FORMULATION AND ASSUMPTIONS

Let us denote the source city data distribution as Ds and the target city data distribution as Dt, where
(x, y) ∼ Dc represents input features and traffic flow labels from city c ∈ {s, t}. We make the
following assumptions:
Assumption C.1 (Distribution Shift). Ds ̸= Dt, but there exists shared structure that makes knowl-
edge transfer possible.

Assumption C.2 (Shared Feature Representation). There exists a feature space Z and an encoder
ϕ : X → Z such that partial knowledge can be transferred between cities.

Assumption C.3 (Expert Knowledge Decomposition). The traffic flow prediction task can be decom-
posed into city-specific components and shared components.

Assumption C.4 (Sufficient Data). Source city data is abundant, while target city data is limited but
sufficient to learn city-specific patterns.

The GTEN model consists of three types of experts: source city expert Es, target city expert Et,
and shared expert Eshared. For an input x, each expert produces a hidden representation in Rd. The
gating network computes weights for each expert, and the final prediction is generated through a
linear head network.

C.1.2 GENERALIZATION ERROR BOUNDS WITH EXPERT SEPARATION

Lemma C.5 (Expert Separation Generalization Bound). Under the GTEN framework, the expected
risk for the target city RDt(ht) is bounded by:

RDt(ht) ≤ R̂Dt(ht) +

√
log(1/δ)

2mt
+ λ · dH∆H(Ds,Dt) (23)

where R̂Dt
is the empirical risk on the target domain, mt is the number of target domain samples,

δ is a confidence parameter, λ reflects the contribution of source domain knowledge to the target
domain, and dH∆H is theH-divergence between the two distributions.

Proof. We first decompose the target city prediction function as:
ht(x) = wt · Et(x) + wshared · Eshared(x) (24)

The true risk for the target city can be expressed as:
RDt(ht) = Ex∼Dt [ℓ(ht(x), ft(x))] (25)

Given the expert separation design, Et learns solely from target city data, while Eshared is influenced
by both source and target city data. Thus, ht can be viewed as composed of two parts:

hspecific
t (x) = wt · Et(x) (26)

htransfer
t (x) = wshared · Eshared(x) (27)

Applying the domain adaptation theory by Ben-David et al., we obtain the generalization error bound
above, where dH∆H measures the distribution difference between source and target domains. GTEN
dynamically adjusts wt and wshared through its gating mechanism, effectively reducing the impact
of the λ term in practical applications.

C.1.3 OPTIMAL KNOWLEDGE FUSION THROUGH GATING MECHANISM

Lemma C.6 (Optimal Gating Weights). Given input x, the gating network in GTEN provides weight
allocation that minimizes the conditional expected risk:

[wc(x), wshared(x)] = argmin
w

Ey|x[ℓ(w
c · Ec(x) + wshared · Eshared(x), y)] (28)

Proof. Consider the gating network G(x) = Softmax(FC(x)), which learns to map input x to
weights [wc, wshared]. During training, the weights are adjusted to minimize the loss function:

Lc
P = MAE(yc(x), yctrue) (29)

Expanding this objective function:
min
G

E(x,y)∼Dc
[ℓ(LinearHeadc(G(x) · [Ec(x), Eshared(x)]), y)] (30)

When both the gating network and linear head network converge, for each input x, the weight
allocation [wc(x), wshared(x)] will achieve minimization of the conditional risk. This ensures that at
each prediction point, the model can adaptively select the most appropriate combination of knowledge,
achieving an optimal balance between "beneficial transfer" and "interference blocking."
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C.1.4 INFORMATION BOTTLENECK PERSPECTIVE

Lemma C.7 (Information Bottleneck Optimization). The GTEN framework, through expert separa-
tion and gated fusion, optimizes the following information bottleneck objective:

max
Es,Et,Eshared,G

I(Z;Y )− β · I(Zshared;C) (31)

where Z is the fused representation, Y is the prediction target, Zshared is the shared representation,
C is the city identity, and β is a balancing parameter.

Proof. From an information bottleneck perspective, an ideal representation should:

1. Maximize the mutual information with the prediction target Y , i.e., I(Z;Y )

2. Minimize the mutual information between the shared representation and city identity C, i.e.,
I(Zshared;C)

In GTEN:

• The city-specific experts Ec are responsible for capturing city-specific information, maximizing
I(Ec(X);Y c)

• The shared expert Eshared learns city-invariant patterns while minimizing I(Eshared(X);C)

• The gating network G dynamically adjusts the weights of various experts, optimizing the overall
representation Z

This design naturally forms an implementation of the information bottleneck framework. By min-
imizing the prediction loss Lc

P , the model implicitly maximizes I(Z;Y ); through the expert sep-
aration design, the shared expert is trained to extract city-invariant features, thereby minimizing
I(Zshared;C).

C.1.5 KNOWLEDGE ISOLATION EFFECT ANALYSIS

Theorem C.8 (Knowledge Isolation Guarantee). The expert separation structure of GTEN ensures
the following upper bound on the generalization error for the target city:

RDt
(ht) ≤ R̂Dt

(ht) + Ω(mt) + wshared · ηs,t (32)
where Ω(mt) is the generalization gap related to the number of target city samples, ηs,t is the transfer
error from source city to target city, and wshared is the weight of the shared expert.

Proof. In GTEN, the prediction function for the target city can be written as:
ht(x) = wt · Et(x) + wshared · Eshared(x) (33)

Decomposing the generalization error:
RDt

(ht) = Ex∼Dt
[ℓ(wt · Et(x) + wshared · Eshared(x), ft(x))] (34)

Since Et is trained solely on target city data, its generalization error follows standard learning theory:
RDt

(wt · Et) ≤ R̂Dt
(wt · Et) + Ω(mt) (35)

The transfer error of the shared expert Eshared can be represented as ηs,t, weighted by wshared.
When the distribution difference between source and target cities is large, the gating network will
decrease the value of wshared, thereby reducing the impact of harmful transfer; conversely, when
transferable knowledge is beneficial, wshared will increase, enhancing knowledge transfer. This
mechanism ensures an adaptive balance between "beneficial transfer" and "interference blocking."

C.1.6 OPTIMAL EXPERT ALLOCATION ANALYSIS

Theorem C.9 (Optimal Gating Weight Allocation). For input x, the gating network of GTEN will,
under ideal conditions, allocate weight wshared(x) as:

wshared(x) =
exp(−λ · ℓshared(x))

exp(−λ · ℓshared(x)) + exp(−λ · ℓspecific(x))
(36)

where ℓshared(x) and ℓspecific(x) are the prediction losses using the shared expert and specific
expert, respectively, and λ is a temperature parameter.

Proof. The gating network G in GTEN generates weights through a single-layer feedforward network
and Softmax function:

[wc(x), wshared(x)] = Softmax(FC(x)) (37)
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Ideally, the gating network should assign higher weights to experts with smaller prediction errors.
Assuming that FC(x) outputs values proportional to the negative prediction errors of the experts:

FC(x) = [−λ · ℓspecific(x),−λ · ℓshared(x)] (38)
After applying the Softmax function:

wshared(x) =
exp(−λ · ℓshared(x))

exp(−λ · ℓshared(x)) + exp(−λ · ℓspecific(x))
(39)

This indicates that the gating network will automatically assign higher weights to experts with
smaller prediction errors, thereby achieving the goal of "minimum transfer loss." When the shared
expert provides beneficial knowledge, ℓshared(x) is smaller, and wshared(x) increases; when shared
knowledge is harmful, ℓshared(x) is larger, and wshared(x) decreases.

In summary, our theoretical analysis demonstrates that GTEN effectively facilitates beneficial knowl-
edge transfer while mitigating harmful interference through its expert separation and gated fusion
mechanism. The theoretical guarantees provide solid support for the effectiveness of GTEN in
cross-city traffic flow prediction tasks.

C.2 THEORETICAL GUARANTEES OF STCE

In this section, we provide a theoretical foundation for the Spatial-Temporal Contrastive Embed-
ding (STCE) module, analyzing its effectiveness in cross-city traffic flow prediction from multiple
perspectives including information theory, representation learning, and domain adaptation.

C.2.1 PRELIMINARIES AND PROBLEM FORMULATION

We first establish the notation and assumptions for the cross-city traffic flow prediction problem:

Assumption C.10. Urban traffic flow data exhibits significant spatio-temporal correlations that can
be effectively captured through appropriate embedding techniques.

Assumption C.11. Similar traffic patterns across different cities can be represented in a common
embedding space that preserves their inherent similarities.

Assumption C.12. Contrastive learning can enhance the discriminative power of the model for
cross-city traffic patterns.

Given historical traffic flow data X s = {Xs,1, Xs,2, . . . , Xs,P } and X t = {Xt,1, Xt,2, . . . , Xt,P }
from source city S and target city T respectively, where P represents the number of historical days,
our objective is to learn an effective feature representation V that:

1. Minimizes distance between similar spatio-temporal patterns in the embedding space

2. Maximizes distance between dissimilar patterns

3. Generalizes effectively across cities

C.2.2 INFORMATION-THEORETIC BOUNDS OF CONTRASTIVE LEARNING

We begin by analyzing the information-theoretic foundations of our contrastive learning approach.

Lemma C.13 (Information-Theoretic Bound). The Spatial-Temporal Contrastive Embedding (STCE)
learns discriminative representations by maximizing a lower bound on the mutual information
I(V;X ) between the input data and its representation.

Proof. Consider the general form of InfoNCE loss:

LInfoNCE = −E

[
log

ef(x,y)/τ∑
y′∈Y ef(x,y′)/τ

]
(40)

where f(x, y) is a similarity function and τ is the temperature parameter.
According to Oord et al. (2018), InfoNCE loss provides a lower bound on mutual information:

I(V;X ) ≥ log(K)− LInfoNCE (41)
where K is the number of negative samples.
For Spatial Contrastive Learning (SCL) in STCE, we have:

LSCL =
1

BN

BN∑
m=1

1

BN − 1

BN∑
n=1,n̸=m

− log (p(Vsp
n |Vsp

m )) (42)
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This is a form of InfoNCE loss, and thus:
I(Vsp;X ) ≥ log(BN − 1)− LSCL (43)

Similarly, for Temporal Contrastive Learning (TCL):
I(Vtp;X ) ≥ log(BM − 1)− LTCL (44)

Therefore, by minimizing LSCL and LTCL, STCE effectively maximizes a lower bound on the
mutual information between the input data X and its representation V, leading to more discriminative
feature representations.

C.2.3 RANK-N-CONTRAST: ENHANCING DISCRIMINATIVE POWER

Next, we analyze how the Rank-N-Contrast method enhances the discriminative power of spatio-
temporal embeddings.

Lemma C.14 (Ranking Consistency). The Rank-N-Contrast loss enhances discriminative power by
maintaining consistency between the ranking of samples in the embedding space and their ranking in
the label space.

Proof. In the Spatial Contrastive Learning component of STCE, we define a set Ssp
n,m containing all

samples whose label distance is greater than or equal to the distance between samples Vsp
m and Vsp

n .
The optimization objective is to maximize:

P (Vsp
n |Vsp

m , Ssp
n,m) =

exp
(

sim(Vsp
m ,Vsp

n )
τ

)
∑

Vsp
k ∈Ssp

n,m
exp

(
sim(Vsp

m ,Vsp
k )

τ

) (45)

Analyzing the gradient of this optimization process:

∇θLSCL = − 1

BN

BN∑
m=1

1

BN − 1

BN∑
n=1,n̸=m

∇θ log (p(V
sp
n |Vsp

m )) (46)

When expanded, this gradient encourages the model to:

1. Increase similarity between anchor Vsp
m and positive sample Vsp

n

2. Decrease similarity between the anchor and samples in Ssp
n,m

Unlike traditional contrastive learning that simply distinguishes between positive and negative
samples, Rank-N-Contrast arranges feature embeddings according to their distance relationships in
the label space. This ranking consistency preserves the intrinsic structural relationships in the data,
enhancing the model’s discriminative power.

C.2.4 CROSS-CITY GENERALIZATION ANALYSIS

We now analyze the generalization capabilities of STCE across different cities through the lens of
domain adaptation theory.

Theorem C.15 (Cross-City Generalization Bound). Let H be a hypothesis space, and R̂S(H)
and R̂T (H) be the empirical risks on the source and target domains, respectively. The feature
representation V learned through STCE satisfies the following generalization bound:

R̂T (H) ≤ R̂S(H) +
1

2
dH∆H(DV

S ,DV
T ) + λ (47)

where dH∆H is the H-divergence, DV
S and DV

T are the source and target domain representation
distributions, and λ is a residual term related to the ideal joint hypothesis.

Proof. According to the domain adaptation theory of Ben-David et al. (2010), the cross-domain
generalization bound can be expressed as:

R̂T (h) ≤ R̂S(h) +
1

2
dH∆H(DS ,DT ) + λ (48)

where h ∈ H is a hypothesis, and λ is a residual term for the ideal joint hypothesis.
In STCE, we learn feature representation V through contrastive learning:

V = fθ(X ) (49)
This representation transforms the data distributions DS → DV

S and DT → DV
T .
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STCE minimizes the divergence between spatio-temporal feature representations in the source and
target domains through spatial and temporal contrastive learning losses LSCL and LTCL:

min
θ

dH∆H(DV
S ,DV

T ) (50)

Specifically, contrastive learning brings similar spatio-temporal patterns closer in the feature repre-
sentation space, regardless of which city they come from. By minimizing the combined SCL and
TCL losses:

LSCL + LTCL =
1

BN

BN∑
m=1

L
(m)
SCL +

1

BM

BM∑
m=1

L
(m)
TCL (51)

we effectively reduce the divergence dH∆H(DV
S ,DV

T ) between representation distributions, thereby
improving the model’s generalization capability in the target domain.

C.2.5 REPRESENTATION CAPACITY OF MULTI-HEAD ATTENTION

We analyze the representational capacity of the multi-head convolutional self-attention mechanism
used in STCE.
Lemma C.16 (Representation Complexity). The multi-head convolutional self-attention mechanism
in STCE can represent more complex spatio-temporal dependencies, with representation complexity
increasing linearly with the number of heads H .

Proof. For single-head attention, the output representation is:

V i =

P∑
j=1

αijv
j (52)

where αij =
exp(Sij)∑P

j′=1
exp(Sij′ )

and Sij = Mθ(Q
i,Kj).

Multi-head attention runs H such mechanisms in parallel and concatenates the results:
V MH,i = Concat

(
V (1),i, V (2),i, . . . , V (H),i

)
(53)

Each head focuses on different subspaces of the feature space, enhancing the overall capability. If a
single head can represent C types of spatio-temporal dependencies, then H heads can theoretically
represent H · C types of relationships, with representation complexity increasing linearly.
When combined with contrastive learning, this enhanced representational capacity allows the model
to capture finer-grained similarities in spatio-temporal patterns, further improving the discriminative
power and generalization ability of feature embeddings.

C.2.6 CONVERGENCE ANALYSIS OF SPATIO-TEMPORAL CONTRASTIVE LEARNING

Finally, we analyze the convergence properties of the spatio-temporal contrastive learning approach
in STCE.
Theorem C.17 (Convergence Guarantee). Given a sufficient number of training samples and an
appropriate learning rate, spatio-temporal contrastive learning in STCE converges to a local optimum
and guarantees that the learned feature representations have sufficient discriminative power.

Proof. We analyze the curvature properties of the SCL loss function. Assuming the similarity
function sim(·, ·) is bi-convex, for a given temperature parameter τ > 0, the SCL loss:

LSCL =
1

BN

BN∑
m=1

1

BN − 1

BN∑
n=1,n̸=m

− log (p(Vsp
n |Vsp

m )) (54)

When optimized using gradient descent, each update is:
θt+1 = θt − η∇θLSCL(θt) (55)

where η is the learning rate.
According to information theory, minimizing the SCL loss is equivalent to maximizing a lower bound
on mutual information. For a sufficiently low temperature parameter τ , the gradient direction of the
SCL loss drives similar samples’ embeddings closer and separates dissimilar samples’ embeddings.
Using Lipschitz continuity analysis, if the gradient of the similarity function is L-Lipschitz continuous,
and the learning rate satisfies η ≤ 1

L , then gradient descent guarantees monotonic decrease of the
loss function:

LSCL(θt+1) ≤ LSCL(θt)−
η

2
||∇θLSCL(θt)||2 (56)
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Similar analysis applies to the TCL loss. For the combined loss:
L = Lc

P + βLc
SCL + γLc

TCL, c ∈ {source, target} (57)
If each component loss function is Lipschitz continuous, and with appropriate choice of hyperparam-
eters β and γ, gradient descent on the overall loss function also guarantees convergence to a local
optimum.

C.3 RISK AND STABILITY BOUNDS OF TBR

In this section, we provide a theoretical analysis of the Transfer-Based Reweighting (TBR) module to
demonstrate its effectiveness in cross-city traffic flow prediction. We formalize the problem, establish
assumptions, and present theoretical guarantees for sample reweighting strategies.

C.3.1 PROBLEM FORMULATION AND ASSUMPTIONS

Let DS = {(xS
i , y

S
i )}

QS

i=1 denote the source city dataset and DT = {(xT
i , y

T
i )}

QT

i=1 represent the
target city dataset, where QS ≫ QT . We make the following assumptions:
Assumption C.18. The source and target domains follow different data distributions, i.e.,
PS(X,Y ) ̸= PT (X,Y ).
Assumption C.19. There exists transferable knowledge between source and target domains that can
be leveraged for improved prediction.
Assumption C.20. The loss function L is β-Lipschitz continuous with respect to the model parameters
θ.

Our objective is to learn model parameters θ and source sample weights W = {Wi}QS

i=1 that minimize
the expected risk on the target domain:

min
θ,W

E(x,y)∼PT
[L(fθ(x), y)] (58)

where fθ is the prediction model with parameters θ, and L is the loss function.

C.3.2 GENERALIZATION BOUNDS FOR WEIGHTED DOMAIN ADAPTATION

We first establish the theoretical foundation for the sample reweighting strategy in TBR by analyzing
its generalization error bounds.
Theorem C.21 (Reweighting Generalization Bound). LetH be a hypothesis space of VC-dimension
d, and L be a bounded loss function such that 0 ≤ L(fθ(x), y) ≤ M . For a model fθ learned
through the reweighting mechanism, with probability at least 1 − δ, the following generalization
bound holds:

E(x,y)∼PT
[L(fθ(x), y)] ≤ E(x,y)∼PS

[W (x, y)L(fθ(x), y)] + dH∆H(PW
S , PT ) + λ+ ϵ (59)

where PW
S is the weighted source distribution, dH∆H is theH-divergence, λ is the risk of the ideal

joint hypothesis, and ϵ is a complexity term dependent on the sample sizes QS and QT .

Proof. According to domain adaptation theory (Ben-David et al., 2010), for any hypothesis h ∈ H,
the target domain risk can be bounded by:

ϵT (h) ≤ ϵS(h) + dH∆H(PS , PT ) + λ (60)
where ϵT (h) and ϵS(h) are the expected risks of h on the target and source domains, respectively,
and λ is the risk of the ideal joint hypothesis.
In the TBR framework, we introduce sample weights W to minimize the weighted source domain
risk as a proxy for minimizing the target domain risk. When W (x, y) = PT (x,y)

PS(x,y) , the weighted source
risk becomes equivalent to the target risk:

E(x,y)∼PS
[W (x, y)L(fθ(x), y)] = E(x,y)∼PT

[L(fθ(x), y)] (61)
However, the exact density ratio is typically unknown. TBR learns approximately optimal weights
through the optimization process in Equation (13). By introducing the weighted source distribution
PW
S , we obtain:

E(x,y)∼PT
[L(fθ(x), y)] ≤ E(x,y)∼PS

[W (x, y)L(fθ(x), y)] + dH∆H(PW
S , PT ) + λ (62)
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Additionally, by standard statistical learning theory, empirical estimates introduce a complexity term
ϵ that depends on the sample sizes and hypothesis space complexity:

ϵ = 2M

√
2d log(2eQS/d) + 2 log(4/δ)

QS
+ 2M

√
2d log(2eQT /d) + 2 log(4/δ)

QT
(63)

Theorem C.3.2 shows that an appropriate reweighting strategy can reduce the distribution shift
between source and target domains, thereby lowering generalization error. This provides theoretical
support for the TBR module, which aims to learn optimal weights that minimize the weighted source
risk as a proxy for the target risk.

C.3.3 CONVERGENCE ANALYSIS OF GRADIENT-GUIDED WEIGHT UPDATES

Next, we analyze the convergence properties of the gradient-guided weight update mechanism in
TBR.
Theorem C.22 (Weight Update Convergence). Under Assumption C.20 and with the gradient-guided
weight update mechanism described in Equation (17), the TBR module converges to a local optimum
at a rate of O(1/

√
T ), where T is the number of iterations.

Proof. Consider the weight update rule in Equation (17):

ui,T = −η ∂

∂ϵi,T

1

B

B∑
i=1

Lsource
i (θ̂T+1(ϵ))

∣∣∣
ϵi,T=0′

(64)

This update rule essentially implements a gradient descent method. Define the objective function:

F (W ) =
1

QT

QT∑
i=1

Lsource
i (θ∗(W )) (65)

Let’s assume F (W ) has L-Lipschitz continuous gradients, i.e., for any weights W1,W2:

∥∇F (W1)−∇F (W2)∥ ≤ L∥W1 −W2∥ (66)
In the non-convex case, we can prove that the gradient norm converges to zero at a rate of O(1/

√
T ):

min
t=0,1,...,T−1

∥∇F (Wt)∥2 ≤
2(F (W0)− F (W ∗))

Tη
(67)

where W ∗ is the optimal weight, W0 is the initial weight, and T is the number of iterations.
The normalization step in Equation (18) ensures stability by preventing weight divergence while
maintaining relative importance proportions:

Wi,T =
Ŵi,T∑

j Ŵj,T + δ
(∑

j Ŵj,T

) (68)

Theorem C.22 guarantees that the gradient-guided weight update mechanism in TBR converges to a
local optimum, ensuring stable training and efficient weight optimization.

C.3.4 DISCREPANCY DISTANCE ANALYSIS FOR TRANSFER ERROR

Finally, we analyze the transfer error of TBR in terms of discrepancy distance, which provides a
measure of the difference between source and target distributions.
Theorem C.23 (Reweighting Transfer Error Bound). For the TBR module, there exists an optimal
weight W ∗ that minimizes the discrepancy distance between the weighted source distribution PW∗

S
and the target distribution PT :

W ∗ = argmin
W

dH(PW
S , PT ) (69)
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where dH(PW
S , PT ) represents the discrepancy distance between the weighted source distribution

and the target distribution.

Proof. According to domain adaptation theory, the discrepancy distance is defined as:

dH(P,Q) = sup
h,h′∈H

|Ex∼P [h(x)− h′(x)]− Ex∼Q[h(x)− h′(x)]| (70)

For the weighted source distribution PW
S , we have:

Ex∼PW
S
[h(x)] = Ex∼PS

[W (x)h(x)] (71)

Ideally, when W (x) = PT (x)
PS(x) , we have PW

S = PT , resulting in dH(PW
S , PT ) = 0.

In the TBR framework, we indirectly learn this optimal weight by minimizing the validation loss on
the target domain:

W ∗ = arg min
W,W≥0

1

QT

QT∑
i=1

Lsource
i (θ∗(W )) (72)

This is equivalent to finding a set of weights that makes the weighted source model perform optimally
on the target domain. By the empirical risk minimization principle, as the number of target domain
samples increases, the validation loss will converge to the expected risk. Therefore, TBR’s reweighting
strategy implicitly minimizes the distribution discrepancy between source and target domains.
Through the gradient-guided weight update mechanism, TBR dynamically adjusts weights based on
how source samples contribute to target domain performance. When a sample positively contributes
to target domain performance, its weight increases; otherwise, its weight decreases. This ensures that
the model focuses on source domain samples that are most valuable for target domain prediction.

D DATA PREPAREATION

D.1 DATA PREPROCESSING

We collect bicycle and taxi data from New York1, Chicago2, and Washington, D.C3. Additionally, we
utilize the BJTaxi and Chengdu dataset, which contains the same taxi trajectory data as used in the
STAN (Fang et al., 2022) framework.
Table 4 presents the exact spatial coverage of the selected datasets. All datasets include taxi or bicycle
trips, along with boarding and alighting times and geographic coordinates for each trip. First, we
partition the entire city into regions or grid maps and divide the time dimension into non-overlapping
time intervals. We then select three days of historical data, with nine time intervals each day. Next,
we compute the inflow and outflow for each region based on Equation 1 and normalize the flow data
to the range of [0, 1].

D.2 DATA SPLITTING

We adopt consistent train/validation/test splits across all baselines and AhaTrans to ensure fair
comparison.
For the source city, we utilize all available data for training to maximize knowledge acquisition. For
the target cities, we employ different splitting strategies based on the dataset characteristics:

• ChicagoBike, NYCBike, DCBike, and DCTaxi: The last two months of data are reserved for
testing, with the preceding two months allocated for validation. Training is conducted using
limited samples from one month, 15 days, and 7 days prior to the validation period, respectively,
to evaluate model performance under data-scarce conditions.

• Chengdu: We utilize 10 days of data for model training, with the remaining data designated for
testing model performance.

1https://citibikenyc.com/system-data
2https://divvybikes.com/system-data
3https://opendata.dc.gov/search?q=taxi%20trips

https://capitalbikeshare.com/system-data
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Table 4: Statistics of the Evaluated Datasets.
Dataset NYCBike ChicagoBike DCBike DCTaxi BJTaxi Chengdu

# of Trips about 10 million about 3 million about 4 million about 8 million / About 7 million
Latitude (40.65, 40.79) (41.76, 42.01) (38.80, 38.99) (38.81, 38.99) (39.85, 39.99) (30.50, 30.80)

Longitude (-74.02, -73.93) (-87.73, -87.55) (-77.11, -76.91) (-77.11, -76.91) (116.36, 116.50) (103.80, 104.30)
# of Regions 16 × 16 16 × 16 16 × 16 16 × 16 32 × 32 32 × 32
Time Range 2015.1 ∼ 2015.12 2015.1 ∼ 2015.12 2017.1 ∼ 2017.12 2015.1 ∼ 2015.12 2015.11 ∼ 2016.4 2016.11

Time Interval 1 hour 1 hour 1 hour 1 hour 30 minutes 1 hour

This splitting approach simulates real-world transfer learning scenarios where the source domain pos-
sesses abundant historical data while the target domain has limited training samples. By establishing
different training data scales, we comprehensively assess the model’s transfer learning capabilities
under various data availability conditions.

E MORE EXPERIMENTAL DETAILS

E.1 DATASET DESCRIPTION

Our experiments are conducted on six widely used open-source urban traffic datasets, including
NYCBike, CHIBike, DCBike, DCTaxi, BJTaxi, and Chengdu, providing a broad coverage of different
urban environments and transportation systems.

• NYCBike consists of approximately 10 million trips from January to December 2015. CitiBike
has set up more than 600 stations and maintains a fleet of 10,000 bikes throughout New York City.
Each trip entry in the dataset includes the duration of the trip, start and end station IDs, start and
end timestamps, the latitude and longitude of the stations, and the bike ID.

• CHIBike is collected from the Divvy bike-sharing system in Chicago. It encompasses over 6
million bike trips from January to December 2015. Divvy operates 580 stations and has a total of
5,800 bikes in Chicago. It has the same features as the NYCBike.

• DCBike covers a more recent timeframe. The DCBike dataset includes around 4 million trips
from January to December 2017.

• DCTaxi contains approximately 8 million taxi trips with data spanning from January to December
2015. Each record contains information about the driver, vehicle, travel time and distance, starting
location, destination location, and fare.

• BJTaxi is a large-scale taxi trajectory dataset collected in Beijing from November 2015 to April
2016. The city is divided into a 32× 32 grid, and records are aggregated at 30-minute intervals.
Each entry provides spatial coordinates and temporal information of taxi trips within the city.

• Chengdu consists of about 7 million taxi trips recorded in Chengdu in November 2016. The city
is represented by a 32 × 32 grid with data aggregated at 1-hour intervals, including trip-level
spatiotemporal information.

E.2 BASELINES INFORMATION

We compare AhaTrans with nine SOTA methods, including statistical learning, deep learning, and
transfer learning approaches. For statistical learning methods, we select the ARIMA (Zhang, 2003)
model, which combines autoregression, differencing, and moving averages to model non-stationary
time series and enable accurate time series regression predictions.
For deep learning methods, we first pretrain the model on the source city and then fine-tune it on the
target city.

• ConvLSTM (Shi et al., 2015) effectively processes spatio-temporal sequence data by integrating
convolutional structures with Long Short-Term Memory (LSTM) networks and is first applied as
an end-to-end trainable model for precipitation nowcasting tasks.

• ST-ResNet (Zhang et al., 2017) models the temporal proximity, periodicity, and trends of crowd
flow using a residual neural network framework, dynamically aggregating the outputs of multiple
branches and combining external factors for urban traffic prediction.

• TGCN (Zhao et al., 2019) combines graph convolutional networks (GCN) with gated recurrent
units (GRU) to simultaneously capture spatial dependence through complex topological structures
and temporal dependence through dynamic traffic data changes, effectively modeling spatial-
temporal correlations in traffic forecasting tasks.
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• STSGCN (Song et al., 2020) captures complex localized spatial-temporal correlations through
a synchronous modeling mechanism, and addresses heterogeneities in spatial-temporal data by
employing multiple modules for different time periods, achieving state-of-the-art performance in
spatial-temporal network data forecasting.

Due to data sparsity, transfer learning methods have been widely applied in cross-city traffic flow
prediction.

• After training on the source city, RegionTrans (Wang et al., 2019a) learns a region-matching
function between cities, effectively transferring knowledge from the source to the target city and
adjusting temporal features based on regional similarities to enhance spatio-temporal prediction
performance.

• MetaST (Yao et al., 2019a) integrates a meta-learning paradigm with a spatio-temporal memory
(STMem) model, utilizing information from multiple cities to improve transfer stability and
extract long-term temporal patterns for adapting to the spatio-temporal prediction tasks of the
target city.

• ST-DAAN (Wang et al., 2021) maps source city spatio-temporal data into a common embedding
space using deep attention adaptation networks and MMD regularization, adjusting temporal
features through domain adaptation and global attention mechanisms to facilitate cross-domain
city traffic flow prediction.

• While traditional transfer learning approaches typically depend on static knowledge transfer,
STAN (Fang et al., 2022) distinguishes itself by efficiently capturing the dynamic spatio-temporal
correlations among cities through the implementation of spatial adversarial adaptation, temporal
attention adaptation, and prediction modules. This innovative approach leverages the spatio-
temporal knowledge transferred from data-abundant cities to enhance traffic flow prediction.

• To mitigate negative transfer, CrossTReS (Jin et al., 2022) leverages cross-city spatial similarities
by adaptively reweighting source regions, thereby facilitating target fine-tuning.

• TransGTR (Jin et al., 2023), a transferable graph structure learning framework, mitigates the
problem of potential noise or bias introduced by pre-defined graph structures in existing knowledge
transfer methods. This is accomplished by jointly learning and transferring the graph structures
and forecasting models across cities.

Foundation models have emerged as powerful tools for spatio-temporal prediction tasks due to their
strong transfer capabilities and generalization performance.

• PatchTST (Nie et al., 2022) proposes an efficient Transformer-based design for multivariate
time series forecasting by segmenting time series into subseries-level patches as input tokens
and employing channel-independence where each channel shares the same embedding and
Transformer weights across all series, enabling improved long-term forecasting accuracy and
effective transfer learning capabilities.

• UrbanGPT (Li et al., 2024) integrates a spatio-temporal dependency encoder with the instruction-
tuning paradigm to create a spatio-temporal large language model that can comprehend complex
inter-dependencies across time and space, particularly excelling in zero-shot scenarios where
labeled data is scarce.

• UniST (Yuan et al., 2024) serves as a universal model for general urban spatio-temporal predic-
tion across diverse scenarios by utilizing diverse spatio-temporal data from different scenarios,
effective pre-training to capture complex dynamics, and knowledge-guided prompts to enhance
generalization capabilities, demonstrating strong performance in few-shot and zero-shot prediction
tasks.

E.3 IMPLEMENTATION DETAILS

We implemented AhaTrans using PyTorch in the following experimental environment: Python 3.10,
PyTorch 1.13.0, and CUDA Toolkit 11.7. In the STCE module, a multi-head convolutional attention
mechanism is employed, utilizing a 3×3 convolutional kernel. For spatial contrastive learning, three
grids are selected at each time step, and for temporal contrastive learning, one time step is selected
per day. The weight parameters β and γ for both spatial and temporal contrastive losses are set to
0.1. In the GTEN module, the expert module uses a two-layer multilayer perceptron (MLP), with
1024 and 512 nodes in each layer, respectively. The task module also uses a two-layer MLP, with
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256 and 512 nodes in each layer. It is important to note that the TBR module is applied only to the
source expert module, where it effectively extracts valuable knowledge from the source data for the
target city. For model training, the number of batch size, dropout rate, and learning rate are set to 32,
0.5, and 1× 10−6, respectively. We use MAE as the prediction loss function to optimize the model’s
forecasting accuracy.
The implementation details of the baseline methods are outlined below. These details offer a
comprehensive description of how each method is configured and executed in the study.

• We use an ARIMA model with six autoregressive (AR) orders, one moving average (MA) order,
and one differencing step.

• For methods where official source code is available, such as STResNet4, MetaST5, and ST-
DAAN6, we use the official code and hyperparameters, reporting the best performance.

• For methods where the official source code is not provided, such as ConvLSTM, RegionTrans,
and STAN, we strictly follow the methods and settings described in the official papers and have
implemented these methods ourselves. For the ConvLSTM implementation, we referred to the
implementation provided by giserh7.

• Following the official code8 and paper specifications, we conducted a comprehensive evaluation of
CrossTReS (Jin et al., 2022), testing not only its performance in cross-city transfer tasks but also
its transfer capabilities between different tasks within the same city. To ensure fair comparison,
we standardized the feature extraction framework between AhaTrans and CrossTReS.

• For the graph-based TransGTR (Jin et al., 2023) framework, we both followed its official imple-
mentation9 and made adaptive adjustments. Specifically, we partitioned each city into regular
grid cells and calculated traffic flow for each grid at a temporal granularity of 1 hour. When
constructing the graph structure, each grid cell was treated as a node, connected to its eight spa-
tially adjacent grids, with edge weights determined by the number of connecting highways. This
processing pipeline effectively transformed grid-based data into graph-structured representations,
thereby ensuring comparability across different methods. Similar graph-based processing was
applied to TGCN (Zhao et al., 2019)10 and STSGCN (Song et al., 2020)11 to maintain consistency
in the evaluation framework.

• For the foundation models, we leveraged their official implementations with necessary adaptations
for spatio-temporal prediction tasks. PatchTST (Nie et al., 2022) was implemented following
its official repository12, where we adapted the patching mechanism to handle spatio-temporal
data by treating each spatial location as an independent channel and applying temporal patching
along the time dimension. UrbanGPT (Li et al., 2024) was implemented based on its open-
source codebase13, utilizing its spatio-temporal dependency encoder with instruction-tuning
paradigm for cross-city transfer learning scenarios. UniST (Yuan et al., 2024) followed its official
implementation14, where we utilized its universal pre-training framework and knowledge-guided
prompts to evaluate transfer capabilities across different cities and prediction tasks.

To ensure a fair comparison, all experiments were implemented using the PyTorch framework. All
experiments were executed on NVIDIA A100 80GB GPUs. Each experiment was run independently
three times, and the average results are reported.

4https://github.com/snehasinghania/STResNet
5https://github.com/huaxiuyao/MetaST
6https://github.com/MiaoHaoSunny/ST-DAAN
7https://github.com/giserh/ConvLSTM-2
8https://github.com/KL4805/CrossTReS
9https://github.com/KL4805/TransGTR

10https://github.com/lehaifeng/T-GCN
11https://github.com/Davidham3/STSGCN
12https://github.com/yuqinie98/PatchTST
13https://github.com/HKUDS/UrbanGPT
14https://github.com/tsinghua-fib-lab/UniST
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Table 5: Performance comparison of AhaTrans against additional baseline methods (MetaST, Region-
Trans, STResNet, ConvLSTM, and ARIMA) across different datasets and data-scarce scenarios (7,
15, and 30 days). Lower RMSE and MAE values indicate better performance. The best results are
marked in bold.

Method AhaTrans MetaST RegionTrans STResNet ConvLSTM ARIMA

Metric RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

NYCBike→
CHIBike

7 days 0.0216 0.0059 0.0502 0.0115 0.0624 0.0194 0.2009 0.0901 0.0341 0.0223 0.6195 0.2364
15 days 0.0207 0.0051 0.0447 0.0102 0.0585 0.0127 0.1270 0.0730 0.0287 0.0159 0.4721 0.1683
30 days 0.0195 0.0047 0.0426 0.0096 0.0549 0.0117 0.1051 0.0652 0.0249 0.0145 0.3170 0.1290

Avg 0.0206 0.0052 0.0458 0.0104 0.0586 0.0146 0.1443 0.0761 0.0292 0.0176 0.4695 0.1779

DCBike→
NYCBike

7 days 0.0379 0.0125 0.0528 0.0222 0.0539 0.0218 0.2503 0.1842 0.0495 0.0392 0.7668 0.3746
15 days 0.0373 0.0121 0.0487 0.0192 0.0480 0.0185 0.2085 0.1545 0.0452 0.0354 0.5625 0.2788
30 days 0.0369 0.0119 0.0473 0.0186 0.0465 0.0179 0.1954 0.1302 0.0406 0.0339 0.4734 0.2339

Avg 0.0374 0.0122 0.0496 0.0200 0.0495 0.0194 0.2181 0.1563 0.0451 0.0362 0.6009 0.2958

NYCBike→
DCBike

7 days 0.0276 0.0075 0.0377 0.0113 0.0405 0.0123 0.1853 0.0882 0.0382 0.0239 0.6297 0.2238
15 days 0.0270 0.0067 0.0339 0.0087 0.0348 0.0096 0.1411 0.0827 0.0339 0.0184 0.4311 0.1982
30 days 0.0267 0.0062 0.0318 0.0079 0.0336 0.0087 0.1272 0.0792 0.0305 0.0165 0.3392 0.1548

Avg 0.0271 0.0068 0.0345 0.0093 0.0363 0.0102 0.1512 0.0834 0.0342 0.0196 0.4667 0.1923

DCBike→
DCTaxi

7 days 0.0280 0.0056 0.0376 0.0110 0.0385 0.0101 0.2452 0.1776 0.0412 0.0240 0.6875 0.3730
15 days 0.0261 0.0052 0.0331 0.0083 0.0335 0.0086 0.2027 0.1212 0.0371 0.0182 0.5094 0.2802
30 days 0.0254 0.0049 0.0304 0.0065 0.0315 0.0072 0.1679 0.1021 0.0339 0.0165 0.3996 0.2414

Avg 0.0265 0.0052 0.0337 0.0086 0.0345 0.0086 0.2053 0.1336 0.0374 0.0196 0.5322 0.2982

E.4 EVALUATION METRICS

We use RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) as the primary metrics
for comparison with baseline models. These metrics are commonly employed in regression tasks and
effectively assess the disparity between predicted and actual values.

E.5 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experimental results that further validate the effectiveness of our
proposed AhaTrans model. We first compare AhaTrans with conventional spatio-temporal prediction
methods under various data conditions, and then extend our comparison to include state-of-the-art
foundation models and specialized time series methods.

E.5.1 PERFORMANCE COMPARISON WITH TRADITIONAL BASELINES

Due to page limitations in the main text, we provide here a more comprehensive analysis comparing
AhaTrans with various traditional prediction methods, including MetaST, RegionTrans, STResNet,
ConvLSTM, and ARIMA, across different datasets. As shown in Table 5, AhaTrans consistently
outperforms these methods across all testing scenarios. Under various data-scarce conditions (7 days,
15 days, and 30 days), AhaTrans demonstrates the lowest Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE), confirming its high reliability across all data scales. These results further
validate the superior performance of our proposed approach and its robust adaptability to different
prediction tasks.

E.5.2 COMPARISON WITH FOUNDATION MODELS AND ADVANCED TIME SERIES METHODS

Given recent advances in spatiotemporal data foundation models, we expand our comparative analysis
to include state-of-the-art methods in this domain. While our primary benchmarking study focuses
on transfer learning approaches that align with the AhaTrans problem formulation, we also recognize
the importance of comparative evaluation against broader methodological paradigms.
Regarding data configuration, we employ the NYCBike and DCBike datasets as pretraining data, with
each dataset comprising one complete year of spatiotemporal observations (2,242,560 spatiotemporal
data points), providing a comprehensive foundation for cross-city spatiotemporal pattern learning.
CHIBike and DCTaxi serve as target domains for evaluation, with data preprocessing following
identical spatiotemporal gridding strategies. All models utilize one month of target city data for
fine-tuning, while the remaining 11 months are reserved for performance evaluation, ensuring
comprehensive validation of model generalization capabilities. Following baseline approaches, we
preserve the original numerical ranges of all datasets without standardization or normalization to
maintain consistency with original data distributions and prevent information loss. This design choice
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Table 6: Performance comparison with foundation models and time series methods

Method CHIBike DCTaxi
RMSE MAE RMSE MAE

PatchTST 14.29 6.57 19.58 8.97
UrbanGPT 6.92 4.63 9.37 5.91
UniST 6.84 3.95 7.81 5.27

AhaTrans 3.66 1.58 4.45 2.09

requires different methods to directly handle numerical variations and distributional characteristics
inherent in the raw data, thereby more authentically reflecting real-world application challenges.
For baseline method configurations, PatchTST employs patch_len=16 and stride=8 settings,
segmenting each time series into overlapping temporal patches, with 100 epochs of pretraining
followed by 50 epochs of fine-tuning. This configuration effectively captures local temporal pattern
features. UrbanGPT is implemented based on the GPT-2 base architecture, with context_length
configured to 168 hours (one week) and embedding_dim set to 768, modeling long-term dependen-
cies in spatiotemporal sequences in an autoregressive manner. UniST adopts a unified spatiotemporal
representation learning framework with spatial_dim set to 64 and temporal_dim set to 128,
capturing complex interactions in urban dynamic patterns through joint optimization of spatiotemporal
embeddings.
The experimental results demonstrate that AhaTrans exhibits substantial performance superiority
across both target domains. On the CHIBike dataset, AhaTrans achieves a 46.5% improvement in
RMSE (from 6.84 to 3.66) and a 60.0% improvement in MAE (from 3.95 to 1.58) compared to the
best-performing baseline method, UniST. When compared to the traditional time series approach
PatchTST, AhaTrans delivers performance improvements exceeding 74%.
On the DCTaxi dataset, AhaTrans outperforms UniST with a 43.0% improvement in RMSE (from
7.81 to 4.45) and a 60.3% improvement in MAE (from 5.27 to 2.09). These results convincingly
demonstrate AhaTrans’ robust generalization capabilities in cross-modal transportation transfer
scenarios.
Analyzing the performance differences across methods reveals distinct characteristics. PatchTST, as
a purely temporal modeling approach, exhibits the poorest performance among all methods, with the
highest RMSE and MAE values, primarily due to its lack of spatial correlation modeling capabilities
when handling complex city-level spatiotemporal patterns. UrbanGPT, while possessing reasonable
sequence modeling capabilities, suffers from overfitting risks in fine-grained spatiotemporal prediction
tasks, and its large parameter space shows constrained adaptability when trained on limited fine-tuning
data, resulting in performance intermediate between PatchTST and UniST. UniST demonstrates
strong performance in unified spatiotemporal representation learning and ranks as the top-performing
baseline method; however, it exhibits limitations in cross-city knowledge transfer, particularly lacking
the adaptive alignment mechanisms that characterize AhaTrans.
Furthermore, AhaTrans’s computational efficiency (only 5M parameters compared to UniST’s and
UrbanGPT’s billion-scale models) makes it significantly more deployable in resource-constrained
real-world traffic management systems that require responsive predictions.

F MORE MODEL ANALYSIS

F.1 FINE-GRAINED ABLATION STUDY

F.1.1 ABLATION STUDY ON THE STCE MODULE

In scenarios with limited data availability in target cities, precise feature learning becomes a critical
factor for successful modeling. To verify this hypothesis, we conducted comprehensive ablation
experiments across both temporal and spatial dimensions under the 7-day data availability condition,
and evaluated performance using Root Mean Square Error (RMSE) metrics.
As illustrated in Table 7, STCE and its temporal and spatial contrastive sub-modules significantly
reduced prediction errors under extreme data scarcity, thereby substantiating the essential role of
STCE. Furthermore, our experiments revealed that the Spatial Contrastive Learning (SCL) module
exhibited superior performance in capturing cross-city spatial similarities during cross-city prediction
tasks. Conversely, for intra-city transfer scenarios where spatial features already exhibit inherent
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Table 7: Ablation study on STCE module within AhaTrans, showing RMSE results with 7-day target
city data. Analysis includes progressive removal of Temporal Contrastive Learning (TCL), Spatial
Contrastive Learning (SCL), and the entire STCE module. The best results are marked in bold.

Method AhaTrans w/o STCE w/o SCL w/o TCL

NYCBike→ CHIBike 0.0216 0.0225 0.0221 0.0219
DCBike→ NYCBike 0.0379 0.0388 0.0385 0.0383
NYCBike→ DCBike 0.0276 0.0309 0.0302 0.0284
DCBike→ DCTaxi 0.0280 0.0313 0.0289 0.0306

similarities, the Temporal Contrastive Learning (TCL) module was found to be more effective in
improving prediction accuracy.

F.1.2 ABLATION STUDY ON THE GTEN MODULE

As the core module of AhaTrans, GTNE explicitly differentiates between shared experts and city-
specific experts, facilitating effective knowledge transfer from source cities while filtering out
non-transferable patterns. To investigate the mechanisms by which different expert components
extract and process domain-specific knowledge, we conducted systematic ablation experiments by
isolating the contributions of city-specific and shared experts, measuring performance using Mean
Absolute Error (MAE). We evaluated three model configurations:

1. Complete AhaTrans: The full architecture, incorporating source city experts, target city experts,
and shared experts

2. Without Shared Experts (w/o Shared): A variant where shared experts were removed, creating
direct connections between source city experts and the target task layer

3. Without Shared and Target Experts (w/o Shared&Target): A simplified version using only source
city experts, following a pre-training on source data and fine-tuning on target data paradigm

Table 8 demonstrates that across all transfer scenarios, the complete AhaTrans model consistently
achieved superior performance with the lowest MAE values, validating the effectiveness of our
proposed GTNE architecture. Our detailed analysis revealed:

• Contribution of Shared Experts: Comparative analysis between the complete model and the
"w/o Shared" variant revealed performance degradation when shared experts were removed. For
instance, in the NYCBike to CHIBike transfer scenario, MAE increased from 0.0059 to 0.0064.
These results suggest that shared experts successfully capture generalizable knowledge patterns
across cities while mitigating the transfer of domain-specific, potentially detrimental information.

• Importance of Target Experts: Comparison between the "w/o Shared" and "w/o Shared & Target"
configurations demonstrated that further removal of target experts led to additional performance
deterioration. In the DCBike to NYCBike transfer scenario, for example, MAE increased from
0.0131 to 0.0133. This finding underscores the critical function of target city experts in preserving
and modeling city-specific spatio-temporal dynamics and mobility characteristics. These unique
target domain features would typically be overshadowed or suppressed in single-expert architec-
tures dominated by source domain knowledge. The inclusion of dedicated target experts ensures
the model maintains target-specific representations while simultaneously leveraging transferable
knowledge from source domains, resulting in more balanced and effective knowledge transfer.

These ablation study results provide strong empirical evidence that the combination of shared experts,
which extract cross-city commonalities while isolating non-transferable information, and target city
experts, which preserve city-specific spatio-temporal patterns, enables AhaTrans to achieve efficient
and effective cross-city knowledge transfer for urban mobility prediction.

F.2 GENERALIZABILITY ANALYSIS

F.2.1 ADAPTABILITY ACROSS DIFFERENT GRID RESOLUTIONS

To comprehensively evaluate the adaptability and scalability of our approach across different spa-
tial granularities, we conducted additional experiments using higher-resolution grid partitioning.
Specifically, we extended our evaluation to the Beijing-to-Chengdu transfer task using 32 × 32

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 8: Ablation study on GTEN module within AhaTrans, showing MAE results for cross-city
transfer tasks. "w/o Shared" and "w/o Shared & Target" represent progressive removal of shared and
target city experts respectively. The best results are marked in bold.

Method AhaTrans w/o Shared w/o Shared & Target

NYCBike→ CHIBike 0.0059 0.0064 0.0067
DCBike→ NYCBike 0.0125 0.0131 0.0133
NYCBike→ DCBike 0.0075 0.0085 0.0089
DCBike→ DCTaxi 0.0056 0.0062 0.0064

grid configurations, compared to the 16× 16 grids employed in other tasks. This evaluation serves
multiple purposes: (1) it assesses whether our adaptive hypernetwork architecture can effectively
handle increased spatial complexity and finer-grained urban patterns; (2) it validates the scalability
of our approach when the number of spatial units increases from 256 to 1,024 regions; and (3) it
demonstrates the robustness of cross-city knowledge transfer mechanisms under varying levels of
spatial detail.
The experimental setup maintains consistency with our primary evaluation protocol. We utilize the
complete Beijing taxi dataset (trajectories from November 2015 to April 2016) as the source domain
for model training. For the target domain, we employ the Chengdu taxi dataset (November 2016)
under data-scarce conditions with only 10 days of training data. This restrictive data availability
scenario allows us to evaluate the practical utility of our transfer learning approach when both spatial
complexity and data scarcity present challenges simultaneously.
Table 2 presents the performance comparison results under these higher-resolution configurations.
The experimental results demonstrate that AhaTrans maintains superior performance even with in-
creased grid resolution, achieving 4.95% in RMSE and 10.16% in MAE compared to the second-best
baseline CrossTReS. These results validate several key aspects of our approach: (1) the adaptive
hypernetwork architecture successfully scales to handle quadrupled spatial complexity without per-
formance degradation; (2) the cross-city knowledge transfer mechanisms remain effective when
modeling finer-grained spatiotemporal patterns; and (3) our method demonstrates consistent robust-
ness across different levels of spatial granularity. This adaptability across varying grid resolutions
confirms that AhaTrans can be flexibly deployed in diverse urban analytics scenarios with different
spatial monitoring requirements and complexity constraints.

F.2.2 ADAPTABILITY ACROSS DIFFERENT SPATIO-TEMPORAL SCENARIOS

It is important to emphasize that while our experiments have primarily focused on traffic flow
prediction, the AhaTrans framework—with its STCE, GTEN, and TBR modules—is not specifically
designed for traffic applications and can be generalized to other spatio-temporal prediction scenarios.
Our choice of traffic flow prediction as the application domain is deliberate for two key reasons: (a) it
serves as a representative task in spatio-temporal prediction with well-established benchmark datasets,
and (b) as illustrated in Figure 1, it clearly demonstrates the shortcomings of existing methods in
addressing challenges such as inaccurate feature extraction and negative transfer.
To empirically validate the generalizability of our approach, we conducted additional experiments
on cross-city crime prediction—a distinct spatio-temporal prediction task. We utilized the Chicago
crime dataset (Crimes - 2001 to Present) as the source domain and the New York City crime dataset
(NYPD Complaint Data) as the target domain. For both cities, we partitioned the geographical area
into a 32× 32 grid and aggregated crime incidents in each grid cell at hourly intervals.
In our transfer learning setup, we pre-trained AhaTrans on the complete training set of the source city
(Chicago) and simulated data scarcity in the target city (NYC) by utilizing only 10% of its available
training data. This experimental configuration enabled us to rigorously evaluate the effectiveness of
AhaTrans in data-scarce scenarios for a fundamentally different type of spatio-temporal prediction
task, thereby demonstrating the framework’s versatility beyond traffic-related applications.
Table 9 presents the performance comparison between AhaTrans and other transfer learning baselines
on the crime prediction task. The results demonstrate that AhaTrans substantially outperforms all
baseline methods, achieving a 53.1% reduction in RMSE and a 39.2% reduction in MAE compared
to the next best performing method (CrossTReS).
These results confirm that AhaTrans can effectively generalize to diverse spatio-temporal prediction
tasks beyond traffic flow prediction. The significant performance improvement in crime predic-
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Table 9: Performance comparison on cross-city crime prediction from Chicago to NYC.

Metric MetaST CrossTReS TransGTR AhaTrans

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Value 14.98 6.85 8.87 2.83 9.51 3.96 4.16 1.72

Table 10: Performance comparison with different numbers of attention heads.

Number of Heads 4 8 16

RMSE 0.375 0.0369 0.0381
MAE 0.0122 0.0119 0.0124

tion highlights the versatility of our approach and suggests that the principles underlying Aha-
Trans—particularly the combination of contrastive embedding, graph transformer encoding, and
bidirectional regularization—provide a robust foundation for transfer learning across different urban
spatio-temporal prediction challenges.

F.3 EFFECT OF NUMBER OF ATTENTION HEADS

The selection of an appropriate number of attention heads (h) is constrained by the dimension of the
feature space dmodel. To ensure an equal division of features across heads, h must be a factor of dmodel.
With our implementation using dmodel = 64, the valid options for h include {1, 2, 4, 8, 16, 32, 64}.
While increasing the number of heads can theoretically provide greater representational capacity
and modeling diversity, excessively large values (e.g., h = 64, which results in dk = 1) may lead
to overly fragmented representations that harm model performance. Conversely, multiple attention
heads generally enable greater parallelism and diverse feature modeling, which modern GPUs can
efficiently exploit.
In AhaTrans, we set h = 8, providing sufficient expressiveness (with dk = 8) to capture diverse
spatiotemporal dependencies while maintaining high computational efficiency. To validate this
design choice, we evaluated the impact of varying h on model performance using the DCBike→
NYCBike transfer task. As shown in Table 10, AhaTrans demonstrates robust performance across
different values of h, with h = 8 yielding the optimal balance between representational capacity and
computational efficiency.
The results indicate that while the model maintains relatively stable performance across different head
configurations, h = 8 produces the best overall results with the lowest error metrics. This empirical
finding supports our theoretical understanding that an intermediate number of heads provides an
optimal balance between representational diversity and feature coherence.

F.4 CASE STUDY ON SPATIAL PERSPECTIVE

In Figure 7 (right), we have visualized the temporal dimension of our analysis. Given that spatio-
temporal data exhibits heterogeneous characteristics in both spatial and temporal dimensions, we
conducted detailed case studies to demonstrate the efficacy of our proposed model. Figure 9 presents
heatmaps comparing the traffic flow predictions generated by AhaTrans and STAN methods against
ground truth data for the NYCBike dataset. We analyzed three representative periods on January
1, specifically morning (08:00-09:00), afternoon (14:00-15:00), and evening (21:00-22:00). These
periods were selected to encompass both peak traffic hours and a low-volume nighttime interval. The
figure reveals substantial variations in bicycle demand patterns across these periods. Bicycle usage
frequency exhibited markedly higher values during peak hours and a significant decrease during the
evening period. Our experimental results demonstrate that AhaTrans predictions aligned more closely
with ground truth observations, as evidenced by a mean square error (MSE) of 2.216 compared
to STAN’s 3.992. This significant improvement in prediction accuracy substantiates the superior
robustness and precision of the AhaTrans framework for spatio-temporal data prediction tasks.

F.5 ANALYSIS OF MODEL PARAMETERS

We conducted a parameter analysis to ensure fair comparisons across methods, summarizing the
parameter counts for each approach as shown in Table 11. Our analysis reveals that AhaTrans contains
4.73M parameters in total, which is 25.9% fewer than STAN (6.38M) while achieving superior traffic
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GroundTruth

STAN
MSE=3.992

AhaTrans
MSE=2.216

Figure 9: The case study of the prediction results of STAN and AhaTrans in three time intervals
8:00-9:00am (left), 14:00-15:00pm (middle), and 21:00-22:00pm (right).

prediction accuracy. This demonstrates the efficiency of our model design, which effectively balances
parameter count and prediction performance.
When compared to CrossTRes (Jin et al., 2022), we maintained the same feature extraction network
(1.26M parameters) for fair comparison. While AhaTrans has a larger prediction network (3.48M vs
0.34M), it’s important to note that the original CrossTRes requires additional computational overhead
during training due to its Domain Adaptation components (including Node-level and Edge-level
Adaptation). These adaptation mechanisms, though not reflected in the parameter count, significantly
increase training time and resource requirements.
Therefore, although AhaTrans has a moderately higher parameter count than CrossTRes, it delivers
substantially better prediction performance without the computational burden of domain adaptation
procedures, resulting in better overall efficiency. This highlights AhaTrans’s ability to effectively
leverage its parameters for improved prediction accuracy while maintaining computational efficiency.

Table 11: Comparison of model parameters across different methods

Method Feature Network (M) Prediction Network (M) Total (M) Rel. to STAN (%)
STAN 6.11 0.27 6.38 100.0
CrossTRes 1.26 0.34 1.60 25.1
AhaTrans 1.26 3.48 4.73 74.1

G LIMITATIONS AND FUTURE WORK

G.1 LIMITATIONS

Although AhaTrans exhibits promising performance in cross-city traffic flow prediction tasks, it con-
tinues to encounter fundamental challenges inherent to transfer learning methodologies, particularly
regarding source city selection strategies. A significant unresolved issue remains the identification
and optimal matching of source cities that offer maximum transfer utility when confronted with a
novel target city. The current implementation of AhaTrans depends primarily on manual source city
designation, without incorporating an automated, data-driven matching framework. This limitation
substantially constrains its scalability and generalization capabilities when deployed across extensive
multi-city environments.

G.2 FUTURE WORK

Our future research will prioritize several critical areas to enhance the effectiveness and broader
applicability of our framework:

• Expansion to Diverse Data Types. In our ongoing efforts, we will strive to extend the frame-
work’s capabilities to handle a wider range of data types, including satellite imagery, IoT sensor
data, and social media feeds. This expansion will enable a more comprehensive understanding of
urban dynamics, integrating multiple data sources to enhance urban planning, management, and
decision-making processes. The ability to process these diverse data types will provide a richer,
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multidimensional view of cities, facilitating more informed and strategic urban development
initiatives.

• Enhancement of Feature Extraction Networks. We will focus on advancing the framework’s
ability to capture and process complex urban data more effectively. This includes refining the
feature extraction networks to enhance the representation of intricate urban dynamics. Enhanced
networks will extract higher-level features, providing more meaningful insights into urban systems
and enabling more accurate predictions.

• Automated Source City Selection Mechanism. To overcome the limitations of manual source
city specification in current transfer learning frameworks, we plan to develop an automated mecha-
nism for source city selection. By integrating multi-dimensional similarity features—such as traffic
flow patterns, spatial structure, infrastructure layout, and socio-economic attributes—between
cities, we aim to construct a transferability metric model that quantifies the suitability of source-
target city pairs. Furthermore, we will explore graph-based modeling and meta-learning techniques
to enable adaptive selection of optimal source cities from multiple candidates, thereby enhancing
the generalization capability and deployment scalability of the framework in large-scale cross-city
scenarios.

• Advancement of Cross-Domain Transfer Learning Techniques. The development of advanced
transfer learning methods will be prioritized, emphasizing improved model adaptability across
diverse urban contexts. These strategies will focus on minimizing domain shifts and enhancing
performance when transferring models across different geographical locations and urban domains.

• Development of Lightweight Training Models. A key area for improvement will be the creation
of more efficient models that require fewer computational resources. By optimizing performance
and reducing complexity, we ensure the framework can be used across urban centers with varying
capabilities.
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