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Figure 1: Multi-modal, multi-platform 3D grounding from 3EED. Given a scene and a structured
natural language expression, the task is to localize the referred object in 3D space. Our dataset captures
diverse embodied viewpoints from #&§ Vehicle, " Drone, #Z Quadruped platforms, presenting
unique challenges in spatial reasoning, scene analysis, and cross-platform 3D generalization.

Abstract

Visual grounding in 3D is the key for embodied agents to localize language-referred
objects in open-world environments. However, existing benchmarks are limited to
indoor focus, single-platform constraints, and small scale. We introduce 3EED, a
multi-platform, multi-modal 3D grounding benchmark featuring RGB and LiDAR
data from vehicle, drone, and quadruped platforms. We provide over 128,000
objects and 22,000 validated referring expressions across diverse outdoor scenes
— 10x larger than existing datasets. We develop a scalable annotation pipeline
combining vision-language model prompting with human verification to ensure
high-quality spatial grounding. To support cross-platform learning, we propose
platform-aware normalization and cross-modal alignment techniques, and establish
benchmark protocols for in-domain and cross-platform evaluations. Our findings
reveal significant performance gaps, highlighting the challenges and opportunities
of generalizable 3D grounding. The 3EED dataset and benchmark toolkit are
released to advance future research in language-driven 3D embodied perception.

1 Introduction

Grounding free-form language to 3D scenes is a core capability for embodied agents operating in the
physical world [1, 12, 6, 7, 41]. By associating natural language expressions with physical objects in
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Table 1: Summary of outdoor 3D grounding benchmarks. We compare key features from aspects
including: !Platform (& Vehicle,  Drone, #Z Quadruped), 2Area Coverage, and >Statistics.
Our dataset exhibits advantages on platform diversity, large collections of LiDAR (L) and camera (C)
scenes (Sce.), 3D objects (Obj.), referring expressions (Expr.), and rich elevation variations (Elev.).

Dataset | Sensor Platform Scene Statistics
- = 4 Coverage #Sce. #0ODbj. #Expr.  #Elev.
Mono3DRefer [103] C v X X 140m x 140m 2,025 8,228 41,140 42.8m
KITTI360Pose [36] L v X X 140m x 140m - 14,934 43,381  42.8m
CityRefer [61] L X v X - - 5866 35,196 -
STRefer [47] | L+C v X X 60m x 60m 662 3,081 5,458 -
LifeRefer [47] | L+C v X X 60m x 60m 3,172 11,864 25,380 -
Talk2LiDAR [56] | L+C v X X 140m x 140m 6,419 - 59,207  48.6m
Talk2Car-3D [2] | L+C v X X 140m x 140m 5,534 - 10,169  48.6m
3EED (Ours) | L+C v v v/ | 280m x 240m | 20,367 128,735 22,439 80m

3D space, robots and autonomous systems can interpret high-level human instructions to perform
downstream tasks, e.g., navigation, interaction, and situational awareness [65, 90, 102, 20, 64, 91, 89].

Recent advances in 3D visual grounding have primarily focused on indoor benchmarks [32, 3, 31],
where sensing is constrained, scenes are small, and objects are limited to household categories
[96, 101]. However, real-world applications require models to operate in outdoor environments with
greater spatial scale [60, 37, 52], diverse viewpoints [66, 14, 46], and sparse sensor data [5, 38, 45].

While recent datasets have begun addressing outdoor 3D grounding [35, 21, 90, 24], they remain
limited by single-platform data (e.g., vehicle-mounted LiDAR), small scale with few objects and
expressions, and a lack of multi-modal supervision, often providing only LiDAR or RGB but not
both [25, 42, 28, 49, 33, 51, 44, 82, 92]. These gaps limit the development of models that generalize
across platforms, modalities, and real-world conditions.

To address these gaps, we introduce 3EED, a large-scale, multi-platform, multi-modal benchmark for
3D visual grounding in outdoor environments (see Fig. 1). Our dataset captures synchronized LiDAR
and RGB data from three distinct robotic platforms: @i Vehicle, " Drone, #Z Quadruped. It
provides over 128,000 object instances and 22,000 human-verified referring expressions, making
it 10x larger than existing outdoor grounding benchmarks, as compared in Tab. 1.

To enable scalable annotation, we develop a vision-language model prompting pipeline combined
with human-in-the-loop verification to generate high-quality referring expressions. Additionally,
we propose platform-aware normalization and cross-modal alignment techniques to standardize
geometric and sensory data while preserving platform-specific characteristics. Based on these
contributions, we establish a comprehensive benchmark suite covering in-domain, cross-platform,
and multi-object grounding settings. Through extensive experiments with state-of-the-art models
[32, 87], we reveal substantial performance gaps across platforms, exposing the challenges of robust
and generalizable 3D visual grounding in real-world outdoor environments.

To summarize, the key contributions of this work to the related fields include:

* We present 3EED, the first large-scale, multi-platform, multi-modal 3D visual grounding bench-
mark spanning & Vehicle, ® Drone, 22 Quadruped platforms, covering over 128,000 objects
and 22,000 human-verified expressions, which is 10x larger than existing outdoor datasets.

* We develop a scalable annotation pipeline combining vision-language model prompting with human
validation, enabling high-quality and diverse language supervision.

* We propose platform-aware normalization and cross-modal alignment to unify sensor geometry
and synchronize LiDAR, RGB, and language cues, enabling consistency across diverse platforms.

* We establish comprehensive benchmark protocols for in-domain, cross-platform, and multi-object
grounding, along with strong baseline evaluations revealing key challenges and future directions.
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Figure 2: Overview of annotation workflow. Left: We collect 3D boxes using multi-detector fusion,
tracking, filtering, and manual verification across platforms. Middle: Referring expressions are
produced by prompting a VLM with structured cues (class, status, position, relations), followed by
rule-based rewriting and human refinement. Right: Platform-specific word clouds highlight distinct
linguistic patterns in descriptions across vehicle, drone, and quadruped agents.

2 Related Work

3D Visual Grounding. 3D visual grounding localizes objects in 3D scenes from natural language
expressions. Early efforts focus on indoor RGB-D datasets like ScanRefer [12] and Nr3D [1], built
on ScanNet [15] and ARKitScenes [4], with object categories mostly limited to furniture. Recent
datasets such as Multi3DRefer [105] and EmbodiedScan [81] expand to multi-object and egocentric
grounding. These resources have driven the development of various models [107, 99, 87, 23, 79, 32,
3,31,83, 101, 108, 43, 96] focused on spatial-linguistic alignment in controlled indoor environments.

3D Grounding in the Wild. Grounding language in outdoor 3D scenes introduces challenges such
as large spatial scales, sparse point clouds, and diverse object distributions [39, 40, 88, 77, 78, 69].
Talk2Car [17], based on nuScenes [8], is an early benchmark for driving scenarios. STRefer [47] ex-
tends this with RGB and LiDAR from mobile agents, focusing on human activities. Mono3DVG [103]
studies grounding in monocular images without 3D sensors. KITTI360Pose [36] uses templated
language for text-to-position grounding in KITTI-360 [22], targeting positions rather than objects.
Talk2LiDAR [56] and CityRefer [61] provide multi-sensor and city-scale grounding tasks. However,
all these datasets are limited to single-platform data acquisition.

Language-Guided Perception in Embodied Platforms. Language understanding has also been
explored in interactive [84, 48, 59, 106, 26, 18, 57] and multi-task perception settings [108, 13, 29,
97, 98, 34, 93, 54, 55, 71, 58, 53, 94]. Refer-KITTI [86] based on KITTI [22] enables tracking
multiple objects with a single prompt. nuPrompt [85] employs a language prompt to predict the
object trajectory across views and frames. nuScenes-QA [68] formulates a multi-modal question
answering benchmark using nuScenes [8] data. DriveLM [75] formulates driving as a graph-based
visual question answering task, leveraging structured visual representations and large language
models [62] to answer route-planning and scene-understanding queries. These methods, however,
focus on vehicle-based data [22, 8] and semantic-level tasks [72, 30], whereas our dataset enables
fine-grained 3D grounding across diverse embodied agents, including drones and legged robots.

3 3EED: Multi-Platform Multi-Modal 3D Grounding Dataset

Existing 3D grounding datasets mainly target small, sensor-fixed indoor spaces, leaving outdoor,
multi-platform scenarios underexplored. To bridge this gap, we curate 3EED, the first 3D grounding
dataset that unifies data from & Vehicle, ™ Drone, 22 Quadruped platforms. We formalize the
multi-modal, multi-platform 3D grounding task in Sec. 3.1, detail a two-stage annotation pipeline in
Sec. 3.2, and present statistics that highlight the scale, diversity, and platform balance in Sec. 3.3.
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Figure 3: Examples of multi-platform 3D grounding from the 3EED dataset. There are clear
discrepancies across both sensory data (2D & 3D) and referring expressions from the & Vehicle,
& Drone, and #Z Quadruped platforms. For additional examples, kindly refer to the Appendix.

3.1 Task Formulation: 3D Grounding in the Wild

We define the multi-platform 3D grounding task in our dataset as F (P, I%,C) — bP, where the

model F maps input modalities, optionally including the point cloud P# = {pz}i\f1 image 7%, and
caption C to the corresponding 3D bounding box b® € R”. Each point p; = (p*, p¥, p*) € R?, and
the bounding box is given by its center, dimensions, and orientation angle. 3 denotes the platform,
including the & Vehicle, & Drone, and #2 Quadruped, and N # is the number of point clouds for
platform 3. To precisely quantify spatial relationships, we also define the bird’s-eye-view distance
from target to ego-platform as p and the relative pitch angle as ”. In dataset curation and annotation,
we explicitly consider platform-specific factors caused by inherent geometric differences.

3.2 Dataset Curation & Annotations

Multi-Platform 3D Data Annotation. We collect & Vehicle sequences from Waymo [76], and "=
Drone and #Z Quadruped sequences from M3ED [11]. We adopt a uniform three-stage pipeline
for the Drone/Quadruped LiDAR-RGB (see Fig. 2, left). 1) Pseudo-label seeding: State-of-the-art
detectors [73, 74, 16, 104, 100, 95] trained on Waymo [76], nuScenes [8], and Lyft [27] produce
platform-agnostic 3D boxes for every frame. 2) Automatic consolidation: Kernel-density estimation
(KDE) merges detector votes, a 3D multi-object tracker [19] enforces temporal coherence and fills
missed detections, and the Tokenize-Anything [63] model is used to project each box onto the RGB
view to confirm its class; category conflicts are auto-flagged. 3) Human refinement: Annotators polish
the flagged boxes in the user interface, cross-validating to equalize accuracy across platforms. This
hybrid scheme yields consistent annotations while limiting manual effort to roughly 100s per frame.

Referring Expression Data Annotation. After collecting the 3D boxes, we attach platform-invariant
language supervision through a parallel procedure (see Fig. 2, middle). 1) Structured prompting:
Each 3D box is projected onto its RGB view, together with a knowledge base with five template slots
category, status, absolute location, egocentric position, relation, to a vision language model [80].
Few-shot expression examples in the prompt are used to guide the model to output a single, well-
formed referring sentence. Platform-specific terms are normalized by platform-invariant rewriting
rules to ensure consistent wording across vehicle, drone, and quadruped views. 2) Human verification:
Annotators inspect the image, projected box, and caption in an interactive Ul, checking semantic
correctness, spatial fidelity, absence of ambiguity, and platform-consistency. Cases that are unsatisfac-
tory will be discarded. This staged pipeline delivers concise, unambiguous expressions across vehicle,
drone, and quadruped views, providing high-quality language targets for 3D visual grounding.

3.3 Dataset Statistics & Analysis

Benchmark Comparisons. 3EED is, to our knowledge, the first outdoor 3D visual grounding
benchmark that standardizes sensing across three embodied platforms & Vehicle, & Drone, and
2% Quadruped by using synchronized LIDAR-RGB acquisition. As summarized in Tab. 1, our dataset
provides 128,735 object bounding boxes and 22,439 human-verified referring expressions over
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Figure 4: Dataset statistics of the three platforms in 3EED. Left: Target bounding box distributions
in polar coordinates. Color intensity indicates the frequency of targets in each (p, 0") bin. Middle:
Scene distribution for train/val splits on each platform, along with per-scene object count histograms.
Right: Elevation distributions of input point cloud, p?, reflecting view-dependent elevation biases.

A person riding a bicycle on the right side Asilver sedan parked on the left side of A person riding a bicycle on the right side
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Figure 5: Examples of multi-object 3D grounding from the 3EED dataset. Given a scene and a
multi-object expression, the goal of this task is to localize the 3D bounding box of each referred
object by reasoning over both semantic attributes and inter-object spatial relationships.

20,367 tightly time-aligned frames, focusing on the two safety-critical classes Vehicle and Pedestrian.
Spatially, our scenes span up to 280 m x 240 m horizontally and exceed 80 m in elevation, with
an order of magnitude larger than any previous outdoor corpus, making it uniquely suited for studying
long-range, cross-platform grounding. The train/val split is carefully balanced. As shown in Fig. 4
(middle), containing 2.7k/2.7k vehicle, 4.1k/2.9k drone, and 4.9k /2.9k quadruped scenes, enabling
rigorous analysis of both platform-specific challenges and cross-platform generalization.

Platform-Specific Analysis. To illuminate how 3EED supports robust multi-platform downstream
tasks, we dissect the sensing geometry and scene composition of each agent in three dimensions:

1) Viewpoint geometry of targets: Fig.4 (left) shows the distribution of pitch angle #” and BEV
range p for each 3D box. &= Vehicle data clusters at mid-range with near-zero pitch, typical of level
driving. & Drone covers larger p with steep negative §” from top-down views. #Z Quadruped stays
close in p but varies widely in pitch due to ground-level perspective. These patterns expose models to
varied spatial cues like “behind” and “under”, improving generalization to novel viewpoints.

2) Per-platform object density: Fig. 4 (middle) shows object density per platform. " Drone
captures the busiest scenes due to its wide view, & Vehicle records moderate density, and %%
Quadruped sees fewer but closer objects. This range enables 3EED to test the ability to disambiguate
crowded scenes, maintain situational awareness, and localize small, nearby targets — offering a
challenging testbed for robust 3D grounding.



3) Input point-cloud geometry: Fig.4 (right) shows the vertical distribution of LiDAR points p* per
platform. & Vehicle scans center around the sensor height, ™ Drone captures top-down views,
and #%Z Quadruped looks upward toward obstacles. These elevation biases affect how spatial terms
like “above” or “below” are grounded, offering rich vertical language diversity across viewpoints.

4 Benchmark Establishment

4.1 Task Suite & Evaluation Strategy

The scale and heterogeneity of 3EED, inclduing three embodied platforms, synchronized LiDAR—
RGB sensing, and densely annotated outdoor scenes, enable a unified yet diagnostic suite of grounding
benchmarks. We keep training schedules fixed across settings to make results comparable.

1) Single-platform, single-object grounding: train and test on the same platform (& Vehicle / &
Drone / #Z Quadruped) to establish an in-domain reference under matched viewpoint and density
statistics. This setting serves as a sanity check and a low-variance yardstick for later comparisons.

2) Cross-platform transfer: To reflect real deployments where annotating Drone/Quadruped is costly,
we adopt a zero-shot protocol: train on the data-rich @ Vehicle data and evaluate on the scarcer =&
Drone and #Z Quadruped data without target-domain supervision. All hyperparameters stay identical
to the in-domain recipe; only the test platform changes. This isolates viewpoint/altitude/density shifts
induced by different embodiments and measures cross-platform generalization.

3) Multi-object grounding: A single query may describe multiple referents; the output must localize
all targets in the scene. We keep the same IoU thresholds as above but use joint correctness: a query
counts as correct iff every referred object is localized correctly. Fig. 5 illustrates several such scenes.

4) Multi-platform grounding: Train on the union of all platforms and evaluate per-platform. We
employ balanced design across platforms while keeping the total training budget fixed. This tests
whether pooled supervision can close transfer gaps without overfitting to platform-specific statistics.

4.2 Challenges for Existing Methods

Most 3D grounding models are designed for indoor RGB-D data, with dense, uniform points and
small, consistent object sizes. On 3EED, they face three key challenges: 1) Range-dependent
sparsity: LiDAR points thin out with distance, breaking indoor assumptions of dense neighborhoods.
2) Extreme scale variation: Outdoor targets range from small cones to large vehicles, invalidating
fixed-size anchors. 3) Cross-platform gaps: Different viewpoints and sensor heights cause shifts in
density and field of view unseen in indoor settings. As we will illustrate in the next section, these
challenges reveal the need for outdoor- and platform-aware model designs.

4.3 Unified Cross-Platform Baseline

To kick-start research on cross-platform transfer and multi-object grounding, we present a scale-
adaptive and agent-invariant baseline model tailored to 3EED. It effectively addresses these challenges
and serves as a strong reference point for future work in robust, general 3D visual grounding.

Baseline Overview. We adapt previous work [32] to our dataset: a scale-adaptive PointNet++ [67]
backbone encodes LiDAR, a frozen RoBERTa [50] encodes language, and a Transformer predicts
every referenced 3D box in one shot. Training blends box-regression, token-alignment, and contrastive
multimodal losses. In the multi-object grounding setting, each target object is associated with a
distinct positive map. We apply Hungarian matching to assign each query to a specific target object,
enabling supervised learning via one-to-one loss computation.

Cross-Platform Alignment (CPA). Before feature extraction, each scan is rotated to reduce roll and
pitch so that gravity is consistently aligned with the global z-axis; drones additionally receive an
altitude-normalizing height offset. Placing all platforms in the same gravity-aligned frame reduces
viewpoint- and elevation-induced discrepancies, so spatial relations such as “above/below/behind”
are encoded in comparable coordinates across agents. This simple, one-shot normalization lets the
backbone spend capacity on object/content cues rather than pose correction, improving in-domain
stability and yielding more reliable cross-platform generalization without any architecture change.



Table 2: Benchmark results of state-of-the-art models on 3EED. Rows are grouped by the
training platform: Vehicle / Drone / Quadruped / Union, and columns report test performance on
each platform; diagonal cells are in-domain, while are zero-shot cross-platform. The
Platform Adaptation column marks whether a method uses our platform-aware design (v) or not (X).
The Improve 1 row in each block gives the absolute gain of Ours over the strongest baseline under
the same training protocol and metric. All scores Acc@25/50 are given in percentage (%).

Method ‘ Platform ‘ @ Vehicle ‘ & Drone ‘ 2% Quadruped Union

Adaptation | Acc@25 Acc@50 | Acc@25 Acc@50 | Acc@25 Acc@50 | Acc@25 Acc@50

o Training Platform: & Vehicle

BUTD-DETR [32] X 52.38 32.18 1.54 0.00 10.18 0.79 23.70 12.54
EDA [87] X 53.54 34.87 3.33 0.05 11.40 0.62 25.36 13.81
WildRefer [47] X 50.27 9.85 3.52 0.34 13.97 3.76 24.92 5.12
Ours v 78.37 45.72 18.16 2.78 36.04 20.59 45.93 22.88
Improve 1| - | +25.99 +13.54 | +16.62 +2.78 | +25.86 +19.80 | +22.23 +10.34
o Training Platform: & Drone
BUTD-DETR [32] X 15.08 2.21 40.85 5.29 6.90 1.54 20.55 2.95
EDA [87] X 17.32 4.81 43.29 7.10 8.54 2.71 22.66 4.88
WildRefer [47] X 4.61 0.69 46.15 8.21 14.96 5.40 20.41 4.52
Ours v 29.01 5.79 47.55 8.71 31.32 3.69 34.56 6.05
Improve 1 | - | +13.93 +3.58 | +6.70 +3.42 | +24.42 +2.15 | +14.01 +3.10
e Training Platform: 2% Quadruped
BUTD-DETR [32] X 14.76 6.03 9.92 0.94 32.38 17.32 18.59 7.87
EDA [87] X 15.96 6.83 10.92 1.44 33.88 18.52 19.84 8.70
WildRefer [47] X 5.03 0.87 10.32 0.84 30.70 19.59 14.08 6.54
Ours v 20.52 6.16 10.52 9.92 35.69 17.38 21.43 7.95
Improve T - +5.76 +0.13 +0.60 +8.98 +3.31 +0.06 +2.84 +0.08

e Training Platform: Union (#i Vehicle + " Drone + #% Quadruped)

BUTD-DETR [32] X 63.41  40.88 | 44.20 8.28 43.14 2094 | 5141 2480
EDA [87] X 65.50  41.80 | 46.00 8.60 44.00 2150 | 5246  25.02
WildRefer [47] X 5151 1012 | 5027  9.85 4536 2029 | 4927 1311
Ours v 80.86  50.11 | 53.45 9.75 53.31  24.08 | 63.84  29.66

Improve 1 | - | +17.45 49.23 | +9.25  +1.47 | +10.17 +3.14 | +12.43 +4.86

Multi-Scale Sampling (MSS). Each PointNet++ layer queries neighborhoods at multiple radii from
0.6 m to 4.8 m, ensuring that the representation simultaneously preserves sharp local detail for nearby
small objects and aggregates broad context for distant sparse targets. This range-aware design avoids
the failure modes of single-radius schemes (over-smoothing at close range, missing evidence at
long range), directly countering LiDAR sparsity and extreme object-scale variation. As a result, the
encoder receives scale-complete evidence on all platforms, so it can localize both tiny traffic cones
and large buses under diverse viewpoints and densities.

Scale-Aware Fusion (SAF). Features computed at all radii are fed to a lightweight MLP that produces
dynamic, per-point weights and fuses the scales into a single embedding, emphasizing whichever
radius best explains local geometry. By adapting the contribution of fine vs. coarse context on the
fly, SAF prevents “wrong-scale” decisions (e.g., using coarse features for small nearby objects or
fine features for far sparse ones) and stabilizes predictions under large density shifts across platforms.
The module adds negligible parameters and latency while delivering scale-robust, agent-agnostic
representations that complement CPA and MSS.

5 Experiments

5.1 Experimental Setups

Implementation Details. Our method is implemented in PyTorch, following the training schedule
and optimization settings of previous work [32], but optimized for efficiency. Raw LiDAR from any
platform is uniformly down-sampled to 16,384 points and encoded by a PointNet++ backbone [67]
trained from scratch; its final layer yields 1,024 visual tokens. An MLP assigns each token an
objectness score, and the top 256 tokens are input into a six-layer Transformer decoder. Objectness is
supervised with focal loss by labeling the four nearest points to every ground-truth center as positives.
We freeze RoBERTa, use a learning rate of 1 x 10~ for the visual encoder and 1 x 10~* for all other
layers, and train for 100 epochs on two NVIDIA RTX 4090 GPUs. See Appendix for more details.



Table 3: Benchmark results of state-of-the-art models on the 3EED dataset. The performances
are measured under the multi-object setting on the &% Vehicle platform. We report the class-wise
performance on Acc@25, Acc@50, and mIoU metrics. All scores are given in percentage (%).

Method Car Pedestrian Average
Acc@25 Acc@50 mIoU Acc@25 Acc@50 mIoU Acc@25 Acc@50 mIoU
BUTD-DETR [32] 30.92 19.83 52.39 26.56 18.75 37.28 25.40 17.91 47.88
EDA [87] 29.58 26.21 56.73 28.15 14.75 38.37 26.91 25.92 51.07
Ours 37.21 33.14 59.28 32.81 20.31 54.21 32.32 29.89 56.40
Improve 1 \ +7.63 +14.63 6.89 \ +4.66 1.56 +15.84 \ +5.41 +3.97 5.33

Table 4: Ablation study on components. Multi-
platform results (Acc@25/50, %) comparing Full
vs.removing one module (-CPA, -MSS, —SAF).
Dropping any module degrades performance rel-
ative to Full, showing their complementarity.

Table 5: Ablation study on scene complexity.
Results (Acc@25/50, %) with scenes grouped by
the number of objects per scene (1-3, 4-6, 7-9,
> 9). The performances are measured under the
multi-platform setting.

Method &= Vehicle "= Drone #% Quadruped Object &= Vehicle & Drone 2% Quadruped
Acc@25 Acc@50| Acc@25 Acc@50| Acc@25 Acc@50 Count | Acc@25 Acc@50| Acc@25 Acc@50| Acc@25 Acc@50
—CPA | 71.76 5042 | 51.84 9.32 | 49.93 23.53 1-3 62.24 36.20 | 52.07 25.06 | 71.23 61.75
—MSS | 75.65 4598 | 46.85 851 | 51.40 24.25 4-6 60.86 44.00 | 53.95 10.76 | 43.53  9.48
—SAF | 80.38 50.03 | 52.25 10.19 | 51.98 24.80 7-9 59.55 35.73 | 5344 223 | 30.75 547
Full 80.86 50.11 | 53.45 9.75 | 53.31 24.08 >9 63.39 50.45 | 31.82  4.09 | 25.15 0.83

Evaluation Metrics. Following [12, 1, 47], we report Top-1 Acc, counting a success when the top
box exceeds a chosen IoU. We evaluate at Acc@25 (lenient) and Acc@50 (strict), and report mean IoU
(mIoU) for overall quality. In multi-object setup, all objects must meet the IoU threshold, penalizing
misses and false positives. Results are averaged over official train/val splits for fair comparison.

Baselines. We adapt two representative baselines. EDA [87] is a prior art on indoor datasets by
decoupling sentences into object, attribute, relation, and pronoun tokens, enforcing dense token-
point alignment. However, it relies on dense scenes and grammar-consistent text, making it fragile
under sparse LiDAR, large object-size variation, and diverse viewpoints. BUTD-DETR [32] uses
a DETR-style decoder [9] with ScanNet box proposals and synthetic prompts but struggles on
drone and quadruped data due to its dependence on indoor detectors. Neither baseline addresses
range-dependent sparsity, scale variation, or cross-platform biases, motivating our scale-adaptive,
agent-invariant baseline. Due to space limits, additional details are provided in the Appendix.

5.2 Comparative Study

Cross-Platform Generalization. Tab. 2 compares existing 3D grounding backbones under in-
distribution (single-platform) and out-of-distribution (cross-platform) settings.

1) Single-Platform vs. Cross-Platform. When trained on #4 Vehicle data, BUTD-DETR [32]
achieves Acc@25 of 52.38 on the vehicle test split, but drops to 1.54 on drone and 10.18 on quadruped,
exposing severe generalization gaps due to differing viewpoints, object scales, and LiDAR densities.

2) Cross-Platform Transfer Gains. Our scale-adaptive backbone with platform alignment substantially
narrows this gap. For example, training on & Drone and evaluating on @i Vehicle boosts Acc@25
by +13.93 over the baseline, demonstrating stronger transfer from aerial to ground perspectives.

3) Unified Multi-Platform Training. A unified model trained jointly on all three platforms delivers
balanced performance, with Acc@25 of 63.84, 29.66, and 46.01 on vehicle, drone, and quadruped,
respectively, yielding an average gain of +6.56 over the best method. This confirms the critical role
of 3EED in providing diverse supervision for building truly generalizable 3D grounding systems.

Coherent Object Co-grounding. Tab. 3 presents the evaluation results on our dataset for the multi-
object grounding task. Notably, in this setting, Acc@25 is a strict metric that requires all objects
mentioned in the description to be correctly grounded, while mIoU captures the average IoU across
individual predicted-ground truth pairs. Existing methods such as BUTD-DETR achieve moderate
mIoU (47.88) but low joint grounding (Acc@25 = 25.40), revealing their tendency to localize objects
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Figure 6: Qualitative comparisons of 3D grounding approaches on the 3EED dataset. We show
the comparisons under the multi-platform setting. The three examples are from the & Vehicle, =&
Drone, and #Z Quadruped platforms, respectively. Kindly refer to the appendix for additional results.

in isolation rather than reason about them collectively. In contrast, our baseline leverages multi-scale
sampling and dynamic feature fusion to build discriminative representations that capture both fine
details and broad context, essential for disambiguating multiple objects of varying size and distance.
These design choices deliver substantial improvements in both metrics, demonstrating markedly
stronger multi-object reasoning and tighter language-to-3D alignment in complex outdoor scenes.

Qualitative Assessments. Fig. 6 showcases representative multi-platform grounding results on
vehicle, drone, and quadruped data. Our unified model consistently outputs precise, tightly aligned
3D boxes despite drastic shifts in viewpoint, object scale, and point-cloud density. In contrast, baseline
methods like BUTD-DETR [32] and EDA [87] often yield misaligned or fragmented predictions,
especially under challenging aerial and low-angle quadruped perspectives. These comparisons
underscore our ability to learn genuine cross-platform invariance and deliver reliable grounding
across diverse embodied sensing scenarios.

5.3 Ablation Study

Component Analysis. Tab. 4 shows that our modules target different sources of error and, together,
improve both in-domain accuracy and cross-platform transfer.

1) CPA (Cross-Platform Alignment) is the primary driver by rotating each scene to cancel roll
and pitch and normalizing the height offset to reduce elevation bias, it effectively maps data into
a gravity-aligned frame with comparable coordinates across platforms. This substantially reduces
viewpoint-induced discrepancies (e.g., for “above/below/behind”) so the backbone need not spend
capacity correcting pose biases. Consequently, CPA yields a large @ Vehicle gain from 71.76 to
80.86(+9.10) in Acc@25 in-domain and leads to more stable cross-platform transfer.

2) MSS (Multi-Scale Sampling) addresses the core failure of single-radius neighborhoods under
range-dependent sparsity. A small radius preserves nearby details but fails at long range (no points in
the neighborhood), whereas a large radius recovers distant context but over-smooths close objects.
MSS samples a wide spectrum of radii per query, so each point receives both fine-detail evidence
(for near objects) and global-context evidence (for distant targets). This directly improves in-domain
accuracy by recovering long-range evidence while avoiding close-range over-smoothing (reflected by
the +5.21 Acc@25 gain in & Vehicle), and it improves cross-platform transfer because receptive-
field behavior no longer depends on platform-specific altitude/FoV statistics: the same multi-radius
coverage remains valid on sparser Drone views, narrowing cross-platform gaps.



Table 6: Platform statistics and cross-platform performance. Left: dataset statistics—average
annotated objects per scene and LiDAR points per object (counts). Right: cross-evaluation matrix
with rows as the training platform and columns as the fest platform (diagonal = in-domain; off-
diagonal = zero-shot). Metrics are Acc@25/50 in % (IoU 0.25/0.50).

Platform Average Average &= Vehicle & Drone 2% Quadruped
#Objects / Scene | #Points / Object | Acc@25 Acc@50 | Acc@25 Acc@50 | Acc@25 Acc@50
&= Vehicle 4.77 462.89 78.37 45.72 18.16 2.78 36.04 20.59
& Drone 8.05 102.24 29.01 5.79 47.55 8.57 31.32 3.69
2% Quadruped 5.83 112.17 20.52 6.16 10.52 9.92 35.69 17.38

3) SAF (Scale-Aware Fusion) then learns per-point weights over scales via a lightweight MLP,
ensuring the model uses the right scale at the right place; this stabilizes predictions under density
shifts (e.g., #Z Quadruped Acc@25 51.98 to 53.31), and further improves transfer by preventing a
single fixed scale from dominating when switching platforms.

Combined, the modules deliver the best overall results: & Vehicle (80.86/50.11), & Drone
(53.45/9.75), and #% Quadruped (53.31/24.08) (Acc@25/50), confirming that CPA handles cross-
platform alignment, MSS provides evidence coverage, and SAF enforces adaptive selection.

Object Density Impact. We analyze how referential grounding performance varies with the object
density per scene. We divide test samples into bins based on the number of annotated 3D bounding
boxes (1-3, 4-6, 7-9, 10+), and compute the average Acc@25 for each bin. As shown in Tab. 5,
accuracy consistently drops as object count increases. On the 22 Quadruped platform, Acc@25 drops
from 71.23 in scenes with 1-3 objects to 30.75 in scenes with 7-9 objects. This reflects the increased
difficulty of resolving referential ambiguity in cluttered environments.

Platform Complexity Impact. Tab. 6 breaks down grounding performance by platform alongside
two key scene statistics: mean LiDAR points per object and mean object count per scene. 7 Drone
scenes suffer the lowest Acc@50, driven by extreme sparsity (just 102 points/object vs.462 for &=
Vehicle and 112 for #Z Quadruped) and the highest object density (8.05 objects/scene), which
together amplify distractors and hinder precise localization. Quadruped data, with moderate density
(112 points/object) but fewer objects, sits between drone and vehicle performance. These disparities,
including ultra-sparse returns and elevated clutter, explain the pronounced aerial performance gap.

6 Conclusion

We introduced 3EED, a large-scale, multi-platform, multi-modal benchmark for outdoor 3D visual
grounding, featuring 128,000 objects and 22,000 expressions, which is 10x larger than existing
datasets. We proposed scalable annotation, platform-aware normalization, and cross-modal alignment
to support robust grounding. Our benchmark reveals cross-platform performance gaps, highlighting
challenges for generalizable 3D grounding. We release our dataset and baseline models, hoping to
advance the future development of language-driven embodied 3D perception.
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A The 3EED Dataset

In this section, we provide a comprehensive overview of the 3EED dataset, including its motivation,
collection methodology, and unique characteristics. We describe the design choices made to ensure
diversity in sensor platforms, scene composition, and language annotation, and highlight the potential
to support research in 3D visual grounding across real-world embodied platforms.

A.1 Overview

Our dataset is built on top of two existing autonomous driving and robotics datasets: Waymo
Open Dataset [76] and M3ED [11]. Our dataset includes point cloud and image data collected
from three distinct embodied platforms — & Vehicle, " Drone, and #2 Quadruped — capturing
scenes from street-level, aerial, and low-ground perspectives, respectively. The referring expressions
are generated by Qwen2-VL-72B [80], covering five aspects: category, status, absolute location,
egocentric position, and spatial relation, with human verification.
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Table 7: Statistics of the 3EED dataset across platforms and splits.

Platform # Scenes # Captions # Objects
Training
&= Vehicle 2,701 3,687 12,790
= Drone 4,114 4,114 30,222
2% Quadruped 4,932 4,932 27,050
Total 11,747 12,733 70,062
Validation
#= Vehicle 2,708 3,794 13,082
"= Drone 2,984 2,984 26,916
2% Quadruped 2,928 2,928 18,748
Total 8,620 9,706 58,691
Summary 20,367 22,439 128,735

The full dataset contains 20,367 multi-modal scenes, 22,439 referring expressions, and 128,735
annotated 3D object instances across three sensor platforms. The training set consists of 11,747
scenes, with 12,733 captions and 70,062 objects, while the validation set includes 8,620 scenes,
9,706 captions, and 58,691 objects.

Breaking down by platform: the & Vehicle split provides 5,409 scenes and 25,818 objects; the 2%
Quadruped split includes 7,860 scenes and 45,797 objects; and the " Drone split contributes the
portion with 7,098 scenes and 57,138 objects. This distribution reflects the platform diversity and
scale of our dataset, supporting cross-platform and cross-viewpoint grounding evaluation.

This cross-platform, cross-viewpoint composition allows our dataset to serve as a unified benchmark
for 3D grounding under varying spatial configurations, sensor geometries, and linguistic descriptions.
It enables the evaluation of platform-agnostic language understanding in real-world conditions.

A.2 Dataset Curation Details

This section details the data sourcing, 3D bounding box annotation pipeline, and referring expression
generation process used to construct the 3EED dataset. We describe how annotated 3D boxes are
curated across platforms using a combination of pretrained detectors, tracking, and manual refinement,
and how language expressions are generated and verified to ensure grounding quality and consistency
across scenes.

A.2.1 Data Sources

The dataset is built on top of two large-scale real-world 3D perception datasets: Waymo Open
Dataset [76] and M3ED [11].

Waymo Open Dataset [76] provides high-resolution LiDAR and RGB data collected from vehicle-
mounted sensors in urban and suburban driving environments. We use a subset of Waymo annotated
scenes to construct the @i Vehicle portion of our dataset, leveraging its high-quality 3D bounding
boxes as ground truth. Our annotations are built independently on top of their publicly available
sequences.

MB3ED Dataset [ 1] is a multi-platform dataset, featuring synchronized RGB and LiDAR streams
from both quadruped robots and aerial drones operating in various outdoor scenes. The & Drone
and #% Quadruped portions of our dataset are derived from M3ED. Since M3ED does not contain
pre-annotated 3D bounding boxes, we adopt a semi-automatic annotation pipeline that combines
multiple pretrained detectors, trajectory tracking, and human refinement to generate high-quality 3D
boxes.

25



Open 3D Viewer Load Anno File Path: veh_all v

VLM Inference rking_1/ps_labels/final_ps_dict.pkl Load Traj File Path:

Update
jooxo | Browse

Validate Box

car (0.99, 0.72): white car parked
on the street

Refine W Traj
Refine
RVIZ
save for Ground 512/1125 512 GoTo Delete <<<
Save Seq for Ground Load Dataset Start End >>>
Capture Image <<< Deep Delete Deep Add  Refine Delete

CamPo C Save Seq Save fra >>> Save Save

Figure 7: Automatic pseudo-label screening interface powered by the Tokenize Anything model.

A.2.2 Annotation Details on 3D Bounding Boxes

The 3D bounding box annotations in 3EED are obtained through a combination of high-quality
existing labels and a carefully designed cross-platform annotation pipeline.

Vehicle Platform. For the & Vehicle platform, we adopt 3D object annotations directly from the
official Waymo Open Dataset [76], which provides dense, high-accuracy bounding boxes for traffic
participants such as vehicles, pedestrians, and cyclists etc.. These annotations are widely regarded as
reliable and are used without further modification.

Drone and Quadruped Platforms. For the ™ Drone and #Z Quadruped platform, the original
M3ED Dataset [11] does not contain pre-annotated 3D bounding boxes and require custom 3D
bounding box annotations. We establish an annotation pipeline introduced in Figure 2 of the main
paper. The process is composed of three stages:

* Pseudo-label seeding. We first pretrain a diverse set of state-of-the-art 3D detectors: PV-
RCNN [73], PV-RCNN++ [74], Voxel-RCNN [16], IA-SSD [104], CenterPoint [100], and
SECOND [95], on large-scale external datasets (e.g., Waymo [76], nuScenes [8], Lyft [27]).
These models are then used to infer pseudo-labels on our data, covering a variety of sensor
configurations and scene layouts.

* Automatic consolidation. To consolidate predictions, we apply a kernel density estimation
(KDE) approach to fuse overlapping boxes and improve consistency. A 3D multi-object
tracking algorithm (CTRL [19]) is used to propagate detections over time and interpolate
missing instances. To further validate category correctness, we employ the Tokenize Any-
thing model [63] to project pseudo-boxes onto RGB images and cross-check the detected
objects with open-vocabulary tags (see Figure 7). Boxes with mismatched semantics are
flagged for review, reducing semantic drift across modalities.

* Human refinement. Finally, we manually refine each box on a per-frame basis. Three trained
annotators iteratively verify, correct, and cross-validate all annotations to ensure high-quality
outputs. Despite the assistance from automation, the sparsity and noise of real-world point
clouds require human oversight.

This multi-stage toolkit integrates detection, filtering, image-level verification, and annotation inter-
faces. It enables scalable and accurate labeling for mobile platforms where no prior annotations exist,
contributing to the high consistency and realism of our dataset.

A.2.3 Annotation Details on Referring Expressions

To evaluate grounding performance under natural and unambiguous language, we annotate referring
expressions for each 3D bounding box in our dataset. These expressions are designed to support both
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Table 8: Prompt for Single-Object Grounding

You are an assistant designed to generate fine-grained descriptions for 3D objects
grounded in images.

Given a single object highlighted by a bounding box and its class label, please generate a
detailed and unambiguous description focusing on the following aspects:

¢ 1. Class: Specify the object’s type and visual features (e.g., color, shape, vehicle
model, clothing of pedestrians).

2. Status: Indicate whether the object is static or in motion, and describe its speed
or behavioral state.

3. Absolute Position: Describe the object’s location within the image (e.g., bottom-
left, center).

¢ 4. Viewer Perspective: Explain the object’s orientation relative to the camera or
viewer (e.g., facing the camera, viewed from behind).

5. Spatial Relations: Outline how the object is situated relative to nearby elements
in the scene.

¢ 6. Moving Direction (if applicable): Specify whether the object is moving toward
or away from the viewer, or turning in a particular direction.

After addressing each aspect, compose a fluent summary sentence (less than 100 words)
that uniquely identifies the object within the scene.

Response Format:

class: [...]

status: [...]

position in the image: [...]

relation to the viewer: [...]
relationships with other objects: [...]
moving direction: [...]

Summary: [complete descriptive sentence]

~NOo O WN -

Important: Your description should be as specific and detailed as possible. Ensure the
response is uniquely aligned with the given object and avoids ambiguity.

single-object and multi-object grounding across diverse platforms, and are generated via a hybrid
automatic—manual pipeline.

Generation with Vision-Language Models. We use the Qwen2-VL-72B [80] vision-language
model to automatically generate initial referring expressions. For each annotated 3D bounding box,
we first project it onto the corresponding RGB image frame, then provide both the image and a
task-specific prompt to the model. The prompts are carefully designed to guide the model to produce
detailed, visually grounded, and unambiguous expressions.

For the single-object grounding setting, we use a structured prompt (see Table 8) that elicits descrip-
tions covering the object’s class, status, absolute position, spatial relationships, and motion. For the
multi-object grounding setting, we adopt a more compositional prompt (see Table 9) that encour-
ages descriptions of two objects and their semantic relationships in temporal 3D scenes, covering
appearance, motion, and relative spatial configuration.

Manual Verification and Filtering. All generated referring expressions undergo human verification
to ensure semantic correctness, referential clarity, and linguistic fluency. To facilitate this process,
we develop a custom annotation interface, as shown in Figure 8. Annotators review each expression
in the context of the full scene, with the target object visualized via its projected 3D bounding box
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Table 9: Prompt for Multi-Object Grounding

You are a multimodal assistant tasked with describing and comparing two objects in a
temporal 3D scene.

You are provided with a sequence of images where two objects are marked with green
bounding boxes. You will also be given:

* The class label of each object
* A predefined semantic relationship between them

Your task is to describe each object individually, and then articulate the relationship between
them. Ensure your descriptions are precise, grounded in visual evidence, and cover the
following perspectives:

* 1. Appearance: Describe the object’s color, texture, size (small, medium, large),
shape, category, and material.

e 2, State: Specify whether the object is moving or static, and describe its current
action (e.g., turning, accelerating).

3. Spatial Relationship: Explain its location and relation to nearby scene elements.

* 4. Temporal Movement: Summarize how the object’s position changes across the
image sequence.

* 5. Other: Include any other details that can aid recognition.
Then, describe the relationship between the two objects based on their relative spatial

or temporal behavior (e.g., “the car is overtaking the cyclist”, “the robot is approaching the
chair”).
Response Format:

Object A:

1. appearance: [...]

2. state: [...]

3. spatial relationship: [...]
4. temporal movement: [...]

5. other: [...]

Object B:

1. appearance: [...]

2. state: [...]

3. spatial relationship: [...]
4. temporal movement: [...]

5. other: [...]

Relationship: [description of how Object A relates to Object BI]

Important: Focus only on the two marked objects. Your response must be detailed and
unambiguous, and should accurately reflect both visual and temporal information.

overlaid on the RGB image. If an expression is partially inaccurate or omits essential details, it
may be directly edited. If the description is fundamentally flawed — such as containing hallucinated
attributes or being referentially ambiguous — the sample is discarded. This verification process is
conducted by a team of five trained annotators to ensure consistency and overall annotation quality.

Platform-Aware Annotation Alignment. To support fair and consistent evaluation across diverse
platforms, we adopt a unified annotation protocol for & Vehicle, " Drone, and #2 Quadruped
scenes. Specifically, the same instruction prompt is used across all platforms, ensuring that the
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Figure 8: Graphical user interface used during the human refinement phase. Annotators inspect each
scene by viewing the 3D bounding box projected onto the RGB image, alongside the automatically
generated referring expression. Annotators verify or revise the description to ensure it uniquely and
accurately identifies the target object. Scenes failing this verification are discarded.

generation process follows identical linguistic and visual grounding expectations, regardless of the
underlying sensor configuration or viewpoint.

All spatial descriptions in referring expressions are written from the observer’s perspective, i.e.,
relative to the camera view that captured the scene. This design allows language like “on the
left”, “facing away”, or “in the front” to remain intuitive and unambiguous to models operating on
image-grounded or LiDAR-centered input. Rather than using global scene-relative coordinates (e.g.,
“north-east corner”), we ensure all position statements are grounded in the visual evidence available
from the sensor’s viewpoint.

A.3 Examples of Single-Object 3D Grounding

Figure 9, Figure 10, and Figure 11 present representative examples of single-object 3D grounding
from the & Vehicle, " Drone, and #Z Quadruped platforms in our dataset. Each example displays
the fused RGB image and LiDAR point cloud, along with a natural language referring expression and
its corresponding 3D bounding box.

These examples highlight several key characteristics of the 3EED dataset:

* Cross-platform diversity. & Vehicle scenes often feature structured road layouts with
multiple traffic participants, such as cars, pedestrians, and motorcycles. " Drone scenes
offer wide-area top-down coverage with more cluttered object distributions, including
overlapping vehicles, elevated viewpoints, and richer spatial context. 2 Quadruped scenes
are recorded from a low-altitude, ground-level perspective, focusing on close-range human
interactions and sidewalk-level details.

* Natural language variation. Referring expressions reflect platform-specific visibility and
spatial reasoning. For example, & Vehicle -mounted viewpoints encourage descriptions
like “on the left side of the street”, while ™ Drone-based annotations describe objects
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There is a person wearing an orange shirt and green pants There is a person standing near a trash bin on the sidewalk,
walking slowly on the sidewalk, looking at the phone. There wearing shorts and a tank top, with a backpack slung over
are two other pedestrian on the right hand side. the shoulder. There is another person walking on the right.

There is a red car parked on the left side of the street, with There is a black car parked on the side of the street, near a
its headlights on, indicating it might be preparing to move. building with illuminated windows. It is to the rear of a
There are parked cars near it. sliver car, which is also parked on the side.

There is a blue Mini Cooper parked in the parking lot, There is a blue motorcycle parked on the right sidewalk,
surrounded by other vehicles. There are two light-colored near a red car, with its front facing the street.
cars parked near it, to its left.

There is a white van parked in front of a house, with its rear There is a silver pickup truck driving on the left side of the
lights visible and appearing to be stationary. There are road, approaching an intersection. From the viewer’s
some other cars parked beside it, on its left. aspect, it is the first car on the left side.

Figure 9: Additional examples of 3D grounding from the & Vehicle platform in 3EED dataset.
The data shown include the LiDAR point clouds, the RGB frames, and the associated referring
expressions. Best viewed in colors and zoomed in for more details.

“in the upper right quadrant” or “viewed from above”. % Quadruped expressions capture
ERENTS

nuanced positional cues (e.g., “facing the camera”, “walking away on the path”) and often
describe subtle behaviors or clothing.

Scene conditions. Our dataset includes scenes captured under diverse environmental condi-
tions, including both daytime and nighttime settings. This is evident in the & Vehicle and
& Drone examples, where objects may be illuminated by streetlights or appear in low-light
settings, adding realism and complexity to the grounding task.

Multi-modal alignments. Despite differences in viewpoint and density, all annotations
maintain strong visual-language grounding. Each expression unambiguously describes a
target object with sufficient detail for model disambiguation, including appearance, position,
context, and motion when applicable.

These examples demonstrate the richness and difficulty of grounding in our dataset: models must
generalize across platforms, lighting conditions, and spatial perspectives while maintaining consistent
language understanding. The platform-aware yet prompt-consistent annotation pipeline ensures
comparability while preserving diversity.
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Adark red SUV is parked at a crosswalk in the center-right A white car with a visible license plate and sunroof is
of the image, viewed from a slightly elevated angle, with a parked stationary in a designated parking spot, surrounded
white van to its left and a fence and trees in the background. by other vehicles, and viewed from a side angle.

|E|

% —

LS

A pedestrian, dressed in a light-colored shirt and dark Ablack SUV is parked stationary in the upper left quadrant
pants, stands stationary near a vehicle, with the back of the image, viewed from an elevated angle, surrounded
turned to the viewer, while a robot dog runs nearby. by trees and grassy areas, and parked next to a white car.

Ablack SUV is parked stationary in the middle-right section A dark-colored car is parked stationary in a designated
of the image, viewed from an elevated angle, surrounded parking spot in the upper right quadrant of the image,
by other parked cars and near a grassy area with trees. viewed from a slightly elevated angle, next to a white car.

=]

B

S
A white SUV is parked stationary in the upper middle A metallic silver sedan is parked in a parking spot, located
portion of the image, viewed from an elevated angle, towards the upper middle portion of the image, viewed
surrounded by other parked vehicles and trees. from a distance, surrounded by trees casting shadows.

Figure 10: Additional examples of 3D grounding from the & Drone platform in 3EED dataset.
The data shown include the LiDAR point clouds, the RGB frames, and the associated referring
expressions. Best viewed in colors and zoomed in for more details.

A.4 Examples of Multi-Object 3D Grounding

Figure 12 presents representative examples from the multi-object grounding subset of our dataset. In
this setting, each scene contains two target objects annotated with distinct 3D bounding boxes and
described through interrelated referring expressions. These expressions not only characterize each
object individually (e.g., class, appearance, motion), but also explicitly capture their spatial, temporal,
or semantic relationships.

The examples span a variety of real-world outdoor scenarios involving pedestrians, cyclists, and
vehicles. Referring expressions encode rich visual-semantic grounding cues, such as:

* Relative positioning: “in front of”, “to the right of”, “ahead of”, “shorter than”.

* Comparative reasoning: “is larger than”, “is taller than”, “is shorter than”.

* Temporal context and motion state: “driving on the road”, “stopped at the traffic light”,
“moving forward”.
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A white compact hatchback car is parked stationary in the A pedestrian dressed in a light-colored top and dark pants
middle-left portion of the image, surrounded by trees and is walking on the right side of the image, near a lamp post
grass, with pedestrians nearby on a sidewalk. and a fence, with another person visible in the background.

A person dressed in a white t-shirt and dark pants stands A man wearing a brown top, shorts, and a cap stands on a
on a skateboard in the center of the image, facing the skateboard in the foreground, facing the camera directly,
camera, with a wall of graffiti and trees in the background. near a graffiti-covered wall and other skateboarders.

A stationary Hyundai SUV is parked on the right side of A pedestrian, dressed casually with a backpack, is walking
the image, near the edge of the road and surrounded by away from the viewer along a path that leads towards a
trees, with vehicles and pedestrians in the background. bridge or overpass, surrounded by other distant pedestrians.

- - g—

A pedestrian, dressed in a dark shirt and light pants, stands A pedestrian is standing on the left side of a path, facing
still on the left side of the image, near the top of a staircase, the camera with their body slightly turned to the right,
facing away from the viewer towards a large building. surrounded by trees and greenery.

Figure 11: Additional examples of 3D grounding from the 22 Quadruped platform in 3EED dataset.
The data shown include the LiDAR point clouds, the RGB frames, and the associated referring
expressions. Best viewed in colors and zoomed in for more details.

A.5 Statistics and Analyses

In this section, we present detailed statistics and analyses that characterize the 3EED dataset across
platforms and splits. We examine the distribution of scene complexity, defined by the number
of annotated objects per scene, and show how this varies significantly between the #i Vehicle,
& Drone, and #Z Quadruped platforms. Additionally, we analyze point-level density within 3D
bounding boxes, highlighting strong differences in LIDAR sampling resolution across platforms.
These statistics provide important context for interpreting grounding performance and understanding
platform-specific challenges in 3D perception and language grounding.

A.5.1 Scene Complexity Statistics across Platforms

Table 10 presents detailed statistics of the training and validation splits across the three platforms
in the 3EED dataset — & Vehicle, ™ Drone, #Z Quadruped platforms. Each scene is categorized
by the number of objects it contains, providing insight into the distribution of scene complexity.
These statistics are collected on the single-object grounding subset, where only one referred object is
annotated per scene.
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A black SUV driving on the road is in front of a man Avyellow taxi cab driving on the street is shorter than a
standing on the back of a large flatbed truck. woman walking on the sidewalk carrying a handbag.

A large white truck with green and orange branding is right Ayellow taxi cab driving on the street is shorter than a
of a silver pickup truck driving on the road. woman walking on the sidewalk carrying a handbag.

Asilver sedan parked on the right side of the street is in Ayellow taxi cab driving on the street is shorter than a
front of a white van driving down the road. woman walking on the sidewalk carrying a handbag.

A black SUV with its brake lights on is larger than a blue Asilver sedan with its brake lights on is shorter than a
sedan on its right side, also stopped at the traffic light. black SUV ahead of it, both driving on the same lane.

L]

A cyclist wearing a backpack and riding a bicycle is to the A black SUV with its brake lights on is taller than a silver
right of a person standing near a bus stop. sedan on its right, stopped at the same traffic light.

A

Ared car is stopped at an intersection, positioned to the A person riding a bicycle on the left side of the street is to
right rear of another vehicle that is moving forward. the left of a white car parked near the curb.

Figure 12: Additional examples of multi-object 3D grounding from the 3EED dataset.

We observe that 22 Quadruped scenes are predominantly sparse, with over 95% of both training and
validation scenes containing fewer than 4 objects. Such low-density settings simplify the localization
task and reduce ambiguity during reference resolution. In contrast, ™ Drone data features a much
higher proportion of crowded scenes: over 55% of the training scenes and 60% of the validation
scenes contain 7 or more objects. This reflects the broader aerial perspective and wider field of view,
which captures more complex environments and increases grounding difficulty.
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Table 10: Scene count grouped by number of objects per scene across platforms and splits.

Platform 1-3 4-6 7-9 10-12 13+ Total
Training
&= Vehicle 1,177 968 360 135 61 2,701
“# Drone 1,021 1,053 1,035 265 740 4,114
#%Z Quadruped 1,614 1,528 1,263 527 0 4,932
Total 3,812 3,549 2,658 927 801 11,747
Validation
&= Vehicle 1,154 927 403 180 44 2,708
& Drone 411 734 494 599 746 2,984
2% Quadruped 855 696 530 837 10 2,928
Total 2,420 2,357 1,427 1,616 800 8,620
Summary 6,232 5,906 4,085 2,543 1,601 20,367

The & Vehicle platform lies between the two, exhibiting a relatively balanced distribution of scene
complexities. This makes Vehicle data a valuable middle ground for learning models that generalize
across both sparse and dense settings.

Overall, these statistics highlight the diverse spatial configurations in our dataset and provide context
for the performance variations discussed in the experiment section of the main paper, particularly in
the cross-platform grounding evaluation.

A.5.2 Box Density Statistics

Figure 13 illustrates the distribution of 3D bounding boxes by the number of LiDAR points contained
within each box, across the three platforms. The ™ Drone platform features extremely sparse boxes,
with over 60% containing fewer than 100 points. This is a result of its high-altitude viewpoint and
long-range perception, which leads to sparser spatial sampling. Conversely, the & Vehicle platform
has more than 28% of boxes with over 900 points, reflecting the dense coverage typical in street-level
LiDAR. The #Z Quadruped platform occupies a middle ground but still exhibits noticeable sparsity,
with a third of its boxes containing fewer than 100 points.

These density differences strongly affect 3D feature quality and grounding performance, especially in
low-point regimes where accurate object localization becomes more challenging.

A.6 License

The 3EED dataset and its associated toolkit are released under the Attribution-ShareAlike 4.0
International (CC BY-SA 4.0)' license.

B Benchmark Construction Details

In this section, we describe how we construct benchmark settings for evaluating 3D language
grounding using our dataset. All tasks are formulated in a proposal-free setting, where models must
directly predict 3D bounding boxes from point clouds and referring expressions. We also detail the
baseline models, training configurations, and evaluation metrics used throughout our experiments.
Our goal is to enable fair, controlled, and reproducible comparison across grounding tasks with
varying spatial and linguistic complexity.

"https://creativecommons.org/licenses/by-sa/4.0/legalcode.
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Figure 13: Distribution of 3D boxes by number of points contained in each box, across &=
Vehicle, " Drone, and #Z Quadruped platforms. Drone boxes are significantly sparser, while
Vehicle boxes are generally denser, indicating strong variations in point cloud density across platforms.

B.1 Single-Object Grounding Baselines

We compare our approach against two 3D visual grounding baselines adapted to the outdoor point
cloud domain: BUTD-DETR [32] and EDA [87]. Both models were originally proposed for
grounding in 3D indoor scenes [15], and we adapt them to our benchmark with raw point cloud input.
In all comparisons, we follow a unified setting that does not rely on pre-computed object proposals;
each model directly predicts 3D bounding boxes from the raw point cloud and query language.

BUTD-DETR [32] is a transformer-based grounding model that fuses top-down language cues
and bottom-up visual features for referential localization. In our setting, we remove the use of
region proposals entirely and adapt the model to operate on raw point clouds. The point cloud is
encoded using a PointNet++ backbone [67], producing a sequence of 3D-aware visual tokens. The
language input is processed by a frozen RoBERTa-base encoder [50], generating contextualized
word embeddings. The encoder module uses separate self-attention and cross-attention layers to
jointly process language and visual streams. The decoder is composed of transformer layers, where
non-parametric queries are derived from the top-K visual tokens based on confidence scores. Each
query outputs a 3D bounding box via a regression head that predicts box center and size relative
to the anchor point. It supervises the model using a Hungarian matching algorithm that assigns
queries to ground-truth boxes. We retain the original box regression and token-level soft alignment
loss. The contrastive loss is also included, with a symmetric formulation that aligns all predicted
queries to token embeddings and vice versa, following their not-mentioned augmentation strategy for
unmatched queries.

EDA [87] decomposes each language query into semantic components and explicitly aligns them with
point-level features. The model uses the same point encoder as BUTD-DETR [32]. The language
input is encoded via a frozen ROBERTa-base model and parsed into three components: object type,
visual attributes, and spatial relations. Each component attends to the point features via separate
alignment branches, predicting soft attention masks over the point cloud. The decoder aggregates
these aligned components through cross-attention and predicts the final 3D bounding box via a
regression head. The model is trained with a combination of L1 and GIoU losses for box prediction,
along with a multi-branch semantic alignment loss that supervises the consistency between each
language component and its corresponding spatial region.

B.2 Multi-Object Grounding Baselines

We extend the single-object grounding paradigm to handle multiple objects. Given a natural language
utterance and a 3D scene, the model aims to localize all target objects referred to in the input. The
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core challenge lies in resolving the correspondence between multiple referred entities and their textual
descriptions within the utterance.

To address this, we construct a token-level association map that aligns each target object to its
corresponding span in the language input. Each object is linked to a binary mask over the token
sequence, indicating which words describe it. These masks are normalized to ensure balanced
supervision across all objects during training.

Hungarian matching is used to assign predictions to ground-truth boxes. In the single-object case,
each scene involves a single reference box. In the multi-object case, matching is performed for each
target object separately, with losses computed and averaged across targets.

During inference, the model processes a single utterance that refers to multiple target objects. For each
object, we compute the semantic similarity between the candidate boxes and the relevant language
span, and select top-ranked boxes based on these similarity scores.

B.3 Implementation Details

Encoder-Decoder. Our model processes raw LiDAR point clouds, which are uniformly downsampled
to 16, 384 points per scene. The point cloud is encoded using a four-layer point-based encoder with
multi-scale sampling (MSS) and semantic-aware fusion (SAF) modules. The model is trained
from scratch without any pretraining. The radius settings for MSS are [[0.2,0.8], [0.8,1.6],
[1.6,3.2], [1.6,4.8]1]. Text features are extracted using a frozen RoOBERTa-base [38] model, and
projected to a 288-dimensional space via a linear projection layer to match the point cloud feature
dimension. Language and visual tokens interact through three layers of bidirectional cross-attention.
A total of 1,024 keypoints are sampled from the output of the cross-attention encoder and used as
input queries to the decoder. The decoder consists of six transformer layers that iteratively refine 3D
box predictions. All boxes are predicted directly from point cloud and language input.

Loss Function. During training, predictions are matched to ground-truth boxes via Hungarian
matching as DETR [10], using a cost that combines box ¢; distance, 3D generalized IoU [70], and a
soft token-level classification score. The model is supervised using a combination of classification
loss, box regression loss, GIoU loss, and a contrastive alignment loss. The contrastive loss is
computed between projected visual queries and language tokens using temperature-scaled cosine
similarity, with supervision applied in both query-to-token and token-to-query directions. All losses
are applied at the decoder outputs.

Training Details. We use AdamW for optimization. For single-object grounding, the learning rate is
set to 1 x 1073 for the point encoder and 1 x 10~ for all other modules. Training is conducted for
100 epochs on two NVIDIA RTX 4090 GPUs (24 GB each), with a batch size of 12 per GPU. For
multi-object grounding, the learning rate is set to 1 x 10~ for all modules. Training is conducted for
200 epochs on a single RTX 4090 GPU, also with a batch size of 12.

B.4 Evaluation Metrics

To assess grounding performance, we adopt standard IoU-based metrics including Acc@§ and mean
IoU (mloU).

Accuracy@IoUJ. Following prior works [12, 1], we compute the percentage of predicted 3D
bounding boxes whose Intersection over Union (IoU) with the ground-truth box exceeds a threshold
§ € {0.25,0.50}:

=

Acc@5 = — Z [IoU (bs, b2 > 5],

where N is the number of queries, b; is the predicted box, and bfl is the ground truth.

Mean IoU (mlIoU). To provide a finer-grained measure of localization quality, we also report the
mean IoU between the predicted and ground-truth boxes across all queries:

N
LS 0,
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Unlike Acc @4, which thresholds the overlap, mIoU captures continuous localization precision and
is sensitive to small alignment errors. Together, these metrics provide a comprehensive view of
grounding performance under both strict and relaxed criteria.

B.5 Evaluation Protocol

To ensure fair and reproducible comparison across models, we standardize the evaluation protocol
across four benchmark settings.

* Single-platform, single-object grounding. Models are trained and evaluated on the same
platform (& Vehicle, & Drone, and 22 Quadruped), enabling assessment of in-domain
performance under consistent sensor geometry and point cloud density. A prediction is
considered correct if the predicted bounding box has an Intersection over Union (IoU) above
a predefined threshold with the ground-truth box.

* Cross-platform transfer. In this setting, models are trained on one platform and evaluated
on a disjoint target platform (e.g., train on & Vehicle, test on " Drone). The evaluation
protocol mirrors that of the single-object setting, enabling controlled assessment of cross-
platform generalization.

* Multi-object grounding. For queries referring to multiple objects within a scene, the model
must predict all corresponding 3D bounding boxes. A prediction is deemed correct only if
all referred objects are correctly localized with IoU above the threshold. This setting tests
the model’s ability to handle complex referential expressions and object-object relationships.

* Multi-platform grounding. Models are trained jointly on data from all three platforms
and evaluated separately on each one. This setting examines the model’s robustness to
diverse spatial distributions, sensor configurations, and environmental conditions in a unified
training regime.

Reproducibility. All evaluations are conducted on a fixed validation split with no overlap between
training and evaluation scenes. The evaluation pipeline is standardized across all settings, and we
release our full codebase and configuration files to support reproducible benchmarking and future
comparisons.

C Additional Visual Comparisons

In this section, we provide more qualitative examples to complement the main results. These
visualizations illustrate the strengths and failure patterns of different methods across sensor platforms
and grounding settings.

C.1 Qualitative Results for Single-Object 3D Grounding

Figure 14, Figure 15, and Figure 16 present single-object grounding results from the & Vehicle
& Drone and 22 Quadruped platforms, respectively. These comparisons reveal several key insights:

* Vehicle Platform (Figure 14). Our method consistently localizes referred objects more
accurately, particularly in crowded scenes. For instance, in examples involving parked or
moving vehicles near intersections, our model correctly resolves spatial descriptions like
“moving forward on the street, positioned near the crosswalk™ or “parked on the right side of
the street”, whereas baseline methods often misplace the box or miss the object entirely.

Drone Platform (Figure 15). Despite the elevated perspective and sparse point clouds,
our method produces robust results by leveraging cross-platform cues. Notably, in scenes
with occlusions or dense parking lots, our model successfully grounds phrases like “black
SUV with grassy area to its left” and “white car with sunroof”, demonstrating resilience to
complex layouts and ambiguous references. In contrast, EDA and BUTD-DETR frequently
fail to produce any box or yield inaccurate boundaries.

Quadruped Platform (Figure 16). Grounding from the quadruped perspective introduces
unique challenges due to low-angle views and close-range objects. Our method shows clear
improvements, accurately grounding pedestrians and vehicles even when facing away from
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Asilver sedan driving on the road,
positioned near the center of the
image, withits rear facing the
viewer.
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forward on the street, positioned
near the crosswalk.
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pedestrian crossing.
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Eants , with a backpack on their
ack

A black compact car driving on
the street, moving forward at a
relatively fast speed.
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of the road, with its brake lights
on, indicating itis stationary.
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Figure 14: Additional qualitative comparisons of single-object 3D grounding on the & Vehicle
platform from the 3EED dataset. The data shown include the RGB frames, the LiDAR point clouds,
and the associated referring expressions. The ground truth and predicted boxes are shown in green
and blue, respectively. Best viewed in colors and zoomed in for more details.

the camera or interacting with the environment. For example, descriptions such as “moving
towards a bridge” and “near the edge of the parking lot” are correctly localized only by our
approach. Baselines either regress coarse boxes or misinterpret perspective cues.

These qualitative comparisons validate the platform-agnostic design of our approach and demonstrate
the ability to disambiguate fine-grained language in diverse visual-spatial contexts.

C.2 Qualitative Results for Multi-Object 3D Grounding

Figure 17 illustrates representative examples from the multi-object grounding setting. Here, each
scene contains two referred objects and a complex expression that captures both individual character-
istics and inter-object relationships.

Our method shows notable advantages in:
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Figure 15: Additional qualitative comparisons of single-object 3D grounding on the & Drone
platform from the 3EED dataset. The data shown include the RGB frames, the LiDAR point clouds,

and the associated referring expressions. The ground truth and predicted boxes are shown in green
and blue, respectively. Best viewed in colors and zoomed in for more details.

* Capturing relative semantics: In expressions like “a white oistal truck is taller than a yellow
car” or “a silver sedan is to the left of a red car”, our model localizes both objects with high
precision and correct relative positioning.

* Handling comparatives and prepositions: Even in cases with overlapping objects or subtle
distinctions, our method interprets spatial relations (e.g., “to the left of”, “is behind”) more
reliably than baselines.

* JoU consistency: The paired IoU scores (IoU1/IoU2) of our predictions are consistently
higher, reflecting better localization and object differentiation.

In contrast, BUTD-DETR [32] often fails to detect one of the objects, while EDA [87] tends to
confuse spatial hierarchy, misplace referred instances, or miss the relationships altogether.

Overall, these visual results demonstrate that our model excels not only in individual object grounding
but also in multi-entity reasoning, which is crucial for real-world applications requiring collaborative
spatial understanding.
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Figure 16: Additional qualitative comparisons of single-object 3D grounding on the #Z Quadruped
platform from the 3EED dataset. The data shown include the RGB frames, the LiDAR point clouds,
and the associated referring expressions. The ground truth and predicted boxes are shown in green
and blue, respectively. Best viewed in colors and zoomed in for more details.

D Broader Impact & Limitations

In this section, we elaborate on the broader impact, societal influence, and potential limitations.

D.1 Broader Impact

This work introduces a new benchmark and methodology for 3D visual grounding across diverse
robotic platforms, including vehicles, drones, and quadrupeds. By addressing cross-platform percep-
tion and grounding under real-world sparsity, we hope to inspire future research in robust, generaliz-
able spatial language understanding. The dataset and evaluation settings reflect realistic conditions
encountered by embodied agents in autonomous driving, inspection, and delivery. We expect this
work to benefit the development of safe, context-aware decision-making systems that can interpret
human intent across environments. All data collection and annotation followed privacy-compliant
and publicly accessible sources.
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Figure 17: Additional qualitative comparisons of multi-object 3D grounding approaches on the
3EED dataset. The data shown include the RGB frames, the LiDAR point clouds, and the associated
referring expressions. The ground truth and predicted boxes in the prediction results are shown in
green and blue, respectively. Best viewed in colors and zoomed in for more details.

D.2 Societal Influence

The ability to ground language in 3D scenes is critical for real-world human-robot interaction,
especially in complex outdoor scenarios. Our benchmark enables evaluating such capabilities beyond
indoor or single-device assumptions, pushing toward a more inclusive and scalable understanding.
Potential downstream applications include collaborative navigation, voice-based robotics control,
and assistive technologies in search-and-rescue operations. While our dataset promotes progress in
these areas, we note that grounding models trained on limited sensory conditions may inadvertently
inherit biases from pretrained language models or overlook vulnerable populations in data-scarce
environments.

D.3 Potential Limitations

Despite its scale and diversity, our dataset may still suffer from platform-specific biases (e.g., drone
views emphasizing sparse or elevated contexts), which could limit generalization. The current
version focuses primarily on static scenes with one or more referred objects, without modeling
temporal dynamics or dialogue-based interaction. In addition, our evaluation settings assume accurate

41



text descriptions and do not yet account for ambiguous, contradictory, or noisy language input.
Furthermore, while our benchmark covers three robotic platforms, generalization to other types of
sensors or modalities (e.g., thermal, event cameras) remains unexplored.

E Public Resource Used

In this section, we acknowledge the use of the public resources, during the course of this work:

E.1 Public Datasets Used

o ME D CCBY-SA 4.0
» Waymo Open Dataset’ ..................c.cciiiiiiiiiiiiiaai.n.. Apache License 2.0

E.2 Public Implementation Used

e BUTD-DETR" ... .. i CC BY-SA 4.0 License
o ED A CC BY-SA 4.0 License
o OPENBD MIT License
o PyTorch! . BSD License
* Pointnet2 PyTorch ® .. ... ... ... ... . . . . UNLICENSE
o POININEtH+ ..o MIT License
o xtremel !V L Apache License 2.0
o WildRefer ' ... ... CC BY-SA 4.0 License

https://m3ed.io.
*https://github.com/waymo-research/waymo-open-dataset.
*https://github.com/nickgkan/butd_detr.
*https://github.com/yanmin-wu/EDA.
Shttp://www.open3d.org.

"https://pytorch.org.
8https://github.com/erikwijmans/Pointnet2_PyTorch.
‘https://github.com/charlesq34/pointnet2.
Yhttps://github. com/xtremel-io/xtremel.
Uhttps://github.com/4DVLab/WildRefer.
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