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ABSTRACT

Machine unlearning aims to remove “forget” data while preserving knowledge from
the “retain” data, but what should happen when they share content? According
to the formal definition of machine unlearning, an unlearned model should be
indistinguishable from a retrained model trained solely on the retain set. This
means that shared knowledge must remain while unique forget content is removed.
We introduce DUSK, the first benchmark to evaluate unlearning under realistic
knowledge overlap. DUSK constructs documents that contain shared and unique
knowledge across five different styles and defines seven metrics to test whether
methods erase forget-specific expressions without discarding valid shared facts.
By evaluating nine recent approaches, we find that despite the frequent removal of
surface text, current methods struggle to distinguish unique from shared knowledge,
either removing shared knowledge that should be preserved or failing to erase
forget-specific information. DUSK provides a controlled, reproducible testbed for
diagnosing such failures and guiding more precise unlearning algorithms.

1 INTRODUCTION

Large language models (LLMs) are typically trained on web-scale corpora that include copyrighted
materials, personal data, and user-generated content (Carlini et al., 2021; Nasr et al., 2025). As these
models are deployed in real-world applications, individuals and organizations increasingly demand
the removal of specific training examples due to legal and ethical concerns. These demands are
driven by privacy regulations such as the GDPR (Voigt & Von dem Bussche, 2017) and reinforced
by recent lawsuits (Grynbaum & Mac, 2023; Tremblay v. OpenAI, Inc., 2023; DOE 1 v. GitHub,
Inc., 2022) over the unauthorized use of proprietary content. This has led to growing interest in
machine unlearning (Nguyen et al., 2025; Liu et al., 2025), which focuses on removing the influence
of forget data (e.g., copyrighted documents) from a trained model without retraining from scratch,
as preserving information from retain data. To evaluate unlearning algorithms, several benchmarks
have recently been proposed (Maini et al., 2024; Shi et al., 2025; Jin et al., 2024). For example,
MUSE (Shi et al., 2025) targets copyright-related scenarios by focusing on the removal of entire
documents. In such cases, unlearning algorithms are expected to erase both verbatim text and the
underlying knowledge from the forget set, while preserving information from the retain set.

However, existing unlearning benchmarks often assume that the forget set and retain set are disjoint,
overlooking the complexity of real-world data where documents frequently share information. For
example, if a New York Times article is subject to a deletion request, it may describe, “A 6.2
magnitude earthquake struck Tokyo on Monday,” while a Wikipedia article in the retain set states,
“A strong tremor shook the Japanese capital at the start of the week.” Despite stylistic differences,
both convey the same factual content. This raises a key question for unlearning: what should a model
do when forget and retain sets overlap? Intuitively, the model should preserve any information that
exists in the retain set, since it can be learned from the retain set alone without access to the forget
set. This also aligns with the definition of machine unlearning, which requires the unlearned model
to be indistinguishable from one retrained solely on the retain set.

To address this gap, we introduce DUSK, a benchmark for evaluating unlearning in settings where
forget and retain sets share overlapping knowledge. DUSK constructs document sets that describe
the same factual content in different styles, allowing clear attribution: some information is unique
to the forget set, while other content remains supported by the retain set. The dataset consists of
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Figure 1: DUSK provides a realistic unlearning evaluation scenario where forget documents (Df )
contain both unique information to be forgotten and shared knowledge that must be preserved. Unlike
conventional setups that naively erase entire forget sets, DUSK evaluates whether unlearning methods can
selectively remove sensitive information while retaining shared knowledge supported by other documents in the
retain set (Dr), which is not subject to forgetting.

120 synthetic professor profiles organized into five documents, each containing unique and shared
profiles. We construct DUSK with synthetic data to enable precise control and systematic evaluation
of unlearning outcomes, as overlaps between forget and retain information are often ambiguous in
real-world data, yet essential for meaningful evaluation. This choice follows prior work (Maini et al.,
2024; Yoon et al., 2025), which similarly uses synthetic setups for controlled unlearning analysis. In
this way, DUSK offers a simple yet effective benchmark that, for the first time, directly evaluates
unlearning under shared knowledge conditions. An overview is shown in Figure 1.

DUSK defines seven evaluation metrics: (1) Verbatim Memorization, which checks whether exact text
from the forget set has been fully removed; (2) Unique Forget Knowledge, which measures whether
forget-only content is effectively erased; (3) Shared Knowledge, which ensures that overlapping
information is preserved; (4) Unique Retain Knowledge, which verifies that retain-only facts remain
intact; (5) Downstream Capability, which evaluates whether the model maintains general utility after
unlearning; (6) Privacy Leakage, which inspects for residual leakage of forget set information; and
(7) Retain Deviation, which assesses whether the model’s behavior on the retain set is preserved.

We evaluate nine unlearning methods on the DUSK benchmark. Our results reveal a critical limitation
of existing methods: while these methods aim to remove content uniquely attributable to the forget
set, they often struggle to fully separate this content from information still supported by the retain set.
This incomplete disentanglement can degrade shared knowledge, compromising the model’s overall
utility. These findings highlight a fundamental challenge in current unlearning approaches: precisely
distinguishing forget-specific information from retained knowledge. To support further research, we
will release DUSK as a public benchmark for evaluating unlearning in real-world scenarios.

2 RELATED WORK

Machine Unlearning in LLMs: Methods and Applications. Machine unlearning aims to selec-
tively remove the influence of forget data from a trained model while preserving its performance
on retain data (Cao & Yang, 2015; Brophy & Lowd, 2021; Jeon et al., 2024). Recent efforts have
extended unlearning techniques to large language models (LLMs) (Liu et al., 2025), enabling their use
in a range of applications such as removing copyrighted content (Kassem et al., 2023; Wei et al., 2024),
eliminating sensitive or harmful knowledge (Maini et al., 2024; Yousefpour et al., 2025; Zhang et al.,
2024b), mitigating bias (Dige et al., 2024; Jeung et al., 2025a), and performing model editing (Guo
et al., 2025). Most methods achieve unlearning by fine-tuning on the forget data (Chen & Yang, 2023;
Jia et al., 2024; Cao & Yang, 2015; Barbulescu & Triantafillou, 2024), commonly using gradient
ascent (Jang et al., 2023) or preference optimization (Zhang et al., 2024a). To scale these methods to
large models, recent work has explored approaches such as guardrail-based techniques (Thaker et al.,
2024; Gao et al., 2025), and in-context unlearning (Pawelczyk et al., 2024). Despite this progress,
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recent studies have highlighted the fragility of current unlearning techniques (Hu et al., 2025; Lynch
et al., 2024; Thaker et al., 2025; Zhang et al., 2025b; Joshi et al., 2024; Jeung et al., 2025b), revealing
the fundamental challenges in achieving robust and reliable unlearning in practice.

Machine Unlearning in LLMs: Benchmarks. As machine unlearning methods for LLMs evolve,
the need for comprehensive evaluation benchmarks has become increasingly important. Early work
introduced the “Who is Harry Potter” (WHP) task (Eldan & Russinovich, 2023), which targets entity-
specific forgetting by fine-tuning models on fictional corpora and evaluating unlearning through
related prompts while monitoring retention on unrelated tasks. Subsequent efforts expand the scope
to hazardous knowledge, with the WMDP (Li et al., 2024) focusing on removing information
related to biosecurity and cybersecurity without compromising general model capabilities. To enable
controlled evaluation of unlearning, TOFU (Maini et al., 2024) constructs synthetic author profiles
with associated question-answer pairs generated by GPT-4. This synthetic setup ensures that the
model’s knowledge of these authors originates solely from the fine-tuning process, allowing for
precise assessment of unlearning effectiveness. MUSE (Shi et al., 2025) introduces a six-dimensional
evaluation framework for unlearning algorithms, spanning forgetting effectiveness, privacy leakage,
utility retention, scalability, and sustainability. It aims to remove both verbatim content and underlying
knowledge within the forget set. CoTAEval (Wei et al., 2024) instead focuses on a narrower goal,
removing only verbatim memorization while explicitly preserving the associated knowledge. Building
on this line of work, RWKU (Jin et al., 2024) proposes a more challenging setting where neither the
forget nor retain corpus is accessible. It targets the removal of widely known real-world knowledge,
such as facts about 200 famous individuals , and evaluates performance via membership inference
attacks, adversarial probes, and tasks assessing reasoning, truthfulness, and fluency. However, existing
benchmarks tend to assume that the forget set contains only information to be removed, overlooking
the realistic scenario where forget documents often contain both information that should be forgotten
and information that should be retained. We address this gap by introducing DUSK, a benchmark for
multi-source unlearning where forget-specific and retained knowledge coexist within each document.

3 THE DUSK BENCHMARK

3.1 PROBLEM SETTING

The central principle of traditional machine unlearning is that the unlearned model should be essen-
tially indistinguishable from a model retrained from scratch on the retain set alone. Because such a
retrained model naturally preserves all knowledge supported by the retain set, shared knowledge
must strictly remain, while only the content unique to the forget set should be removed.

DUSK is designed to evaluate this requirement under the realistic conditions where the forget and
retain sets may frequently overlap in practice. Each document therefore contains the following two
types of content: (1) shared knowledge, factual information that appears in the multiple documents
and should remain accessible even if one document is deleted, and (2) unique knowledge, information
specific to a single document that should be forgotten when that document is removed.

Given a forget request for a particular document, we assess whether an unlearning algorithm can:

1. Preserve shared knowledge supported by the retain set,
2. Remove unique knowledge from the forgotten document, and
3. Preserve unique knowledge from other (non-forgotten) documents.

This task formulation highlights the inherent practical difficulty of unlearning in the multi-source
environments: the boundary between forgetting and retaining is often blurred, yet effective methods
must closely approximate the outcomes of a model retrained on the retain set.

3.2 PROBLEM FORMULATION AND NOTATIONS

Let fθ be a target model trained on a dataset D, and let Df ⊂ D denote the subset of training
data targeted for removal (i.e., forget set1). The goal is to produce an unlearned model fθ′ that no

1DUSK focuses on document-level unlearning, reflecting real-world cases such as The New York Times v.
Microsoft, where deletion requests specify complete documents, making the forget set clearly defined.
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Figure 2: Distributions of country of nationality (left) and graduate year (right) for the seven most common
attributes in GPT-4 outputs. This reveals mode collapse with default prompts , disproportionately favoring
frequent values like “Canada” and “2010.” After prompt refinement , distributions become more balanced,
reflecting a more diverse attribute range.

longer exposes the information contained in Df , while maintaining utility on the remaining data,
Dr = D ∖Df . Ideally, fθ′ should be indistinguishable from a model retrained from scratch on Dr.

We define Kf as the knowledge contained in the forget set Df , and Kr as the knowledge contained
in the retain set Dr. Prior works often assume that Kf ∩Kr = ∅, meaning the knowledge from the
forget and retain sets does not overlap. However, this assumption rarely holds in practice. In many
real-world cases, the same information appears across both sets in different phrasings or styles. As a
result, an effective unlearning method must identify and remove only the portion of knowledge that is
uniquely attributable to Df , while preserving content that is also supported by Dr.

3.3 THE DUSK DATASET CONSTRUCTION

To ensure precise control over the origin and overlap of information, we construct a synthetic dataset
inspired by TOFU (Maini et al., 2024). It comprises 120 fictitious professor profiles, each built using
structured attributes, such as academic department and institutional affiliation. Because these profiles
are entirely absent from any pretrained corpus, they guarantee a clean experimental environment with
clearly defined forget and retain sets. We generate five documents, each representing an independent
data source. These documents collectively cover all 120 profiles, including both shared profiles that
appear in multiple documents and unique profiles that are present in only one, enabling fine-grained
control over content attribution across sources. The profiles are partitioned into two disjoint subsets:

• Shared Knowledge: 60 profiles appear in all five documents, each presented in a different
style. These profiles represent redundantly supported knowledge that should be preserved
regardless of which document is unlearned.

• Unique Knowledge: The remaining 60 profiles are evenly distributed across the five
documents, with each document containing 12 unique profiles that do not appear in any
other. These profiles represent document-specific information that should be forgotten when
the corresponding document is unlearned.

We also create a holdout set (Dh) consisting of 120 professors that do not overlap with Dr or Df . In
constructing, we follow the same process used to construct Dr and Df . The holdout set has never
been included in the training data for either the Retrain model or the Target model.

3.3.1 DATA GENERATION PIPELINE

Knowledge Source. We begin by generating a knowledge base of 120 fictitious professor profiles,
each represented by 20 question–answer (QA) pairs covering attributes such as birth year, nationality,
and academic history. The QA pairs are synthesized with GPT-4 to ensure fluency and diversity.

However, we observe that GPT-4 exhibits strong biases in generating attribute values. For example,
as shown in Figure 2, GPT-4 disproportionately favors the year 2010 for graduation years, with
this value appearing in nearly 40% of cases. Similarly, nationality values are skewed, with a strong
preference for Canadian, which in turn affects related fields like birthplace and affiliated universities.

To mitigate these biases, we iteratively refine the prompt design. When we observe skewed distribu-
tions in attributes in the generated data, we adjust the prompts accordingly by explicitly specifying

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

underrepresented categories or by sampling values like graduation year uniformly within a reasonable
range and then regenerate the data. Through four iterations of prompt-based refinement, we obtain
more balanced and realistic outputs from GPT-4. As illustrated in Figure 2, the final set of profiles
exhibits significantly improved attribute diversity compared to the initial generations. Additional
implementation details, along with privacy and integrity audits, are described in Appendix A.1.

Document Construction. Using the processed QA profiles as source knowledge, we construct five
distinct documents, denoted as {Di}

5
i=1, each expressing the underlying content through a different

narrative style. We designateD1 as the forget set and define the retain set as the union of the remaining
documents, Dr = ⋃

5
i=2Di. To simulate stylistic diversity reflective of real-world corpora, we format

each document using a distinct narrative genre: Chronological, which presents profiles as career
timelines ordered by milestones; Feature Story, which uses narrative-driven descriptions akin to
editorial articles; Interview, which formats profiles as fictional Q&A sessions with conversational
tone; Inverted Pyramid, which follows journalistic convention by placing key facts first; and Listicle,
which presents profiles in ranked or grouped lists using bullet-point highlights.

Each document is composed of the same 60 shared profiles and 12 unique profiles in style-specific tem-
plates. This setup allows us to evaluate whether unlearning methods can selectively remove isolated
information while preserving general knowledge under stylistic or structural variation. Corresponding
text examples for the shared knowledge in each document style are provided in Appendix A.2.

3.4 THE DUSK EVALUATION

The DUSK evaluation framework characterizes unlearning behavior in three dimensions: (1) what
should be forgotten, (2) what should be retained, and (3) whether the model behaves as if trained only
on the retain set. An effective unlearning method should eliminate not only verbatim content from
the forget set but also knowledge uniquely attributable to it. It should retain shared and exclusive
information in the retain set and preserve downstream capabilities, while ensuring the model’s
behavior becomes indistinguishable from that of a model trained without access to the forget set.

3.4.1 FORGET ASSESSMENT

Verbatim Memorization (VM). We assess whether the unlearned model can still reproduce exact
phrasings from the forget set, even when the underlying knowledge is shared across both forget and
retain sets. While such shared knowledge should be preserved, any specific wording originating from
the forget document must be removed. This is particularly critical because the forget set often contains
copyright-protected material and regenerating such text would indicate incomplete unlearning.

To comprehensively evaluate memorization, we prompt the model with partial sequences from Df ,
denoted as d[∶ℓ], and compare the model’s continuations to the original text d[ℓ+1∶] across multiple
metrics. Specifically, we use ROUGE-1 and ROUGE-L (F1 scores) to measure overall lexical
and structural overlap, and their Recall variants to emphasize ground-truth coverage. We further
include the Levenshtein Distance (Levenshtein et al., 1966) to quantify the minimum number of
edits required for alignment, Longest Common Subsequence (LCS) for sequential token overlap, and
Cosine Similarity (Cer et al., 2017) for embedding-level semantic similarity. Here, higher scores
indicate that the model remains capable of reproducing text that should have been forgotten.

Unique Forget Knowledge (UFK). We evaluate whether the model retains knowledge Kf ∖Kr

that is uniquely attributable to the forget set Df by prompting it with targeted questions. Overlap
between the model’s responses and the correct answers is measured using ROUGE-L scores (Lin,
2004), where lower scores indicate more effective unlearning of forget source-specific information.

3.4.2 RETAIN ASSESSMENT

Shared Knowledge (SK). Unlike prior benchmarks that aim to remove all knowledge about
the forget set, multi-source scenarios, where training data originates from diverse and overlapping
sources, often involve shared knowledge appearing in bothDf andDr. In such cases, indiscriminately
unlearning the entire forget set risks discarding overlapping content that should remain accessible.

5
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Figure 3: Min-K++ Probability Distributions over Df , Dr , and Dh. (a) Target model trained on both Df

and Dr shows higher probabilities, reflecting retained knowledge, while Dh remains lower. (b) Retrain model
reduces probabilities on Df , as they are not trained on it, representing ideal unlearning. (c) Some unlearned
models achieve ideal low probabilities on Df but risk collapsing Dr , as detected by Retain Deviation.

To assess the preservation of shared knowledge, we construct queries targeting Kf ∩Kr (i.e., infor-
mation present in both the forget and retain sets) and evaluate the model’s responses using ROUGE-L
scores measured against the ground truth answers. High scores indicate successful preservation,
while low scores indicate unintended forgetting caused by overly aggressive unlearning.

Unique Retain Knowledge (URK). To assess the preservation of retain-exclusive knowledge
Kr ∖ Kf , we specifically construct queries answerable only from Dr and not from Df . Model
responses are then compared against ground truth answers using ROUGE-L scores, where higher
scores indicate successful retention without the unintended removal of unique retain content.

Downstream Capability (DC). We verify that the model’s fundamental capabilities, such as reason-
ing, factual consistency, and fairness are indeed preserved after unlearning. We assess performance
across six downstream tasks: MMLU for broad knowledge and ability (Hendrycks et al., 2021), ARC-
c for challenging reasoning (Clark et al., 2018), GSM8K for arithmetic and problem-solving (Cobbe
et al., 2021), TriviaQA for factual recall (Joshi et al., 2017), TruthfulQA (MC1) for truthfulness
evaluation (Lin et al., 2022), and BBQ for social bias probing under ambiguity (Parrish et al., 2022).
A successful unlearning method should remove only the targeted information while maintaining the
core competencies and showing strong performance on downstream tasks.

3.4.3 DISTRIBUTIONAL ASSESSMENT

Privacy Leakage. We assess privacy leakage by evaluating whether any behavioral traces from
the forget set remain in the unlearned model. Following the MUSE benchmark (Shi et al., 2025),
we adopt a membership inference attack (MIA) framework and apply Min-K%++ (Zhang et al.,
2025a) to capture subtle distributional differences. Specifically, as shown in Figure 3, we measure the
model’s ability to distinguish samples from forget set (Df ) and a holdout set (Dh), which consists
of unseen data. We report the AUC-ROC of this discrimination task and normalize it relative to a
Retrain model that excludes Df for training. Privacy Leakage score is defined as:

PrivacyLeak ∶=
AUCunlearn(Df ,Dh) −AUCretrain(Df ,Dh)

AUCretrain(Df ,Dh)
.

A Privacy Leakage value close to zero indicates that the unlearned model treats Df similarly to Dh,
suggesting successful unlearning of Df . Values below zero indicate under-unlearning, where the
model continues to assign high probability to forget data. Conversely, values above zero reflect over-
unlearning, where the model suppresses forget set too aggressively, leading to excessive forgetting.
As shown in Figure 3b, it is important to note that Df and Dh are not expected to follow identical
distributions even after ideal unlearning. This is because Df may contain shared knowledge that
overlaps with the Dr, while Dh consists entirely of unseen content.

Retain Deviation. Unlearning often disrupts the model’s ability to distinguish Dr, causing both
Df and Dr to collapse toward Dh, as illustrated in Figure 3c. This issue becomes more pronounced
in multi-source unlearning scenarios, where overlapping information between Df and Dr makes Dr
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Figure 4: Two-dimensional analysis of unlearning dynamics. We visualize model trajectories over multiple
epochs to illustrate key trade-offs in DUSK. (a) shows the trade-off between verbatim and knowledge forgetting,
while (b) shows the trade-off between shared knowledge and unique forget knowledge.

more vulnerable to unintended forgetting. To quantify this side effect, we introduce a supplementary
metric, Retain Deviation, which applies the same MIA framework to Dr and is defined as:

RetainDeviation ∶= ∣
AUCunlearn(Dr,Dh) −AUCretrain(Dr,Dh)

AUCretrain(Dr,Dh)
∣ .

A low Retain Deviation score indicates that the model retains its original capabilities on Dr after
unlearning. As Retain Deviation increases, the model’s behavior on Dr diverges from its original
state, suggesting that important retained knowledge may not have been properly preserved.

4 EXPERIMENTS

4.1 UNLEARNING METHODS

Removing Forget Set. We introduce five unlearning methods designed to effectively remove the
influence of forget data. Gradient Ascent (GA) (Jang et al., 2023) maximizes the loss on the forget
set Df , reducing the model’s ability to reproduce its content. Negative Preference Optimization
(NPO) (Zhang et al., 2024a) extends Direct Preference Optimization (DPO) (Rafailov et al., 2023) for
unlearning by treating samples in Df as negative preferences relative to a Target model. Representa-
tion Misdirection for Unlearning (RMU) (Li et al., 2024) modifies intermediate representations by
pushing activations of the forget set toward random directions, while aligning retain set activations
with those of a frozen Target model. Task Vector (TV) (Ilharco et al., 2023) removes the influence
of Df by computing the parameter changes caused by fine-tuning on Df and subtracting them
from the original model weights. Lastly, Task Arithmetic for Unlearning (TAU) (Barbulescu &
Triantafillou, 2024) performs two steps: it first applies gradient ascent selectively to samples with
high memorization scores, and then conducts task vector subtraction as described above.

Preserving Retain Set. To maintain model utility during unlearning, we incorporate two regulariza-
tion losses. Gradient Descent (GD) preserves performance on the retain setDr by applying prediction
loss. This ensures that removing Df does not excessively degrade the model’s behavior on unrelated
data. KL Divergence (KL) (Hinton et al., 2014) encourages consistency between the unlearned
model’s predictions on Dr and those of a Target model. By minimizing this divergence, the model
retains useful information and softly constraining deviation from its original output distribution.

Consequently, we evaluate nine total configurations: GA, GAGD, GAKL, NPO, NPOGD, NPOKL,
RMU, TV, and TAU, where the suffix indicates an added utility-preserving objective. Additional
details about these methods can be found in Appendix B.1.
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Table 1: Impact of Unlearning on UFK, SK, URK, and DC. We report both raw values and their differences
relative to the Retrain model. Red indicates higher values, and Blue indicates lower values, with darker
shades indicating greater magnitude. DC is calculated by averaging of six benchmarks explained in Section 3.4.2.

Unique Forget Knowledge Shared Knowledge Unique Retain Knowledge Downstream Capability
UFK (↓) SK (↑) URK (↑) DC (↑)

Target 83.8 98.6 88.7 40.3
Retrain 5.2 98.3 84.8 40.6

GA 24.3 (+367%) 50.7 (−48%) 52.5 (−38%) 37.5 (−8%)

GAGD 38.2 (+635%) 63.7 (−35%) 63.6 (−25%) 39.0 (−4%)

GAKL 24.9 (+379%) 56.2 (−43%) 57.4 (−32%) 38.6 (−5%)

NPO 43.0 (+727%) 73.4 (−25%) 69.6 (−18%) 39.5 (−3%)

NPOGD 27.1 (+421%) 54.4 (−45%) 51.1 (−40%) 37.8 (−7%)

NPOKL 30.4 (+485%) 52.7 (−46%) 52.8 (−38%) 37.7 (−7%)

RMU 55.1 (+960%) 74.0 (−25%) 64.0 (−25%) 39.1 (−4%)

TV 35.3 (+579%) 62.4 (−37%) 69.1 (−19%) 40.3 (−1%)

TAU 27.5 (+429%) 33.5 (−66%) 50.7 (−40%) 35.8 (−12%)

4.2 EXPERIMENTAL SETUP

We begin with a pretrained base model (LLaMA-3-8B (Dubey et al., 2024)). Target model is
obtained by fine-tuning this base model on the full corpus (Dr ∪Df ) for 5 epochs with a learning
rate of 1 × 10−5, following prior benchmarks (Maini et al., 2024; Shi et al., 2025). Retrain model is
trained solely on the retain set Dr under the same setup.

For all unlearning methods, we adopt the AdamW optimizer with a learning rate of 1 × 10−5 and a
batch size of 32, using the first epoch as a warm-up phase, consistent with prior work (Maini et al.,
2024). Since unlearning performance is sensitive to the number of training epochs, we standardize the
stopping criterion across methods: We terminate unlearning at the first epoch where the Unique Retain
Knowledge (URK) score falls below 70. This ensures comparable utility levels, enabling fair and
consistent comparisons across methods. Further implementation details are provided in Appendix B.

4.3 UNLEARNING RESULTS

4.3.1 FORGET ASSESSMENT RESULTS.

Verbatim Memorization (VM). We first evaluate whether unlearning methods can suppress
verbatim memorization of the forget set. Given prefix excerpts from Df , we prompt the model
to continue the text and measure similarity to the original using ROUGE, Levenshtein Distance,
LCS, and Cosine Similarity. As shown in Figure 4a, most methods reduce lexical overlap with the
original text, with TAU consistently achieving the largest reductions, indicating strong suppression of
verbatim memorization. Full results for verbatim memorization are provided in Appendix C.1.

Unique Forget Knowledge (UFK). To assess whether unlearning removes not just surface ex-
pressions but deeper factual knowledge, we evaluate models on Unique Forget Knowledge (UFK),
consisting of questions relying exclusively on information from Df . As shown in Figure 4a, plotting
average ROUGE scores against UFK accuracy, most methods shift into the Verbatim Forgotten region,
showing effective surface-level suppression. Yet, they largely fail to erase underlying facts, as models
continue to answer UFK questions correctly, implying that knowledge forgetting remains incomplete.

4.3.2 RETAIN ASSESSMENT RESULTS.

Shared Knowledge (SK) and Unique Retain Knowledge (URK). We evaluate whether unlearning
unintentionally erases information that should be preserved. As shown in Figure 4b, almost all
contemporary unlearning methods not only reduce UFK scores as intended but also substantially
degrade SK scores, revealing a consistent failure to preserve shared knowledge. This suggests
that existing unlearning methods tend to degrade the utility of the model by also removing shared
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Figure 5: Privacy Leakage and Retain Deviation Analysis. Gray bands indicate optimal bounds: [−5%, 5%]
for leakage and [0%, 5%] for deviation. Values outside these ranges reflect under-unlearning (below −5%),
over-unlearning (above 5%) in leakage, or degradation of retained knowledge (above 5%) in deviation.

knowledge that overlaps with the forget set. Furthermore, as highlighted in Table 1, SK suffers greater
accuracy degradation than URK across most methods. Since SK spans both forget and retain sets,
unlearning that targets the forget set inadvertently harms overlapping knowledge that should ideally be
preserved. These findings reveal a key limitation of current approaches, as they struggle to selectively
unlearn knowledge associated with the forget set without also disrupting shared knowledge.

Downstream Capability (DC). We evaluate general capability after unlearning using a range of
downstream tasks, including MMLU, ARC-c, GSM8K, TriviaQA, TruthfulQA, and BBQ. Across
most methods, performance on these tasks remains stable, with only modest declines relative to
the Retrain model, indicating that core capabilities such as reasoning, factual recall, and fairness
are largely preserved. By contrast, as shown in Table 1, knowledge closely related to the forget
set, captured by SK and URK, degrades far more than the overall downstream capability (see
Appendix Table 7). Taken together, this pattern suggests that even when broad capabilities are
maintained, knowledge conceptually adjacent to the forget set remains highly vulnerable to collateral
forgetting. Full results for downstream capability are presented in Appendix C.2.

4.3.3 DISTRIBUTIONAL ASSESSMENT RESULTS.

Privacy Leakage and Retain Deviation. Successful unlearning is ideally indicated by both the
Privacy Leakage and Retain Deviation values close to zero. However, we observe two particularly
representative patterns in their joint behavior that fall short of this ideal as illustrated in Figure 5.
Most cases exhibit over-unlearning along with rising Retain Deviation, where unlearning Df leads
to unintended changes in the model’s responses to Dr due to shared knowledge. In contrast, NPO
exhibits under-unlearning, yet still show a rising Retain Deviation. This suggests that even before
Df is fully unlearned, the model’s performance on Dr can already deteriorate due to entangled
representations arising from overlapping knowledge. Taken together, these findings indicate that
under realistic conditions where Df and Dr are not disjoint, no method can completely remove the
influence of Df while fully preserving the model’s behavior on Dr. This underscores the importance
of jointly monitoring Privacy Leakage and Retain Deviation in multi-source unlearning scenarios.

5 CONCLUSION

We introduce DUSK, a benchmark for evaluating machine unlearning in realistic multi-source
scenarios, where forget data often overlaps with retain data. Unlike prior work, DUSK explicitly
separates unique and shared knowledge, providing a fine-grained testbed for assessing unlearning
performance. Our experiments reveal that while most existing unlearning methods effectively remove
verbatim content, they often fail to disentangle forget-specific knowledge from overlapping facts. This
failure leads to unintended degradation of both shared and retain-only knowledge that should have
been preserved. We hope DUSK will serve as a foundation for advancing more precise and reliable
unlearning methods, bridging the gap between theoretical formulations and real-world applications.
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A DETAILS OF DUSK

A.1 DATASET CONSTRUCTION DETAILS

Table 2: Professor Information Fields

# Field Description

1 Nationality The professor’s nationality.
2 Born The birthplace of the professor.
3 Closest Colleague The professor’s closest colleague or collaborator.
4 Year of birth The birth year of the professor.
5 Department The major of the professor is affiliated with.
6 Award The most prestigious award received by the professor.
7 School The fictitious university where the professor teaches.
8 Best paper The most well-known and fictitious research paper authored by the

professor.
9 Office number The room number where the professor’s office is located.
10 E-mail A fictitious email address associated with the professor.
11 Research Interests The professor’s main research areas.
12 Funded Projects Major fictitious research projects funded under the professor’s name.
13 Patents Any fictitious patents held by the professor.
14 Course The fictitious course(s) taught by the professor.
15 Hobby The professor’s main hobby outside of work.
16 Alma Mater The university where the professor received their PhD.
17 Favorite Theorem The professor’s favorite theorem or concept.
18 Religion The professor’s religious affiliation.
19 Lab name The fictitious name of the professor’s laboratory.
20 Year of employment The year the professor was appointed to their current university.

Knowledge Source. To generate a dataset of 120 fictional professors, we use GPT-4 to produce 20
question–answer pairs for each individual, resulting in a total of 2,400 QA pairs. Types of questions
used for each professor are listed in Table 2, covering a wide range of biographical, academic, and
professional attributes to ensure diversity and richness in the generated data.

To further improve representational balance, we refine the prompts used during generation by
controlling several key attributes. For country of nationality, we manually select 60 distinct countries,
which naturally increases diversity in birthplace as well, since GPT-4 tends to produce regionally
coherent outputs. For religion, we choose eight widely practiced belief systems—Christian, Muslim,
Jewish, Hindu, Buddhist, Agnostic, Atheist, and Spiritual—and assign them uniformly across the
dataset. For temporal attributes such as year of birth and year of employment, which otherwise show
skewed distributions, we sample values uniformly within a reasonable range and include them directly
in the prompt. The effectiveness of prompt refinement is reflected in the attribute distributions shown
in Figure 6 and Figure 7. Compared to the initial outputs, which display strong mode collapse in
attributes such as nationality and employment year, the refined versions demonstrate significantly
more balanced and diverse distributions. Figure 8 shows the final prompt we used for QA generation.

After generating the full QA sets, we perform a final validation step to identify any duplicate professor
names. This ensures the dataset can support a realistic and rigorous unlearning scenario, where
identifying and selectively removing information about specific individuals is required.

Dataset Construction. For each professor, we create profiles based on information generated from
QA pairs with prompt in Figure 9. Each professor’s information is used to create five profiles in five
different styles: Chronological, Feature Story, Interview, Inverted Pyramid, and Listicle, resulting in
a total of 600 professor profiles (120 per style). These profiles are divided into shared knowledge and
unique knowledge components.

The shared knowledge set consists of 60 professors, each represented by a single profile in each
style, resulting in 300 profiles (60 professors × 5 styles). These 60 professors are included in all five
style-specific documents, with each document containing the same set of 60 professors, but with their
profiles presented in different styles.
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Figure 6: Distributions of seven most common attributes in GPT-4 outputs before prompt refinement. Sev-
eral features exhibit mode collapse, with overrepresentation of specific values such as “Canadian” for nationality,
“2010” for year of employment, and “Agnostic” for religion, reflecting bias in uncontrolled generation.
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Figure 7: Distributions of seven most common attributes after prompt refinement. The frequency of values
across attributes such as nationality, religion, and year of employment is more balanced, indicating improved
diversity and reduced mode collapse in GPT-4 outputs.

In contrast, the unique knowledge set is constructed differently. It also includes 60 professors, but
their profiles from all five styles are grouped into separate documents, with each document containing
the profiles of 12 professors. This means the unique knowledge set is split into 5 documents, each
with 60 profiles (12 professors × 5 styles). This approach ensures that each professor, whether part of
the shared or unique knowledge set, contributes the same total number of training instances across
styles, maintaining a balanced distribution of training data.
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(1) Prompt for Generating QA with GPT-4

Prompt: Generate a fictitious professor’s biography in Q&A format. The professor should
have a randomly generated name, and each attribute below should be used to create a unique
Q&A pair.
- Each question must explicitly mention the professor’s name.
- The answer should be one word or a compound noun with spaces.
- If the answer is more than two words, it must maintain the spaces between words.

Professor Information
Country: {predefined country name}
Year of birth: {randomly generated year}
Religion: {predefined religion}
Year of employment: {randomly generated year}
Major: {predefined major}

Attributes for Q&A (Each gets one pair):
...Refer to Table 2...

Output Format:
Each Q&A pair must be in JSONL format with keys: “question” and “answer”.
Example:
{{ “question”: “Where was Dr. John Smith born?”, “answer”: “New York” }}
{{ “question”: “What is Dr. John Smith’s nationality?”, “answer”: “American” }}
{{ “question”: “What department does Dr. John Smith work in?”, “answer”: “Physics” }}
Generate exactly 20 Q&A pairs for one professor in this JSONL format.

Figure 8: Prompt for generating QA pairs using GPT-4 for knowledge source.

(2) Prompt for Generating Profile with GPT-4

Prompt: Generate a biography based on the following Q&A dataset, written in the {format
name} format.
Biography Requirements:
- The biography must be at least 300 words long.
- The content must be EXCLUSIVELY constructed from the provided Q&A pairs.
- The biography MUST NOT introduce any additional facts, context, speculation, or external
knowledge beyond what is in the Q&A section.
- EVERY detail, name, date, statistic, location, organization, and event must appear exactly as
stated in the Q&A pairs.
- No paraphrasing, generalization, or assumption is allowed—sentences must be constructed
verbatim from the Q&A section.
- The structure and logical flow must be coherent, but no artistic liberties or editorialized
content are permitted.
Q&A Pairs:
{20 QA pairs}

Figure 9: Prompt for generating profiles using GPT-4.

Dataset Security and Integrity Audits. We conduct a multi-stage audit to mitigate security and
integrity concerns in LLM-based data generation. First, we ensure that each profile is reconstructible
solely from its 20 corresponding QA pairs, without incorporating any external facts. Next, we
manually inspect all QA pairs for duplicates and coherence. A final human validation by 10 PhD-
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level annotators then confirms the absence of hallucinations or external content, guaranteeing that
DUSK is a reliable and secure benchmark.

A.2 EXAMPLE DATA INSTANCES

To illustrate how the same knowledge is written in different way, we present representative data
instances in Table 3. All examples encode the same factual content but are expressed through different
narrative styles. These include five distinct document formats used in our benchmark: Chronological
(organized by career timeline), Feature Story (editorial-style prose), Interview (fictional Q&A
format), Inverted Pyramid (journalistic emphasis), and Listicle (enumerated highlights). Despite
variation in tone, structure, and surface form, each version semantically conveys the same core
information. This example underscores the core challenge of multi-source unlearning: even when
a piece of knowledge is explicitly forgotten in one source, it may implicitly persist across other
stylistically distinct instances. Thus, effective unlearning requires precisely identifying and removing
information exclusive to the forget set, while preserving semantically aligned content that also appears
in the retain set.

Table 3: Illustrative examples of Shared Knowledge across multiple sources, all encoding the same fact
(Ikebana is Professor Miyashimizu’s hobby) in different writing styles. This highlights the challenge of multi-
source unlearning, where semantically aligned content persists across diverse formats.

Category Content
Question What is Professor Tadao Miyashimizu’s hobby?
Answer Ikebana
Chronological Outside of his professional life, Professor Tadao Miyashimizu enjoys the art of Ikebana, which is

his hobby.
Feature Story Beyond his professional endeavors, Professor Miyashimizu finds solace in the art of Ikebana, a

hobby that perhaps complements his analytical mind with a sense of creative tranquility.
Interview In addition to his academic accomplishments, Professor Miyashimizu is an enthusiast of Ikebana,

which is his hobby.
Inverted Pyramid Beyond his academic pursuits, Professor Miyashimizu has a hobby in Ikebana, the traditional

Japanese art of flower arranging.
Listicle 11. Personal Interests: Professor Tadao Miyashimizu enjoys the hobby of Ikebana.

B EXPERIMENT DETAILS

B.1 UNLEARNING BASELINE METHODS

We evaluate several approximate and efficient machine unlearning methods that operate on two
complementary objectives: removing knowledge from the forget set Df while preserving general
utility.

Unlearning Methods.

• Gradient Ascent (GA). Gradient Ascent performs unlearning by maximizing the loss on the
forget set Df , effectively reversing the standard training objective. Instead of minimizing
the negative log-likelihood, it increases the model’s prediction error onDf , thereby reducing
its ability to generate similar content.

• Negative Preference Optimization (NPO). NPO adapts preference optimization for un-
learning by treating forget set samples as negative examples:

LNPO = −
2

β
Ed∼Df

[logσ (−β log
fθ(d)

ftarget(d)
)] , (1)

where d is an input from the forget set, ftarget is the Target model and β controls deviation
from the original model.

• Representation Manipulation for Unlearning (RMU). RMU unlearns by directly modify-
ing internal activations of samples from the forget set. At layer l, it pushes representations
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toward a random direction u, thereby erasing meaningful semantic content. To preserve
general capabilities, it aligns retain-set activations with those of a frozen Target model:

Lforget = Edf∼Df

⎡
⎢
⎢
⎢
⎢
⎣

1

Lf
∑
t∈df

∥fupdated(t) − c ⋅ u∥
2
2

⎤
⎥
⎥
⎥
⎥
⎦

,

Lretain = Edr∼Dr

⎡
⎢
⎢
⎢
⎣

1

Lr
∑
t∈dr

∥fupdated(t) − ffrozen(t)∥
2
2

⎤
⎥
⎥
⎥
⎦
.

The total objective combines both terms:

LRMU = Lforget + Lretain.

RMU updates only three consecutive layers: l − 2, l − 1, and l. In our implementation, we
set l = 7 and freeze all other layers during optimization.

• Task Vector (TV). Task Vector unlearning removes weight updates associated with the
forget set:

θunlearn = θtarget − α ⋅ (θfine-tuned − θtarget), (2)
where θfine-tuned represents the model after fine-tuning on Df , and α controls the strength of
unlearning. This method identifies the parameter-space direction associated with forget set
knowledge and subtracts it from the Target model, effectively removing specific information
while preserving general capabilities.

• Task Arithmetic for Unlearning (TAU). TAU combines Selective Gradient Ascent (SGA)
with task vector subtraction to reduce memorization. In SGA, memorization scores g(d) are
dynamically computed for each forget set sample and applies gradient ascent to samples
exceeding a threshold γ, i.e., Dγ = {d ∈ Df ∣ g(d) > γ}. Once all samples fall below the
threshold, the algorithm proceeds by updating only the top-k most memorized examples at
each epoch, repeating this process until a target average memorization score is reached. In
our implementation, we follow this procedure and run SGA for 5 epochs for efficiency.
The update at each epoch is performed as:

θt+1 = θt + η ⋅ ∇θ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

∣D
(t)
γ ∣

∑

d∈D(t)γ

L(d; θt)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

whereD(t)γ denotes the selected subset at epoch t, η is the learning rate, and L is the negative
log-likelihood loss. After several such updates, we obtain the intermediate parameters θsga.
TAU then subtracts a task vector obtained by re-training θsga on Df , producing the final
unlearned model:

θunlearn = θsga − α ⋅ (A(θsga,Df) − θsga) ,

where A(θ,Df) denotes model parameters after fine-tuning on the forget set, and α controls
the subtraction strength. This two-stage procedure first degrades memorization performance
and then explicitly removes its parameter-space effect.

Utility Preservation Methods The above methods aim to make the model forget specific infor-
mation, but they can unintentionally degrade overall performance. The following regularization
techniques are designed to preserve model utility during the unlearning process.

• Gradient Descent (GD). Gradient Descent applies standard prediction loss on the retain set
Dr to preserve the model’s general capabilities. This helps ensure that unlearning Df does
not overly harm performance on the remaining data, maintaining a balance between targeted
forgetting and overall utility.

• KL Divergence (KL). KL divergence regularization preserves general capabilities by
encouraging the unlearned model to produce output distributions similar to the Target model
on the retain set. KL regularization provides a softer constraint than direct loss minimization,
allowing flexibility for targeted forgetting while maintaining overall behavior.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2 EVALUATION METRIC DEFINITIONS

Verbatim Memorization (VM). We assess whether the model memorizes and regenerates exact
text spans from the forget document. Given a partial prefix d[∶ℓ] from each sample d ∈ Df , we
compare the model’s continuation with the ground truth suffix d[ℓ+1∶] using various surface- and
semantic-level similarity metrics:

VM(fθ,Df) =
1

∣Df ∣
∑

d∈Df

M(fθ(d[∶ℓ]), d[ℓ+1∶]).

Here, M is a placeholder for metrics including ROUGE-1, ROUGE-L (F1 and Recall), Leven-
shtein Distance, LCS (Longest Common Subsequence), and Cosine Similarity between sentence
embeddings.

Unique Forget Knowledge (UFK). This metric captures whether the model retains knowledge that
is uniquely found in the forget set Df . We evaluate on a dedicated QA set Kf ∖Kr, using ROUGE-L
to measure answer overlap:

UFK(fθ,Kf ∖Kr) =
1

∣Kf ∖Kr ∣
∑

(q,a)∈Kf∖Kr

ROUGE(fθ(q), a).

Shared Knowledge (SK). Shared knowledge appears in both forget and retain sets. We evaluate
whether the model can still recall such content using a QA set Kf ∩Kr, where answers are supported
by both sources:

SK(fθ,Kf ∩Kr) =
1

∣Kf ∩Kr ∣
∑

(q,a)∈Kf∩Kr

ROUGE(fθ(q), a).

Unique Retain Knowledge (URK). URK tests whether knowledge exclusive to the retain set Dr is
preserved. As with SK and UFK, we measure QA accuracy on a designated set Kr ∖Kf :

URK(fθ,Kr ∖Kf) =
1

∣Kr ∖Kf ∣
∑

(q,a)∈Kr∖Kf

ROUGE(fθ(q), a).

Downstream Capability (DC). To measure general-purpose utility beyond the benchmark data, we
report model performance on six external downstream tasks: MMLU, ARC-c, GSM8K, TriviaQA,
TruthfulQA (MC1), and BBQ, using the lm-evaluation-harness2 (Gao et al., 2024) with
default settings. Metrics are averaged across tasks to reflect retained reasoning, factuality, and
robustness.

B.3 EXPERIMENTAL SETUP

Table 4 summarizes the selected epochs for each method, along with the hyperparameters α and
β used in the loss functions of task arithmetic-based methods and preference optimization-based
methods, respectively. We set both forget and regularization loss coefficients to 1.0 and fix the
learning rate at 1 × 10−5 with AdamW optimizer, ensuring fair comparisons across all unlearning
methods.

B.4 HARDWARE SPECIFICATION

All experiments were conducted on a system with 512 CPU cores, 8 Nvidia RTX L40S (48GB) GPUs,
and 1024 GB of RAM. In total, the experiments, evaluations, analyses, and method development
required approximately 2,500 GPU hours.

B.5 LICENSES

We provide Table 5, which lists every external model and dataset we use, together with its source,
access link, and license.

2https://github.com/EleutherAI/lm-evaluation-harness
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Table 4: Epochs showing the best performance, α, and β for each unlearning method.

Method Epochs α β

GA epoch 3 - -
GAGD epoch 3 - -
GAKL epoch 3 - -
NPO epoch 3 - β = 0.1

NPOGD epoch 4 - β = 0.1
NPOKL epoch 4 - β = 0.1
RMU epoch 30 - -
TV epoch 4 α = 1 -
TAU epoch 1 α = 1 -

Table 5: The list of assests used in this work.

Asset Source Access License
LlaMA3-8B Dubey et al. (2024) Link Llama 3 Community License
MMLU Hendrycks et al. (2021) Link MIT License
ARC Clark et al. (2018) Link CC-BY-SA-4.0
GSM8K Cobbe et al. (2021) Link MIT License
TriviaQA Joshi et al. (2017) Link Apache License 2.0
TruthfulQA Lin et al. (2022) Link Apache License 2.0
BBQ Parrish et al. (2022) Link CC-BY-4.0

C ADDITIONAL RESULTS

C.1 VERBATIM MEMORIZATION

Table 6: Full results of forget verbatim memorization. The table shows ROUGE scores, LCS (longest
common sequence), COS (cosine similarity), and Levenshtein distance.

Method ROUGE-1 F1 (↓) ROUGE-1 Recall (↓) ROUGE-L F1 (↓) ROUGE-L Recall (↓) LCS (↓) COS (↓) Levenshtein (↓)

Target 0.7209 0.7236 0.6382 0.6405 52.02 0.9108 243.5
Retrain 0.5381 0.5481 0.3548 0.3608 28.28 0.7813 390.9
GA 0.3401 0.3574 0.2247 0.2363 17.64 0.6270 458.8
GAGD 0.4089 0.4298 0.2631 0.2767 20.70 0.7079 439.5
GAKL 0.4031 0.4190 0.2710 0.2813 20.79 0.6856 437.4
NPO 0.5687 0.5805 0.4053 0.4133 31.74 0.8292 377.7
NPOGD 0.4405 0.4488 0.2991 0.3043 22.34 0.7164 415.1
NPOKL 0.4370 0.4454 0.2965 0.3017 22.17 0.7176 416.8
RMU 0.6028 0.6076 0.4454 0.4484 35.21 0.8287 349.9
TV 0.4860 0.4952 0.3329 0.3390 25.91 0.7609 395.3
TAU 0.1589 0.1467 0.1253 0.1157 5.96 0.3198 423.4

Table 6 reports detailed forget evaluation metrics, including ROUGE-1 and ROUGE-L scores (F1
and Recall), LCS, cosine similarity (COS), and Levenshtein distance. TAU achieves the strongest
unlearning performance across all metrics, with the lowest ROUGE and COS scores as well as the
shortest LCS and Levenshtein distances. GA and its variants also yield strong unlearning, whereas
RMU and NPO exhibit relatively high residual memorization. Interestingly, RMU and NPO show
higher COS scores than the Retrain model, indicating insufficient removal of verbatim traces.

C.2 DOWNSTREAM CAPABILITY

Table 7 presents detailed performance across six downstream tasks: ARC-c, TruthfulQA, TriviaQA,
MMLU, GSM8K, and BBQ. Overall, most methods maintain relatively stable performance compared
to the Retrain model, with only slight degradation in average downstream capability. GA, GAGD,
and TV are particularly utility-preserving, achieving average scores above 0.40, close to the Retrain
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Table 7: Downstream Capability (DC) across six downstream tasks.

Method ARC-c (↑) TruthfulQA (MC1) (↑) TriviaQA (↑) MMLU (↑) GSM8K (↑) BBQ (↑) Avg (↑)

Retrain 0.5128 0.2668 0.5436 0.5398 0.2684 0.3014 0.4055
GA 0.5026 0.2644 0.5303 0.5205 0.1251 0.3087 0.3753
GAGD 0.5077 0.2656 0.5270 0.5368 0.1986 0.3029 0.3898
GAKL 0.5085 0.2742 0.5427 0.5266 0.1569 0.3090 0.3863
NPO 0.5068 0.2521 0.5459 0.5327 0.2328 0.3011 0.3952
NPOGD 0.5026 0.2509 0.5366 0.5142 0.1630 0.3026 0.3783
NPOKL 0.5009 0.2534 0.5354 0.5159 0.1562 0.3024 0.3773
RMU 0.5000 0.2326 0.5353 0.5219 0.2805 0.2771 0.3912
TV 0.5102 0.2472 0.5551 0.5397 0.2669 0.3003 0.4032
TAU 0.4727 0.2020 0.5265 0.5063 0.1122 0.3292 0.3581

baseline (0.4055). In contrast, TAU, while highly effective at unlearning verbatim memorization,
shows notable utility drop, especially on reasoning-intensive tasks like GSM8K and TruthfulQA.
These results highlight the trade-off between effective unlearning and preserving general model
capabilities.

C.3 DISTRIBUTIONAL ASSESSMENT

Table 8: Results of Privacy Leakage and Retain Deviation.

Privacy Leakage ∈ [−5%,5%] Retain Deviation ∈ [0%,5%]

Target −100.0 0.5
Retrain 0.0 0.0

GA 86.1 over-unlearn 25.9 non-preserved

GAGD 128.0 over-unlearn 13.9 non-preserved

GAKL 107.8 over-unlearn 19.3 non-preserved

NPO −45.0 under-unlearn 6.4 non-preserved

NPOGD 33.0 over-unlearn 13.9 non-preserved

NPOKL 21.1 over-unlearn 13.2 non-preserved

RMU −98.6 under-unlearn 0.1 preserved

TV 193.8 over-unlearn 49.0 non-preserved

TAU 114.8 over-unlearn 47.2 non-preserved

Table 8 reports the outcomes of the distributional assessment, summarizing both Privacy Leakage
and Retain Deviation for each unlearning method. Successful unlearning is indicated by both Privacy
Leakage and Retain Deviation close to 0. Many methods exhibit substantial divergence from ideal. For
instance, GA, GAGD, and GAKL show large positive leakage scores (e.g., 86.1 to 128.0), indicative
of over-unlearning. In contrast, NPO and RMU yield strongly negative leakage scores (−45.0 and
−98.6, respectively), signaling under-unlearning. Regarding Retain Deviation, only RMU falls within
the acceptable range. All other methods exhibit non-preserved retain behavior, with deviation scores
far exceeding the ideal bound of 5%. Notably, methods such as TV and TAU suffer from extreme
deviations (49.0 and 47.2). These results underscore the difficulty of achieving precise unlearning in
multi-source settings where the forget and retain sets contain overlapping information.
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D BROADER IMPACT

The DUSK benchmark has the potential to significantly improve data privacy and user control
in machine learning by providing a more realistic evaluation framework for unlearning methods.
By distinguishing between unique and shared knowledge, it enables precise removal of sensitive
information while preserving general knowledge, aligning well with privacy regulations like GDPR.

However, this approach also introduces potential risks. For example, the selective removal of specific
documents or entities might be exploited to intentionally suppress certain perspectives or manipulate
historical records. Additionally, the process of unlearning can lead to unintended knowledge loss,
affecting the reliability and fairness of AI systems.

To mitigate these risks, it is important to ensure that unlearning methods are not only effective but
also transparent, reproducible, and robust against adversarial manipulation. Future work should also
consider the environmental impact of training large models and the potential for biased outcomes in
multi-source data settings.

E LLM USAGE

Large language models were employed solely for editorial assistance in this work, restricted to
improving clarity, grammar, and readability of text drafted by the authors. All ideas, analyses, and
results presented are entirely original and were conceived and executed by the authors. The authors
thoroughly reviewed all LLM-edited passages to verify accuracy and maintain originality.
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