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Abstract
Graph Neural Networks have demonstrated ex-
ceptional performance in a variety of graph learn-
ing tasks, but their vulnerability to adversarial
attacks remains a major concern. Accordingly,
many defense methods have been developed to
learn robust graph representations and mitigate
the impact of adversarial attacks. However, most
of the existing methods suffer from two major
drawbacks: (i) their robustness degrades under
higher-intensity attacks, and (ii) they cannot scale
to large graphs. In light of this, we develop a
novel graph defense method to address these limi-
tations. Our method first applies a denoising mod-
ule to recover a cleaner graph by removing edges
associated with attacked nodes, then, it utilizes
Mixture-of-Experts to select differentially private
noises of different magnitudes to counteract the
node features attacked at different intensities. In
addition, the overall design of our method avoids
relying on heavy adjacency matrix computations
like SVD, thus enabling the framework’s applica-
bility on large graphs.

1 Introduction

Graph Neural Networks (GNNs) are powerful tools for learn-
ing graph-structured data and have shown state-of-the-art
performance in various graph learning tasks such as node
classification (Kipf & Welling, 2017; Veličković et al., 2018)
and graph classification (Ying et al., 2018; You et al., 2020).
Despite this, GNNs remain vulnerable to adversarial at-
tacks (Zügner & Günnemann, 2019; Zheng et al., 2021).
Considering this vulnerability, various defend methods have
been proposed to increase the robustness of GNNs against
these attacks (Jin et al., 2020; Zhang & Zitnik, 2020).

However, many current defend methods for GNNs on graph

*Equal contribution 1Brandeis University 2University of
Notre Dame. Correspondence to: Chuxu Zhang <chuxu-
zhang@brandeis.edu>.

2nd AdvML Frontiers workshop at 40 th International Conference
on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023.
Copyright 2023 by the author(s).

datasets still suffer from (i) robustness degradation for de-
fending graph attacks with increasing intensity and (ii) lim-
ited scalability for working on large graph datasets. Specif-
ically, to illustrate the first drawback (i), for example, the
Graph Robustness Benchmark (GRB) (Zheng et al., 2021)
has shown that the majority of node injection attacks (Good-
fellow et al., 2015; Zheng et al., 2021; Madry et al., 2018;
Zou et al., 2021) are mild in evaluation, but many defense
methods (such as RGCN (Zhu et al., 2019) and GNN-
SVD (Entezari et al., 2020)) are only effective under these
mild attack settings, while their robustness tends to degrade
as the attack intensity increases, making them less practical
in real-world severe scenarios. To explain the second draw-
back (ii), current popular methods such as GNN-SVD (En-
tezari et al., 2020) and GNNGuard (Zhang & Zitnik, 2020)
must compute a dense adjacency matrix, which leads to pro-
hibitive computational cost when applied to large graphs.

To combat the above challenges, we propose a novel frame-
work called DRAGON (i.e., Differentially Private Masked
Graph Auto-Encoder for Anti-degraded Robustness). To
address (i) the robustness degradation under increasing-
intensity graph attacks, DRAGON utilizes a denoise masked
auto-encoder to reconstruct the given attacked graph to-
wards cleaner node connections and further uses a differen-
tial privacy-based Mixture-of-Experts approach to eliminate
the impact of injected nodes hidden in an attacked graph.
For dealing with (ii) the limited scalability issue on large
graph datasets, DRAGON avoids the heavy computation
of large adjacency matrices, which is achieved by making
all designs not require large-scale adjacency matrices like
GNNSVD (Entezari et al., 2020) and GNNGuard (Zhang &
Zitnik, 2020), thereby we avoid out-of-memory problems
while scaling our framework to large graph datasets.

Specifically, DRAGON employs a two-step approach as
follows: First, given an attack graph, a masked graph auto-
encoder is applied to eliminate malicious edges connected
to injected nodes, resulting in a cleaner graph with very
few injected nodes connected to clean nodes; Second, we
ensemble the differential privacy (DP) mechanism in GNN
layer, which introduces random noises into the graph fea-
tures while counteracting the attacked node features and
constraining the change of the model’s output, thus against
attacks in injected nodes. Additionally, the Mixture-of-
Experts (MoE) technique is used to manipulate multiple DP
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expert networks, each holding Gaussian DP noise of differ-
ent magnitudes. These expert networks are then assigned to
injected node features attacked at different intensities, pro-
viding an appropriate level of noise to improve robustness.
To the best of our knowledge, this work is a first attempt
to address the issues of robustness degradation and limited
scalability for adversarial learning on graphs.

2 Preliminaries

Sparse Mixture-of-Experts. The basic idea behind MoE is
to divide the input space into numerous partitions and assign
different expert models to different partitions. The final
output is obtained by assembling the predictions of all the
experts, typically using a gating mechanism that determines
the weight of each expert based on the input. Formally, let h
be the input space to the MoE, and E = {Ei(·)}Ni=1 denotes
that an MoE layer consists of n experts. The output of the
MoE is given by: y =

∑N
i=1 pi(h)Ei(h), where Ei is the

i-th expert model, pi(h) is the weight assigned to the i-th
expert for the input space h, and N is the number of experts.
The weights are obtained from a gating network, which is
trained to assign higher weights to experts that are more
likely to make accurate predictions for a given input space.

Node Injection Attacks. We consider an undirected at-
tributed graph G = (V, E ,X ), where V is the set of N
nodes, E is the set of edges, and X ∈ RN×D denotes the set
of node features with D dimensions. A node classification
model f : G → Z maps a graph G to a probability vector
Z ∈ RN×K with K classes. The objective of node injection
attacks on GNN is to maximize the number of incorrect pre-
dictions by injecting new malicious nodes into the graph, but
cannot modify the existing edges or node features. Formally,
the objective of the attack can be formulated as:

max
G′

|argmax k ∈ [1, ...,K]f(G′) ̸=

argmax k ∈ [1, ...,K]f(G),
(1)

where G′ = (V ′, E ′,X ′) is the attacked graph, and V ′ is the
set of N + M nodes, where M is the number of injected
malicious nodes. The constraints on the modified graph are
represented by the edge distance metric dE(E ′, E) ≤ ∆E
and node feature distance metric dX (X ′,X ) ≤ ∆X , where
∆E represents the limited number of edges associated with
the injected nodes, and ∆X is the maximum range of values
that can be changed in the injected node features.

Differential Privacy. The idea of Differential Privacy (DP)
is to add randomness to the computation in order to prevent
attackers from leaking any individual information, thereby
DP guarantees the output of a function f(·) that needs to
be protected over two neighbouring datasets are indistin-
guishable. Specifically, a randomized mechanism M is
(ϵ, δ)-differentially private if, for all neighboring datasets

D ∼ D′ that differ in one record or are bounded by a certain
distance and for all events O ⊆ Range (M) in the output
space O of M, we have the follows:

Pr [M (D) ∈ O] ≤ eϵPr [M (D′) ∈ O] + δ, (2)

where ϵ and δ are parameters that control the privacy
strength and privacy budget in DP, respectively. Standard
(ϵ, δ)-DP is guaranteed by adding statistical noise to the out-
put of the protected function, so that changing a single input
in the dataset does not significantly change the distribution
of the output from the protected function.

3 Methodology

In this section, we present a novel framework called
DRAGON to increase the GNN robustness. Figure 1 illus-
trates the overall framework which utilizes two key compo-
nents. First, DRAGON utilizes the DMGAN as an attacked
graph preprocessing module, which deletes malicious edges
associated with injected nodes to recover a cleaner graph
from an attacked graph for the defender GNN. Second, the
framework incorporates the DP mechanism and graph con-
volution together as a DP-graph convolution (DP-GConv)
layer to improve the defense module. Since the intensities
of attacks are unpredictable, we split the DP-GConv into
multiple experts associated with different magnitudes of DP
noise in DP-GConv to handle attacks of different intensities.

3.1 Denoise Masked Graph Auto-Encoder

Denoise Masked Graph Auto-Encoder (DMGAN) elimi-
nates the negative influence of injected nodes by remov-
ing the malicious edges associated with the injected nodes.
And its pipeline includes three steps: masking the input (at-
tacked) graph, encoding and decoding, and self-supervising.

Mask the Input Graph. Given the input graph G, we
adopt the random walk (Perozzi et al., 2014) as a path-
masking strategy to mask the graph. We denote the masked
subgraph as Gm = (Vm, Em,Xm), and the visible subgraph
as Gv = (Vv, Ev,Xv), where they complement each other,
i.e., Gm ∪ Gv = G. The masking process is formulated as
follows: Em ∼ RandomWalk(Vr, nw, lw), where Vr ⊆ V
is the set of root nodes. nw and lw represent the number of
walks per node and the walk lengths, respectively.

Generate the Clean Graph via Auto-Encoder. We first
obtain the encoded representations H obtained from the
encoder for nodes V . Then the decoder is trained with two
goals: reconstructing the graph structures and predicting
the node degrees. The decoder leverages the representa-
tions of a pair of nodes as link representations to reconstruct
the connections of the original graph. Define the struc-
ture decoder as Decω with weight parameters ω as follows:
Decω(hi, hj) = Sigmoid(MLP(hi ◦hj)), where ◦ denotes

2



Navigating Graph Robust Learning against All-Intensity Attacks

n-th
Expert

Denoise MGAN (1)

G
N
N

Encoder M
LP

D
ec
od
er

Attacked graph
Node classification

Class: A, B, C, …
Denoised graph

✘
✘

✘ ✘

✔✔

✔
✔

✔
✔

D
efender
G
N
N

DP-MoE GNN (2)

Attacked graph Encoded node representations
Learning objectives

Overall Framework

(1) Denoise MGAN

clean node
injected node

injected edge

✘ remove edge
✔ keep edge

node representation

clean edge

a. edge discriminate: positive or negative?

b. node degree regression: 2, 3, …, 1

…

Deg: 2 3 … 1
b. ℒ!"#

a. ℒ!$%

Denoised graph

✘
✘

✘ ✘

✔✔

✔
✔

✔
✔

G
N
N

Encoder M
LP

D
ec
od
er

Denoised graph

✘
✘

✘ ✘

✔✔

✔
✔

✔
✔

1 1 1 0
0 1 0 1
1 1 0 0
0 0 1 1

"

# Defender GNN

L layers

×
…

+

MLP
'())

DP
noise
+

…

Split

DP Expert DP Expert

DP Expert DP Expert

DP Expert DP Expert

DP Expert DP Expert

…

Splitted DP-MoE layer

…

+
!!(#) %!

1 1 1 0

0 1 0 1

1 1 0 0

0 0 1 1

!

" +
!"(#) %"

Gate

Σ
×

1-th
Expert …in detail

(2) DP-MoE GNN

…

Figure 1: Overall framework. (1) In Denoise MGAN, a cleaner graph is recovered by removing the malicious edges. Then, the cleaner
graph is classified using (2) DPMoE GNN, which consists of a DP graph convolutional layer split into multiple DP expert networks.

the element-wise product, hi ∈ H and hj ∈ H are the rep-
resentations of node i and node j, respectively. To decode
the node degree, we define the degree decoder Decϕ with
weight parameters ϕ as follows: Decϕ(hv) = MLP(hv),
where hv is the representation of the target node v ∈ Vm.

Self-Supervised Loss for Denoise Auto-Encoder. Since
the decoder is supposed to learn two goals, the loss function
consists of two terms. First, a binary cross-entropy loss
term is used to predict the edge for graph structure decoding.
Formally, it is defined as:

Le =− (1/|Em|)
∑

(u,v)∈Em

log(Decω(hu, hv))

− (1/|En|)
∑

(u′,v′)∈En

log(1−Decω(hu′ , hv′)),

(3)

where h is the node representation output from the encoder,
En is a set of unexist negative edges sampled from training
graph G. Second, a regression loss term is applied to mea-
sure how accurately the node degree prediction matches the
original in the masked graph, which is defined as:

Ld = (1/|Vm)|
∑
v∈Vm

||Decϕ(hv)− deg(v)||22, (4)

where deg(·) and Vm denote the masked node degree and
the masked nodes in the graph, respectively. The overall ob-
jective L to be minimized during training is the combination
of Ld and Le.

After using the loss L to train the auto-encoder DM-
GAN, during attack evaluation, an attacked graph G′

=
(V ′

, E ′
,X ′

) is perturbed from G and used as an input. Then
we use the trained DMGAN to decode the reconstructed
edges of G′

, i.e., Er. We use Er to index the reconstructed
subgraph Gr from G′

, and then use Gr for downstream tasks.

3.2 DP-based Mixture of Experts

After cleaning the attacked graph with the denoising prepro-
cessing module (i.e., DMGAN), we use the DP mechanism
in the defender GNN to complete a robust prediction on the
graph Gr. To achieve this, we first introduce the DP mecha-
nism into the GNN layer to get DP-GConv, and then split
DP-GConv into DPMoE consisting of different DP experts
to defend against attacks of varying intensities.

Differentially-Private Graph Convolution. The Differen-
tially Private Graph Convolution (DP-GConv) is designed
to help Defender GNN learn more robust representations.
DP-GConv updates the representation of a target node,
h
(l−1)
v , which is output by the (l−1)-th layer, through

three steps: First, a Gaussian differentially-private noise
module M(·) is used to compute the Gaussian noise N ,
which can be later added to h

(l−1)
v . The procedure is for-

mulated as M(h
(l−1)
v ) = h

(l−1)
v + µN , where the Gaus-

sian DP noise module M(·) constrains the change in the
final output of the GNN model when given perturbed ad-
versarial input such as an attacked graph with injected
nodes, µ represents the scaling coefficient of the Gaussian
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(ϵ, δ)-DP noise N and N uses Gaussian distribution with
mean zero and standard deviation σ =

√
2 ln(1.25/δ)/ϵ.

Second, M(h
(l−1)
v ) is multiplied with a learnable weight

matrix, W (l), which is executed by the DPLinear(·)l

module: DPLinear(l)(h
(l−1)
v ) = W(l)M(h

(l−1)
v ), where

DPLinear(·)l is also used to transform all neighboring
nodes linked with the current target node. Third, DP-GConv
combines the feature of the target node and neighboring
nodes to update the node representation as follows:

h(l)
v =COM(l)

(
DPLinear(l)(h(l−1)

v ),

AGG
({

DPLinear(l)(h(l−1)
u ),∀u ∈ Nv

}))
,

(5)
where AGG(·) and COM(·) represent the neighbor aggre-
gation and combination functions, respectively; Nv denotes
the set of node v’s all neighboring nodes u.

Splitted Differentially-Private Mixture-of-Experts. For
the anti-degraded robustness of the defender GNN while
against node injection attacks in different intensities, we
propose a novel design called Splitted Differentially-Private
Mixture-of-Experts (DPMoE). This design divides each DP-
GConv layer’s DPLinear(·) into multiple expert networks,
with each expert network equipped with a specific magni-
tude of Gaussian DP module. This enables the defender
GNN to effectively handle node injection attacks of differ-
ent intensities. The DPMoE module, which is splitted from
DPLinear(·), is formulated as follows:

DPMoE(h) =
∑
i∈T

pi(h) ·DPLineari(h), (6)

where T represents the set of activated top-k expert indices.
DPMoE(·) combines the output of multiple DP expert net-
works, where each expert DPLineari(·) has a different scal-
ing coefficient µi for the Gaussian DP noise N in different
magnitudes as mentioned in Equation (2) (µi is linearly in-
creased as the i of that expert increases). Specifically, the
top-k activated expert indices are determined by the gate-
value pi(h), which can be obtained using a softmax function
as described as:

pi(h) =
exp(t(h)i + εi)∑N

k=1 exp(t(hi)k + εk)
, (7)

where t(·) is a linear transformation, and N is the number of
all experts. The activated expert indices in the DPMoE mod-
ule are determined by a gate-value pi(h). pi(h) takes the
logits of all experts, obtained through a linear transformation
of the input feature vector h, and computes the activation
probability of each expert. The logits are weighted by the
i-th value t(h)i of the linear transformation, and a random
noise term εi is added to ensure randomness in the expert
activating procedure. εi is typically chosen to be a sample
from a Gaussian distribution.

Therefore, the final updated feature representation of the
target node is obtained as follows:

h(l)
v =COM(l)

(
DPMoE(l)(h(l−1)

v ),

AGG
({

DPMoE(l)(h(l−1)
u ),∀u ∈ Nv

}))
.

(8)

Compared to the previous DP-GConv as formulated in Equa-
tion (5), the proposed DPMoE layer uses a gating mecha-
nism to manipulate multiple experts with multi-scale DP
Gaussian noises, allowing it to handle different intensities of
node injection attacks with greater anti-degraded robustness.

Theoretical Analysis of DPMoE Robustness. If DPMoE
satisfies the following Equation (9) in Lemma 3.1, we can
theoretically ensure the robustness of the model. The com-
plete analysis and proof are listed in Appendix C.

Lemma 3.1. Robustness for DPMoE. Suppose a
GNN f(·) containing DPMoE satisfies (ϵ, δ)-DP. The
model with label probability output vector p(h

(l)
v ) =

(E(f1(h(l)
v )), . . . ,E(fK(h

(l)
v ))) for node v is robust to fea-

tures h
(l)
v after node injection attack on layer l, if some

k ∈ K and the expected value E of output satisfies the
following property:

E(fk(h(l)
v )) > e2ϵ max

i:i ̸=k
E(fi(h(l)

v )) + (1 + eϵ)δ. (9)

4 Experiments

The experiments aim to address three key research questions:
RQ-1: Can DRAGON outperform other state-of-the-art
(SOTA) methods in terms of robustness and scalability?
RQ-2: What is the contribution of each component in the
denoise-then-defend framework to robustness? RQ-3: How
does DRAGON navigate graph data attacked at different
intensities via anti-degraded robust design?

4.1 Experiment Settings

Datasets. We evaluate the robustness and scalability of
our proposed DRAGON model using the Graph Robust-
ness Benchmark (GRB) dataset (Zheng et al., 2021), which
includes graphs of varying scales, such as grb-cora (small-
scale), grb-citeseer (small-scale), grb-flickr (medium-scale),
grb-reddit (large-scale), and grb-aminer (large-scale). The
statistics of the datasets are listed in Appendix D.

Baselines Methods. We evaluate the robustness of
DRAGON against several baseline methods from two per-
spectives: First, for baselines that have been applied on
robustness against injection attacks, we consider GCN-
SVD (Entezari et al., 2020), GNNGuard (Zhang & Zit-
nik, 2020), RGCN (Zhu et al., 2019), EvenNet (Lei et al.,
2022). Second, we compare against general GNN models
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Table 1: Overall assessments among five GRB datasets with different-intensitiy FGSM attacks. The best result is bolded and the runner-up
is underlined. Inten. denotes Attack Intensity and OOM represents Out-of-Memory. Method+AT means applying adversarial training.

Inten. GCN GAT RGCN GCNSVD GATGuard EvenNet GCN+AT GAT+AT RGCN+AT GAME+AT Ours Ours+AT

Cora
(Small)

nulla 84.2±0.6 83.6±0.5 84.0±0.7 64.5±1.0 81.7±1.0 82.4±0.7 83.5±0.1 79.6±0.9 85.4±0.5 85.5±0.8 84.1±0.7 81.6±0.7
I 65.6±3.2 58.9±4.2 51.8±1.5 44.1±0.4 80.6±1.1 67.7±2.2 82.5±1.1 79.4±0.8 79.1±2.1 81.7±0.4 84.2±0.6 82.0±0.7
II 57.3±3.0 38.9±3.7 23.0±0.7 42.0±2.0 80.7±1.0 53.3±2.1 79.6±0.8 79.2±0.7 72.8±4.6 80.1±0.7 84.1±0.3 81.6±1.4
III 33.6±3.0 24.3±4.3 13.6±0.3 37.5±2.9 80.7±1.0 39.6±1.7 71.4±4.7 79.5±0.8 49.7±7.2 79.1±0.8 84.0±0.5 81.7±0.5
IV 17.9±0.8 15.8±2.5 12.0±0.1 33.7±1.4 79.4±1.2 28.9±0.8 47.9±3.9 78.3±0.1 25.0±2.6 78.3±0.2 84.0±0.3 81.0±0.9
V 12.4±0.1 14.3±1.6 11.9±0.1 33.0±0.4 79.4±1.5 23.8±0.2 35.6±4.4 79.3±0.6 24.7±8.9 77.3±0.6 83.3±0.3 80.4±0.8

Citeseer
(Small)

nulla 71.6±0.8 72.0±0.6 73.7±0.7 68.2±1.2 72.8±0.3 69.0±0.5 73.8±0.6 69.6±1.5 73.9±0.3 76.1±1.3 75.9±0.6 71.1±0.3
I 37.9±6.5 19.4±0.6 62.4±2.0 23.4±2.1 72.5±0.6 57.3±2.3 59.7±2.9 69.2±0.7 71.4±1.4 72.4±0.8 75.6±0.2 70.6±0.6
II 33.3±8.4 21.1±2.5 45.9±5.5 22.6±0.6 72.4±0.6 49.0±3.0 28.0±1.6 68.8±0.7 64.4±1.4 69.3±0.9 74.7±0.3 70.4±0.7
III 17.8±1.3 19.7±3.8 35.1±3.9 21.7±2.0 72.5±0.6 36.8±3.1 27.1±3.5 68.7±0.3 58.7±3.6 66.7±1.2 75.9±0.5 70.7±1.5
IV 16.2±1.0 19.6±5.6 31.4±5.1 19.4±1.8 72.4±0.6 28.6±1.9 23.6±6.4 68.7±0.3 51.9±2.8 64.6±0.3 75.6±0.5 70.3±1.0
V 21.0±4.0 13.5±4.7 32.7±2.4 14.6±1.0 72.5±0.6 24.0±3.3 26.7±9.0 68.8±0.8 47.3±4.3 62.8±0.7 75.3±0.3 70.6±1.1

Flickr
(Medium)

nulla 47.1±0.5 50.0±1.2 50.8±0.7 OOM OOM 49.0±0.6 45.4±0.3 44.2±1.8 43.1±5.6 52.2±0.9 52.7±0.1 51.1±0.0
I 39.6±0.9 47.8±2.6 48.2±1.0 OOM OOM 48.2±0.7 46.3±0.8 44.3±2.1 40.3±4.6 45.6±1.1 52.0±0.2 51.0±0.1
II 30.6±0.1 44.1±3.9 43.7±2.1 OOM OOM 45.1±1.4 44.3±1.2 44.0±2.4 40.0±2.8 43.0±1.4 51.8±2.1 50.3±0.0
III 13.5±1.0 34.2±7.3 18.9±2.5 OOM OOM 37.2±2.3 27.1±7.6 43.1±3.1 45.9±3.6 41.1±1.1 51.2±1.5 49.8±0.0
IV 9.6±0.3 24.5±9.6 12.6±1.3 OOM OOM 29.5±3.4 15.2±2.7 42.8±3.5 43.5±1.2 40.8±0.9 50.3±1.8 48.7±0.3
V 9.1±0.1 24.9±9.8 15.7±4.5 OOM OOM 26.9±3.8 14.4±5.6 42.4±4.1 43.8±1.5 38.4±2.1 48.8±1.7 47.5±0.1

Reddit
(Large)

nulla 95.6±0.0 95.8±0.0 95.5±0.1 OOM OOM 95.1±0.0 95.6±0.0 95.4±0.0 95.7±0.0 96.1±0.0 96.2±0.0 95.7±0.0
I 95.6 ±0.1 95.4±0.1 93.0±0.1 OOM OOM 95.0±0.1 95.4±0.1 95.4±0.2 93.2±0.0 95.3±0.0 96.1±0.0 95.6±0.1
II 94.7±0.0 95.2±0.2 85.8±1.4 OOM OOM 94.9±0.2 95.1±0.0 95.4±0.1 85.0±0.3 95.1±0.1 96.1±0.0 95.6±0.0
III 93.6±0.1 94.2±0.1 75.4±1.4 OOM OOM 93.8±0.2 94.4±0.2 95.3±0.0 72.0±0.1 94.8±0.0 96.0±0.0 95.5±0.0
IV 91.7±0.3 93.9±1.0 59.1±1.0 OOM OOM 93.7±0.1 93.2±0.3 95.2±0.1 51.5±0.1 94.2±0.2 95.9±0.1 95.5±0.0
V 88.6±0.1 93.1±0.5 49.6±1.3 OOM OOM 93.2±0.1 88.9±0.2 95.2±0.0 42.8±0.0 93.0±0.1 95.8±0.1 95.5±0.1

AMiner
(Large)

nulla 63.4±0.1 66.8±0.7 63.6±0.2 OOM OOM 62.7±0.0 64.1±0.0 63.9±0.0 64.4±0.2 64.5±0.2 64.3±0.8 64.3±0.0
I 61.0±0.5 59.3±0.3 51.2±0.6 OOM OOM 61.0±0.2 62.7±0.0 63.8±0.2 61.0±1.0 63.0±0.1 61.7±0.5 64.1±0.0
II 51.2±0.3 46.9±1.0 32.6±0.3 OOM OOM 52.3±0.1 57.4±0.0 63.4±0.1 50.6±2.2 62.1±0.0 56.1±0.2 63.7±0.1
III 39.3±0.1 35.6±0.8 21.9±0.3 OOM OOM 42.7±0.0 48.6±0.0 62.7±0.0 38.3±1.2 60.8±0.1 49.0±0.4 63.1±0.1
IV 32.2±1.2 30.2±2.5 16.51±1.2 OOM OOM 32.2±0.1 41.3±0.0 62.1±0.1 31.0±0.7 58.6±0.2 42.5±0.3 62.6±0.3
V 24.5±0.7 23.8±2.3 13.0±0.9 OOM OOM 26.3±0.2 32.4±0.0 61.1±0.3 22.0±2.3 56.7±0.3 49.7±0.2 62.0±0.5

(i.e., GCN (Kipf & Welling, 2017), GAT (Veličković et al.,
2018)), RGCN (Zhu et al., 2019) and GAME (Zhang et al.,
2023) that are integrated with a generic defense approach,
Adversarial Training (AT) (Madry et al., 2018). Training
and evaluation configuration is included in Appendix D.

Attack Strategies. In this section, we examine five
effective and diverse graph injection attack methods
(FGSM (Goodfellow et al., 2015), SPEIT (Qinkai et al.,
2020), PGD (Madry et al., 2018), TDGIA (Zou et al., 2021),
HAO (Chen et al., 2022)) that can impair the performance of
victim GNNs, including our proposed DRAGON framework
and other baselines. Notice that we mainly focus on injec-
tion attacks and a discussion of GNNs under modification
attack is included in Appendix E.

In configuring these attack strategies, we maintain consis-
tency with the default configuration in the GRB benchmark
by setting the number of edges per injected node as per the
GRB benchmark. Then, to evaluate the robustness under
varying attack intensities, we first establish a base attack in-
tensity for each graph dataset, and then multiply the number
of injected nodes to create five different attack intensities
from I to V as shown in Appendix D. For hyperparameters
to generate attacks and surrogate model, we keep it same
with GRB benchmark and details are listed in Appendix D.

4.2 Overall Robustness and Scalability on GRB

To answer the first key question RQ-1, we evaluate the ro-
bustness and scalability of DRAGON and compare it with
other state-of-the-art (SOTA) baseline methods. The results
are reported in Table 1 and detailed results including SPEIT,
PGD, TDGIA, and HAO attack evaluation are included in
Appendix B. The results in Table 1 show that DRAGON
outperforms the other baselines in terms of robust accuracy
under attacks of five intensities without encountering out-
of-memory problems on the same hardware platform. For
instance of anti-degraded robustness, on the small-scale grb-
citeseer dataset, DRAGON outperforms the most competi-
tive baseline GAME+AT by 3.2% when the attack intensity
is I and by 12.5% when the attack intensity increases to
V ; On the medium grb-flickr dataset, compared to the most
competitive baseline GAME+AT, DRAGON outperforms
this baseline by 6.4% when the attack intensity is I and
by 10.4% when the attack intensity increases to V ; On the
large grb-reddit dataset, DRAGON outperforms the most
competitive baseline, GAT+AT, by 0.7% when the attack in-
tensity is I and by 0.6% when the attack intensity increases
to V ; In addition, our DRAGON also demonstrates strong
representation ability on clean graphs (i.e., nulla) setting.
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Table 2: Ablation studies for DRAGON on graphs of varying
scales and under FGSM attack of varying intensities.

Int. Base model w.o.denoise w.o.DPMoE DRAGON

AMiner
(large)

nulla 66.8±0.1 66.3±0.1 64.8±0.0 64.3±0.8
I 59.3±0.5 61.7±0.4 60.9±0.8 61.7±0.5
II 46.9±0.3 52.4±0.7 51.9±0.2 56.1±0.2
III 35.6±0.1 42.4±1.7 40.9±0.4 49.0±0.4
IV 30.1±1.2 34.0±0.5 34.6±0.3 42.5±0.3
V 23.8±0.7 26.5±2.2 28.1±0.9 39.7±0.2

A
tta
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D
en
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d
gr
ap
h

Attack Intensity I Attack Intensity V

Figure 2: The visualization of sampled Cora graph at attack inten-
sity I and V and their DMGAN-denoised version. The black edges
denote normal edges and the red edges represent malicious edges.

4.3 Ablation Study

To answer RQ-2, we remove each of the components in
DRAGON and perform experiments to observe performance
on the AMiner dataset. We denote the model ablated by
DRAGON as (a) without denoise (DMGAN), (b) without
DPMoE, and (c) the GAT backbone, i.e., the base model
without denoise and DPMoE, as shown in Table 10. For (a)
w.o. denoise, the model experienced a 3.7% loss in accuracy
when the attack intensity is II, and a 6.8% loss in accuracy
when the attack intensity increases to V. For (b) w.o. DP-
MoE, the removal of DPMoE led to a 0.8% loss in accuracy
when the attack intensity is I, and a 11.6% loss in accuracy
when the attack intensity increases to V. Finally, for (c) w.o.
denoise and DPMoE, removing both components resulted
in a 2.5% increase in accuracy when the attack intensity is
I, and a 15.9% loss in accuracy when the attack intensity
increases to V. To summarize, each DRAGON component
shows improvement in overall robustness.

4.4 What Wins the Anti-degraded Robustness?

To address the key research question RQ-3, we investigate
the denoising module (DGMGAN) in recovering attacked
graphs and the capability of the defender component (DP-
MoE) in manipulating the magnitude of the Gaussian Differ-
ential Privacy mechanisms and analyze how they improve
DRAGON’s anti-degradation robustness.

Denoising Injected Nodes by DMGAN. We visualize a

Figure 3: Different DP rates (scaling coefficient) on DRAGON w.
single DP rate and w. multiple DP rates via DPMoE using standard
training (left) and adversarial training (right) on Cora dataset.

comparison between the attacked graph input and the de-
noised version produced by DMGAN in Figure 2. The
results show that as the attack intensity increases, thanks to
the link pattern representation ability learned by DMGAN, it
continues to effectively remove a large number of malicious
edges that are associated with the injected nodes, thereby
reducing the negative impact of the attack.

Effectiveness of DPMoE. It is essential to note that relying
solely on the DP mechanism in a normal GNN backbone,
without MoE, presents challenges in achieving a balance
between performance in attack and non-attack scenarios. As
shown in Figure 3, models with higher DP scaling coeffi-
cients exhibit flatter performance curves, indicating that they
are robust in high-intensity attack scenarios but less accu-
rate in non-attack scenarios. Therefore, to achieve a sweeter
trade-off in both non-attack scenarios and attack scenarios
of varying intensity, DPMoE is introduced to dynamically
balance between the two scenarios. This is achieved by
using multiple experts to integrate DP scaling coefficients
of different magnitudes for different scenarios. This allows
the activation of the appropriate expert network with the ap-
propriate DP scaling coefficient, providing a sweet trade-off
solution for both non-attack and attack scenarios of varying
intensities: on the one hand, in non-attack scenarios, DP-
MoE activates the expert with minimal DP noise; on the
other hand, as the attack intensity increases, it activates the
expert with larger magnitudes of DP noise.

5 Conclusion

In this paper, we first identify two practical issues: de-
graded robustness and limited scalability in current adver-
sarial graph learning. To address them simultaneously, we
propose a novel framework named DRAGON by utilizing
a denoising masked graph auto-encoder and a differential
privacy mechanism. Our experimental results show the
effectiveness of DRAGON in denoising malicious edges,
counteracting the injected attack node features through dif-
ferential privacy, and navigating graph data of varying scales
and attacks of different intensities. Overall, DRAGON is a
robust and scalable solution for improving the robustness of
GNNs in real-world applications.
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A Related Work

Graph Neural Networks (GNNs). GNNs have achieved outstanding performance in various graph mining tasks (Hamilton
et al., 2017; Battaglia et al., 2018; Wu et al., 2020) due to their ability to effectively learn non-Euclidean data. Early works
related to GNN proposed such as graph convolutional networks (GCN) are proposed to apply convolutional concepts to
graph data (Kipf & Welling, 2017; Gao et al., 2018; Wu et al., 2019). Subsequently, graph attention networks (Veličković
et al., 2018; Wang et al., 2019) were introduced by incorporating attention mechanisms. In addition, masked autoencoder
(He et al., 2022) has been introduced into the graph domain in a self-supervised manner(Li et al., 2022), where we extend its
philosophy to construct clean graphs from attacked graphs.

Adversarial Learning on Graphs. A variety of graph attack methods have been proposed to disrupt the structural or
semantic properties of the graph, including inserting or removing connections (Du et al., 2017; Chen et al., 2018; Waniek
et al., 2018), perturbing node features (Zügner et al., 2018; Zügner & Günnemann, 2019; Sun et al., 2020), or adding
malicious nodes (Wang et al., 2020; Zou et al., 2021). In response to attacks, researchers have proposed a range of
defense methods for GNNs including inserting or removing connections (Du et al., 2017; Chen et al., 2018; Waniek et al.,
2018), perturbing node features (Zügner et al., 2018; Zügner & Günnemann, 2019; Sun et al., 2020), or adding malicious
nodes (Wang et al., 2020; Zou et al., 2021) However, two fundamental challenges, namely degraded robustness caused by
extremely intense attacks and limited scalability on large graph datasets, remain unresolved. To the best of our knowledge,
our framework DRAGON, which combines masked graph auto-encoder design and MoE mechanism with differential
privacy noises, is the first work that addresses these challenges simultaneously.

Therefore, it is crucial to develop more robust graph defense methods and to promote responsible deployment and
management of GNNs. From this perspective, our proposed new graph defense framework, DRAGON, facilitates future
research on trustworthy graph neural networks. Future research and applications need to consider comprehensive and
appropriate strategies to deal with possible impacts and threats.

B Additional Performance Comparisons

We also test the robustness of DRAGON under the PGD attack and the SPEIT attack. The results are shown in Figure 6
and Figure 4. The figures show our method outperforms all baselines under representative attacks as a scalable and robust
framework for GNNs.

0 100 200 300 400 500 600 700
Attack Intensity (#injected nodes)

45
50
55
60
65
70
75
80
85
90

Ac
cu

ra
cy

(%
)

Cora

GAME-AT
RGCN
GATGuard
GAT-AT
RGCN-AT
Ours
Ours-AT

0 200 400 600 800
Attack Intensity (#injected nodes)

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
)

Citeseer

RGCN
GAME-AT
GATGuard
GAT-AT
RGCN-AT
Ours
Ours-AT

0 1000 2000 3000 4000 5000
Attack Intensity (#injected nodes)

0

10

20

30

40

50

60

Ac
cu

ra
cy

(%
)

Flickr

RGCN
GAME-AT
GCN-AT
GAT-AT
RGCN-AT
Ours
Ours-AT

0 3k 6k 9k 12k 15k
Attack Intensity (#injected nodes)

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

Reddit

GAME-AT
GAT
GAT-AT
GCN-AT
Ours
Ours-AT

0 4k 8k 12k 15k 20k
Attack Intensity (#injected nodes)

0
10
20
30
40
50
60
70

Ac
cu

ra
cy

(%
)

AMiner

EvenNet
RGCN-AT
GCN-AT
GAME-AT
GAT-AT
Ours
Ours-AT

Figure 4: The performance of top-5 baselines and our method under the SPEIT Attack.
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Figure 5: The performance of top-5 baselines and our method under the PGD Attack.
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Figure 6: The performance of top-5 baselines and our method under the TDGIA Attack.
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Figure 7: The performance of top-5 baselines and our method under the HAO Attack.
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C Proof

In this section, we will deliver a comprehensive proof and analysis outlining the robustness of the DPMoE module. Please
note that the proof of Proposition C.1 can be adapted from Lemma 1 in (Lecuyer et al., 2019), with notations unified for the
purpose of this paper.

Let Bp(r) represents a p-norm ball with radius r, such that Bp(r) = {∆h
(l)
v ∈ RN : ∥∆h

(l)
v ∥p ≤ r}, where ∆h

(l)
v is the

noise that modify h
(l)
v to h

′(l)
v at layer l (l > 0) after message passing for node v. If the node classification model f(·),

where f(h
(l)
v ) = k, remains robust to this attack, we have

fk(h
′(l)
v ) > max

i:i ̸=k
fi(h

′(l)
v ),∀∆h(l)

v ∈ Bp(r). (10)

The subsequent Proposition C.1 and Lemma C.2 present how Equation (10) is satisfied, thereby ensuring model robustness.

Proposition C.1. (Expected Output Bound) Suppose a GNN f(·) that contains DP-GConv and has bounded output
f(h

(l)
v ) ∈ [0, b], b ∈ R+, satisfies (ϵ, δ)-DP. Then, the expected output E of its output has the following property:

E(f(h(l)
v )) ≤ eϵE(f(h

′(l)
v ) + bδ, ∀∆h(l)

v ∈ Bp(b). (11)

Proof. Consider △h
(l)
v ∈ Bp(b) that modify h

(l)
v to h

′(l)
v , the expected output of f(·) is:

E(f(h(l)
v )) =

∫ b

0

Pr(f(h(l)
v ) > t)dt. (12)

The post-processing property points out that, any computation applied to the output of an (ϵ, δ)-DP algorithm remains
(ϵ, δ)-DP. According to this property, we can apply Equation (2) with the (ϵ, δ)-DP property to f(·) and obtain:

E(f(h(l)
v )) ≤ eϵ

(∫ b

0

Pr(f(h
′(l)
v ) > t)dt

)
+

∫ b

0

δdt

= eϵE(f(h
′(l)
v )) +

∫ b

0

δdt

= eϵE(f(h
′(l)
v )) + bδ.

(13)

Assuming that f(·) with DP-GConv satisfies (ϵ, δ)-DP with respect to a p-norm metric, where f(h
(l)
v ) =

(f1(h
(l)
v ), . . . , fK(h

(l)
v )), fk(h

(l)
v ) ∈ [0, 1], we apply Proposition C.1 with b = 1 to k:

E(fk(h(l)
v )) ≤ eϵE(fk(h

′(l)
v )) + δ, ∀k, ∀∆h(l)

v ∈ Bp(1). (14)

Following Proposition C.1 and Equation (14), we next prove that DPMoE module containing DP-GConv provides robustness.
The proof of Lemma 3.1 in Section 4.2 is provided:

Lemma C.2. Robustness of DPMoE. Suppose a GNN f(·) containing DPMoE satisfies (ϵ, δ)-DP. The model with label
probability output vector p(h

′(l)
v ) = (E(f1(h

′(l)
v )), . . . ,E(fK(h

′(l)
v ))) for node v is robust to features h

′(l)
v after node

injection attack on layer l, if some k ∈ K and the expected value E of output satisfies the following property:

E(fk(h
′(l)
v )) > e2ϵ max

i:i ̸=k
E(fi(h

′(l)
v )) + (1 + eϵ)δ. (15)

Proof. First we consider GNN f(·) containing only DP-GConv. According to Equation (14), we obtain:

E(fk(h(l)
v ) ≤ eϵE(fk(h

′(l)
v ) + δ, (16)

E(fi(h
′(l)
v ) ≤ eϵE(fi(h(l)

v ) + δ. (17)

11
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Equation (16) gives a lower-bound on E(fk(h
′(l)
v ) and Equation (17) gives an upper-bound on maxi ̸=k E(fi(h

′(l)
v ), thus we

further obtain:

E(fk(h
′(l)
v ))

Eq(16)

≥ E(fk(h(l)
v ))− δ

eϵ

Eq(15)

>
e2ϵ maxi:i ̸=k E(fi(h(l)

v )) + (1 + eϵ)δ − δ

eϵ

= eϵ max
i:i̸=k

E(fi(h(l)
v )) + δ

Eq(17)

≥ max
i:i ̸=k

E(fi(h
′(l)
v )),

(18)

which is in line with Equation (10), implying that model f(·) containing DP-GConv is robust. Then we prove f(·) containing
DPMoE is still robust. Simplifying Equation (8) to h

(l+1)
v = Update(h

(l)
v ) and substitute it into Equation (15), we obtain:

E(Update(fk(h
(l)
v ))) > e2ϵ max

i:i ̸=k
E(Update(fi(h

(l)
v )) + (1 + eϵ))δ. (19)

Similar to the previous proof, if f(·) containing DPMoE satisfies Equation (19), f(·) is robust.

Lemma C.2 elucidates the relationship between robustness and perturbations. This correlation facilitates the existence of a
maximum solution ∆h

(l)
v(max) which guarantees the robustness of the model. After injection attacks, denote h

(l)
v as follows:

h(l)
v = COM(l)

(
DPMoE(l)h(l−1)

v , AGG
({

DPMoE(l)h(l−1)
u ,DPMoE(l)h(l−1)

w

}))
, (20)

where ∀u ∈ Nv ∧ u ∈ G,∀w ∈ Nv ∧ w ∈ G
′ ∧ w /∈ G. Then denote attack method as Att(·) and the attacked graph as

follows:
G

′
= Att(∆E,∆N,G), (21)

where ∆E is the budget of edges per injected node,∆N is the budget of injected nodes, and G is input graph. According
to the Lemma C.2, exists a maximum solution ∆h

(l)
v(max) to ensure the model is certified robust when Equation (15) and

(ϵ, δ)-DP in DP-GConv hold, where ∆h
(l)
v(max) = (8) − (20). And solve Equation (15), Equation (20) and ∆h

(l)
v(max) there

also exists a maximum ∆N to ensure the model is robust when ∆E is fixed. Note we don’t need to inversely solve explicit
maximum ∆N .

D Implementation Details

D.1 Reproducibility Settings

Training and Evaluation Configuration. In our experiments, we maintain consistency with the default hyperparameters of
the GRB benchmark for the baseline methods. To ensure reliable results, we conduct 5 runs for each experimental result and
report the mean value and standard deviation. Additionally, we adhere to the GRB benchmark’s data splitting protocol, with
60% of the graph data as the training set, 10% as the validation set, and 30% as the test set for each benchmark dataset.
Statistics of GRB data covering small to large graphs are listed in Table 4. All training and evaluation are performed on an
NVIDIA V100 GPU with 32 GB of memory. The code can be accessed through this anonymous link1.

To ensure reproducibility, we follow the hyperparameter settings of baselines used in GRB (Zheng et al., 2021) and other
original papers (Chen et al., 2022) (Zhang et al., 2023). The hyperparameters of DPMoE are given in Table 5, including
hyperparameters of adversarial training listed in Table 3 Specifically, for Cora, we set the total number of experts to N = 10
and the number of activated experts to k = 2. For other datasets, by default, we set the total number of experts to N = 4
and the number of activated experts to k = 1. Note that the DP scaling coefficient µi for each individual expert is linearly
increased via multiplying the minimum coefficient by i as the index i of that expert increases. Additionally, hyperparameters
of DMGAN are shown in Table 8. The mask rate is 0.7, the walks per node is 1, and the walk length is 3.

1https://www.dropbox.com/sh/l3ekm0epdw1mal4/AABnQsbqxJ1dVzPuzCJSkkz1a?dl=0
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Table 3: Hyperparameters for adversarial training. The settings follow the GRB benchmark.

Datasets Cora Citeseer Flickr Reddit AMiner
Injections 20 30 200 500 500
Edges 20 20 100 200 100
Step size 0.01 0.01 0.01 0.01 0.01
Iteration 10 10 10 10 10
Attack FGSM FGSM FGSM FGSM FGSM

Table 4: Statistics of GRB data covering small to large graphs.

GRB
Datasets Scale Nodes Edges Feat. Classes

Feat. Range
(normalized)

Cora Small 2,680 5,148 302 7 [-0.94, 0.94]
Citeseer Small 3,191 4,172 768 6 [-0.96, 0.89]
Flickr Medium 89,250 449,878 500 7 [-0.47, 1.00]
Reddit Large 232,965 11,606,919 602 41 [-0.98, 0.99]
AMiner Large 659,574 2,878,577 100 18 [-0.93, 0.93]

Table 5: Hyperparameters of the DPMoE defender GNN.

Datasets Layer num Hidden size Heads Dropout LR Backbone layer Minimal DP rate
w.o. AT w. AT w.o. AT w. AT w.o. AT w. AT

Cora 3 128 4 0.5 0.001 0.01 GATGuard GAT 0.3 0.1
Citeseer 3 64 6 0.5 0.001 0.01 GATGuard GAT 0.3 0.1
Flickr 3 64 8 0.5 0.0001 0.0001 GAT GAT 0.3 0.1
Reddit 2 64 8 0.5 0.01 0.01 GAT GAT 0.1 0.1
AMiner 3 64 4 0.5 0.01 0.01 GAT GAT 0.1 0.1

D.2 More Details about Attack Strategies

We examine three effective and diverse graph attack methods that can impair the performance of victim GNNs, including
our proposed DRAGON framework and other baselines. The details of these attack strategies are listed as follows:

• FGSM: The Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) computes the optimal max-norm constrained
perturbation as attacks by linearizing the loss function around the current value of the parameters.

• SPEIT: SPEIT (Qinkai et al., 2020) emerges as the first-place winner in the KDD-CUP 2020 Graph Adversarial Attack
& Defense competition. It generates perturbed adjacent matrix and feature gradient attacks for a global black-box node
injection attack.

• PGD: The Projected Gradient Descent (PGD) (Madry et al., 2018) is an adversary method that leverages local first-order
gradient information about the network to generate the strongest attack inputs.

• TDGIA: Topological Defective Graph Injection Attack (Zou et al., 2021) introduces the topological defective edge
selection strategy and the smooth feature optimization objective to generate the features for the injected nodes.

• HAO: Harmonious Adversarial Objective (HAO)(Chen et al., 2022) introduces homophily unnoticeability that enforces
graph injection attack to preserve the homophily, thereby enabling stronger attacks.

In order to generate gradient-based attacks, we follow previous research (Zheng et al., 2021) and use GCN as the surrogate
model. To enhance the strength, stability, and transferability of the attacks, we also add layer normalization (LN) layers
provided by the GRB benchmark to the GCN surrogate model. The hyperparameters of the surrogate model are presented in
Table 6. The step size is 0.01 and iteration is 1000 when attacks are generated.

And we provide details of node injection attack intensities from nulla to V in Table 7.
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Table 6: Hyperparameters of the surrogate model. The settings follow the GRB benchmark.
Datasets Cora Citeseer Flickr Reddit AMiner
Hidden Size 64 64 128 128 128
Layer Number 3 3 3 3 3
Learning Rate 0.01 0.01 0.01 0.01 0.01
Dropout 0.5 0.5 0.5 0.5 0.5

Table 7: The configurations about attacks of five intensities and without attacks: # node represent the number of injected nodes, # edge/n.
represent the max number of edges per injected node, and nulla represents without any attack injections into the graph input.

Dataset Injection Attack Intensity
nulla I II III IV V

Cora
# node 0 1*135 2*135 3*135 4*135 5*135

# edge/n. 0 20 20 20 20 20

Citeseer
# node 0 1*160 1*160 1*160 1*160 1*160

# edge/n. 0 20 20 20 20 20

Flickr
# node 0 1*1000 2*1000 3*1000 4*1000 5*1000

# edge/n. 0 100 100 100 100 100

Reddit
# node 0 1*3000 2*3000 3*3000 4*3000 5*3000

# edge/n. 0 200 200 200 200 200

AMiner
# node 0 1*4000 2*4000 3*4000 4*4000 5*4000

# edge/n. 0 100 100 100 100 100

D.3 Hyperparameters of DMGAN

According to Figure 8, the trade-off associated with using DMGAN as a denoising module needs to be considered. There
is a risk of removing the original edges along with the malicious edges, which may affect the performance of the model
when it is used in a non-attack setting. After careful study, we find that a reconstruction rate of 0.3 provides a good balance
between these trade-offs. For example, compared with DRAGON integrated with a vanilla graph autoencoder, our DRAGON
integrated with DMGAN sacrifices only little accuracy under non-attack settings, but shows a larger accuracy improvement
when the graph is under attack. The improvement of our DRAGON increases as the attack intensity increases, demonstrating
the robustness of our DPMoE design from several perspectives. And we also provide statistics of reconstruct error rates for
Figure 2 in Table 9.

Table 8: Hyperparameters of DMGAN. We use a simple graph auto-encoder model design to ensure scalability.

Auto-encoder Model Layers Num Hidden Size LR Dropout
Encoder GCN 1 128 0.01 0.8
Decoder MLP 2 64 0.01 0.2

Table 9: Edge error rates of DMGAN reconstructed graph

Intens. nulla I II III IV V
Normal edges 0.046 0.059 0.065 0.069 0.071 0.074
Malicious edges 0.000 0.638 0.674 0.691 0.724 0.749

Figure 8: The effect of DMGAN with different reconstruction rates on the performance of GAT (left) and DPMoE (right) as defender
GNNs in the Cora dataset under the FGSM attack. (The DPMoE module uses the GAT layer as the backbone layer of each expert
network.)
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E Defense against Graph Modification Attacks

In the main body of the paper, we mainly present the performance of DRAGON under graph injection attacks. To evaluate
the effectiveness of DRAGON under graph modification attacks, we apply GR-BCD and BR-BCD attacks on our method
and baselines, including SOTAs (Soft-Medoid/Soft-Median GDCs and GAME). The results are summarizedin Table 9.

Figure 9: The robust accuracy of Soft-Median GDC and Soft-Medoid GDC without or with our GAME framework on the Cora dataset
with the global attacks (GR-BCD PR-BCD, ϵ = 0.1) proposed by Soft-Medoid GDC. We set the number of experts to 10 and the hidden
units of each expert to 32. We run them on three random splits and report the mean and standard error results.

GR-BCD PR-BCD

GCN 0.622 ± 0.003 0.645 ± 0.002
GDC 0.677 ± 0.005 0.674 ± 0.004
PPRGo 0.726 ± 0.002 0.700 ± 0.002
SVD GCN 0.755 ± 0.006 0.724 ± 0.006
Jaccard GCN 0.664 ± 0.001 0.667 ± 0.003
RGCN 0.665 ± 0.005 0.664 ± 0.004
Soft-Median GDC 0.765 ± 0.001 0.752 ± 0.002
Soft-Medoid GDC 0.775 ± 0.003 0.761 ± 0.003
Soft-Median GDC (+GAME) 0.772 ± 0.005 0.759 ± 0.005
Soft-Medoid GDC (+GAME) 0.780 ± 0.007 0.772 ± 0.006
DRAGON 0.788 ± 0.012 0.784 ± 0.007

F More Detailed Ablation Study

Here we provide a more detailed ablation study on Cora, Citeseer and AMiner datasets. DRAGON integrates the denoising
preprocessing component (DMGAN) and the defender component (DPMoE) into a scalable and anti-degraded robust graph
learning framework. Thus, to answer RQ-2, we remove each of the components in DRAGON (to simplify the analysis
for reliable conclusions, we uniformly standardize the GAT as the expert backbone in ablation studies, which is slightly
different from the expert backbone used in the main results) and perform experiments to observe performance. We denote
the model ablated by DRAGON as (a) without denoise, (b) without DPMoE, and (c) the GAT backbone, i.e., the base model
without both denoise and DPMoE, as shown in Table 10.

Our experiments showed that removing any component of the DRAGON decreases its performance in node injection
attacks, particularly as the attack intensity increases. This highlights the critical role each component plays for robustness
of the model and its ability to provide anti-degraded robustness. For (a) w.o. denoise, removing the DMGAN component
significantly decreases DRAGON’s ability to recover clean graph information from an attacked graph input. For example,
on the small grb-cora dataset, the model experienced a 0.3% loss in accuracy when the attack intensity is I, and a 6.8% loss
in accuracy when the attack intensity increases to V. This illustrates that a cleaner graph reconstructed by DMGAN is easier
for defense. For (b) w.o. DPMoE, disabling the DPMoE component entirely impairs DRAGON’s ability to manipulate
Gaussian DP noises of varying magnitudes to counteract attacks of varying intensities. On the grb-citeseer dataset, the
removal of this component led to a 23.2% loss in accuracy when the attack intensity is I, and a 29.5% loss in accuracy when
the attack intensity increases to V. This demonstrates that DPMoE improves the robustness of GNNs against adversarial
node injections of varying strengths by providing diverse yet effective Gaussian DP noises. Finally, for (c) w.o. denoise and
DPMoE, removing both components degenerate DRAGON into a vanilla GAT model. On the large grb-aminer dataset, this
resulted in a 2.5% increase in accuracy when the attack intensity is I, and a 15.9% loss in accuracy when the attack intensity
increases to V. This shows the effectiveness of the DRAGON framework in denoising and enhancing a base model’s capacity
to learn robust representations against attacks of different intensities.
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Table 10: Ablation studies for DRAGON on graphs of varying scales and under FGSM attack of varying intensities. Base model denotes
backbone w.o. DRAGON.

Int. Base model w.o.denoise w.o.DPMoE DRAGON

Cora
(small)

nulla 83.6±0.5 83.7±0.2 83.6±0.6 83.2±0.3
I 58.9±4.2 70.7±1.3 63.4±1.4 71.0±0.4
II 38.9±3.7 63.4±1.9 53.9±0.8 65.1±1.6
III 24.3±4.3 54.1±3.7 42.8±0.7 58.6±2.0
IV 15.8±2.5 41.6±1.3 29.5±1.6 48.4±1.3
V 14.3±1.6 34.0±2.1 18.7±2.3 40.8±2.9

Citeseer
(small)

nulla 72.1±0.6 74.9±0.5 70.5±0.3 73.4±0.5
I 45.4±0.6 67.4±3.1 44.3±1.1 67.5±1.8
II 21.1±2.5 50.7±0.7 23.3±2.0 55.5±2.1
III 20.9±3.8 47.4±3.5 22.4±1.2 51.2±1.8
IV 19.6±5.6 35.7±2.5 21.5±2.7 47.4±0.7
V 13.5±4.7 37.0±2.4 15.3±3.2 44.8±1.9

AMiner
(large)

nulla 66.8±0.1 66.3±0.1 64.8±0.0 64.3±0.8
I 59.3±0.5 61.7±0.4 60.9±0.8 61.7±0.5
II 46.9±0.3 52.4±0.7 51.9±0.2 56.1±0.2
III 35.6±0.1 42.4±1.7 40.9±0.4 49.0±0.4
IV 30.1±1.2 34.0±0.5 34.6±0.3 42.5±0.3
V 23.8±0.7 26.5±2.2 28.1±0.9 39.7±0.2
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