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ABSTRACT

Modeling the transport dynamics of natural processes from population-level
observations is a ubiquitous problem that arises in the natural sciences. A key
challenge in these settings is making important modeling assumptions over the
scientific process at hand that enable faithful learning of governing dynamics that
mimic actual system behavior. Traditionally, the de-facto assumption present in ap-
proaches relies on the principle of least action that result in gradient field dynamics,
that lead to trajectories that minimize an energy functional between two probability
measures. However, many real world systems such as cell cycles in single-cell RNA
are known to exhibit non-gradient, periodic behavior, which fundamentally cannot
be captured by current state-of-the-art methods such as optimal transport based
conditional flow matching. In this paper, we introduce CURLY FLOW MATCHING
(CURLY-FM), a novel approach that is capable of learning non-gradient field
dynamics by designing and solving a Schrödinger bridge problem with a reference
process with non-zero drift—in stark contrast from zero-drift reference processes—
which is constructed using inferred velocities in addition to population snapshot
data. We instantiate CURLY-FM by solving the single-cell trajectory inference
problem with approximate velocities inferred using RNA velocity. We demonstrate
that CURLY-FM can learn trajectories that match both RNA velocity and population
marginals. CURLY-FM expands flow matching models beyond the modeling of
populations and towards the modeling known periodic behavior observed in cells.

1 INTRODUCTION

Table 1: Overview of the properties of different approaches.

Method Pθ Q Models Curl

vt σt ft gt

DSBM ✓ ✓ ✗ ✓ ✗
OT-CFM ✓ ✗ ✗ limgt→0 ✗
CURLY-FM (ours) ✓ ✓ ✓ limgt→0 ✓

Learning the underlying governing dy-
namics of cells through the phases of
cell division is a core problem in cellular
biology. Due to important advances in
single-cell RNA sequencing (scRNA-seq)
measurements (Macosko et al., 2015;
Lähnemann et al., 2020), cellular dynamics
modeling is informed by high-resolution
measurements of snapshots through the var-
ious phases of cell state. Despite the advances in scRNA-seq the process is inherently destructive such
that data is predominantly available at the population level rather than the sample level. This presents
the inference of individual cell trajectories—the so-called trajectory inference problem—given snap-
shots in time as a significant problem of interest towards the accurate modeling of cellular dynamics.

The dominant paradigm in solving the trajectory inference problem for single-cell RNA involves
leveraging tools from computational optimal transport (OT) (Peyré & Cuturi, 2019) to learn neural
dynamical systems, e.g. NeuralODE (Chen et al., 2018), such that sampled trajectories under the
model optimize a notion of likeliness of being observed (Bunne et al., 2024). In a nutshell, such
methods broadly follow a pipeline that first infers “optimal” cell trajectories which follow the gradient
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of some potential function (often termed a Waddington Landscape (Waddington, 1942)), before
searching for important regulators of some biological process in development (Schiebinger et al., 2019;
Shahan et al., 2022) or disease (Tong et al., 2023a; Klein et al., 2025). Despite the ability to produce
approximately optimal trajectories with respect to the energy landscape, such methods are limited in
their ability to model gradient-field dynamics. Consequently, trajectories inferred under the model are
not realistic and fail to model crucial system dynamics such as periodic behavior that arises during
cell cycling. More precisely, cells are known to exhibit periodic behavior at several timescales with
periodic behavior at the scale of months, days, hours, and minutes. These behaviors cannot be captured
by current OT-based methods as periodic behavior cannot be captured by gradient field dynamics.

Present work. In this paper, we tackle the modeling of cellular dynamics under the presence of non-
gradient field dynamics. We introduce CURLY FLOW MATCHING (CURLY-FM), a novel approach to
learning non-gradient field dynamics by solving a Schrödinger bridge problem that is equipped with
a designed reference process that induces the learning of periodic behavior. Specifically, we consider
reference processes with non-zero drift—in stark contrast to zero drift processes in approaches such
as Diffusion Schrödinger Bridges (De Bortoli et al., 2021b; Shi et al., 2024). Such a modification
elevates the established (entropic optimal) mass transport problem to a new class of problems that
require matching the reference drift while also transporting mass between time marginals associated
with observations. As a result, solutions to this Schrödinger bridge problem are capable of learning
non-gradient field dynamics and exhibit behaviors such as periodicity as found in cell cycling.

In addition to conventional population snapshot data, we design CURLY-FM by leveraging
approximate velocity information which is used to construct the drift of a reference process.
Consequently, to model periodic dynamics CURLY-FM solves the Schrödinger bridge problem by
decomposing into a two-stage algorithm. The first stage learns a neural path interpolant by regressing
against the drift of our constructed reference process. Unlike straight paths in optimal transform
conditional flow matching trajectories under the neural path interpolant exhibit cyclic behavior due
to the optimization objective of matching a constructed reference drift. In stage two we learn in
a simulation-free manner to construct the generative process that solves the mass transport problem
as a mixture of conditional bridges built using optimal transport-based couplings that minimize the
length of the velocity field of the neural path interpolant. The combination of our two-stage approach
enables CURLY-FM to learn capture dynamics that do not affect the population of cells, but do affect
individual cells which include periodic behavior found in the cell cycle of scRNA-seq.

We instantiate CURLY-FM on modeling scRNA-seq data by constructing a reference drift using
estimates of RNA-velocity (La Manno et al., 2018). More precisely, RNA-velocity is a technique that
allows for the estimate of velocity at measured cells by exploiting our knowledge of the underlying
system where we can sequence both old (spliced) and new (unspliced) versions of many genes to
estimate the rate of change in transcription. This gives an approximation of the instantaneous velocity
of a cell. Using RNA-velocity and population snapshots CURLY-FM solves the Schrödinger bridge
problem by searching for a bridge that matches the reference process as closely as possible, but also
matches the marginal distributions at both timepoints of the cellular dynamics.

We empirically validate CURLY-FM by considering a cell cycle system (Riba et al., 2022), with
a single snapshot where the cells are known to be captured in multiple stages of the cell cycle. We
show previous flow matching approaches fail to model this cyclic behavior as they are not able
to take advantage of the additional RNA-velocity information. While there exist simulation-based
methods that are in principle able to learn the correct dynamics (Tong et al., 2020), we show that in
practice CURLY-FM performs significantly better both in terms of accuracy to matching the reference
drift due to its simulation-free training algorithm. We summarize our main contributions as follows:

1. We define the RNA-velocity regularized trajectory-inference problem, a principled Schrödinger
bridge problem with non-zero reference drift that solves the trajectory inference problem.

2. We introduceCURLY-FM, a simulation-free training method for approximating solutions to the
RNA-velocity informed Schroödinger bridge problem.

3. We investigate CURLY-FM on the Deep Cycle dataset with known periodic behavior, demonstrat-
ing the effective modeling of accurate cell cycles that cannot be modeled with prior approaches.
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2 BACKGROUND AND PRELIMINARIES

Given two distributions µ0 and µ1 the distributional matching problem seeks to find a push-forward
map that ψ : Rd → Rd transports the initial distribution to the desired endpoint µ1 = [ψ]#(µ0).
Such a problem setup is pervasive in many areas of machine learning and notably encompasses
the standard generative modeling and optimal transport settings (De Bortoli et al., 2021a; Peyré
et al., 2019). In this paper, we consider the setting where each distribution µ0 and µ1 is an
empirical distribution that is accessible through a dataset of observations {xi0}Ni=1 ∼ µ0(x0) and
{xj1}Nj=1 ∼ µ1(x1). Thus the modeling task is to learn the (approximate) transport map ψ.

2.1 CONTINUOUS NORMALIZING FLOWS AND FLOW MATCHING

One common choice for modeling ψ is a deterministic dynamical system with a time-dependent
generator ψt : [0, 1]× Rd → Rd. The solution to this dynamical system is an ordinary differential
equation (ODE) and the learned transport map is known as a continuous normalizing flow (CNF). A
CNF is a time-indexed neural transport map ψt, for all time t ∈ [0, 1] that is trained to pushforward
samples from prior µ0 to a desired target µ1. Specifically, a CNF models the following ODE
d
dtψt(x) = ft (ψt(x)) with initial conditions ψ0(x0) = x0 and ft : [0, 1]× Rd → Rd being the time
dependent vector field associated to the ODE and transports samples from µ0 → µ1.

The most scalable way to train CNFs is to utilize a simulation-free training objective which regresses
a learned neural vector field vt,θ(xt) : [0, 1]×Rd → Rd to the desired target vector field ft(xt) for all
time. This technique is commonly known as flow-matching (Liu, 2022; Albergo & Vanden-Eijnden,
2023; Lipman et al., 2023; Tong et al., 2023c) and has the neural transport map ψt,θ which is obtained
through a neural differential equation (Chen et al., 2018) d

dtψt,θ(x) = vt,θ (ψt,θ(x)). Specifically,
flow-matching regresses vt,θ(xt) to the target conditional vector field ft(xt|z) associated to the target
flow ψt(xt|z). We say that this conditional vector field ft(xt|z), generates the target density µ1(x1)
by interpolating along the probability path µt(xt|z) in time. We often do not have closed-form
access to the generating marginal vector field ft(xt). Still, with conditioning, e.g. z = (x0, x1), we
can obtain a simple analytic expression of a conditional vector field that achieves the same goals. The
conditional flow-matching (CFM) objective can then be stated as a simple simulation-free regression,

LCFM(θ) = Et,q(z),µt(xt|z)∥vt,θ(t, xt)− ft(xt|z)∥
2
2. (1)

The conditioning distribution q(z) can be chosen from any valid coupling, for instance, the
independent coupling q(z) = µ0(x0)µ1(x1). To generate samples and their corresponding log
density according to the CNF we may solve the following flow ODE numerically with initial
conditions x0 = ψ0(x0) and c = logµ0(x0), which is the log density under the prior:

d

dt

[
ψt,θ(xt)
logµt(xt)

]
=

[
vt,θ(t, xt)

−∇ · vt,θ(t, xt)

]
. (2)

In the next section, we outline a different methodology to build a transport map leveraging stochastic
dynamics. This allows us to frame the mass transport problem as a Schrödinger bridge with non-zero
reference drift, which is well suited to modeling noisy measurements found in single-cell evolution.

3 SCHRÖDINGER BRIDGE WITH NON-ZERO REFERENCE FIELD

The dynamic nature of cell evolution can be captured as a mass transport problem under a prescribed
reference process. Specifically, we model the cell evolution using a parametrized stochastic differen-
tial equation (SDE), with drift vt,θ : [0, 1]×Rd → Rd and parameters θ, diffusion coefficient gt > 0:

dXt = vt,θ(Xt) dt+ gtdBt, X0 ∼ µ0,X1 ∼ µ1, (3)

where Bt is a standard Brownian motion and by convention time t ∈ [0, 1] flows from t = 0 to
t = 1 such that marginal distribution at the endpoints are µ0 and µ1. These endpoints are provided
as empirical distributions and represent endpoint observations along a transport trajectory. The SDE
in eq. (3) induces a path measure in the space of Markov path measures (Pt,θ)t∈[0,1] ∈ P(C[0, 1],R

d)

such that the marginal density pt evolves according to the following Fokker-Plank equation:

∂p

∂t
= −∇ · (vt,θ(Xt), pt(Xt)) +

g2t
2
∆pt (Xt) , p0 = µ0, p1 = µ1. (4)
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In addition, our modeling of cellular dynamics is informed by a reference process which is defined
by the following SDE with corresponding drift ft : Rd → Rd and diffusion coefficient σt > 0:

dXt = ft(Xt) dt+ σtdBt. (5)

We denote the induced path measure of eq. (5) as (Qt)t∈[0,1] ∈ P(C[0, 1],Rd).

We now aim to solve the Schrödinger bridge problem which finds an optimal path measure P∗ that
is the solution to the following KL-divergence minimization problem over path measures:

P∗ = argmin
θ

[KL (Pθ||Q) : P0 = µ0,P1 = µ1] (6)

In settings where eq. (5) is driftless and with constant diffusion coefficient—i.e. dXt = σBt—the
Schrödinger bridge problem (Schrödinger, 1932) devolves into the Diffusion Schrödinger Bridge
problem (De Bortoli et al., 2021a; Bunne et al., 2023). In this special case, the Schrödinger bridge
problem admits a unique solution and is linked to the entropic optimal transport plan through the
seminal result of Föllmer (1988). Specifically, P∗ is a mixture of conditional Brownian bridges
Qt(·|x0, x1) weighted by the entropic OT-plan π∗ ∈ Π(µ0 ⊗ µ1) which is a valid coupling in the
product measure µ0 ⊗ µ1, in other words

∫
π(x0, ·) = µ0(x0),

∫
π(·, x1) = µ(x1),

P∗ =

∫
Qt (·|x0, x1) dπ∗(x0, x1) (7)

π∗(µ0, µ1) = argmin
π∈Π(µ0⊗µ1)

∫
c(x0, x1)dπ(x0, x1) + 2σ2KL(π||µ0 ⊗ µ1). (8)

Operationally, the conditional Brownian bridges take the form of a Normal distribution
Qt(·|x0, x1) = N (xt; tx1 + (1− t)x0, t(1− t)σ2) with the mean given as an interpolation between
two endpoints. Furthermore, when σ → 0 the entropic OT problem reduces to the regular OT problem.
We note that this Schrödinger bridge problem can be reinterpreted as a stochastic optimal control prob-
lem where the control cost is the drift vt,θ. That is the stochastic optimal control perspective minimizes
average kinetic energy1of the learned process which leads to the following optimization problem:

v∗θ =

{
min
θ

∫
EPt

[
1

2
∥vt,θ(Xt)∥22

]
dt : dXt = vt,θ(Xt) dt+ gtdBt,P0 = µ0, P1 = µ1

}
. (9)

We approximate P∗ using mini-batch OT (Fatras et al., 2020; 2021) and simulation-free matching algo-
rithms (Tong et al., 2023c;b; Pooladian et al., 2023), iterative proportional and Markov fitting (De Bor-
toli et al., 2021a; Shi et al., 2024), and generalized Schrödinger bridge matching (Liu et al., 2023a).

3.1 SCHRÖDINGER BRIDGES WITH NON-ZERO DRIFT

We now consider the more general case where the drift of the reference process Q is non-zero. In
this case, existing computational approaches no longer apply. More precisely, we are unable to
exploit the key property that the conditional bridges are a mixture of Brownian bridges. However, we
make the observation when σ → 0, the OT coupling must minimize the kinetic energy of interpolants
between the marginals µ0 and µ1. Consequently, we aim to minimize the average relative kinetic
energy as a stochastic control cost under the prescribed reference vector field ft(xt):

v∗θ =

{
min
θ

∫
EPt

[
1

2
∥vt,θ(xt)− ft(xt)∥22

]
: dXt = vt,θ(Xt) dt+ gtdBt,P0 = µ0, P1 = µ1

}
,

with the key distinction that the reference process reduces to an ODE: dxt = ft(xt) dt. We highlight
the solution is still a mixture of conditional bridges Pt, which need to be constructed. We approximate
Pt by designing a neural path interpolant φt,η with parameters η that we use to learn conditional flows:

xt,η = tx1 + (1− t)x0 + t(1− t)φt,η(x0, x1). (10)

We optimize φt,η by minimizing the following simulation-free objective of the relative kinetic energy:

L(η) = Et∼U [0,1],x0∼µ0(x0),x1∼µ1(x1)

[∥∥∥∥α∂xt,η∂t
− ft(xt,η)

∥∥∥∥2
2

]
, ft(xt,η) = κ(xt,η, x0)f0(x0).

1Schrödinger bridges minimize the relative entropy w.r.t. to Q and kinetic energy in the deterministic case.

4



Published at LMRL Workshop at ICLR 2025

Algorithm 1 Training algorithm for neural path interpolant network

Require: Time marginals µ0(x0) and µ1(x1), neural path interpolant φη , reference field ft
1: while Training do
2: Sample (x0, x1) ∼ µ0(x0)µ1(x1) and t ∼ U(0, 1)
3: xt,η ← (1− t)x0 + tx1 + t(1− t)φt,η(x0, x1)

4: ∂xt,η

∂t ← x1 − x0 + t(1− t)∂φt,η(x0,x1)
∂t + (1− 2t)φt,η(x0, x1)

5: L(η)←
∥∥∥α∂xt,η

∂t − ft(xt,η)
∥∥∥2
2
, ft(xt,η) = κ(xt,η, x0) f0(x0)

6: Update η using gradient∇ηL(η)
return (approximate) optimal interpolants parametrized by φt,η

Here α is a learned global scaling and ft(xt) is estimated using a smooth nearest neighbor based
distance kernel κ(xt,η, x0) = ∥xt,η − xi0∥2/

∑N
i ∥xt,η − xi0∥2 with respect to N closest points from

µ0. The time derivative of the neural path-interpolant can be computed using automatic differentiation:

∂xt,η
∂t

= x1 − x0 + t(1− t)∂φt,η

∂t
(x0, x1) + (1− 2t)φt,η(x0, x1). (11)

The pseudocode for learning the neural path is presented in algorithm 1. To approximate Pt we next
learn to approximate the optimal mixture of conditional bridges P∗

t = Ex0,x1∼π∗(x0,x1) [xt,η]. How-
ever, this necessitates the feasibility of computing the OT-plan which for this problem is defined below:

π∗(µ0, µ1) = argmin
π∈Π(µ0⊗µ1)

∫
c(x0, x1)dπ(x0, x1), c(x0, x1) =

∫ 1

0

∥∥∥∥∂xt,η∂t

∥∥∥∥2
2

dt

s.t.
∫
π(x0, ·) = µ0(x0),

∫
π(·, x1) = µ(x1).

Instead of computing the optimal transport cost c(x0, x1) through simulation we leverage an unbiased
stochastic estimator with K samples:

c(x0, x1) = Et∼U [0,1]

[∥∥∥∥∂xt,η∂t

∥∥∥∥2
2

]
=

1

K

K∑
i

∥∥∥∥∥∂xit,η∂t

∥∥∥∥∥
2

2

. (12)

We use the cost in eq. (12) to estimate a transport plan π(x0, x1) which we then use to construct
the approximated mixture of conditional bridges Pt. Using this we next pose the learning problem
for learning the drift vt,θ(xt) of the SDE in eq. (3) evolves cells:

L(θ) =
∫

EPt

[
1

2

∥∥∥∥vt,θ(xt,η)− ∂xt,η
∂t

∥∥∥∥2
2

]
, Pt = Ex0,x1∼π(x0,x1) [xt,η] .

The pseudocode for this marginal (flow) matching objective is presented in algorithm 2.
Remark 1. We highlight that while L(θ) seeks to match vt,θ to velocity of the neural path-interpolant
∂xt,η

∂t the optimal velocity v∗t ̸= ft(xt). This is because the reference process Q does not necessarily
transport µ0 to µ1. More precisely, the reference process does not have constraints at the endpoints
that Q0 = µ0 and Q1 = µ1 which is required from our learned process Pθ and its drift vt,θ.

4 EXPERIMENTS

We investigate the application of CURLY-FM on synthetic toy data as well as a real-world dataset
based on the different stages of cell cycles found in single-cell trajectories. Specifically, we
benchmark on the Deep Cycle dataset (Riba et al., 2022) which contains single-cell trajectories with
RNA-velocity data on samples x0 ∼ µ0(x0) but not elsewhere in both space and time. Through
these experiments we test the efficacy of our CURLY-FM approach in generalizing across previously
unseen population data and learning cycling dependencies which more faithfully capture underlying
cell cycle dynamics. We use this RNA-velocity to estimate the velocity of the vector field at
intermediate time steps ft(xt) using our weighted nearest neighbor kernel as outlined in algorithm 1.
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Algorithm 2 Marginal Flow Matching

Require: Time marginal µ0(x0), trained network φt,η , vector field network vt,θ.
1: while Training do
2: Sample (x0, x1) ∼ q and tij ∼ U(0, 1)

3: Cij
η (xi0, x

j
1)← Et

[∥∥∥∂xt,η

∂t

∥∥∥2
2

]
4: π(x0, x1)← OT(x0, x1, Cη)
5: x0, x1 ∼ π(x0, x1)
6: t ∼ U(0, 1)
7: L(θ)←

∥∥∥vt,θ(xt,η)− (
∂xt,η

∂t

)
.detach()

∥∥∥2
2

8: θ ← Update(θ,∇θL(θ))
return vθ

Baselines. For baselines, we rely on flow based generative models that have been applied to single-cell
and trajectory inference problems. Specifically, we compare CURLY-FM to TrajectoryNet (Tong et al.,
2020) which learns dynamics in single-cell data from static single-cell RNA sequencing snapshots by
combining neural ODEs learned through maximum likelihood training with optimal transport to model
transitions between time points. We further investigate simulation-free alternatives to TrajectoryNet
in Conditional Flow Matching (CFM) (Liu, 2022; Lipman et al., 2023; Tong et al., 2023c) that also
learns vector fields as a neural ODE between the two-time marginals but using a flow matching-
based regression objective. We further include Optimal-Transport Conditional Flow Matching
(OT-CFM) (Tong et al., 2023c) which enhances conditional flow-matching with mini-batch optimal
transport-based couplings that minimize the kinetic energy of the target conditional vector-field. We
note that neither of these simulation-free methods are able to incorporate velocity information.

Metrics. We report Maximum Mean Discrepancy (MMD) and Wasserstein-2 (W2) distance between
the ground truth x1 and the predicted x̂1 after simulating the respective neural ODE’s of each method.
These quantitative metrics assess the ability of each method in performing trajectory inference by
reconstructing the x1 samples given the associated starting sample x0. To assess the ability of each
method to model cell cycle dynamics we compute the cosine distance of the RNA-velocity of the
reference process Q averaged over the time of integration—i.e. from t = 0 to t = 1. A lower cosine
distance indicates better adherence to the vector field of the reference process ft and is correlated with
more faithful modeling of the underlying cell cycle dynamics of single-cell trajectories. We use cosine
distance following Tong et al. (2020) because RNA-velocity is known to have inaccurate magnitudes.

q(0)
q(1)

(a) Asymmetric circles

x(0)

x(1)

(b) CURLY-FM

x(0)

x(1)

(c) CFM

Figure 1: Trajectories generated between samples drawn from asymmetric circles distribution
at t = 0 and t = 1 and respective to underlying reference field ft(xt, ω). CURLY-FM is capable of
learning cycling dependencies unlike other flow based models such as CFM.

4.1 SYNTHETIC EXPERIMENTS

To examine learning cyclical patters from population-level observed populations, we construct source
and target distributions on asymmetrically arranged circles (Figure 1a), each with higher particle
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population density on one side. Given a circular reference velocity field ft(xt, ω) with constant
rotational speed, the goal is to learn velocity-field vt,θ(xt) and trajectories ψt,θ(xt) for t ∈ [0, 1].

Results. We compare CURLY-FM with CFM, demonstrating that standard approaches such as CFM
are not able to capture cycling patterns of the reference field dynamics. Figures 1b and 1c clearly
show that using methods such as CFM with zero-reference field ft results in straight paths between
source and target distributions, thereby failing to capture cycling patterns in the underlying data.

(a) CURLY-FM vt,θ(xt) (b) OT-CFM vt,θ(xt) (c) CFM vt,θ(xt)

x(0)

x(1)

(d) CURLY-FM ψt,θ(xt)

x(0)

x(1)

(e) OT-CFM ψt,θ(xt)

x(0)

x(1)

(f) CFM ψt,θ(xt)

Figure 2: Trajectories ψt,θ(xt) and RNA-velocity fields vt,θ(xt) learned using CURLY-FM (figures
2a and 2d) and conditional flow matching (figures 2c, 2d 2b, 2e). Results show that unlike other
methods CURLY-FM learns cycling patterns matching the learned behavior to that of cell cycle.
Table 2: Quantitative results for cell cycle trajectory inference task. We report the mean result for a metric with
standard deviation over three seeds. CURLY-FM performs the best across matching inferred velocity field to the
reference process (cosine distance) while maintaining comparable performance on other metrics.

Datasets→ d = 5 d = 10 d = 20

Algorithm ↓ W2 ↓ MMD ↓ Cos. Dist ↓ W2 ↓ MMD ↓ Cos. Dist ↓ W2 ↓ MMD ↓ Cos. Dist ↓
CFM 0.294± 0.030 0.493± 0.110 1.065± 0.080 0.606± 0.059 0.120± 0.022 1.001± 0.037 1.227± 0.013 0.031± 0.003 1.007± 0.010
OT-CFM 0.248± 0.030 0.387± 0.079 0.800± 0.309 0.586± 0.041 0.118± 0.025 1.008± 0.039 1.183± 0.015 0.024± 0.004 0.978± 0.125
TrajectoryNet 0.531± 0.021 0.714± 0.061 1.077± 0.031 0.853± 0.059 0.238± 0.018 0.979± 0.064 − − −
CURLY-FM (Ours) 0.944± 0.255 0.914± 0.193 0.387± 0.145 0.972± 0.044 0.214± 0.005 0.343± 0.105 4.263± 0.535 0.091± 0.014 0.364± 0.088

4.2 EXPERIMENTS ON SINGLE-CELL RNA-VELOCITY DATA

To show that CURLY-FM is effective in learning cycling behavior in single-cell data, we
leverage a cell cycle dataset of human fibroblasts (Riba et al., 2022) to learn cell trajectories by
considering RNA-velocities (see figure 3a) during cell cycle with cell rotations shown in figure 3b).

(a) RNA-Velocity Field (b) Cell Cycles

Figure 3: Data

We consider a single snapshot
data of RNA velocities and
construct source and target distri-
butions µ0 and µ1. We leverage
RNA-velocity field to estimate
reference velocity field ft(xt)
by smoothing over N = 20
nearest neighbors drawn from
from µ0 using κ(xt,η, x0) =

∥xt,η−xi0∥2/
∑N

i ∥xt,η−xi0∥2.
Further, we consider an arbitrary
d-dimensional set-up, where d
is the number of top ranked genes based on their variability.
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Traditional flow-based models cannot capture cycling patterns. Figure 2 shows an overview of
learned velocity fields vt,θ(xt) and trajectories ψt,θ(xt) between cell cycle distributions at t = 0 and
t = 1. In table 2, we show results on trajectory inference task comparing CURLY-FM to CFM, OT-
CFM, and TrajectoryNet. Given underlying cell cycle process, the aim is to learn circular trajectories
resulting from a divergent-free velocity field. While traditional methods are successful in generating
end points in close proximity to ground truth, they fail at learning cyclic patterns as shown in figures 2f.

CURLY-FM demonstrates learning non-gradient field dynamics. Our results show that
considering non-zero reference field and velocity inference captures non-gradient dynamics patterns
in data. Figures 2a and 2d show learned behavior using CURLY-FM. We observe that trajectory
ψt,θ(xt) inferred with CURLY-FM closely matches expected cycling patterns in the fibroblast dataset,
in contrast to trajectories inferred using CFM and OT-CFM. This is quantified in Table 2 where we
can see the cosine distance to the reference field is significantly lower for CURLY-FM.

5 RELATED WORK

Flow-matching for efficient continuous normalizing flows. Flow-matching (Lipman et al., 2023),
also known as rectified flows (Liu, 2022; Liu et al., 2023b) or stochastic interpolants (Albergo
& Vanden-Eijnden, 2023; Albergo et al., 2023), has emerged as the default method for training
continuous normalizing flow (CNF) models (Chen et al., 2018; Grathwohl et al., 2019). However,
unlike maximum likelihood training, flow matching training requires one to pre-specify conditional
probability paths, which can result in less flexible in modeling dynamics. Therefore many works
attempt to derive methods for using minimum energy (Tong et al., 2023c; Pooladian et al., 2023)
and more flexible conditional paths (Neklyudov et al., 2024; Kapuśniak et al., 2024).

Schrödinger bridges with deep learning. To tackle the Schrödinger bridge problem in high
dimensions many methods propose simulation-based (De Bortoli et al., 2021b; Chen et al., 2022;
Koshizuka & Sato, 2023; Liu et al., 2022) and simulation-free (Shi et al., 2024; Tong et al., 2023b;
Pooladian & Niles-Weed, 2024; Liu et al., 2023a) set-ups with various additional components
incorporating variable growth rates (Zhang et al., 2024; Pariset et al., 2023; Sha et al., 2024),
stochasticity, and manifold structure (Huguet et al., 2022) proposed based on neural ODE and neural
SDE (Li et al., 2020; Kidger et al., 2021) frameworks. However, very few methods are able to
incorporate approximate velocity data, and either match marginals using simulation (Tong et al.,
2020), or do not attempt to match marginals (Qiu et al., 2022). Finally, Schrödinger bridges with
non-zero reference field have also been considered by Bartosh et al. (2024), however they do not
employ a two-stage simulation-free approximation as CURLY-FM.

RNA-velocity methods on discrete manifolds. A common strategy to regularize and interpret
RNA-velocity (La Manno et al., 2018; Bergen et al., 2020) is to restrict it to a Markov process on
a graph of cells representing a discrete manifold or compute higher level statistics on it (Qiu et al.,
2022). However, these approaches are not equipped to match the marginal cell distribution over time.
CURLY-FM can be seen as a method that unites these approaches with marginal-matching approaches.

6 CONCLUSION

In this work we introduced CURLY-FM, a method capable of learning non-gradient field dynamics by
solving a Schrödinger bridge problem with a non-zero reference process drift. In contrast to prior work
which leverages RNA-velocity, CURLY-FM is simulation-free, greatly improving numerical stability
and efficiency. We showed the utility of this method in learning more accurate dynamics in a cell
cycle system with known periodic behavior. CURLY-FM opens up the possibility of moving beyond
modeling population-dynamics with simulation-free training methods and towards reconstructing
the underlying governing dynamics (Xing, 2022). Nevertheless, CURLY-FM is currently limited in
its ability to discover the underlying dynamics by accurate inference of the reference field, which
is an inherently difficult problem especially over longer timescales. Exciting directions for future
work involve additional verification of trajectories through lineage tracing (McKenna & Gagnon,
2019; Wagner & Klein, 2020), and improved modeling across non-stationary populations with the
additional incorporation of unbalanced transport or multiomics datatypes (Baysoy et al., 2023).
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MEANINGFULNESS STATEMENT

A meaningful representation of life is one that leads to new insights and actionable knowledge that
can improve clinical outcomes. This work contributes to this direction by building more meaningful
understanding of cell dynamics, which can be used to understand disease (Tong et al., 2023a) and
development (Schiebinger et al., 2019; Klein et al., 2025).
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APPENDIX

A HUMAN FIBROBLASTS DATASET

We consider human fibroblasts dataset (Riba et al., 2022) that contains genomic information about
5,367 cells observed across a cell cycle. Cell data further contains information about cycling genes,
and more specifically their RNA-velocities which we use to estimate reference velocity field ft(xt).

Pre-processing. Data is pre-processed by selecting top d variable genes from the data. Further, we
use scvelo package to compute imputed unspliced (Mu) and spliced (Ms) expressions as well
velocity graph. Figure 4 shows a distribution of cell rotations and phases during a cell cycle process.

(a) Cell Rotations γ (b) Cell Phases

Figure 4: Human Fibroblasts Dataset.

B EXPERIMENTAL DETAILS

φt,η(x0, x1) and vt,θ(xt, η) design. Both φt,η(x0, x1) and vt,θ(xt, η) are designed as MLP models
with 3 layers. We select MLP dimensions on the basis of number of chosen highly variable genes d:

• For φt,η(x0, x1) we choose din = 2× d and dout = d

• For vt,θ(xt, η), we choose dimensions of din = d.

Dataset is split as [80%, 10%, 10%] across training, validation and test.

Training. All CURLY-FM and baseline experiments are run using lr = 10−4 learning rate and Adam
optimizer with default β1, β2, andϵ values across three seeds and with 1,000 epochs split into 500
epochs to train φt,η followed by 500 epochs to train vt,θ.

TrajectoryNet was run with 250 epochs with the Euler integrator with 20 timesteps per timepoint. We
use 250 epochs to limit the experimental time to limit the number of function evaluations to roughly
5x that of simulation-free methods. We use a batch size of 256 samples. We use a Dormand-Prince
4-5 (dopri5) adaptive step size ODE solver to sample trajectories with absolute and relative tolerances
of 10−4. All experiments were conducted using a mixture of CPUs and A10 GPUs.

13


	Introduction
	Background and preliminaries
	Continuous normalizing flows and flow matching

	Schrödinger Bridge with non-zero reference field
	Schrödinger Bridges with non-zero drift

	Experiments
	Synthetic Experiments
	Experiments on Single-Cell RNA-velocity Data

	Related Work
	Conclusion
	Human Fibroblasts Dataset
	Experimental Details

