
Iterative or Innovative?
A Problem-Oriented Perspective for Code Optimization

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-001
strated strong capabilities in solving a wide002
range of programming tasks. However, LLMs003
have rarely been explored for code optimiza-004
tion. In this paper, we explore code optimiza-005
tion with a focus on performance enhancement,006
specifically aiming to optimize code for mini-007
mal execution time. The recently proposed first008
PIE dataset for performance optimization con-009
structs program optimization pairs based on it-010
erative submissions from the same programmer011
for the same problem. However, this approach012
restricts LLMs to local performance improve-013
ments, neglecting global algorithmic innova-014
tion. Therefore, we adopt a completely differ-015
ent perspective by reconstructing the optimiza-016
tion pairs into a problem-oriented approach.017
This allows for the integration of various inge-018
nious ideas from different programmers tack-019
ling the same problem. Experimental results020
demonstrate that adapting LLMs to problem-021
oriented optimization pairs significantly en-022
hances their optimization capabilities. Mean-023
while, we identified performance bottlenecks024
within the problem-oriented perspective. By025
employing model merge, we further overcame026
bottlenecks and ultimately elevated the pro-027
gram optimization ratio (51.76% → 76.65%)028
and speedup (2.65× → 5.09×) to new levels.029

1 Introduction030

Code generation has become one of the most031

promising applications of LLMs and Code LLMs.032

Models such as GPT-4 (Achiam et al., 2023),033

CodeLLama (Roziere et al., 2023), StarCoder (Li034

et al., 2023), WizardCoder (Luo et al., 2024), and035

Deepseek-Coder (Guo et al., 2024) have garnered036

great attention from academia and industry due to037

their remarkable code generation capabilities.038

Despite their impressive code generation capa-039

bilities and high correct rate (Pass@k) in widely040

used benchmarks such as HumanEval (Chen et al.,041

User 1
submit 1

User 1
submit 2

User 1
submit N

User 1
submit

User 2
submit

User N
submit

A Programming Problem

(a) User-Oriented

(b) Problem-Oriented

···

···

Figure 1: Comparison of User-Oriented and Problem-
Oriented code optimization for the same problem.

2021) and MBPP (Austin et al., 2021), the code 042

generated by these models is often not immedi- 043

ately usable in real-world scenarios. In practice, 044

the code must also be optimized to meet specific 045

constraints. For instance, in IoT applications where 046

physical resources are limited, it is crucial to min- 047

imize code memory usage to ensure efficient op- 048

eration (Park and Kim, 2024). Similarly, in low- 049

latency scenarios such as high-frequency trading 050

systems, the code must be optimized for time com- 051

plexity and efficiency to handle large volumes of 052

transactions swiftly and accurately (Bilokon and 053

Gunduz, 2023). These practical scenarios highlight 054

the need for code optimization to meet applica- 055

tion requirements. Although low-level optimizing 056

compilers and other performance engineering tools 057

have made significant advancements (Alfred et al., 058

2007; Wang and O’Boyle, 2018), programmers 059

still bear the primary responsibility for high-level 060

1

#include <iostream>
#include <stdio.h>
using namespace std;
typedef long ll;

int main() {
int length;
ll arr[200000];
ll res[200000] = {0};
ll temp = 0;
ll m = 2147483647;
scanf("%d", &length);
for (int i = 0; i < length;

++i) {
scanf("%ld", &arr[i]);

}
res[0] = arr[0];
for (int i = 1; i < length;

++i) {
res[i] += res[i - 1] +

arr[i];
}
for (int i = 1; i < length;

++i) {
temp = abs(res[length - 1]

- res[i - 1] * 2);
m = min(temp, m);

}
printf("%ld\n", m);
return 0;

}

(a) user1, initialization version.

#include <bits/stdc++.h>
using namespace std;

#define int long long
typedef vector<int> vi;

const int INF = 1e18 + 5;

void solve() {
int n;
cin >> n;
vi v(n), pre(n);
int mn = INF, s = 0;
for(int i = 0; i < n; i++) cin

>> v[i];
pre[0] = v[0];
for(int i = 1; i < n; i++)

pre[i] = v[i] + pre[i -
1];

for(int i = n - 1; i >= 1;
i--) {
s += v[i];
mn = min(mn, abs(pre[i -

1] - s));
}
cout << mn;

}

signed main() {
speed;
int t = 1;
while(t--) solve();

}

(b) user1, iteration version.

#include<cstdio>
const int MAX = 2e5 + 5;
int a[MAX];
int main() {

int n;
long long sum = 0;
scanf("%d", &n);
for (int i = 0; i < n; i++)
{

scanf("%d", a + i);
sum += a[i];

}
long long left,right,temp;
left = sum - a[n - 1];
right = a[n - 1];
long long min = left > right ?

left - right : right -
left;

left = 0;
for (int i = 0; i < n-2; i++)

{
left += a[i];
right = sum - left;
temp = left > right ? left

- right : right -
left;

if (temp < min)
min=temp;

}
printf("%d\\n", min);
return 0;

}

(c) another user submitted version.

Figure 2: The three submitted code solutions all address problem "p03661", which asks for a split point in an
array that minimizes the absolute difference between the sums of the two parts. Solutions (a) and (b) are different
submissions from same user "u018679195". In (a), the prefix sum is calculated first, then the minimum difference is
computed from start to finish. In (b), the prefix sum is also calculated first, but the minimum difference is computed
from end to start, avoiding additional multiplication operations. Solution (c), from user "u353919145", calculates
the difference between the left and right sums in real-time, requiring only one pass through the loop. It can be seen
that solutions (a) and (b) only make local changes, while (c) constructs a more efficient algorithm.

performance considerations, including the selec-061

tion of algorithms and APIs. However, automating062

high-level code optimization remains a significant063

challenge and has not been widely explored due064

to the need for understanding code semantics and065

performing optimizations accordingly.066

Code optimization can proceed in many direc-067

tions. In this paper, we focus on time performance068

optimization for practical considerations, aiming to069

minimize program execution time during the opti-070

mization process. Fortunately, Shypula et al. (2024)071

proposed the first program performance optimiza-072

tion dataset, PIE, which includes C++ programs073

designed to solve competitive programming prob-074

lems, as C++ is a performance-oriented language.075

PIE tracks a single programmer’s submissions over076

time, identifying sequences of edits that lead to077

performance improvements. Each sample in the078

dataset consists of a pair of code solutions—a slow079

solution and a fast solution—submitted iteratively080

by the same user for the same problem. Meanwhile,081

Shypula et al. (2024) have preliminarily demon- 082

strated the feasibility of adapting Code LLMs to 083

code optimization through finetuning. 084

However, inspired by the iterative process of real 085

software development and an in-depth observation 086

and analysis of PIE, we found that this method of 087

constructing code optimization pairs based on iter- 088

ative submissions and optimizations by the same 089

user for the same programming problem, although 090

reflecting the direction of code optimization, is lim- 091

ited by the single programmer’s thought patterns. 092

This often results in the program evolving and im- 093

proving incrementally based on previous logic and 094

paradigms. As shown in Figure 2, 2a and 2b are 095

iterative submissions by the same user for the same 096

problem. 2b, compared to 2a, did not change the 097

overall algorithm but simply avoided some addi- 098

tional multiplication operations. In contrast, 2c is 099

a submission by another user that presents a more 100

efficient algorithm to solve the same problem. 101

In actual code review and refactoring processes, 102

2

the original author of the code typically does103

not participate. Instead, these tasks are assigned104

to other programmers to avoid cognitive inertia,105

which can hinder significant improvements. In real-106

ity, it is often the clash of different perspectives that107

sparks innovation. When addressing the same pro-108

gramming problem, different programmers bring109

diverse viewpoints and approaches, leading to var-110

ied algorithms and paradigms. This insight in-111

spired us to adopt a different approach. By shifting112

from an original author-oriented perspective to a113

problem-oriented perspective, we restructure the114

optimization pairs that were initially composed by115

the same programmer. The new problem-oriented116

optimization pairs integrate the diverse and innova-117

tive ideas of different programmers tackling the118

same problem. Experimental results show that119

adapting Code LLMs to problem-oriented optimiza-120

tion pairs significantly enhances their code opti-121

mization capabilities. However, while Code LLMs122

exhibit excellent optimization ratios and speedup123

under these pairs, further improvements are primar-124

ily constrained by correctness issues. To address125

this performance bottleneck, we draw inspiration126

from the idea that different models have their own127

strengths, and combining them can retain quality128

while providing additional benefits. Based on this129

idea, we utilize model merging to overcome this130

bottleneck, ultimately elevating the optimization131

ratio of from 51.76% to 76.65% and the speedup132

from 2.65× to 5.09×, compared to the baseline.133

To facilitate further exploration in code optimiza-134

tion, we have made the problem-oriented dataset,135

code, and evaluation scripts publicly available1. In136

summary, our contributions are as follows:137

• We thoroughly analyze the limitations of user-138

oriented program pairs and, for the first time,139

propose a problem-oriented perspective for140

code optimization.141

• Adapting Code LLMs to problem-oriented142

program optimization pairs can significantly143

enhance the optimization ratio and Speedup144

across different Code LLMs and models with145

varying parameter scales.146

• We identify the current performance bottle-147

necks in code optimization and achieve further148

breakthroughs through the method of model149

merging. Extensive experiments and analysis150

provide insights for the further development of151

1https://anonymous.4open.science/r/
code-optimization-85ED

the code optimization domain. 152

2 Related Works 153

2.1 LLMs for Code-Related Tasks. 154

LLMs pre-trained on extensive code corpora have 155

exhibited impressive abilities in code generation 156

and other code-related tasks (Li et al., 2022; Ni- 157

jkamp et al., 2023; Roziere et al., 2023; Wei et al., 158

2023; Guo et al., 2024). Numerous techniques and 159

frameworks have been proposed to improve the ac- 160

curacy of code generation, such as self-correction 161

(Chen et al., 2024; Zhong et al., 2024; Moon et al., 162

2024; Olausson et al., 2024). However, as men- 163

tioned earlier, the research of LLMs for code op- 164

timization, a domain that is both practically sig- 165

nificant and highly challenging, has not yet been 166

widely explored in both academia and industry. 167

2.2 Code Optimization. 168

Program optimization has been a major focus of 169

software engineering for the past few decades (Ba- 170

con et al., 1994; Kistler and Franz, 2003). However, 171

high-level optimizations such as algorithm changes 172

remain elusive due to the difficulty of understand- 173

ing the semantics of code. Previous machine learn- 174

ing has been applied to improve performance by 175

identifying compiler transformations (Bacon et al., 176

1994), optimizing GPU code (Liou et al., 2020), 177

and automatically selecting algorithms (Kerschke 178

et al., 2019). DeepPERF (Garg et al., 2022) uses 179

a transformer-based model fine-tuned to generate 180

performance improvement patches for C# applica- 181

tions. Shypula et al. (2024) proposed the first new 182

C++ dataset for program performance optimiza- 183

tion. However, this dataset is user-oriented, which 184

can lead to limitations due to localized optimiza- 185

tion, overlooking the adoption of globally optimal 186

algorithms and data structures. 187

3 Problem-Oriented Program 188

Optimization Dataset 189

Shypula et al. (2024) constructed the PIE dataset, 190

which focuses on optimizing program execution 191

time based on human programmers’ submission 192

for a range of competitive programming tasks from 193

CodeNet (Puri et al., 2021). The core idea behind 194

the construction of PIE is that given a problem, 195

programmers typically write an initial solution and 196

iteratively improve it. Formally, Yu
x = [yu1 , y

u
2 , ...] 197

be a chronologically sorted series of programs, 198

written by user u for the problem x. Yu
x is 199

3

https://anonymous.4open.science/r/code-optimization-85ED
https://anonymous.4open.science/r/code-optimization-85ED

32.0%

57.0%

11.0%

PIE-User: GPT-4

27.4%

53.7%

18.9%

PIE-User: Human

83.7%

10.5%5.8%

PIE-Problem: GPT-4

78.0%

14.0%
8.0%

PIE-Problem: Human

Optimization Categories
Global Local Other

Figure 3: Statistical Analysis of Optimization Types.

removed for not accepted by the automated200

system, eliminating incorrect programs or take201

more than the allowed time to run, resulting in a202

trajectory of programs: Yu∗
x = [yu∗1 , yu∗2 , . . . , yu∗n].203

For each trajectory Yu∗
x , construct pair Pu =204

(yu∗1 , yu∗2), (yu∗1 , yu∗3), (yu∗2 , yu∗3) . . ., and keep205

only pairs for which (time(yi)−time(y>i))
time(yi)

> 10%206

where time (y) is the measured latency of pro-207

gram y (relative time improvements is more than208

10%). Since all pairs in PIE are iterative versions209

submitted by the same user, we subsequently210

refer to this dataset as PIE-User. As shown in211

Figure 2, program optimization pairs in PIE-User,212

which consist of iterative submissions by the213

same user, can easily cause LLMs to focus on214

local performance improvements, neglecting215

global algorithmic advancements and innovations.216

Therefore, we restructured the PIE-User from a217

problem-oriented perspective. For each program-218

ming problem x, we collected valid submitted219

solutions by different users and sorted them based220

on benchmarked execution time (from slowest to221

fastest), resulting in another trajectory:222

Yp
x = [yu1

1 , yu2
1 , yu3

1 , yu2
2 , yu3

2 , . . .]223

where u1, u2, u3 represent different users, and yu1
1224

represents the first valid submission by user u1. It225

is evident that this trajectory interleaves submis-226

sions from different users. Based on the Yp
x, we227

reconstruct problem-oriented program performance228

Dataset Unique Problems Pairs

PIE-User Train 1,135 56,086

PIE-Problem Train 336 14,051

Val 110 2,769
Test 80 1,422

Table 1: Number of unique problem ids and pairs.

optimization pairs as following: 229

Pp ={(yu1
1 , yu2

1), (yu1
1 , yu3

1), (yu1
1 , yu2

2),

(yu2
1 , yu2

2), (yu2
1 , yu3

2), . . .}
230

t is important to note that we only retain pro- 231

gram pairs in Pp that demonstrate a relative time 232

improvement of greater than 90%. This is because, 233

in code optimization engineering practice, an op- 234

timization that reduces the runtime by an order of 235

magnitude compared to the pre-optimization run- 236

time is generally considered global and significant 237

(Atwood, 2012). We subsequently refer to this 238

problem-oriented program optimization dataset as 239

PIE-Problem. We retain the original validation and 240

test sets without any changes to ensure fair com- 241

parisons in subsequent evaluations. The statistical 242

results of the PIE-Problem are shown in the Table 1. 243

We meticulously reviewed and ensured that any par- 244

ticular competitive programming problem appeared 245

in only one of the train, validation, or test sets. It 246

can be seen that the PIE-Problem program opti- 247

mization pairs are fewer than the original PIE-User 248

pairs. This is because problem-oriented program 249

pairs have a high threshold, with each achieving at 250

least a 90% relative time improvement. 251

Furthermore, we randomly selected 1,000 pro- 252

gram optimization pairs from the PIE-User and PIE- 253

Problem datasets for analysis by GPT-4, and 100 254

pairs for human analysis to identify the types of op- 255

timizations made. The results are categorized into 256

three types: global algorithmic optimizations, local 257

optimizations, and others (such as code cleanup), 258

as shown in Figure 3 (details are provided in Ap- 259

pendix A). For PIE-User, true global algorithmic 260

optimizations account for a relatively small pro- 261

portion. In contrast, most of the program pairs in 262

PIE-Problem fall into the "global algorithm opti- 263

mization" category. Moreover, GPT-4 identifies a 264

higher proportion of "global algorithm optimiza- 265

tion" compared to human analysis. Upon observa- 266

tion and comparison, we find that this discrepancy 267

4

is mainly because GPT-4 tends to classify program268

pairs with large changes as "global algorithm opti-269

mization".270

4 Experiment Setting271

Code LLMs Selection. We select CodeLLama272

(7B, 13B, 34B) (Roziere et al., 2023) and273

DeepSeek-Coder (7B, 33B) (Guo et al., 2024) for274

code optimization. CodeLLama is the most widely275

used Code LLM, while DeepSeek-Coder is cur-276

rently the best-performing Code LLM. We use277

LoRA (Hu et al., 2022), a parameter-efficient fine-278

tuning method, to adapt Code LLMs for code op-279

timization. Detailed training parameters are pro-280

vided in the Appendix B.281

Test Cases and Execution Time Measurement.282

We evaluate the correctness of the optimized pro-283

grams through unit tests; any program that fails a284

single test is rejected. For PIE-Problem, we use285

the same test cases as PIE-User, averaging 88.1 per286

problem in the training set, 75 per problem in the287

validation set, and 104 per problem in the test set.288

Accurately evaluating the execution time of a pro-289

gram is a critical issue, as measurements of time on290

real hardware can significantly vary due to server291

workload and configuration problems. We measure292

the execution time of each program utilizing gem5293

CPU simulators (Binkert et al., 2011), which serves294

as the gold standard for CPU simulation in both295

academia and industry, ensuring entirely determin-296

istic and reliable results and reproducibility.297

Metrics. To evaluate performance, we measure298

below metrics for functionally correct programs:299

• Percent Optimized [%OPT]: The fraction of300

programs in the test set (out of 1422 unseen301

samples) improved by a certain method. A302

program must be at least 10% faster and correct303

to contribute.304

• Speedup [SPEEDUP]: The absolute improve-305

ment in running time. If o and n are306

the “old” and “new” running times, then307

SPEEDUP(O, N) =
(
o
n

)
. A program must be308

correct to contribute.309

• Percent Correct [Correct]: The proportion of310

programs in the test set that are at least func-311

tionally equivalent to the original program (in-312

cluded as an auxiliary analysis metric).313

We count a program as functionally correct if314

it passes every test case. Notably, %OPT and315

Given the program below, improve
its performance:↪→

Program:
{src_code}

Optimized Version:

Figure 4: Instruct Prompt.

SPEEDUP are the main metrics, and they are cal- 316

culated for the entire test set. While Correct is not 317

our primary focus, we include it to aid interpreting 318

our results. Additionally, we report our SPEEDUP 319

as the average speedup across all test set samples. 320

For generated programs that are either incorrect or 321

slower than the original, we use a speedup of 1.0 for 322

that example, as the original program, in the worst 323

case, has a speedup of 1.0. We benchmark perfor- 324

mance using gem5 environment and all test cases. 325

We compile all C++ programs with GCC version 326

9.4.0 and C++17 as well as the -O3 optimization 327

flag; therefore, any reported improvements would 328

be those on top of the optimizing compiler. 329

Decoding strategy. Code generation benefits 330

from sampling multiple candidate outputs for each 331

input and selecting the best one; in our case, the 332

"best" is the fastest program that passes all test 333

cases. We use BEST@k to denote this strategy with 334

k samples and a temperature of 0.7. 335

5 Main Results and Discussion 336

Table 2 presents the main results of using prompts 337

and adapting Code LLMs for code optimization 338

based on PIE-User and PIE-Problem, respectively. 339

Instruct and CoT prompting. First, we adopt 340

the most straightforward way by directly using an 341

instruct prompt to have the LLMs generate opti- 342

mized code. The instruct prompt is shown in Fig- 343

ure 4. Additionally, inspired by Chain-of-Thought 344

(CoT) prompting (Wei et al., 2022), we ask the 345

LLMs to think about how to optimize the program 346

before actually generating the optimized program 347

(details of the CoT prompt are shown in the Ap- 348

pendix D). The result shows that using instruct 349

prompt and CoT did not significantly improve 350

%OPT and SPEEDUP for code optimization. The 351

best performance by GPT-4 (CoT) achieved 27.92 352

%OPT and 1.246× SPEEDUP. Additionally, we ob- 353

serve that when LLMs perform optimization under 354

5

Table 2: Main Results: Prompt and Fine-Tuning for various LLMs with BEST@1 and BEST@8.

Prompt Best@1 Best@8

/ Dataset Model %Opt Speedup Correct %Opt Speedup Correct

Instruct CodeLlama 34B 0.70% 1.002× 24.50% 5.70% 1.048× 88.96%
Instruct DeepSeek-Coder 33B 2.88% 1.016× 16.17% 11.53% 1.091× 68.00%
Instruct GPT-3.5 7.10% 1.049× 68.35% 11.60% 1.073× 81.65%
Instruct GPT-4 8.37% 1.062× 65.33% 16.81% 1.149× 93.74%

CoT CodeLlama 34B 1.27% 1.017× 16.17% 9.85% 1.103× 79.75%
CoT DeepSeek-Coder 33B 4.64% 1.042× 14.91% 16.81% 1.178× 61.89%
CoT GPT-4 13.43% 1.173× 48.65% 27.92% 1.246× 84.53%

PIE-User CodeLlama 7B 12.80% 1.452× 30.45% 35.65% 2.051× 78.27%
PIE-User CodeLlama 13B 16.03% 1.402× 31.79% 34.46% 1.998× 77.36%
PIE-User CodeLLama 34B 14.14% 1.435× 36.57% 37.06% 2.089× 81.79%

PIE-User DeepSeek-Coder 7B 23.56% 1.596× 51.27% 44.23% 2.327× 86.23%
PIE-User DeepSeek-Coder 33B 27.57% 1.770× 59.49% 51.76% 2.649× 91.14%

PIE-Problem CodeLlama 7B 9.85% 1.468× 10.27% 33.12% 2.616× 34.23%
PIE-Problem CodeLlama 13B 10.06% 1.485× 10.62% 36.71% 2.886× 38.05%
PIE-Problem CodeLLama 34B 13.08% 1.686× 13.57% 44.02% 3.401× 45.29%

PIE-Problem DeepSeek-Coder 7B 30.38% 2.558× 31.08% 68.50% 4.679× 70.18%
PIE-Problem DeepSeek-Coder 33B 36.64% 2.963× 37.41% 71.03% 4.812× 72.50%

CoT, generating an optimized program based on355

the strategy can lead to a certain degree of decline356

in correctness. This suggests that while CoT helps357

in SPEEDUP, it may introduce complexities that358

affect the overall correctness of generated code.359

Adapting Code LLMs on PIE-User and PIE-360

Problem. When fine-tuning Code LLMs us-361

ing PIE-User, we adopt the best performance-362

conditioned generation method proposed by (Shy-363

pula et al., 2024). This method involves informing364

the model in the instructions about the extent to365

which the current optimized code has achieved366

the best performance(details and our considera-367

tions are in Appendix C). In contrast, when fine-368

tuning using PIE-Problem, we opt for the simplest369

instruction, as shown in Figure 4, as we believe370

that "the simpler the better" in practice. From Ta-371

ble 2, it can be seen that for the two key metrics372

%OPT and SPEEDUP, Code LLMs perform sig-373

nificantly better on PIE-Problem compared to PIE-374

User, with the only exception being the CodeLlama375

series, which shows a slight decline in %OPT under376

BEST@1. This is primarily due to the performance377

bottleneck issue (explained below). Among them,378

the best-performing Code LLM, DeepSeek-Coder379

33B, increased %OPT from 51.76% to 71.03% and380

SPEEDUP from 2.649× to 4.812× under BEST@8.381

Insight of optimization pairs. Tale 2 shows that382

transitioning program optimization pairs from User-383

Oriented to Problem-Oriented brings significant im- 384

provements in code optimization by Code LLMs. 385

Despite being relatively small, PIE-Problem en- 386

ables LLMs to learn better program optimization 387

capabilities. This indicates that for program opti- 388

mization, high-quality global program optimization 389

pairs are more important than quantity. 390

Insight on different Code LLMs and param- 391

eter scales. We observe significant differences 392

in code optimization performance across various 393

Code LLM series. The best CodeLlama model 394

(CodeLlama 34B) lags behind the top-performing 395

DeepSeek-Coder model (DeepSeek-Coder 33B) by 396

27.01% in %OPT and 1.411× in SPEEDUP. Addi- 397

tionally, it is surprising that the DeepSeek-Coder 398

7B significantly outperforms CodeLlama 34B. We 399

believe this disparity is mainly due to the high 400

level of code semantic understanding required for 401

code optimization tasks. Only when a Code LLM’s 402

understanding of code reaches a certain level can 403

it perform efficient optimization. Therefore, any 404

differences in code comprehension among Code 405

LLMs will further amplify their differences in code 406

optimization capabilities. The relationship between 407

code understanding and code optimization warrants 408

further exploration. 409

Insight of correctness and performance bottle- 410

neck. From the Correct column in Table 2, it 411

can be seen that under PIE-Problem fine-tuning, 412

6

Table 3: Problem-Oriented experiments for various Code LLMs with BEST@1 and BEST@8.

Best@1 Best@8

Model Method %Opt Speedup Correct %Opt Speedup Correct

CodeLLama 34B PIE-Problem 13.08% 1.686× 13.57% 44.02% 3.401× 45.29%
CodeLlama 34B Self-Correct 13.85% 1.703× 14.21% 45.35% 3.463× 47.47%
CodeLlama 34B Curriculum-Learning 12.45% 1.551× 13.15% 43.74% 3.285× 45.43%
CodeLlama 34B Merge-Slerp 17.65% 1.805× 19.13% 51.05% 3.613× 54.85%
CodeLlama 34B Merge-Linear 18.14% 1.832× 21.21% 56.53% 3.830× 64.28%

DeepSeek-Coder 7B PIE-Problem 30.38% 2.558× 31.08% 68.50% 4.679× 70.18%
DeepSeek-Coder 7B Self-Correct 32.13% 2.601× 32.98% 68.97% 4.712× 70.67%
DeepSeek-Coder 7B Curriculum-Learning 27.11% 2.325× 28.69% 63.43% 4.506× 65.68%
DeepSeek-Coder 7B Merge-Slerp 35.30% 2.477× 44.80% 70.04% 4.638× 74.68%
DeepSeek-Coder 7B Merge-Linear 38.40% 2.770× 43.53% 70.46% 4.732× 75.53%

DeepSeek-Coder 33B PIE-Problem 36.64% 2.963× 37.41% 71.03% 4.812× 72.50%
DeepSeek-Coder 33B Self-Correct 37.76% 3.031× 39.45% 73.12% 4.902× 74.19%
DeepSeek-Coder 33B Curriculum-Learning 31.15% 2.579× 32.28% 68.14% 4.692× 70.18%
DeepSeek-Coder 33B Merge-Slerp 43.60% 3.095× 45.71% 75.32% 5.037× 77.22%
DeepSeek-Coder 33B Merge-Linear 46.69% 3.432× 48.03% 76.65% 5.087× 78.76%

Code LLMs experiences a noticeable decline in cor-413

rectness compared to under PIE-User fine-tuning414

and prompt methods. Although correctness is not415

the main metric, it provides additional insights. It416

can be seen that under PIE-Problem fine-tuning,417

Code LLMs show very close performance met-418

rics for %OPT and correctness, a phenomenon not419

observed under PIE-User fine-tuning and prompt420

methods. This indicates that with PIE-Problem421

fine-tuning, Code LLMs almost always achieve a422

speedup effect (95%+) as long as the generated423

optimized program is functionally correct. How-424

ever, under PIE-User fine-tuning or prompt meth-425

ods, this is not the case (%OPT and correctness426

show a large gap), resulting in many programs that427

are functionally correct but do not exhibit a signif-428

icant speedup effect. Therefore, the performance429

bottleneck for code optimization in Code LLMs430

under PIE-Problem fine-tuning lies in correctness.431

To improve %OPT and SPEEDUP, the focus should432

be on enhancing correctness.433

6 Overcoming Performance Bottlenecks434

Considering that the correctness of Code LLMs435

remains at a high level under PIE-User fine-tuning,436

we believe this optimization direction is overly con-437

servative. On the other hand, the performance bot-438

tleneck of Code LLMs under PIE-Problem fine-439

tuning lies in correctness, indicating an overly ag-440

gressive optimization direction. This suggests that441

the optimization directions of the two methods are442

different. This inspired us to combine the strengths443

of both by merging the two Code LLMs into a444

single Code LLM, thereby retaining the original 445

capabilities while gaining additional benefits. We 446

choose two main LLM merging methods for our 447

experiment: Merge-Linear (Wortsman et al., 2022) 448

and Merge-Slerp2. Additionally, we compared the 449

model merge methods with two other intuitive ap- 450

proaches. The first is Self-Correct. In code gen- 451

eration, Self-Correct is an important method for 452

improving correctness. This involves having Code 453

LLMs review and debug their own generated pro- 454

grams to achieve self-correction (Chen et al., 2024; 455

Zhong et al., 2024). Furthermore, for the challeng- 456

ing task of code optimization, we apply curriculum 457

learning (Pattnaik et al., 2024). This approach in- 458

volves the model first learning from easier samples 459

and then progressing to more complex ones. Specif- 460

ically, we fine-tune the Code LLMs on the easier 461

PIE-User dataset first, and then move on to the 462

harder PIE-Problem dataset. 463

Results on Code LLMs merge and baselines. 464

Table 3 presents the experimental results of model 465

merging, Self-Correct, and curriculum learning. 466

Firstly, the Self-Correct method provides limited 467

improvement in correctness, which only relatively 468

enhances %OPT and SPEEDUP. Through manual 469

analysis, we find that Code LLMs tend to focus 470

on local areas of the code during self-debugging, 471

leading to an insufficient understanding of the 472

code’s overall semantics and, consequently, inef- 473

fective corrections. On the other hand, curricu- 474

lum learning negatively impacts code optimization. 475

2https://github.com/Digitous/
LLM-SLERP-Merge

7

https://github.com/Digitous/LLM-SLERP-Merge
https://github.com/Digitous/LLM-SLERP-Merge

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
25
28
31
34
37
40
43
46
49
52

%Opt
Merge-Linear
PIE-User
PIE-Problem

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.5

1.8

2.1

2.4

2.7

3.0

3.3

3.6
Speedup

Merge-Linear
PIE-User
PIE-Problem

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
35

39

43

47

51

55

59

63
Correct

Merge-Linear
PIE-User
PIE-Problem

Figure 5: Analysis of Merge Weights for Deepseek-Coder 33B on BEST@1.

We speculate that this is mainly because, in code476

optimization, the optimization spaces for simple477

user-oriented tasks and complex problem-oriented478

tasks can be entirely different. The optimization479

methods learned in the user-oriented perspective480

may not effectively apply to the problem-oriented481

perspective when continue finetuning. This may482

even limit the model’s flexibility and innovative483

capability when facing complex tasks due to fixed484

thinking patterns, leading to performance degra-485

dation. In contrast, model merge can avoid the486

drawbacks of fixed thinking patterns by fully lever-487

aging the advantages of each model, resulting in488

the merged LLM with stronger overall capabili-489

ties. Particularly, Merge-Linear significantly im-490

proves correctness, thereby enhancing %OPT and491

SPEEDUP. In Deepseek-Coder 33b (Merge-Linear),492

%OPT further increases from 36.64% to 46.69%,493

and SPEEDUP improves from 2.96× to 3.43× on494

BEST@1 compared to Deepseek-Coder 33B fine-495

tuned solely on PIE-Problem.496

7 Detailed Analysis497

7.1 Merge Weight Analysis498

In model merging, there is a weight parameter λ,499

used to adjust the proportion of two LLMs’ parame-500

ters. To comprehensively analyze the impact of this501

weight on the final code optimization performance,502

we conduct a detailed study using Deepseek-Coder503

33B. The parameter λ represents the weight of504

Deepseek-Coder 33B fine-tuned on PIE-Problem,505

while (1− λ) represents the weight of Deepseek-506

Coder 33B fine-tuned on PIE-User. The exper-507

imental results are shown in Figure 5. We find508

that within the range of λ values from 0.5 to 0.8,509

the merged model shows significant improvements510

in %OPT and SPEEDUP compared to fine-tuning511

solely on PIE-Problem. In this range, correctness512

remains relatively stable without significant fluc-513

tuations. However, when the λ value is too large514

Table 4: Error analysis.

Result Percentage
Failed to compile 24.70%
Compiled, but test cases wrong 66.27%
Correct, but slower 3.01%
Correct, but not >1.1× SPEEDUP 6.02%

(> 0.8), correctness decreases significantly, leading 515

to performance bottlenecks. Similarly, when the 516

λ value is too small (< 0.5), the model weights 517

under PIE-User fine-tuned dominate, which also 518

negatively impacts %OPT and SPEEDUP. 519

7.2 Error Analysis 520

We performed an error analysis on the Deepseek- 521

Coder 33B with Merge-Linear version, examining 522

the generated programs that failed to optimize and 523

identifying the cause of each failure. Table 4 shows 524

that ∼25% of the programs failed to compile, and 525

a significant portion (∼66%) failed because the op- 526

timized program broke a test case. Additionally, 527

about 3% of the programs are slower, and 6% did 528

not meet the speedup threshold of 10%. These find- 529

ings suggest a potential future direction where tech- 530

niques from more powerful program repair could 531

be combined with PIE-Problem for better optimiza- 532

tion performance. 533

8 Conclusion 534

In this paper, we propose shifting the perspective of 535

code optimization from User-Oriented to Problem- 536

Oriented and introduce the PIE-Problem dataset. 537

This new perspective brings significant improve- 538

ments in the optimization ratio and speedup. Ad- 539

ditionally, we identified current performance bot- 540

tlenecks in code optimization and achieved further 541

breakthroughs through model merging. Our ap- 542

proach and insights pave an exciting and feasible 543

path for enhancing program efficiency. 544

8

9 Limitation545

This paper focuses on optimizing the time effi-546

ciency of given code, without considering other547

optimization directions. However, in real-world548

scenarios, there are many other optimization direc-549

tions, such as memory optimization. Additionally,550

the code optimization in this paper is based on a551

given code, whereas directly generating the most552

time-efficient program from a natural language553

problem is a more natural and challenging issue554

that warrants further research.555

References556

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama557
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,558
Diogo Almeida, Janko Altenschmidt, Sam Altman,559
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.560
arXiv preprint arXiv:2303.08774.561

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey.562
2007. Compilers Principles, Techniques & Tools.563
pearson Education.564

Jeff Atwood. 2012. Effective Programming: More Than565
Writing Code: Your one-stop shop for all things pro-566
gramming. Hyperink Inc.567

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten568
Bosma, Henryk Michalewski, David Dohan, Ellen569
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.570
Program synthesis with large language models. arXiv571
preprint arXiv:2108.07732.572

David F. Bacon, Susan L. Graham, and Oliver J.573
Sharp. 1994. Compiler transformations for high-574
performance computing. ACM Comput. Surv.,575
26(4):345–420.576

Paul Bilokon and Burak Gunduz. 2023. C++ design577
patterns for low-latency applications including high-578
frequency trading.579

Nathan Binkert, Bradford Beckmann, Gabriel Black,580
Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel581
Hestness, Derek R Hower, Tushar Krishna, Somayeh582
Sardashti, et al. 2011. The gem5 simulator. ACM583
SIGARCH computer architecture news, 39(2):1–7.584

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming585
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-586
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,587
Greg Brockman, et al. 2021. Evaluating large588
language models trained on code. arXiv preprint589
arXiv:2107.03374.590

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and591
Denny Zhou. 2024. Teaching large language models592
to self-debug. In The Twelfth International Confer-593
ence on Learning Representations.594

Spandan Garg, Roshanak Zilouchian Moghaddam, 595
Colin B. Clement, Neel Sundaresan, and Chen Wu. 596
2022. Deepperf: A deep learning-based approach for 597
improving software performance. 598

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 599
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 600
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the 601
large language model meets programming–the rise of 602
code intelligence. arXiv preprint arXiv:2401.14196. 603

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 604
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 605
Chen. 2022. LoRA: Low-rank adaptation of large 606
language models. In International Conference on 607
Learning Representations. 608

Pascal Kerschke, Holger H. Hoos, Frank Neumann, and 609
Heike Trautmann. 2019. Automated algorithm selec- 610
tion: Survey and perspectives. Evolutionary Compu- 611
tation, 27(1):3–45. 612

Thomas Kistler and Michael Franz. 2003. Continuous 613
program optimization: A case study. ACM Trans. 614
Program. Lang. Syst., 25(4):500–548. 615

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas 616
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 617
Marone, Christopher Akiki, Jia LI, Jenny Chim, 618
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 619
Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier, 620
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Lo- 621
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muh- 622
tasham Oblokulov, Zhiruo Wang, Rudra Murthy, Ja- 623
son T Stillerman, Siva Sankalp Patel, Dmitry Ab- 624
ulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, 625
Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, 626
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav 627
Timor, Jennifer Ding, Claire S Schlesinger, Hailey 628
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 629
Alex Gu, Carolyn Jane Anderson, Brendan Dolan- 630
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, 631
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz 632
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, 633
Leandro Von Werra, and Harm de Vries. 2023. Star- 634
coder: may the source be with you! Transactions on 635
Machine Learning Research. Reproducibility Certifi- 636
cation. 637

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 638
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 639
James Keeling, Felix Gimeno, Agustin Dal Lago, 640
et al. 2022. Competition-level code generation with 641
alphacode. Science, 378(6624):1092–1097. 642

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and 643
Carole-Jean Wu. 2020. Gevo: Gpu code optimization 644
using evolutionary computation. ACM Trans. Archit. 645
Code Optim., 17(4). 646

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 647
weight decay regularization. In International Confer- 648
ence on Learning Representations. 649

9

https://arxiv.org/abs/2303.08774
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://dl.acm.org/doi/abs/10.5555/2408399
https://dl.acm.org/doi/abs/10.5555/2408399
https://dl.acm.org/doi/abs/10.5555/2408399
https://dl.acm.org/doi/abs/10.5555/2408399
https://dl.acm.org/doi/abs/10.5555/2408399
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/197405.197406
https://doi.org/10.1145/197405.197406
http://arxiv.org/abs/2309.04259
http://arxiv.org/abs/2309.04259
http://arxiv.org/abs/2309.04259
http://arxiv.org/abs/2309.04259
http://arxiv.org/abs/2309.04259
https://doi.org/10.1145/2024716.2024718
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
http://arxiv.org/abs/2206.13619
http://arxiv.org/abs/2206.13619
http://arxiv.org/abs/2206.13619
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1145/778559.778562
https://doi.org/10.1145/778559.778562
https://doi.org/10.1145/778559.778562
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://doi.org/10.1145/3418055
https://doi.org/10.1145/3418055
https://doi.org/10.1145/3418055
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-650
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,651
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:652
Empowering code large language models with evol-653
instruct. In The Twelfth International Conference on654
Learning Representations.655

Seungjun Moon, Hyungjoo Chae, Yongho Song, Taey-656
oon Kwon, Dongjin Kang, Kai Tzu iunn Ong, Seung657
won Hwang, and Jinyoung Yeo. 2024. Coffee: Boost658
your code llms by fixing bugs with feedback.659

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan660
Wang, Yingbo Zhou, Silvio Savarese, and Caiming661
Xiong. 2023. Codegen: An open large language662
model for code with multi-turn program synthesis. In663
The Eleventh International Conference on Learning664
Representations.665

Theo X. Olausson, Jeevana Priya Inala, Chenglong666
Wang, Jianfeng Gao, and Armando Solar-Lezama.667
2024. Is self-repair a silver bullet for code genera-668
tion? In The Twelfth International Conference on669
Learning Representations.670

Soohyun Park and Joongheon Kim. 2024. Quantum671
neural network software testing, analysis, and code672
optimization for advanced iot systems: Design, im-673
plementation, and visualization.674

Pulkit Pattnaik, Rishabh Maheshwary, Kelechi Ogueji,675
Vikas Yadav, and Sathwik Tejaswi Madhusudhan.676
2024. Curry-dpo: Enhancing alignment using cur-677
riculum learning & ranked preferences.678

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,679
Giacomo Domeniconi, Vladimir Zolotov, Julian680
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,681
et al. 2021. Codenet: A large-scale ai for code682
dataset for learning a diversity of coding tasks. arXiv683
preprint arXiv:2105.12655.684

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten685
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,686
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.687
Code llama: Open foundation models for code. arXiv688
preprint arXiv:2308.12950.689

Alexander G Shypula, Aman Madaan, Yimeng Zeng,690
Uri Alon, Jacob R. Gardner, Yiming Yang, Mi-691
lad Hashemi, Graham Neubig, Parthasarathy Ran-692
ganathan, Osbert Bastani, and Amir Yazdanbakhsh.693
2024. Learning performance-improving code edits.694
In The Twelfth International Conference on Learning695
Representations.696

Zheng Wang and Michael O’Boyle. 2018. Machine697
learning in compiler optimization. Proceedings of698
the IEEE, 106(11):1879–1901.699

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten700
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,701
and Denny Zhou. 2022. Chain-of-thought prompt-702
ing elicits reasoning in large language models. In703
Advances in Neural Information Processing Systems,704
volume 35, pages 24824–24837. Curran Associates,705
Inc.706

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and 707
Lingming Zhang. 2023. Magicoder: Source code is 708
all you need. arXiv preprint arXiv:2312.02120. 709

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, 710
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor- 711
cos, Hongseok Namkoong, Ali Farhadi, Yair Car- 712
mon, Simon Kornblith, and Ludwig Schmidt. 2022. 713
Model soups: averaging weights of multiple fine- 714
tuned models improves accuracy without increasing 715
inference time. In Proceedings of the 39th Interna- 716
tional Conference on Machine Learning, volume 162 717
of Proceedings of Machine Learning Research, pages 718
23965–23998. PMLR. 719

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. 720
Ldb: A large language model debugger via verify- 721
ing runtime execution step-by-step. arXiv preprint 722
arXiv:2402.16906. 723

A Categories of Optimization Types. 724

We categorize code optimization into three main 725

categories: global algorithmic optimizations, local 726

optimizations, and other optimizations. 727

• Global Algorithmic Optimizations: This type 728

of optimization involves altering the algorithm 729

itself to achieve significant performance im- 730

provements. Such changes can effectively re- 731

duce time complexity and enhance the speed 732

of code execution. Examples include trans- 733

forming recursive solutions into dynamic pro- 734

gramming approaches, leveraging advanced 735

mathematical theories, and restructuring com- 736

plex data processing logic. These optimiza- 737

tions can lead to substantial gains in efficiency 738

and scalability. 739

• Local Optimizations: These optimizations fo- 740

cus on improving specific parts of the code 741

without changing the overall algorithm. They 742

include enhancing I/O functions, optimizing 743

read/write patterns to minimize runtime de- 744

lays, and reducing computational complexity 745

in certain sections of the code. By addressing 746

these localized issues, programs can achieve 747

more efficient execution and better resource 748

utilization, ultimately leading to faster and 749

more responsive applications. 750

• Other Optimizations: This category involves 751

general code cleanup and refactoring aimed 752

at improving code readability, maintainability, 753

and overall quality. Examples include remov- 754

ing unnecessary initializations and redundant 755

code, cleaning up outdated comments, and 756

organizing the code structure more logically. 757

10

https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
http://arxiv.org/abs/2311.07215
http://arxiv.org/abs/2311.07215
http://arxiv.org/abs/2311.07215
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
http://arxiv.org/abs/2401.10914
http://arxiv.org/abs/2401.10914
http://arxiv.org/abs/2401.10914
http://arxiv.org/abs/2401.10914
http://arxiv.org/abs/2401.10914
http://arxiv.org/abs/2401.10914
http://arxiv.org/abs/2401.10914
http://arxiv.org/abs/2403.07230
http://arxiv.org/abs/2403.07230
http://arxiv.org/abs/2403.07230
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2308.12950
https://openreview.net/forum?id=ix7rLVHXyY
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1109/JPROC.2018.2817118
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://arxiv.org/abs/2402.16906
https://arxiv.org/abs/2402.16906
https://arxiv.org/abs/2402.16906

We randomly selected 1,000 pairs of program758

optimizations from the PIE-User and PIE-Problem759

datasets for analysis by GPT-4, and 100 pairs for760

analysis by humans. The classification process761

followed the three types mentioned above, and the762

results are shown in Figure 3.763

B Training Details.764

We fine-tuned the CodeLlama series (7B, 13B,765

34B) and the Deepseek-Coder series (7B, 33B)766

on a server with 4×A100 GPUs (NVIDIA767

A100 80GB). During the fine-tuning process,768

we used LoRA (Hu et al., 2022) (lora_rank=8,769

lora_target=[q_proj, v_proj]), and for both PIE-770

User and PIE-Problem dataset, we only trained for771

2 epochs. All experiments were conducted using772

AdamW (Loshchilov and Hutter, 2019) optimizer773

with an initial learning rate of 5e-5.774

C Performance-conditioned Generation.775

Shypula et al. (2024) introduced performance tags776

during training by associating each "fast" program777

with a tag indicating the optimal achievable perfor-778

mance across all solutions in the PIE-User dataset,779

as shown in Figure 6. This approach has demon-780

strated the best fine-tuning results. Therefore, we781

adopted this method for fine-tuning Code LLMs782

on the PIE-User dataset, and the experimental re-783

sults for PIE-User are reported using performance-784

conditioned generation by default. However, we785

believe that this performance tag approach relies on786

the ranking of the current solution among existing787

solutions. For a given problem, the current solu-788

tions may not necessarily be optimal, and thus, in-789

troducing performance tags could lead to incorrect790

associations. Therefore, when fine-tuning the PIE-791

Problem dataset, we used the simplest and most792

straightforward instruction, as shown in Figure 4.793

D CoT Prompting.794

Inspired by Chain-of-Thought (CoT) prompting795

(Wei et al., 2022), we first have the LLMs propose796

improvement strategies based on the slow program,797

and then generate the optimized program using798

both the slow program and the proposed strategies.799

The specific CoT prompt is shown in Figure 7.800

E More Inspiring Examples.801

We provide additional examples, as shown in Fig-802

ure 8, Figure 9, and Figure 10, to illustrate that in803

This is a slow program we want to
optimize to score
{score_tag}/10.

↪→
↪→

Program:
{src_code}

Optimized Version with score
{score_tag}/10:↪→

Optimized Version:
{fast_code}

This is a slow program we want to
optimize to score 10/10.↪→

Program:
{src_code}

Optimized Version:

Figure 6: Training (top) and inference (bottom) prompts
for performance-conditioned generation.

Given the program and the
improvement strategy, improve
its performance.

↪→
↪→

slower program:
{src_code}

strategy:
LLMs generated potential strategy.

optimized version:

Figure 7: Chain-of-thought prompting.

the original PIE-User, program optimization pairs 804

are constructed through iterative submissions and 805

optimizations by the same user for the same pro- 806

gramming problem, which can be limited by the 807

single programmer’s thought patterns. 808

11

#include <bits/stdc++.h>

using namespace std;

#define int long long

const int N = 1e5 + 5, M = 5, inf
= 1e15;

int dp[N][M], a[N];

char op[N];

int Sign(int x) {
if (x % 2) return -1;
return 1;

}

int32_t main() {
for (int i = 0; i < N; i++)

for (int j = 0; j < M;
j++) dp[i][j] = -inf;

int n; cin >> n >> a[0];
for (int i = 1; i < n; i++)

cin >> op[i] >> a[i];
dp[0][0] = a[0];
for (int i = 1; i < n; i++)

for (int j = M - 1; j >=
0; j--) {
if (op[i] == '+') dp[i][j]

= dp[i - 1][j] + a[i]

* Sign(j);
else if (j) dp[i][j] =

dp[i - 1][j - 1] +
a[i] * Sign(j);

if (j + 1 < M) dp[i][j] =
max(dp[i][j], dp[i][j
+ 1]);

}
cout << dp[n-1][0] << "\n";

}

(a) user1, initialization version.

#include <bits/stdc++.h>
using namespace std;

#define int long long
const int N = 1e5 + 5, M = 3, inf

= 1e15;

int dp[N][M], a[N];
char op[N];

int Sign(int x) {
if (x % 2) return -1;
return 1;

}

int32_t main() {
ios::sync_with_stdio(0),

cin.tie(0), cout.tie(0),
cout.tie(0);

for (int i = 0; i < N; i++)
for (int j = 0; j < M;
j++) dp[i][j] = -inf;

int n; cin >> n >> a[0];
for (int i = 1; i < n; i++)

cin >> op[i] >> a[i];
dp[0][0] = a[0];
for (int i = 1; i < n; i++)

for (int j = M - 1; j >=
0; j--) {
if (op[i] == '+') dp[i][j]

= dp[i - 1][j] + a[i]

* Sign(j);
else if (j) dp[i][j] =

dp[i - 1][j - 1] +
a[i] * Sign(j);

if (j + 1 < M) dp[i][j] =
max(dp[i][j], dp[i][j
+ 1]);

}
cout << dp[n-1][0] << "\n";

}

(b) user1, iteration version.

#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=int(1e5+5);
typedef long long LL;
#define INF LL(1e15)
LL s1,s2,as,n;
LL sz[MAXN],fh[MAXN];
char c[5];
int main()
{

scanf("%lld",&n);
scanf("%lld",&as);
getchar();
for(LL i=1;i<=n-1;i++) {

scanf("%s",c);
scanf("%d",&sz[i]);
fh[i]=c[0];

}
s1=s2=-INF;
for(LL i=1;i<=n-1;i++) {

if(fh[i]=='-') {
as-=sz[i];
s1-=sz[i];
s2+=sz[i];
s1=max(s1,s2);
s2=max(as,s2);

}
else {

as+=sz[i];
s1+=sz[i];
s2-=sz[i];

}
s2=max(s1,s2);
as=max(s2,as);

}
printf("%lld",as);

}

(c) another user submitted version.

Figure 8: The above three code snippets all come from the problem "p03580", which involves maximizing
the evaluated value of a given formula by adding an arbitrary number of pairs of parentheses and outputting the
maximum possible value. (a) and (b) are from the same user "u1821171064", both employing dynamic programming
algorithms with a time complexity of O (N ∗M), where N is the length of the sequence and M is the number of
states. In (b), the number of states M is reduced, and input and output are optimized. (c) is from user "u863370423"
and uses a greedy algorithm, which is suitable for problems with fewer current states where the global optimal
solution can be achieved through local optimization, with a time complexity of O (N).

12

#include <iostream>
#include <cstring>
using namespace std;
typedef long long LL;
#define F(i) for(int i=0;i<n;i++)

int d[555][555] = {0}, c[555][555]
= {0};

int qu(int l, int r) {
if (l > r) return 0;
if (d[l][r] != -1) return

d[l][r];
return d[l][r] = c[l][r] +

qu(l + 1, r) + qu(l, r -
1) - qu(l + 1, r - 1);

}

int main() {
memset(d, -1, sizeof(d));
int n, m, q;
cin >> n >> m >> q;
while (m--) {

int l, r;
cin >> l >> r;
c[l][r]++;

}
while (q--) {

int l, r;
cin >> l >> r;
cout << qu(l, r) << endl;

}
return 0;

}

(a) user1, initialization version.

#include <bits/stdc++.h>
using namespace std;

#define int long long
#define pb push_back
#define faster

ios::sync_with_stdio(0)

const int N = 509;
vector<int> v[N + 5];

int32_t main() {
faster;
int n, p, q;
cin >> n >> p >> q;
int x, y;
for (int i = 1; i <= p; i++) {

cin >> x >> y;
v[x].pb(y);

}
for (int i = 1; i <= n; i++) {

sort(v[i].begin(),
v[i].end());

}
while (q--) {

cin >> x >> y;
int ans = 0;
for (int i = x; i <= y;

i++) {
ans += upper_bound(
v[i].begin(),

v[i].end(), y)
- v[i].begin();

}
cout << ans << "\n";

}
return 0;

}

(b) user1, iteration version.

#include <cstdio>
#define int long long
#define dotimes(i, n) for (int i =

0; i < (n); i++)

using namespace std;

int rint() {
int n;
scanf("%lld", &n);
return n;

}

void wint(int n) {
printf("%lld\n", n);

}

signed main() {
int N = rint();
int M = rint();
int Q = rint();
int S[N + 1][N + 1];
dotimes(R, N + 1)
dotimes(L, N + 1)

S[R][L] = 0;
dotimes(i, M) {
int L = rint();
int R = rint();
S[R][L]++;

}
dotimes(R, N)
dotimes(L, N)

S[R + 1][L + 1] += S[R +
1][L] + S[R][L + 1] -
S[R][L];

dotimes(i, Q) {
int p = rint() - 1;
int q = rint();
wint(S[q][q] + S[p][p] -

S[q][p] - S[p][q]);
}
return 0;

}

(c) another user submitted version.

Figure 9: The above three code segments all come from the same problem "p03283", which deals with cumulative
sum queries in a 2D matrix. (a) and (b) are different submission versions from the same user "u816631826". In (a),
the problem is solved using recursion and dynamic programming, but the query time complexity is high, O

(
N2

)
. In

(b), the STL-provided binary search function is used, reducing the time complexity to O (N ∗ log(N)). (c) comes
from another user "u281670674" and solves the problem using a 2D prefix sum matrix. The preprocessing time
complexity is O

(
N2

)
, but the query time complexity for each query is O (1), making it more efficient.

13

#include <bits/stdc++.h>

using namespace std;

inline void rd(int &x) {
char ch;

for(;!isdigit(ch=getchar()););
for(x=ch-'0';
isdigit(ch=getchar());)

x=x*10+ch-'0';
}

typedef long long LL;

const int MAXN = 300005;

int N, n, a[MAXN], cnt[MAXN];

LL sum[MAXN];

int ans[MAXN];

inline bool chk(int k, int x) {
int pos = upper_bound(a + 1, a

+ n + 1, x) - a;
return sum[pos-1] +

1ll*(n-pos+1)*x >=
1ll*k*x;

}

int main() {
rd(N);
for(int i = 1, x; i <= N; ++i)

rd(x), ++cnt[x];
for(int i = 1; i <= 300000;

++i) if(cnt[i]) a[++n] =
cnt[i];

sort(a + 1, a + n + 1);
for(int i = 1; i <= n; ++i)

sum[i] = sum[i-1] + a[i];
int now = 0;
for(int k = n; k >= 1; --k) {

while(now < N && chk(k,
now+1)) ++now;

ans[k] = now;
}
for(int i = 1; i <= N; ++i)

printf("%d\n", ans[i]);
}

(a) user1, initialization version.

#include <bits/stdc++.h>

using namespace std;

inline void rd(int &x) {
char ch;

for(;!isdigit(ch=getchar()););
for(x=ch-'0';

isdigit(ch=getchar());)
x=x*10+ch-'0';

}

typedef long long LL;

const int MAXN = 300005;

int n, cnt[MAXN];

LL sum[MAXN];

int ans[MAXN];

inline bool chk(int k, int x) {
return sum[x] >= 1ll*k*x; }

int main() {
rd(n);
for(int i = 1, x; i <= n; ++i)

rd(x), ++cnt[x],
++sum[cnt[x]];

for(int i = 1; i <= n; ++i)
sum[i] += sum[i-1];

int now = 0;
for(int k = n; k >= 1; --k) {

while(now < n && chk(k,
now+1)) ++now;

ans[k] = now;
}
for(int i = 1; i <= n; ++i)

printf("%d\n", ans[i]);
}

(b) user1, iteration version.

#include<bits/stdc++.h>
#include<cstdio>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i = 0; i

< (n); i++)
#define rep1(i, n) for(int i = 1;

i <= (n); i++)

int hist[300002], cnt[300001];
const int cm = 1 << 17;
char cn[cm], * ci = cn + cm, ct;

inline char getcha() {
if (ci - cn == cm) {

fread_unlocked(cn, 1, cm,
stdin); ci = cn; }

return *ci++;}
inline int getint() {

int A = 0;
if (ci - cn + 16 > cm) while

((ct = getcha()) >= '0') A
= A * 10 + ct - '0';

else while ((ct = *ci++) >=
'0') A = A * 10 + ct -
'0';

return A;}

const int dm = 1 << 21;
char dn[dm], * di = dn;
inline void putint(int X) {

int keta = 0;
char C[10];
while (X) {

*(C + keta) = '0' + X %
10;

X /= 10;
keta++;

}
for (int i = keta - 1; i >= 0;

i--)* di++ = (*(C + i));

*di++ = '\n';}

int main() {
int N = getint();
rep(i, N) hist[getint()]++;
rep1(i, N) cnt[hist[i]]++;
int k = 1;
rep(i, N + 1) rep(j, cnt[i])

hist[k++] = i

k = N + 1;
int ruiseki = N;
int mae = 0;
for (int i = N; i >= 1; i--) {

while (hist[k - 1] >= i) {
ruiseki -= hist[--k];

}
int kei = N - k + 1 +

ruiseki / i;

for (int j = mae + 1; j <=
kei; j++) putint(i);

mae = kei;
}
for (int j = mae + 1; j <= N;

j++) {

*di++ = '0';

*di++ = '\n';
}
fwrite(dn, 1, di - dn,

stdout);
return 0;

}

(c) another user submitted version.

Figure 10: The above three code snippets all come from the problem "p02890", which requires calculating, for each
possible K value (from 1 to N), the maximum number of times K cards with different numbers can be selected and
removed from N cards. (a) and (b) are from the same user "u990400947" and utilize prefix sum calculation and
searching. The latter employs condition checking with a time complexity of O (N ∗ log(N)). (c) uses a difference
array, reducing the time complexity to O (N).

14

