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ABSTRACT

Video anomaly detection (VAD) aims to identify abnormal events in videos. Tra-
ditional VAD methods generally suffer from the high costs of labeled data and full
training, thus some recent works have explored leveraging frozen multi-modal
large language models (MLLMs) in a tuning-free manner to perform VAD. How-
ever, their performance is limited as they directly inherit pre-training biases and
cannot adapt internal representations to specific video contexts, leading to diffi-
culties in handling subtle or ambiguous anomalies. To address these limitations,
we propose a novel intervention framework, termed SteerVAD, which advances
MLLM-based VAD by shifting from passively reading to actively steering and
rectifying internal representations. Our approach first leverages the gradient-free
representational separability analysis (RSA) to identify top attention heads as la-
tent anomaly experts (LAEs) which are most discriminative for VAD. Then a hier-
archical meta-controller (HMC) generates dynamic rectification signals by jointly
conditioning on global context and these LAE outputs. The signals execute tar-
geted, anisotropic scaling directly upon the LAE representation manifolds, ampli-
fying anomaly-relevant dimensions while suppressing inherent biases. Extensive
experiments on mainstream benchmarks demonstrate our method achieves state-
of-the-art performance among tuning-free approaches requiring only 1% of train-
ing data, establishing it as a powerful new direction for video anomaly detection.
The code will be released upon the publication.

1 INTRODUCTION

Video anomaly detection (VAD) aims to identify events that deviate from expected patterns, which
plays a critical role in intelligent surveillance (Sultani et al., 2018), industrial quality control (Roth
et al., 2022; Liu et al., 2024b), and autonomous systems (Yao et al., 2023; Bogdoll et al., 2022).
While traditional paradigms, encompassing supervised (Liu et al., 2018; Landi et al., 2019), weakly
supervised (Wu et al., 2024b) and unsupervised approaches (Lv et al., 2021; Liu et al., 2021), have
demonstrated notable success but they are constrained by the reliance on large-scale training data.
This dependency not only incurs substantial computational and annotation costs but also limits their
ability to generalize to unseen scenarios, hindering real-world deployment (Noghre et al., 2025).

The advent of multi-modal large language models (MLLMs) (Zhu et al., 2023; Liu et al., 2023)
has opened a new frontier for VAD by leveraging their powerful capabilities. While fine-tuning
these models for VAD is effective (Zhang et al., 2024a;b), these methods reintroduce the burden
of computational costs and data requirements, undermining the advantages of pre-trained models.
Recent studies have shifted towards tuning-free paradigms (Shao et al., 2025), which utilize frozen
MLLMs to detect anomalies by their generated interpreting text or features (Zanella et al., 2024; Ye
et al., 2025). Despite their effectiveness, these approaches are constrained by their passive nature.
They overlook two critical deficiencies deeply rooted within the models. (1) The first is inherent
representational bias of MLLMs, since they are pre-trained on web-scale corpora, developing a
feature space optimized for frequent and prototypical concepts. As a result, their representations
exhibit reduced sensitivity to subtle and rare patterns typical in anomalous events, leading to missed
or biased detection. (2) The second is contextual ambiguity. Since the semantic meaning of a local
action is determined by its global context, passively relying on isolated features can lead the model
to produce confounding representations for visually similar but contextually distinct events. These
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Figure 1: Comparison of traditional full-training methods, existing tuning-free methods and our
proposed SteerVAD. Our method overcomes the issue of costly training resources and inherent bi-
ases with minimal data required from pre-trained foundation models compared to previous methods.

issues are not mere surface-level classification errors, but stem from structural flaws in the internal
representations of MLLMs, highlighting the inherent limitations of passive interpretation.

To address these limitations, we advocate a perspective shift from passive feature reading to active
geometric intervention. Our approach builds on the well-established manifold hypothesis (Whiteley
et al., 2022), which posits that high-dimensional natural data concentrates on low-dimensional struc-
tures. We extend this hypothesis to the latent geometry of MLLMs. Within their high-dimensional
feature space, the representations for a semantic class coalesce into a coherent, low-dimensional
structure, which we term representation manifold. From this geometric perspective, the identified
deficiencies can be re-contextualized. Inherent representational bias manifests as a systemic prox-
imity between the manifolds of normal and anomalous events. The feature space optimized for
frequent normal patterns fails to allocate sufficient geometric separation for their low-frequency ab-
normal counterparts. This proximity is compounded by contextual ambiguity, manifesting as the
local geometric entanglement of these manifolds. In these entangled regions, representations of vi-
sually similar but semantically distinct events become indistinguishable, making robust separation
extremely challenging. This reframing highlights that the core challenge is not merely the classifica-
tion of static features, but the dynamic steering and rectification of the underlying latent manifolds.

In this paper, we introduce SteerVAD, a novel tuning-free framework that implements this geometric
intervention by steering latent representation manifolds within a frozen MLLM. SteerVAD opera-
tionalizes our geometric insight through two synergistic innovations. First, we develop a gradient-
free representational separability analysis (RSA) to identify internal attention heads termed latent
anomaly experts (LAEs), whose representations are effective for separating normal and anomalous
events, exhibiting strong potential for rectification. This identification allows our intervention to be
focused and efficient, avoiding unnecessary manipulation of the entire model. Second, we design a
lightweight hierarchical meta-controller (HMC) that learns to execute dynamic, context-dependent
geometric transformations. Conditioned on a global understanding of the scene, the HMC executes
targeted anisotropic scaling to the features produced by identified LAEs, thereby actively reshaping
their corresponding manifolds by amplifying anomaly-relevant dimensions while suppressing biased
ones. By calibrating on only 1% of the training set, this mechanism effectively disentangling the
representations of normal and anomalous events without any fine-tuning on the pre-trained model.

Our main contributions are as follows:
• We introduce a novel intervention paradigm for tuning-free video anomaly detection that

moves beyond passive feature interpretation to active geometric intervention. Our frame-
work is the first to operationalize this paradigm by directly steering and reshaping latent
representation manifolds within completely frozen MLLM.

• We introduce representational separability analysis (RSA), a novel gradient-free geometric
method to precisely identify latent anomaly experts whose internal feature spaces are most
aligned for VAD, ensuring the data-efficiency of our framework.

• We design a hierarchical meta-controller (HMC) that generates context-aware signals to
perform anisotropic manifold scaling, dynamically disentangling class representations to
overcome pre-training biases and contextual ambiguities.

• We establish new state-of-the-art performance on UCF-Crime and XD-Violence datasets
among tuning-free methods using a frozen MLLM, demonstrating that targeted, data-
efficient intervention method as a promising way against expensive fine-tuning approaches.
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2 RELATED WORK

Traditional Video Anomaly Detection. Research in video anomaly detection (VAD) has tradi-
tionally focused on models trained specifically for the task, categorized by the level of supervision.
Supervised methods (Liu et al., 2018; Landi et al., 2019) have shown strong performance by training
on extensive datasets with frame-level labels, but the high cost of annotation limits their practical
application. To mitigate this, weakly-supervised approaches (Li et al., 2022a; Wang et al., 2024)
leverage more accessible video-level labels, often using multiple instance learning (MIL) frame-
works. Unsupervised methods (Tur et al., 2023; Zaheer et al., 2022; Thakare et al., 2023) are trained
exclusively on normal data. These models learn to identify anomalies as deviations from a learned
normality model, typically based on reconstruction error (Xu et al., 2017) or future frame prediction
(Luo et al., 2022). While effective, these traditional paradigms require heavily training and struggle
to generalize to unseen anomalies, motivating a shift towards new paradigms.

Video Anomaly Detection with LLMs and MLLMs. The advent of large language models
(Vaswani et al., 2017; Touvron et al., 2023) and multi-modal large language models (MLLMs)
(Zhu et al., 2023; Li et al., 2023; Wu et al., 2024d), has created a new way for VAD. Initial ef-
forts involves adapting these models through supervised fine-tuning (Zhang et al., 2023; Yuan et al.,
2024). While effective, these methods reintroduce the need for large labeled datasets and high com-
putational costs. A more recent and promising direction is the tuning-free paradigm, which uses
MLLMs in a zero-shot or few-shot capacity (Shao et al., 2025). These methods involve querying
the MLLM with modified inputs to generate enhanced textual descriptions or decisions about video,
which are then parsed to identify anomalies (Zanella et al., 2024; Ye et al., 2025). Although these
approaches effectively leverage the MLLMs without expensive training, they treat the representa-
tions of the model as static and immutable, which makes them susceptible to pre-training biases and
ambiguity, leaving a crucial gap in how to actively utilize the powerful internals of these models.

Internal Analysis of LLMs and MLLMs. Recent research in mechanistic interpretability of
LLMs and MLLMs provides the foundation for intervention (Luo & Specia, 2024). Studies have
shown that complex behaviors in foundation models can be localized to specific modules, such as
individual attention heads or neuron groups (Zheng et al., 2025), which act as functional circuits
(Zhou et al., 2024; Bi et al., 2024). Building on this insight, the field of model editing has the ability
to make targeted modifications to model weights to alter specific behaviors (Wang & Veitch, 2025;
Zweiger et al., 2025). These techniques have been applied to language tasks or involve static, input-
independent interventions (Nguyen et al., 2025; Mahmoud et al., 2025). The application of dynamic,
context-dependent rectification of internal geometric structures for a complex, spatio-temporal rea-
soning task remains an unexplored frontier. Our work is the first to bridge this gap by introducing
actively geometric rectifications on the representation manifolds with frozen MLLM for VAD.

3 METHODOLOGY

3.1 PRELIMINARY: REPRESENTATION MANIFOLDS IN MLLMS

Our theoretical approach is based on the manifold hypothesis (Whiteley et al., 2022; Genovese et al.,
2010; Boissonnat & Ghosh, 2010), which posits that high-dimensional data concentrates on or near a
low-dimensional manifold. We extend this to the latent space of MLLMs, where an attention head h :
V → Rdhead acts as a feature extractor that maps semantically similar video inputs into geometrically
proximal representations, causing the varied manifestations of a class to coalesce into a coherent
structure. We model these emergent structures as representation manifolds. Consequently, for a
given head h, all normal event representations form a manifoldMnorm, while anomalous events form
a manifold Manom, both embedded within the head’s high-dimensional feature space. A rigorous
topological analysis of these structures is detailed in Appendix A.

Visualizations using UMAP, Figure 2 provides an intuitive illustration consistent with this geometric
perspective. The features appear to form two distinct yet intertwined manifolds, visually confirm-
ing the problems of representational bias and contextual ambiguity. This geometric entanglement
makes reliable separation by a simple classifier difficult. Our approach moves beyond passively
accepting this topology, we aim to learn a minimal, context-dependent geometric transformation Tc

that actively rectifies these manifolds to achieve clear differentiation.
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(b) Triangulated surface

Figure 2: 3D UMAP visualization of representation manifolds of normal (blue) and anomalous
(red) events from InternVL, illustrating their geometric structure. Each manifold is rendered from
two perspectives using (a) cubic interpolation and (b) triangulation.

3.2 FRAMEWORK OVERVIEW

As shown in Figure 3, SteerVAD enables geometric intervention within a frozen MLLM for VAD.
The framework rests on two principles: identification of relevant representational subspaces and rec-
tification of them. To accomplish the first, a representational separability analysis (RSA) identifies
few internal attention heads that inherently aligned with VAD, which we term latent anomaly experts
(LAEs). Then the hierarchical meta-controller (HMC) drives rectification by integrating the global
context with LAE outputs to generate steering signals. These signals perform geometric transfor-
mations on LAE feature manifolds, amplifying anomaly cues and suppressing biases. The rectified
representations are aggregated and scored by anomaly scorer to produce final decision and curves.
Detailed component implementation and analysis of SteerVAD are provided in Appendix B.

Problem Formulation During the inference, given an input video stream V , the stream is first
partitioned into a sequence of non-overlapping temporal segments, V = {S1, S2, . . . , ST }. For each
segment St, our objective is to compute an anomaly probability pt ∈ [0, 1] in a real-time, single-
pass manner. The identification of LAEs and the training of the HMC and scorer are performed in a
preceding offline calibration phase, utilizing a small, representative labeled dataset Dcalib.

3.3 REPRESENTATIONAL SEPARABILITY ANALYSIS

To identify sub-modules within frozen MLLM that are inherently aligned with the video anomaly
detection (VAD) task, we propose representational separability analysis (RSA) to discover latent
anomaly experts (LAEs), defined as specific attention heads whose feature representations exhibit a
high degree of geometric separability between normal and anomalous patterns.

Separability Metric. We compute the Inter-to-Intra Scatter Ratio as the RSA score to quantify
geometric suitability of each head. This metric measures the ratio of between-class separation to
within-class compactness. For head hl,k (layer l, index k), the RSA score is computed as:

SRSA(l, k) =
∥µ(l,k)

anom − µ
(l,k)
norm∥22

σ2
anom(l, k) + σ2

norm(l, k)
(1)

where µ
(l,k)
anom/norm are centroids for anomalous and normal samples respectively, and σ2

anom/norm(l, k)
are their corresponding intra-cluster variances. A high SRSA score signifies that a head maps normal
and anomalous inputs to distinct and compact clusters, making them aligned with VAD task.

Feature Extraction and LAE Selection. The LAE selection is performed on the calibration set
Dcalib via a single-forward pass for each video through the frozen MLLM. We extract and store
features from all attention heads to build feature banks, compute the SRSA score and select the top-
K heads with the highest scores as LAEs. This process efficiently pinpoints the most informative
internal subspaces of the MLLM, providing optimal targets for dynamic rectification.

3.4 HIERARCHICAL META-CONTROLLER FOR DYNAMIC MANIFOLD RECTIFICATION

The hierarchical meta-controller (HMC) dynamically orchestrates manifold rectification via a single
MLLM forward pass. The HMC receives two concurrent information streams extracted from the
frozen MLLM: the fine-grained feature vectors {hi}Ki=1 from the K LAEs, and a global context
vector c ∈ Rdmodel . The context vector c is obtained by extracting the final hidden state corresponding
to the first generated token, which serves as a holistic semantic summary of the scene by the MLLM.
The hierarchical design of the HMC decouples the rectification task into two synergistic levels.
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Figure 3: Framework overview of SteerVAD. We first apply the Representational Separability Anal-
ysis to find top K Latent Anomaly Experts inside frozen MLLM. During the single pass, The global
context vector c and LAE features {hi} are extracted. The Hierarchical Meta-Controller ingests
these signals, using Global Scrutiny Gate and Local Gating Module to generate manipulation sig-
nals (sglobal, {gi}). These signals perform Anisotropic Manifold Scaling to rectify LAE features.
A lightweight Anomaly Scorer receives the rectified features and outputs the final anomaly curve.
Detected anomalous frames can be passed to the full MLLM to produce a textual explanation.

Global Scrutiny Gate. The global scrutiny gate (GSG) computes a holistic suspicion score sglobal
as a global signal to quantify the overall possibility of an anomaly. It is implemented as a small
multi-layer perceptron (MLP) that takes the global context vector c as input:

sglobal = (σ ◦ Linear2 ◦ ReLU ◦ BN ◦ Linear1)(c) ∈ [0, 1] (2)

where Linear1 ∈ Rdmodel×dhidden , Linear2 ∈ Rdhidden×1, BN denotes BatchNorm1d, and σ is the
sigmoid function. A value near 0 indicates a benign scene, prompting the HMC to remain quiescent,
while a value near 1 signals a high-suspicion event that requires significant representational steering.
This scalar acts as a master switch, determining the overall intensity of the subsequent rectification.

Local Gating Module. While the global gate provides a coarse-level signal, the local gating mod-
ule generates a fine-grained, per-feature control signal for each LAE. It consists of K parallel,
lightweight adapter networks. Each adapter is a low-rank network that takes the global context
c as input and outputs a unique, dense steering vector gi ∈ Rdhead :

gi = tanh(Linearup(Lineardown(c))) (3)

where Lineardown ∈ Rdmodel×r projects the context vector into a low-rank bottleneck space, and
Linearup ∈ Rr×dhead projects it back to the feature dimension of the expert head. The rank r is a
hyperparameter set to a small value to minimize trainable parameters. The hyperbolic tangent tanh
activation constrains the output local signals gi to [−1, 1], enabling the controller to learn not only
to amplify feature dimensions in positive values but also to actively suppress them.

Anisotropic Manifold Scaling. The control signals generated by the GSG and LGM converge
at the core rectification mechanism, anisotropic manifold scaling. Our goal is to apply a targeted,
context-dependent geometric transformation to the LAE feature space. We operationalize this trans-
formation through a simple yet powerful element-wise operation, ensuring it incurs negligible com-
putational overhead. A detailed geometric interpretation of this operation is provided in the Ap-
pendix A. For each LAE feature hi, the rectified feature h′

i is computed as:

h′
i = hi ⊙ (1 + sglobal · gi) (4)
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This formulation instantiates the geometric transformation as a stable, residual modulation. The
global signal sglobal governs the intensity of transformation, while the local vector gi provides its
critical anisotropy, enabling the targeted stretching and compressing of the manifold along specific
semantic axes potentially linked to pre-training biases.

3.5 ANOMALY AGGREGATION AND SCORING

The anomaly scorer processes the rectified features from selected LAEs by estimating frame level
anomaly probabilities and then applying temporal smoothing to yield final coherent anomaly curves.

Probabilistic Anomaly Scoring. For each segment St, the rectified feature vectors {h′
i ∈

Rdhead}Ki=1 from selected LAEs are aggregated via concatenation into a single vector F
(t)
final =

Concat(h′
1, . . . ,h

′
K) ∈ RK·dhead . The aggregated vector is then input to anomaly scorer, a logis-

tic regression classifier that maps the feature to a frame-level anomaly probability pt:

pt = σ(wTF
(t)
final + b) (5)

where w and b are the learnable weights and bias, and σ is the sigmoid function. This scorer ensures
minimal computational overhead and prevents overfitting on the small calibration dataset, thereby
focusing the learning complexity within the hierarchical meta-controller.

Anomaly Curve Generation. To mitigate noise from transient visual fluctuations in the raw
anomaly probability sequence {p1, p2, . . . , pT }, we employ temporal smoothing via 1D Gaussian
convolution. This process, predicated on the temporal locality of anomalous events, yields a stable
anomaly curve At by evaluating each point within its temporal neighborhood. The final score At is
computed as a weighted average over a temporal window:

At =

∑T
j=1 pj ·G(t− j;σg)∑T

j=1 G(t− j;σg)
(6)

where G(x;σg) = exp(−x2/(2σ2
g)) is the Gaussian kernel with standard deviation σg . and normal-

ization ensures unit weight sum. This filtering suppresses transient noise while preserving sustained
anomalies, yielding a smoother, more reliable detection signal for practical deployment.

Post-Hoc Explainability. When segments St are flagged as anomalous, the corresponding video
frames can be concatenated and re-submitted to the frozen auto-regressive MLLM. The model then
generates a textual description, offering explanations for the anomaly alert and enhancing the trans-
parency and trustworthiness of our framework.

3.6 TRAINING OBJECTIVE

The trainable parameters of our framework consist of the HMC including GSG, LGM and anomaly
scorer. We train the framework with a composite objective that jointly maximizes classification
accuracy and enforces an inductive bias for anomaly detection. The main component of this objec-
tive is the binary cross-entropy (BCE) loss between the predicted anomaly probability pt and the
ground-truth y ∈ {0, 1}:

LBCE = −[y log(pt) + (1− y) log(1− pt)] (7)

To mitigate false positives by preventing the model from overreacting to benign activity, we intro-
duce a sparsity-inducing regularization on the global signal sglobal for normal samples. Let Bnorm be
the set of normal samples in a training batch. The regularization loss is:

Lreg =
1

|Bnorm|
∑

j∈Bnorm

(s
(j)
global)

2 (8)

where s
(j)
global is the global signal for the j-th normal sample. This L2 penalty encourages the con-

troller to remain dormant (sglobal ≈ 0) for normal inputs.

The final objective is a weighted combination of these two losses:

Ltotal = LBCE + λregLreg (9)

where λreg controls the regularization strength. This composite objective trains the HMC to activate
its feature-modulating capacity only when necessary. Promoting sparsity in the activation of the
global gate enhances the robustness of the model and reduces the potential for false positives.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our framework on two widely adopted, large-scale benchmarks for VAD.

• UCF-Crime (Sultani et al., 2018) contains 1900 untrimmed real-world surveillance videos con-
sist of 13 distinct anomaly types, totaling over 128 hours. The official split contains 1610 videos
(810 abnormal and 800 normal) for training and 290 (140 abnormal and 150 normal) for testing.

• XD-Violence (Wu et al., 2020) comprises 4754 untrimmed videos from movies, sports, and
online sources. It includes 6 different anomaly categories. The dataset is divided into 3954
training videos and 800 test videos (500 abnormal and 300 normal).

We use a small, randomly sampled 1% subset of the training sets from each dataset for our LAE
discovery and the training of the HMC. The full official test sets are used for evaluation.

Evaluation Metric. We adopt the standard evaluation metrics for each dataset to ensure a fair
comparison with prior works. For UCF-Crime, we report the frame-level Area Under the Receiver
Operating Characteristic Curve (AUC). This metric provides a comprehensive measure of the ability
of a model to distinguish between normal and anomalous frames across all decision thresholds. For
XD-Violence, we report the Average Precision (AP), which evaluates the precision-recall trade-off
and is sensitive to the correct classification of positive (anomalous) instances. For both metrics,
higher values indicate superior performance.

Implementation Details. SteerVAD is built upon the InternVL3 (Zhu et al., 2025) as the frozen
MLLM backbone. For video processing, each video is divided into non-overlapping segments at
an interval of 48 frames and uniformly sample F = 16 frames from each segment as the input to
MLLM. For the offline calibration (LAE discovery and HMC training), we select the top K = 4
attention heads as the LAEs based on the RSA scores. The HMC and anomaly scorer are trained
for 1000 epochs using the Adam optimizer with a learning rate of 1 × 10−3 and a batch size of 64,
the regularization weight λreg = 0.1, and the standard deviation for the Gaussian smoothing kernel
σg = 6. All experiments were conducted on a single NVIDIA RTX A6000 GPU.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

As detailed in Table 1, our proposed SteerVAD establishes a new state-of-the-art (SOTA) in the
tuning-free video anomaly detection approaches, demonstrating consistent superiority on both the
UCF-Crime and XD-Violence benchmarks. This strong performance is attributed to our active in-
tervention mechanism, where a hierarchical meta-controller executes targeted geometric steering
within the feature space. Unlike passive methods that rely on fixed representations from a pre-
trained MLLM, our approach dynamically rectifies the feature space to counteract inherent model
biases. This process selectively amplifies anomalous signals that would otherwise be obscured.

Furthermore, SteerVAD narrows the performance gap with fully-trained fine-tuned methods while
operating with exceptional data efficiency. On UCF-Crime, our model achieves an AUC of 87.15%,
which is highly competitive with the 89.51% AUC of the Holmes-VAD. Crucially, SteerVAD utiliz-
ing a minuscule fraction of the data demanded by its counterparts. This validates that leveraging the
global understanding of an MLLM through targeted geometric steering presents a compelling and
efficient alternative to expensive fine-tuning for adapting MLLMs to specialized downstream tasks.

4.3 VISUALIZATION OF LATENT SPACE RECTIFICATION

To provide a qualitative assessment of our manifold rectification strategy, we employ t-SNE to visu-
alize the latent feature distributions from the XD-Violence and UCF-Crime datasets in Figure 4. The
original features extracted by the frozen MLLM exhibit a high degree of overlap, where the represen-
tations of normal (blue) and anomalous (red) samples are largely indistinguishable. This observation
is consistent across both datasets, highlights the representational bias that hinders downstream sep-
arability. In contrast, after the application of our hierarchical meta-controller, the rectified feature
space is fundamentally restructured. The same samples now form two distinct, compact clusters
with a large inter-class margin. This enhancement in separability qualitatively demonstrates that our
method effectively remaps the latent manifold to mitigate the inherent bias, yielding representations
more conducive to classification. Further visualizations are available in Appendix D.2.
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Table 1: Comparison with existing methods on the UCF-Crime and XD-Violence datasets.

Mode Methods Backbone UCF-Crime XD-Violence

AUC (%) AP (%)

Weakly
Supervised

Wu et al. (Wu et al., 2020) I3D 82.44 73.20
MIST (Feng et al., 2021) I3D 82.30 -
RTFM (Tian et al., 2021) I3D 84.30 77.81
S3R (Wu et al., 2022) I3D 85.99 80.26
MSL (Li et al., 2022b) I3D 85.30 78.28
UR-DMU (Zhou et al., 2023) I3D 86.97 81.66
MFGN (Chen et al., 2023) I3D 86.98 79.19
Wu et al. (Wu et al., 2024a) ViT 86.40 66.53
CLIP-TSA (Joo et al., 2023) ViT 87.58 82.19
Yang et al. (Yang et al., 2024) ViT 87.79 83.68
VadCLIP (Wu et al., 2024c) ViT 88.02 84.51

Self
Supervised

TUR et al. (Tur et al., 2023) Resnet 66.85 -
BODS (Wang & Cherian, 2019) I3D 68.26 -
GODS (Wang & Cherian, 2019) I3D 70.46 -

Unsupervised GCL (Zaheer et al., 2022) ResNext 71.04 -
DYANNET (Thakare et al., 2023) I3D 84.50 -

Fine-Tuned Holmes-VAU (Zhang et al., 2024b) ViT 88.96 87.68
Holmes-VAD (Zhang et al., 2024a) ViT 89.51 90.67

Tuning-Free
Multimodal

VAD

Zero-Shot CLIP (Radford et al., 2021) ViT 53.16 17.83
ZS ImageBind (Video) (Girdhar et al., 2023) ViT 55.78 25.36
ZS ImageBind (Image) (Girdhar et al., 2023) ViT 53.65 27.25
LLAVA-1.5 (Liu et al., 2024a) ViT 72.84 50.26
LAVAD (Zanella et al., 2024) ViT 80.28 62.01
EventVAD (Shao et al., 2025) ViT 82.03 64.04
VERA (Ye et al., 2025) ViT 86.55 70.54
HiProbeVAD (Cai et al., 2025) ViT 86.72 82.15
SteerVAD ViT 87.15 83.02
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Figure 4: Visualization of manifold rectification via t-SNE on aggregated features from the LAEs
for the XD-Violence and UCF-Crime datasets.

4.4 ABLATION STUDIES

Effectiveness of the Hierarchical Meta-Controller. We validate the design of our hierarchical
meta-controller (HMC) through the ablation studies presented in Table 2 (Part A). The strategy that
trains a linear classifier on frozen raw LAE features, achieves only 81.33% AUC, confirming the
need for feature rectification. We then explore context-agnostic modulation strategies. A static steer-
ing variant, which applies a single, learnable channel-wise scaling vector to LAE features, improves
performance by +2.88% AUC. Employing a more expressive additive steering mechanism, which
instead modulates features with a learnable additive bias vector, further boosts the AUC to 85.02%.
However, these limited gains underscore the inherent constraints of context-unaware modulation.
Relying solely on the local gating module (LGM) to perform its context-dependent anisotropic scal-
ing, without the global scrutiny gate (GSG), results in a 1.21% AUC degradation from our full
model. This highlights the GSG’s critical function as a high-level gate that determines if modulation
is necessary, thereby preventing the LGM from altering features of benign frames indiscriminately.
This result demonstrates that the synergistic interplay between the global gating mechanism and the
local, fine-grained modulator is crucial for optimal performance.
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Table 2: Ablation studies on the UCF-Crime dataset, analyzing the impact of key components and
expert selection strategies.

Configuration / Strategy GSG LGM Steering AUC (%)

Part A: HMC Component Ablation

Full Model ✓ ✓ Anisotropic 87.15
– w/o Global Gate ✗ ✓ Anisotropic 85.94
– w/ Additive Steering ✓ ✓ Additive 85.02
– w/o LGM (Static) ✓ ✗ Static Scaling 84.21
– Linear Probing ✗ ✗ NA 81.33

Part B: Expert Selection Strategy Ablation

RSA (Ours) – 87.15
Mid-to-Last Layer – 84.68
Random Selection – 69.57
First-to-Mid Layer – 63.16

Table 3: Hyperparameter analysis of selected LAEs (K) and input frames (F ) on UCF-Crime.

Number of Experts (K) Number of Frames (F )

Value AUC (%) Value AUC (%)

2 85.91 4 82.54
4 87.15 8 85.03
8 87.09 16 87.15

16 86.88 24 87.23

Effectiveness of Representational Separability Analysis. We validate our RSA against several
heuristic selection strategies, with results shown in Part B from Table 2. Choosing attention heads
at random or first-to-mid layers yield poor performance due to their failure to capture task-relevant
semantics. Positional heuristics selecting heads from mid-to-last layers provide better results. The
late-layer heads perform better due to their encoding of higher-level semantic features, but the selec-
tion lacks precision. Our RSA-based method, which directly optimizes for geometric separability,
significantly outperforms all baselines. This confirms that a principled, task-aligned search for sub-
modules is crucial for enabling effective and targeted intervention.

Hyperparameter Analysis We evaluate two critical hyperparameters in SteerVAD: the number
of selected latent anomaly experts (K) and sampled frames (F ) from each segment. As detailed in
Table 3, the performance exhibits a clear parabolic relationship with K; the AUC peaks at 87.15%
when K = 4 by striking an optimal balance between incorporating diverse, anomaly-centric features
and mitigating the noise introduced by less discriminative experts at higher values. The choice of F
reveals a classic pattern of diminishing returns. Extending the input frames to 16 yields a substantial
performance gain by integrating richer contextual information, this improvement saturates thereafter
offering negligible further gains that do not justify the considerable increase in computational over-
head. Therefore, we adopt K = 4 and F = 16 as our final configuration, representing the most
compelling trade-off between model efficacy and computational efficiency.

5 CONCLUSION

In this paper, we introduce a novel intervention framework for tuning-free video anomaly detection,
moving from passive feature interpretation to active geometric rectification within frozen MLLMs.
Our SteerVAD operationalizes this by using representational separability analysis (RSA) to pin-
point task-aligned latent anomaly experts and employing a hierarchical meta-controller (HMC) to
dynamically rectify their representation manifolds through context-aware anisotropic scaling. This
active steering mechanism effectively overcomes pre-training biases and resolves contextual ambi-
guities, leading to new state-of-the-art performance on the UCF-Crime and XD-Violence bench-
marks among tuning-free methods. Our work demonstrates that targeted, dynamic intervention is
a powerful and data-efficient alternative to costly fine-tuning, paving the way for more adaptable
applications of frozen foundation models for video anomaly detection.
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STATEMENTS

ETHICS STATEMENT

Our work strictly adheres to the ICLR Code of Ethics. The research is conducted exclusively on pub-
licly available, standard academic benchmarks (UCF-Crime and XD-Violence), which are widely
used for evaluating video anomaly detection algorithms. We acknowledge the dual-use nature of
video anomaly detection technology. However, our primary motivation is to advance the field for
societal benefit, such as enhancing public safety through intelligent surveillance and improving in-
dustrial quality control. We believe that our framework represents a step towards more responsible
AI by promoting transparency and intervention accountability. Unlike opaque fine-tuning methods
that alter millions of parameters, our approach isolates intervention to a small, identifiable set of la-
tent anomaly experts (LAEs). This architectural choice makes the model’s decision-making process
more scrutable. Furthermore, our post-hoc explanation capability is not merely a descriptive feature;
it provides a user-facing check on the system’s outputs, allowing human operators to verify alerts
against generated textual rationales. By focusing on rectifying pre-training biases at a geometric
level, our work also contributes to mitigating one of the core ethical challenges in deploying large
models. We advocate for the responsible development and deployment of this technology, ensuring
its application aligns with ethical principles and contributes positively to human well-being.

REPRODUCIBILITY STATEMENT

We are fully committed to ensuring the complete reproducibility of our research. To this end, we
provide an exhaustive description of our methodology in Section 3, supplemented by a rigorous
theoretical analysis in Appendix A and detailed implementation specifics, including architectural
layouts and tensor transformations, in Appendix B. All crucial implementation details, including the
specific frozen MLLM backbone used (InternVL3), dataset preprocessing steps, and a complete list
of hyperparameters, are clearly documented in Section 4 and Appendix C. Our experiments are built
on standard public benchmarks and common libraries (PyTorch, Hugging Face Transformers) to
ensure broad accessibility. Furthermore, to significantly enhance the verifiability of our results, we
will provide comprehensive JSON file samples of our experimental run outputs in the supplementary
materials. We also pledge to release our source code upon the publication of this paper, which we
believe will allow the community to fully replicate our findings and extend our work.
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A THEORETICAL ANALYSIS OF THE REPRESENTATION MANIFOLD

This section formalizes the theoretical underpinnings of our geometric steering methodology. We
argue that the emergence of structured, low-dimensional representational geometries is a natural
consequence of applying continuous deep networks to high-dimensional, semantically coherent data.
Our argument proceeds by first establishing the topological properties of the input data space, then
analyzing how these properties are preserved under the MLLM’s feature mapping.

A.1 TOPOLOGICAL PROPERTIES OF THE INPUT DATA SPACE

We begin by characterizing the topological structure of the data space V ⊂ RN from which video
segments are drawn. A semantic class C (e.g., ”normal” or ”anomaly”) corresponds to a subset of
this space, denoted VC ⊂ V .

Compactness. We model the data subset VC for any given class C as a compact set. This model
is grounded in two properties. First, video data is inherently bounded; pixel intensities are confined
to a finite range (e.g., [0, 255]) and video dimensions are fixed, making VC a bounded subset of
RN . Second, while the semantic boundary between classes can be ambiguous in practice, we posit
that the underlying generative process for a class occupies a topologically closed region in the data
space. This idealized assumption is a necessary abstraction for analytical tractability, allowing us
to model the core data distribution as a well-defined set. Under the Heine-Borel theorem, a subset
of RN that is both closed and bounded is compact. This compactness provides a stable topological
foundation, ensuring that continuous maps such as the attention heads in an MLLM exhibit well-
behaved properties when applied to the data.

Piecewise Path-Connectedness. The data structure for complex semantic categories is inherently
piecewise, not monolithic. A high-level concept such as ”anomaly” encompasses a diverse family
of distinct scenarios; for instance, ”arson” in a building and a ”vehicle collision” on a street are
both anomalies, yet no continuous transformation path of semantically valid videos exists in the
high-dimensional data space to connect them.

This intrinsic heterogeneity dictates that the data space for a class C is most accurately modeled as a
union of path-connected subsets. Formally, we express this structure as:

VC =

MC⋃
i=1

V(i)
C (10)

where each component V(i)
C is a path-connected and compact set, representing a semantically co-

herent subcluster (e.g., ”theft” and ”vandalism” as components of ”anomaly”). Crucially, these
components are not necessarily disjoint; a single event, such as breaking a car window to steal an
item, can naturally belong to multiple subclusters. This potential for overlap in the input space is a
critical feature, as it implies that the resulting representation manifolds in the latent space may also
intersect, creating a complex, entangled geometry that is difficult to separate.

This topological structure has a direct implication for the learned representation space. As the feature
extractor h is a continuous map, it preserves path-connectedness. Consequently, the image of VC
under h, which we term the representation manifold MC = h(VC), is also a collection of path-
connected manifold components:

MC =

MC⋃
i=1

h
(
V(i)
C

)
=

MC⋃
i=1

M(i)
C (11)

Here we formally define the representation manifoldMC as this complete, set-theoretic union. Cru-
cially, the MLLM’s pre-training on vast semantic data induces a critical property in this structure: the
manifold components {M(i)

C } are not scattered arbitrarily across the latent space but are mapped into
a bounded and largely contiguous region. This geometric coherence ensures that the global proper-
ties of the parent manifoldMC specifically its centroid (center of mass) are not just well-defined, but
serve as a geometrically meaningful representation of the class’s central tendency. Consequently, our

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

RSA metric is not a naive simplification but a robust measure of the separation between the centers
of these high-level structures.

This leads to a more precise geometric formulation of the VAD challenge: the task is not to sep-
arate two single, cleanly-defined manifolds, but to distinguish between two families of potentially
overlapping and entangled manifold components {M(i)

norm} and {M(j)
anom}.

A.2 FEATURE EXTRACTORS AS CONTINUOUS MAPS

An MLLM feature extractor, such as an attention head, is modeled as a function h : V → Rdhead .
This function is a composition of a finite number of layers h = fL ◦ fL−1 ◦ · · · ◦ f1, each consisting
of linear transformations and continuous, non-linear activation functions (e.g., GELU, Softmax).
Since the composition of continuous functions is itself continuous, the entire feature extractor h
constitutes a continuous map from the input space V to the representation space Rdhead .

A fundamental theorem in topology states that the continuous image of a path-connected set is path-
connected. Given our model of the input data space where each component V(i)

C is path-connected
and the map h is continuous, it follows that the image of each component, M(i)

C = h(V(i)
C ), must

also be a path-connected subset of Rdhead . This formalizes the observation that feature represen-
tations of semantically coherent subclusters coalesce into distinct geometric structures within the
representation space, collectively forming the full representation manifoldMC .

A.3 LOCAL EUCLIDEAN STRUCTURE AND INTRINSIC DIMENSIONALITY

ForM to qualify as a differentiable manifold, it must also be locally homeomorphic to a Euclidean
space. This property emerges from the smooth mapping of local degrees of freedom in the input
data to the representation space.

Under the central tenet of the manifold hypothesis, we assume that local variations within a small
neighborhood of a video v ∈ C (e.g., an object’s position, orientation) can be parameterized by a
low-dimensional vector u ∈ U ⊂ RdM , where U is an open set and dM ≪ N is the number of
local generative factors. This defines video in this neighborhood as a local parameterization v(u).

The feature extractor h acts on this parameterization, defining a local coordinate chart ϕ : U → Rdhead

via the composition:

ϕ(u) = h(v(u)) (12)

Since h is composed of differentiable (or piecewise differentiable) functions, the map ϕ is also
differentiable (or piecewise differentiable). This map embeds a patch from the low-dimensional
parameter space RdM as a surface within the high-dimensional representation space Rdhead .

The local geometry of this embedded surface is characterized by the Jacobian of the chart:

Jϕ(u) =
∂ϕ

∂u
∈ Rdhead×dM (13)

The dM column vectors of the Jacobian span the tangent space TpM at a point p = ϕ(u). We
operate under the reasonable assumption that for non-degenerate natural variations, this map is an
immersion, meaning the Jacobian has full column rank, i.e., rank(Jϕ) = dM. This non-collapsing
condition ensures that the local dimensionality is preserved. The existence of such a differentiable
atlas (a collection of charts coveringM) establishesM as a differentiable manifold.

A.4 IMPLICATIONS AND RATIONALE FOR GEOMETRIC STEERING

Geometric Problem Formulation. The preceding analysis provides a rigorous geometric frame-
work for understanding the VAD task and justifying our intervention strategy. From this perspective,
the VAD challenge arises when the representation manifolds for normal (Mnorm) and anomalous
(Manom) data are proximal or intersect in Rdhead . Such proximity, where infp∈Mnorm,q∈Manom ∥p −
q∥2 ≈ 0, is often due to shared local features (e.g., ”a person running” is common to both jogging
and fleeing). This entanglement makes reliable separation by a static classifier difficult.
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Intervention as a Controlled Duality of Transformation. As introduced in the methodology, our
hierarchical meta-controller (HMC) learns a context-dependent transformation Tc : Rdhead → Rdhead

via anisotropic manifold scaling. This transformation exhibits a powerful duality:

• Diffeomorphic Remodeling. When all scaling factors are non-zero, Tc acts as a local dif-
feomorphism, smoothly remodeling the geometric structure by anisotropically stretching and
compressing the manifold along discriminative axes while preserving local topology. This alters
the local metric tensor, effectively increasing the geometric distance between manifolds without
tearing their topology.

• Singular Projection. The true expressive power of our method is unleashed when the framework
drives one or more scaling factors to zero. This induces a singularity, rendering the transforma-
tion locally non-invertible and fundamentally changing its nature from remodeling to structural
simplification. Geometrically, this singular transformation acts as a projection, mapping the fea-
ture space Rdhead onto a lower-dimensional effective subspace spanned by the dimensions with
non-zero scaling. Information within the projection’s null space, the dimensions corresponding
to zero scaling, is actively discarded. This mechanism serves as a form of potent, context-
aware feature selection, allowing the model to completely nullify dimensions associated with
pre-training biases or task-irrelevant variance. This projection effectively creates what can be
conceptualized as a stable anchor space; representations are anchored to this simpler subspace,
and their final structure becomes robust to perturbations in the suppressed dimensions, whose
outputs are mapped to a stable fixed point (e.g., the origin) within the projected subspace.

This capability justifies our choice of anisotropic manifold scaling. It is not merely a heuristic but a
highly expressive yet efficient transformation capable of learning both smooth, geometry-preserving
diffeomorphisms and radical, context-aware projections for dimensional reduction. This provides a
minimal yet powerful mechanism to achieve the desired manifold separation.

Theoretical Objective and Practical Realization. The ultimate objective of our adaptive trans-
formation is to maximize the geometric separation between transformed manifolds, thereby resolv-
ing structural ambiguity in their latent spaces. This objective can be formally expressed as maximiz-
ing a metric like the Hausdorff distance, dH(Tc(Mnorm), Tc(Manom)). While direct optimization of
such a metric is often intractable, our practical training objective, binary cross-entropy (BCE) loss
serves as an effective and stable surrogate. By penalizing misclassifications, the BCE loss implicitly
compels the HMC to learn a transformation Tc that renders the manifolds maximally separable to a
linear classifier. This aligns the tractable optimization process with our fundamental geometric goal,
training an expressive transformation to achieve a well-defined structural objective.

This concludes the theoretical derivation, which demonstrates that representation manifolds are a
predictable consequence of applying continuous deep networks to structured data and provides a
rigorous foundation for our geometric steering approach.

B DETAILS OF STEERVAD

This section provides a detailed description of the implementation of our proposed SteerVAD frame-
work, complementing the methodology presented in Section 3. We elaborate on the precise mathe-
matical formulations, the architectural specifications of our trainable modules, and the algorithmic
procedures for latent anomaly expert (LAE) discovery, model training, and real-time inference.

B.1 PREPARATION OF STEERVAD

B.1.1 REPRESENTATIONAL SEPARABILITY ANALYSIS (RSA)

The representational separability analysis (RSA) is a systematic, gradient-free procedure designed
to identify a select set of latent anomaly experts (LAEs). The objective is to pinpoint attention heads
whose internal feature spaces are most naturally aligned with the VAD task, meaning they maximize
a criterion of class separability. This section provides the detailed mathematical formulation and
algorithmic implementation, complementing the conceptual overview in Section 3. The complete
procedure is formally outlined in Algorithm 1.
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At its core, RSA leverages a geometric separability criterion inspired by the Fisher Discriminant
Ratio to evaluate and rank the representational efficacy of attention heads. This metric is deliber-
ately chosen for its computational tractability, as it operates solely on first and second order statistics
(mean and variance), and circumvents the need to train auxiliary classifiers per head, which would
incur prohibitive computational and optimization overhead. More fundamentally, its mathematical
objective of maximizing between-class scatter while minimizing within-class scatter directly aligns
with our architectural goal: to steer the manifold and rectify them for unbiased detection. An at-
tention head that scores highly under this criterion induces a feature geometry in which intra-class
compactness and inter-class margin are simultaneously optimized, rendering the representation ide-
ally suited for subsequent classification by a simple and parameter-efficient linear scorer.

For each attention head hl,k (at layer l, index k), its RSA score is computed as the ratio of the
between-class scatter to the total within-class scatter:

SRSA(l, k) =
SB(l, k)

SW (l, k) + ϵ
(14)

where ϵ is a small constant for numerical stability.

The numerator, SB(l, k), represents the between-class scatter. It is defined as the squared Euclidean
distance between the centroids of the anomalous and normal feature distributions, rewarding heads
that map the two classes to distant locations in the embedding space. It is calculated as:

SB(l, k) = ∥µ(l,k)
anom − µ(l,k)

norm∥22 (15)

The denominator, SW (l, k), represents the total within-class scatter. It quantifies the compactness
of the clusters by summing the squared Euclidean distances of each feature vector to its respective
class centroid. A lower value indicates more tightly formed, less diffuse clusters. It is defined as:

SW (l, k) =
∑

x∈D(l,k)
anom

∥x− µ(l,k)
anom∥22 +

∑
x∈D(l,k)

norm

∥x− µ(l,k)
norm∥22 (16)

where D(l,k)
norm/anom denotes the set of feature vectors {x} produced by head (l, k) for all normal and

anomalous samples in the calibration set, where each x ∈ Rdhead . The term µ represents the centroid
(mean vector) of the corresponding feature set.

Equivalence to the Variance-Based Metric. To ensure robust and unbiased estimation, we com-
pute the RSA score on a class-balanced calibration set, constructed by randomly undersampling
the majority class to match the size of the minority class. This procedural detail is critical as it
establishes a direct mathematical link between the scatter-based formula used for implementation
(Eq. 14) and the more intuitive variance-based metric presented in Methods (Eq. 1).

Specifically, the variance of a cluster is defined as σ2 = 1
N

∑
x ∥x−µ∥22. Consequently, the within-

class scatter for a class is Sclass
W = N · σ2. On a balanced dataset, the total within-class scatter

becomes:

SW (l, k) = N · σ2
anom(l, k) +N · σ2

norm(l, k) = N
(
σ2

anom(l, k) + σ2
norm(l, k)

)
(17)

Substituting this into our RSA score gives:

SRSA(l, k) =
∥µ(l,k)

anom − µ
(l,k)
norm∥22

N (σ2
anom(l, k) + σ2

norm(l, k)) + ϵ
(18)

Since our goal is to rank the attention heads, maximizing this score is equivalent to maximizing the
metric from Eq. 1, as N is a positive constant that does not affect the ranking order. This balancing
act prevents the statistics of a majority class from dominating the score and justifies our use of the
more computationally direct scatter formulation.

This principled, quantitative analysis allows us to survey all attention heads within the frozen MLLM
and rigorously select the top-K performers. These selected heads, designated as latent anomaly
experts, are not just randomly chosen sub-modules; they are empirically validated as the most infor-
mative and geometrically aligned subspaces for the VAD task, making them the optimal targets for
our subsequent manifold rectification.
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Algorithm 1 Representational Separability Analysis (RSA) for LAE Discovery

1: Input: Frozen MLLMM, calibration dataset Dcalib.
2: Parameter: Number of experts to select K.
3: Output: A set of K Latent Anomaly Experts (LAEs).

4: ▷ Phase 1: Prepare a class-balanced calibration set
5: Construct the calibration set Dcalib to balanced by randomly undersampling the majority class.

6: ▷ Phase 2: Feature Extraction
7: Initialize empty feature banks for all heads (l, k):
8: B(l,k)norm ← ∅, B(l,k)anom ← ∅
9: for each video segment St with label yt in Dcalib do

10: Perform a single forward pass of St throughM.
11: For each attention head (l, k), extract its output feature vector h(t)

l,k.
12: if yt is normal then
13: Add h

(t)
l,k to B(l,k)norm .

14: else
15: Add h

(t)
l,k to B(l,k)anom .

16: end if
17: end for

18: ▷ Phase 3: Score Calculation
19: Initialize an empty list of scores S ← [].
20: for each attention head (l, k) do
21: Compute centroids: µ(l,k)

norm = mean(B(l,k)norm ), µ(l,k)
anom = mean(B(l,k)anom).

22: Compute between-class scatter SB(l, k) = ∥µ(l,k)
anom − µ

(l,k)
norm∥22.

23: Compute within-class scatters:
24: SW,norm =

∑
h∈B(l,k)

norm
∥h− µ

(l,k)
norm∥22.

25: SW,anom =
∑

h∈B(l,k)
anom
∥h− µ

(l,k)
anom∥22.

26: Compute RSA score SRSA(l, k) = SB(l, k)/(SW,norm + SW,anom + ϵ).
27: Add (l, k, SRSA(l, k)) to S.
28: end for

29: ▷ Phase 4: LAE Selection
30: Sort S in descending order based on SRSA.
31: return the top K heads from the sorted list S.

B.1.2 HIERARCHICAL META-CONTROLLER (HMC) AND ANOMALY SCORER

This section provides detailed implementations of trainable components in SteerVAD. We move be-
yond the conceptual overview in Section 3 to detail the precise tensor transformations, architectural
choices, and design rationales essential for reproducibility. The dimensions specified here corre-
spond to our experiments using the InternVL model, where the hidden dimension is dmodel = 3584
and the attention head dimension is dhead = 128.

Global Context Vector Rationale The efficacy of our context-aware rectification hinges upon the
extraction of the global context vector, c ∈ Rdmodel . As introduced in Section 3.4, this vector is
derived from the final hidden state of the frozen MLLM at the first generated token. This choice
is motivated by the auto-regressive nature of the underlying language model. The model generates
the initial token by constructing a holistic semantic summary through comprehensive encoding of
the entire input sequence, yielding a hidden state that encapsulates global contextual understanding.
Further from a structural standpoint, the causal attention mechanism ensures that this representation
is purely conditioned on the inputs, free from the influence of any generated text. This yields an
unbiased and information-rich summary of the scene’s semantics, providing an ideal input for the
HMC while remaining computationally efficient as a natural byproduct of the single forward pass.
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Global Scrutiny Gate (GSG) The global scrutiny gate is used to distill the high-dimensional
global context vector c into a single suspicion score sglobal. It processes a batch of context vectors
of shape [B, dmodel] to produce a batch of scores of shape [B, 1]

Table 4: Architecture of the global scrutiny gate (GSG). The input batch size is denoted by B.

Layer Input Shape Output Shape Activation / Notes
Input c [B, 3584] - Global context vector
Linear-1 [B, 3584] [B, 128] -
BatchNorm1d [B, 128] [B, 128] Stabilizes training
ReLU [B, 128] [B, 128] Non-linearity
Linear-2 [B, 128] [B, 1] Output logit
Sigmoid [B, 1] [B, 1] Produces sglobal

Architecture. The module is implemented as a lightweight MLP, whose architecture is detailed
in Table 4. The inclusion of a BatchNorm1d layer is a deliberate choice to stabilize the training
dynamics on the small calibration set. It normalizes the feature activations from the first linear layer,
preventing the model from becoming reliant on specific dimensions of the context vector whose
statistics might be inconsistent across small batches.

Local Gating Module (LGM) The local gating module is designed for parameter-efficient,
context-dependent feature modulation. It consists of K parallel low-rank adapters, where K is
the number of selected LAEs. Each adapter takes the same global context vector c and generates a
unique steering vector gi for its corresponding LAE.

Table 5: Architecture of a single low-rank adapter within the LGM.

Layer Input Shape Output Shape Activation / Notes
Input c [B, 3584] - Shared across K adapters
Linear-down (r = 4) [B, 3584] [B, 4] bias=False
Linear-up [B, 4] [B, 128] bias=False
Tanh [B, 128] [B, 128] Produces gi ∈ [−1, 1]

Architecture. Each of the K adapters is identical in structure, as detailed in Table 5. The design
choice to set bias=False in both linear layers is intentional. It ensures that the adapter’s operation
is purely modulatory (scaling existing features) rather than additive (shifting features), preserving
the original manifold’s position while only altering its geometry. This aligns with our core objec-
tive of rectifying, not replacing the learned representations of MLLM. Numerical computations are
performed using bfloat16 precision, consistent with the native format of the InternVL backbone.

Anisotropic Manifold Scaling The core rectification mechanism, anisotropic scaling, is an
element-wise tensor operation that integrates the outputs of the GSG and LGM to modulate the
raw LAE features. The data flow for a batch of inputs during inference is as follows:

1. Inputs: The process begins with two tensors: the raw LAE features H ∈ RB×K×dhead and the
global context vectors c ∈ RB×dmodel .

2. Signal Generation: The context c is passed through the GSG to produce the global scores
sglobal ∈ RB×1, and concurrently through the K adapters of the LGM to produce the stacked
local steering vectors G ∈ RB×K×dhead .

3. Rectification: The global score sglobal is unsqueezed to a shape of [B, 1, 1] to enable broadcast-
ing across the K experts and dhead dimensions. The final rectified features H′ are computed via
the element-wise operation:

H′ = H⊙ (1 + unsqueeze(sglobal) ·G) (19)

where ⊙ denotes the Hadamard product. This mechanism provides dynamic, fine-grained con-
trol over the feature geometry. For instance, a high global score (sglobal ≈ 1) combined with
positive steering signals in G amplifies the norm of corresponding feature vectors, while nega-
tive signals attenuate them, thus actively steering the representation on its manifold.
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Algorithm 2 Training Procedure for HMC and Anomaly Scorer

1: Input: A batch of pre-extracted LAE features, context vectors, and labels {({hi}t, ct, yt)}Bt=1.
2: Parameters: HMC parameters θHMC, Scorer parameters θScorer, regularization weight λreg.
3: Initialize batch loss Lbatch ← 0.
4: for each sample ({hi}, c, y) in the batch do
5: ▷ Generate Rectification Signals
6: Compute global suspicion score sglobal = GSG(c; θHMC).
7: Compute local steering vectors {gi}Ki=1 = LGM(c; θHMC).
8: ▷ Perform Anisotropic Manifold Scaling
9: Compute rectified features: h′

i = hi ⊙ (1 + sglobal · gi) for i = 1, . . . ,K.
10: ▷ Score and Compute Loss
11: Concatenate features: Ffinal = Concat(h′

1, . . . ,h
′
K).

12: Compute logit z = AnomalyScorer(Ffinal; θScorer).
13: Compute classification loss LBCE = BCEWithLogitsLoss(z, y).
14: ▷ Compute Regularization Loss for Normal Samples
15: Initialize Lreg ← 0.
16: if y is normal then
17: Lreg = (sglobal)

2.
18: end if
19: Accumulate total loss: Lbatch ← Lbatch + LBCE + λregLreg.
20: end for
21: Perform backpropagation on Lbatch to compute gradients ∇θHMC,θScorerLbatch.
22: Update parameters θHMC and θScorer using an optimizer (e.g., Adam).

Anomaly Scorer The design of anomaly scorer prioritizes robustness over complexity. Its primary
role is to map the rectified feature space to a final anomaly probability.

Architecture and Rationale. The scorer first reshapes the batch of rectified features H′ ∈
RB×K×dhead into a flattened feature matrix Ffinal ∈ RB×(K·dhead). For our configuration with K = 4,
this results in an input shape of [B, 512]. This matrix is then processed by a single linear layer
(nn.Linear(512, 1)) to produce a batch of logits z ∈ RB×1.

This minimalist design, equivalent to a logistic regression classifier, is a deliberate methodological
choice that acts as a form of regularization. By constraining the classifier’s capacity, we ensure
that performance gains are attributable to the quality of the rectified representations produced by the
HMC, rather than the power of the final classifier. It compels the HMC to learn a feature space that
is as linearly separable as possible.

Training Procedure The HMC and anomaly scorer are trained end-to-end using the composite
loss function from Equation 9. The complete training process is detailed in Algorithm 2.

B.1.3 REAL-TIME INFERENCE OF STEERVAD

The inference pipeline of SteerVAD is designed for efficiency, enabling the processing of long,
untrimmed videos in a single pass and culminating in a final, interpretable output. The entire process,
formally detailed in Algorithm 3, integrates segment-wise scoring, temporal aggregation for curve
generation, and an optional mechanism for generating textual explanations for detected anomalies.

The procedure begins by partitioning the input video into a sequence of non-overlapping temporal
segments. Each segment is processed independently through a single forward pass of the frozen
MLLM to extract raw LAE features and a global context vector. The pre-trained HMC and Scorer
modules then compute a segment-level anomaly probability. This raw sequence of probabilities,
while informative, can exhibit high-frequency noise due to transient visual fluctuations.

To address this and produce a temporally coherent result, we introduce an aggregation step. The
segment-level scores are first mapped to a frame-level representation. Subsequently, we apply a
temporal smoothing filter, as implemented in our visualization code via a standard 1D Gaussian
convolution. This operation, which efficiently realizes the weighted averaging formula in Equa-
tion 6, smooths the raw scores to produce the final anomaly curve, effectively suppressing spurious
spikes while preserving sustained anomalous events.
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Algorithm 3 Real-time Inference Pipeline of SteerVAD

1: Input: Untrimmed video stream V; Pre-trained HMC and Anomaly Scorer; LAE configuration.
2: Parameters: Frames per segment L; Sampled frames per segment F ; Gaussian kernel std. dev.

σg; Anomaly threshold τanomaly.
3: Output: Smoothed anomaly curve Asmooth; Set of textual explanations E (optional).
4: ▷ Phase 1: Frame-level Probability Scoring
5: Partition V into T non-overlapping segments {S1, . . . , ST }, each of length L.
6: Initialize an empty list of probabilities P ← [].
7: for each segment St from t = 1 to T do
8: Uniformly sample F frames from St.
9: Perform a single forward pass through the frozen MLLM to extract raw LAE features {hi}t

and context ct.
10: With gradients disabled:
11: s

(t)
global ← GSG(ct), {gi}t ← LGM(ct).

12: h′
i = hi ⊙ (1 + s

(t)
global · gi) for i = 1, . . . ,K.

13: F
(t)
final = Concat(h′

1, . . . ,h
′
K).

14: zt = AnomalyScorer(F (t)
final).

15: pt = σ(zt), where σ is the Sigmoid function.
16: Append pt to P .
17: end for
18: ▷ Phase 2: Anomaly Curve Generation
19: Let Nframes be the total number of frames in V . Initialize frame-level scores Araw ∈ RNframes

with zeros.
20: for t = 1 to T do
21: Let [start, end) be the frame indices for segment St.
22: Araw[start : end] = pt. ▷ Assign segment probability to corresponding frames
23: end for
24: Compute smoothed curve Asmooth = GaussianConvolution1D(Araw, σg).

25: ▷ Phase 3: Post-Hoc Explanation (Optional)
26: Initialize an empty set of explanations E ← ∅.
27: for t = 1 to T do
28: Compute representative score for segment St, e.g., āt = mean(Asmooth[start : end]).
29: if āt > τanomaly then
30: Let Vt be the original frames of segment St.
31: Construct prompt: Qt.
32: Generate explanation: Et = MLLM.generate(Qt, Vt).
33: Add (t, Et) to E .
34: end if
35: end for
36: return Asmooth, E .

Finally, to enhance the framework’s utility and trustworthiness, an optional post-hoc explanation
module can be activated. For any segment where the smoothed anomaly score surpasses a prede-
fined threshold, the corresponding video frames are re-submitted to the frozen MLLM’s generative
interface. By prompting the MLLM to describe the events in these frames, we obtain a natural
language explanation for the detected anomaly, bridging the gap between a numerical score and a
human-understandable reason.

C FURTHER EXPERIMENT DETAILS

This section provides additional details regarding our experimental setup to ensure full reproducibil-
ity. We outline the specific implementation environment, the prompts used to query the MLLM, and
a comprehensive summary of all hyperparameters used in our framework.
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C.1 IMPLEMENTATION DETAILS

Model and Architecture. Our experiments are conducted using the InternVL3-8B (Zhu et al.,
2025) model as the frozen MLLM backbone. This model is based on the InternViT-300M-448px-
V2.5 vision encoder and a Qwen2.5-7B-based language model (Qwen et al., 2025). The language
model comprises 28 transformer layers, with each layer containing 28 attention heads. This results
in a total of Ntotal = 28 × 28 = 784 attention heads available for the representational separability
analysis (RSA). The hidden dimension of each attention head is dhead = 128.

Hardware and Software. All experiments were performed on a single server running Ubuntu
22.04.4 LTS. The hardware configuration features dual AMD EPYC 75F3 CPUs (128 logical cores),
755 GB of system RAM, and a single NVIDIA RTX A6000 GPU with 48 GB of VRAM. Our
implementation is built upon PyTorch (v2.3.0) and the Hugging Face Transformers library (v4.51.3),
utilizing CUDA 12.1 for GPU acceleration.

C.2 PROMPT DETAILS

During the development of our framework, we explored several prompts to elicit the most effective
global context vector from the MLLM. Below are the main variants we considered. For all experi-
ments reported in this paper, we utilized the structured system prompt (Prompt 3), which we found
to yield the most consistent and task-aligned representations for anomaly detection.

Prompt 1 (General Query).

“If there are any abnormal events that occurred in the video that deviate from the
normal scene, please identify them and describe what happened.”

Prompt 2 (Structured Response Query).

“Please carefully watch the video and identify if any abnormal events occur. Your
task is to first provide a clear and concise summary of the video content, then
state whether any mentioned abnormal events are present. If yes, specify which
events occurred and provide a detailed description of what happened, including
the timing and context. If no, explain why you believe the video is normal. Please
structure your response as follows:

• Yes or No answer first with anomaly detection.
• Video Summary: A brief summary of the video content.
• Details: If Yes, describe the abnormal events in detail. If No, explain your

reasoning.
Take your time to analyze the video thoroughly and ensure your assessment is
accurate. Take a deep breath and work on this problem step-by-step.”

Prompt 3 (Final System Prompt).

System Identity
You are a professional AI assistant specialized in video analysis, focusing on ab-
normal behavior detection in real-time surveillance.
Task Context
Analyse if there are abnormal events happened in video frames.
Core Objectives

1. Analyze the following video frames.
2. Detect high-risk abnormal events which should not happen in this video.
3. Perform spatiotemporal analysis across consecutive frames.

Output Requirements
Implement a two-level response system with Yes or No first, then subsequent para-
graphs must include: Detected event type(s), Detailed description of the behavior,
and Risk level assessment (low/medium/high).
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C.3 HYPERPARAMETER CONFIGURATION

Table 6 provides a comprehensive summary of all hyperparameters used throughout our framework,
including those for LAE discovery, HMC training, and real-time inference.

Table 6: Consolidated list of hyperparameters for the SteerVAD framework.

Hyperparameter Value Description
Data Processing & Model Architecture

L 48 frames The duration of each non-overlapping video segment.
F 16 frames The number of frames sampled from each segment as input to the MLLM.
K 4 The number of top-scoring latent anomaly experts (LAEs) selected by RSA.

HMC Training
Epochs 1000 The total number of training epochs for the HMC and anomaly scorer.
Batch Size 64 The number of samples per batch during training.
Learning Rate 1× 10−3 The initial learning rate for the Adam optimizer.
λreg 0.1 The weight for the sparsity regularization loss (Lreg).
dhidden 128 The hidden dimension of the MLP in the Global Scrutiny Gate (GSG).
r 4 The low-rank dimension of the adapters in the Local Gating Module (LGM).

Inference & Analysis
σg 6.0 The standard deviation of the 1D Gaussian kernel for temporal smoothing.
τanomaly 0.5 The score threshold to trigger the optional post-hoc explanation module.
ϵ 1× 10−8 A small constant for numerical stability in the RSA score calculation.

D FURTHER EXPERIMENTS

D.1 PERFORMANCE EVALUATION

To provide a comprehensive understanding of the practicality of our framework, this section details
the computational performance of SteerVAD. We evaluate the model size, training resource require-
ments, and the inference costs associated with the trainable components, demonstrating that our
active intervention approach is not only effective but also remarkably efficient.

Table 7: Architectural size and computational complexity of SteerVAD’s trainable modules.

Component Parameters Size / Complexity
Parameter Count & Disk Size
Global Scrutiny Gate 459,265 —
Local Gating Module 59,392 —
HMC (Total) 518,657 0.99 MB
Anomaly Scorer 513 <0.01 MB

Total Trainable 519,170 ˜0.99 MB
Computational Complexity (per inference)
HMC FLOPs 1,037,568
Scorer FLOPs 1,024
Total Added FLOPs 1,038,592

Model Size and Complexity. The primary advantage of our tuning-free framework is the minimal
size of the trainable modules. The hierarchical meta-controller (HMC) and the anomaly scorer
operate on top of a frozen, multi-billion parameter MLLM, yet their own footprint is negligible.
Table 7 summarizes the architectural and size statistics of these components, based on the final
configuration used in our experiments (K = 4 experts). The total number of trainable parameters
is approximately 0.52 million, which occupies about 1 MB of disk space. This is several orders
of magnitude smaller than the frozen backbone, highlighting the parameter-efficient nature of our
method. The computational overhead is similarly minimal, requiring just over 1 million FLOPs per
segment inference, ensuring that the bottleneck remains the single forward pass through the MLLM.
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Table 8: Training cost statistics for calibrating the HMC and Anomaly Scorer.

Metric Value
Total Training Epochs 1000
Batch Size 64
Learning Rate 0.001

Total Training Time 27.83 seconds (0.46 minutes)
Average Time per Epoch 0.03 seconds
Peak GPU Memory Usage 203.88 MB
Training Throughput 4168.81 samples/second

Training Cost. The calibration of the HMC and anomaly scorer is extremely efficient. The train-
ing is performed on a small, representative calibration set randomly sampled 1% videos from the
training set from UCF-Crime and Xd-Violence. As detailed in Table 8, the entire training process
completes in approximately one minute on a single commodity GPU. The memory footprint is mini-
mal, and the training throughput is exceptionally high. This low-cost calibration phase makes Steer-
VAD easy to adapt to new domains or datasets without incurring the prohibitive expenses associated
with fine-tuning large foundation models.

Table 9: Inference cost as a function of the number of sampled frames (F ) per segment.

Sampled Frames (F ) Avg. Inference Time (s) Peak VRAM (GB)
4 0.43 17.2
8 0.78 18.3

16 1.52 20.4
24 2.29 22.3

Inference Cost Analysis. The primary factor influencing inference cost in our framework is the
number of frames, F , sampled per video segment to be processed by the MLLM. Table 9 presents the
trade-off between the temporal density of this sampling and the resulting computational demands in
terms of latency and GPU memory. As expected, both inference time and peak VRAM usage scale
near-linearly with the number of sampled frames. This analysis demonstrates a clear and predictable
trade-off, allowing practitioners to balance detection performance with their available computational
budget. The configuration used in our main experiments (F = 16) was chosen to provide a robust
temporal context while remaining well within the capacity of common research hardware.

Table 10: Zero-shot generalization results. The model is trained on the source dataset and evaluated
on the target dataset without any adaptation.

Training Source Evaluation Target Performance
UCF-Crime XD-Violence 71.31 (AP %)

XD-Violence UCF-Crime 81.04 (AUC %)

Zero-Shot Generalization. Our SteerVAD also shows strong zero-shot capabilities. As presented
in Table 10, with the HMC module calibrated on one dataset and evaluated on a completely unseen
one, the framework demonstrates a remarkable capacity for transfer, retaining a high level of per-
formance despite the significant domain shift between UCF-Crime and XD-Violence. The results
strongly suggest that the hierarchical meta-controller does not merely overfit to superficial, domain-
specific cues within the small calibration set. Instead, it learns a more abstract and generalizable
strategy for identifying and amplifying the geometric signatures of anomalous events within MLLM
representations, proving its utility as a robust and adaptable module.
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Table 11: Cross-model generalization performance. The framework is applied to different most
widely used and advanced frozen MLLM backbones

Backbone UCF-Crime (AUC %) XD-Violence (AP %)
LLaVA-OV (Li et al., 2024) 81.52 74.65

Qwen2.5VL (Bai et al., 2025) 84.11 79.82
InternVL3 (Zhu et al., 2025) 87.15 83.02

Cross-Model Generalization. Our active manifold steering strategy is a fundamental principle
rather than a technique coupled to a specific architecture. We applied the SteerVAD framework
to other prominent MLLMs, as presented in Table 11, different models including LLaVA-OV and
Qwen2.5VL with our steering mechanism unlocks strong anomaly detection capabilities. On both
the UCF-Crime and XD-Violence datasets, these models achieve a level of performance that is
highly competitive. This outcome powerfully suggests that the existence of latent, geometrically
steerable expert subspaces is a general property of MLLMs. SteerVAD framework should be un-
derstood as a model-agnostic paradigm for adapting a wide range of frozen foundation models to
complex perception tasks, rather than a solution tied to a single model.

D.2 QUALITATIVE ANALYSIS

Original Rectified

Figure 5: Semantic impact of feature rectification on an example from XD-Violence.

Visualization of Attention The improved geometric organization of our SteerVAD corresponds
to a refined semantic attention mechanism, as evidenced by the activation heatmaps in Figure 5.
Initially, feature activations from the base model are scattered, indicating a failure to prioritize the
semantically critical regions and an apparent distraction by biased objects within the video frames.
Upon rectification by our framework, the focus of SteerVAD is unequivocally sharpened. The result-
ing feature activations are highly concentrated and precisely highlight the key anomalous entities,
such as the central figures in the video. This demonstrates a core capability of our hierarchical meta-
controller: it dynamically modulates the feature channels to amplify anomaly-relevant signals and
attenuate noise, thereby correcting the semantic gaze of the model for improved task performance.

Case Studies on Anomaly Detection. Figure 6 demonstrates the end to end effectiveness and
robustness of SteerVAD across normal and abnormal examples from both benchmark datasets. For
an abnormal event in UCF-Crime, the anomaly score curve accurately rises at the moment of action,
a conclusion supported by the generated explanation. Crucially, the model maintains a low score in
a busy but normal surveillance scene, demonstrating resilience to false positives. This robustness
extends to the challenging XD-Violence dataset. The model precisely captures abnormal event while
correctly discerning a high motion sports clip as normal, a key challenge that confounds many
methods. This ability to distinguish chaotic yet benign activity from genuine threats, coupled with
the semantic coherence of the generated explanations, confirms that our framework delivers not only
quantitatively superior results but also practically reliable and interpretable detections.
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No. The video shows a view from above an atrium or indoor space, likely 
within a mall or a similar environment. People can be seen walking, sitting, 
and interacting in various parts of the space. There are no visible signs of 
damage, disturbance, or unusual behavior that would indicate abnormal 

activities.

Yes. The video shows significant damage to a gas station in broad daylight. 
There appears to have been an explosion, as indicated by the bright light flash 

in one of the frames. Following the explosion, there's visible debris and 
destruction around the gas station, with metal sheets and other materials 

scattered across the pavement.

(a) Qualitative results on UCF-Crime dataset.
No. The video shows two individuals inside a car at night. The scene 
alternates between close-ups of the individuals as they converse while 
driving. They are evading police pursuit, as indicated by the flashing 

lights of several police vehicles in the background.

Yes. The video depicts a physical altercation between hockey players on the 
ice. Players from opposing teams grapple and push each other, leading to a 
group scuffle near the goal. Referees attempt to intervene and separate the 

players, but the physical conflict persists.

(b) Qualitative results on XD-Violence dataset.

Figure 6: Qualitative results of SteerVAD on UCF-Crime and XD-Violence datasets. Each panel
shows a representative video snippet and the anomaly curve with one normal and one abnormal
video. The shaded regions denote the ground truth. Further generated descriptions are also provided.

D.3 ADDITIONAL VISUALIZATIONS

To further illustrate the effectiveness and interpretability of our framework, we provide additional
qualitative results and attention visualizations.

Figures 7 and 8 present a comprehensive selection of qualitative results on the UCF-Crime and XD-
Violence datasets, respectively showcasing representative examples from all anomaly categories
within each dataset. These examples reinforce the findings from our main case studies and demon-
strate the consistent ability of SteerVAD to generate precise anomaly scores and coherent textual
explanations across a wide variety of complex scenes. The inclusion of all categories highlights
the model’s robustness in correctly identifying diverse anomalies while avoiding false positives in
dynamic but normal environments, further validating the practical reliability of our method.

Furthermore, Figures 9 and 10 offer more visualizations the semantic impact of our manifold rec-
tification process. We visualize the model’s effective gaze both before and after intervention. The
original focus heatmaps frequently reveal the MLLM’s inherent biases, showing attention scattered
across irrelevant background elements or non-discriminative objects. In stark contrast, the rectified
focus heatmaps demonstrate a clear and decisive shift. Our HMC successfully steers the model’s
attention to the core anomalous action, providing compelling visual evidence that our method not
only improves geometric separability but also enforces a more task-relevant semantic understanding.

E LLM USAGE STATEMENT

In the preparation of this manuscript, the large language model (LLM) is solely utilized for the pur-
pose of language polishing and grammar correction to improve clarity and readability. We confirm
that all core research ideas, the conceptual framework, experimental design, data analysis are en-
tirely the original work of the authors. The authors take full and sole responsibility for the accuracy,
integrity, and all claims made within this work.
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Yes. In the video frames, a person approaches a dog on the street. The person engages with the dog, 
appearing to restrain or control it. The sequence suggests the person is potentially trying to hit the dog 

in the area, which could indicate an attempt to abuse or attack to the dog for some reason.

No. The video shows a busy road at night with multiple vehicles, including taxis and private cars, 
moving in both directions. The traffic appears to follow the flow smoothly. The scene is consistent 

with typical nighttime traffic, and the vehicles are seen behaving normally on the road. 

Yes. The video shows a group of people engaging in what appears to be a physical altercation or brawl 
in what looks like a retail store or a small shop. The situation intensifies as more individuals join in. 
The people are grabbing, pushing, and throwing each other, indicating a violent conflict. The setting 

suggests a chaotic scenario, possibly involving an assault or a fight.

Yes. The video shows a quiet street with cars parked on both sides. Suddenly, there is a bright flash of 
light followed by visible smoke and flames emerging from a dark-colored car. The light and smoke 

suggest the car has caught fire. The incident involves arson, which poses a significant fire risk to 
nearby properties and individuals. 

Yes. The individual is attempting to break into a home by prying open a door using their foot and hand. 
This action indicates unauthorized entry, which is part of burglary. The behavior demonstrates a clear 

intent to unlawfully gain access to the premises, posing a significant security risk.

Yes. The video captures a busy urban road with multiple cars. Suddenly, a white vehicle comes to an 
abrupt stop, and individuals appear to exit the vehicle hurriedly. Law enforcement officers in tactical 

gear respond swiftly to the scene. Armed personnel are seen surrounding the vehicle, indicating a 
violent context such as a robbery or an abduction scenario. 

Yes. The individuals in the video appear to be involved in a physical altercation. In the frames, we can 
see pushing, falling, and what seems like attempts to restrain each other. The confrontation escalates to 

multiple people on the ground, indicating a high level of physical conflict. 

Yes. In the video, a person is seen walking towards a silver car, then talking to another individual who 
approaches on a scooter. The person in the scooter seems to be involved in a tense interaction, leading 
to the person in the white shirt opening the car door and handing over something. They then follow the 

scooter away quickly, indicating a hurried departure, which suggests a possible robbery scenario.

Yes. In the video, a motorcycle rider collides with a white van, causing the rider to fall to the ground. 
Shortly after, an explosion occurs near the fallen rider, likely due to a firework or malfunctioning 
equipment. The rider appears to be on fire and is lying on the road as the situation unfolds. Other 

motorcyclists in the vicinity are seen observing from a distance, while vehicles pass by on the road.

Yes. Two individuals appear to be engaged in a physical altercation, with one person in a blue shirt 
reaching out towards the other person who is seated. The interaction suggests a potential conflict, 

indicating a fighting event. The physical nature of the interaction could escalate, potentially leading to 
more severe consequences if not resolved quickly."

Yes. In the video, a group of individuals are interacting around a counter. One person is sitting while 
others are standing. Money appears to be exchanged hands, suggesting a transaction. The interactions 

seem confrontational, with people pointing and gesturing towards the seated person, indicating a 
coercive situation typical of a shoplifting.

Yes.  The individual is seen hitting the glass door with a hammer, causing visible damage. This 
behavior constitutes intentional destruction of property. The act of vandalism can escalate into more 

serious criminal activities and poses a risk to both property and potential bystanders.

Yes. Two individuals are seen interacting with the open back of a parked vehicle, which appears to be 
unauthorized access. The person on the left is leaning into the vehicle, possibly searching for or taking 

items, while the person on the right stands nearby, observing or assisting. This behavior suggests an 
intent to commit theft, fitting the category of burglary.

 Yes. An explosion occurs in the background, creating a burst of light and smoke. The event is sudden 
and unexpected, with visible effects spreading across the room. The risk level is high due to the 

potential danger and immediate disruption to the environment.

Yes. In the video frames, a person approaches a dog on the street. The person engages with the dog, 
appearing to restrain or control it. The sequence suggests the person is potentially trying to hit the dog 

in the area, which could indicate an attempt to abuse or attack to the dog for some reason.

No. The video shows a busy road at night with multiple vehicles, including taxis and private cars, 
moving in both directions. The traffic appears to follow the flow smoothly. The scene is consistent 

with typical nighttime traffic, and the vehicles are seen behaving normally on the road. 

Yes. The video shows a group of people engaging in what appears to be a physical altercation or brawl 
in what looks like a retail store or a small shop. The situation intensifies as more individuals join in. 
The people are grabbing, pushing, and throwing each other, indicating a violent conflict. The setting 

suggests a chaotic scenario, possibly involving an assault or a fight.

Yes. The video shows a quiet street with cars parked on both sides. Suddenly, there is a bright flash of 
light followed by visible smoke and flames emerging from a dark-colored car. The light and smoke 

suggest the car has caught fire. The incident involves arson, which poses a significant fire risk to 
nearby properties and individuals. 

Yes. The individual is attempting to break into a home by prying open a door using their foot and hand. 
This action indicates unauthorized entry, which is part of burglary. The behavior demonstrates a clear 

intent to unlawfully gain access to the premises, posing a significant security risk.

Yes. The video captures a busy urban road with multiple cars. Suddenly, a white vehicle comes to an 
abrupt stop, and individuals appear to exit the vehicle hurriedly. Law enforcement officers in tactical 

gear respond swiftly to the scene. Armed personnel are seen surrounding the vehicle, indicating a 
violent context such as a robbery or an abduction scenario. 

Yes. The individuals in the video appear to be involved in a physical altercation. In the frames, we can 
see pushing, falling, and what seems like attempts to restrain each other. The confrontation escalates to 

multiple people on the ground, indicating a high level of physical conflict. 

Yes. In the video, a person is seen walking towards a silver car, then talking to another individual who 
approaches on a scooter. The person in the scooter seems to be involved in a tense interaction, leading 
to the person in the white shirt opening the car door and handing over something. They then follow the 

scooter away quickly, indicating a hurried departure, which suggests a possible robbery scenario.

Yes. In the video, a motorcycle rider collides with a white van, causing the rider to fall to the ground. 
Shortly after, an explosion occurs near the fallen rider, likely due to a firework or malfunctioning 
equipment. The rider appears to be on fire and is lying on the road as the situation unfolds. Other 

motorcyclists in the vicinity are seen observing from a distance, while vehicles pass by on the road.

Yes. Two individuals appear to be engaged in a physical altercation, with one person in a blue shirt 
reaching out towards the other person who is seated. The interaction suggests a potential conflict, 

indicating a fighting event. The physical nature of the interaction could escalate, potentially leading to 
more severe consequences if not resolved quickly."

Yes. In the video, a group of individuals are interacting around a counter. One person is sitting while 
others are standing. Money appears to be exchanged hands, suggesting a transaction. The interactions 

seem confrontational, with people pointing and gesturing towards the seated person, indicating a 
coercive situation typical of a shoplifting.

Yes.  The individual is seen hitting the glass door with a hammer, causing visible damage. This 
behavior constitutes intentional destruction of property. The act of vandalism can escalate into more 

serious criminal activities and poses a risk to both property and potential bystanders.

Yes. Two individuals are seen interacting with the open back of a parked vehicle, which appears to be 
unauthorized access. The person on the left is leaning into the vehicle, possibly searching for or taking 

items, while the person on the right stands nearby, observing or assisting. This behavior suggests an 
intent to commit theft, fitting the category of burglary.

 Yes. An explosion occurs in the background, creating a burst of light and smoke. The event is sudden 
and unexpected, with visible effects spreading across the room. The risk level is high due to the 

potential danger and immediate disruption to the environment.

Figure 7: Further qualitative results on UCF-Crime dataset. Covered all 13 abnormal category and
normal examples.
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No. The video captures a military setting where soldiers in uniform are walking and interacting with 
vehicles. The scene shifts to a bathroom where soldiers are brushing their teeth, washing their faces, 

and performing their morning routines. 

No. The video depicts a man and a woman conversing in a warmly lit room, possibly a restaurant, with 
chandeliers and soft background lighting. The setting is a cozy environment, and the focus is on the 

interaction between the two people. The lighting and atmosphere contribute to an intimate and ordinary 
scene.

Yes. The video shows a physical altercation between ice hockey players from opposing teams. 
Initially, a confrontation occurs near the goal, escalating into a fight. Players from both teams grapple 

and push each other aggressively, with referees attempting to separate them.

Yes. The video shows two players, one in a white jersey and one in a black jersey, physically 
confronting each other. The encounter escalates into a full-scale fight involving multiple players and 

coaches. There is pushing, shoving, and possibly attempts at restraint by referees and other individuals 
trying to separate the conflicting parties.

Yes. There are visible confrontations between groups of people. Individuals in protective gear and 
others wearing high-visibility vests appear to be engaged in physical conflicts. The presence of both 

civilian groups and uniformed personnel suggests a volatile situation with possible altercations.

  Yes. The video initially shows a person marking a tree before transitioning to them standing next to 
what appears to be a remote-controlled vehicle equipped with a gun. The individual fires the weapon, 

resulting in a noticeable explosion and smoke. This is repeated in subsequent frames, where more 
smoke and sparks are visible, indicating continued firing and potential damage.

Yes. The video shows several instances of law enforcement officers, identifiable by their uniform and 
equipment, apprehending individuals. The most notable scenes include police officers escorting 

individuals through a building and outdoors, where the individuals are restrained and held.

Yes. The video shows a vehicle traveling behind a dark-colored car on a snowy road. As the car moves 
forward, it appears to gradually lose control and begins to slide across the road. It eventually crosses 

the road's centerline and seems to collide with a trailer that appears in the opposite lane.

Yes. In the initial frames, a group of men is seen in a room, causing a disruption by standing 
aggressively and confronting each other, suggesting a potential altercation. As the scene transitions, the 

room appears abandoned and cluttered, showing signs of chaos. Later, two individuals in a domestic 
setting are seen physically struggling, indicating a fight. 

Yes. There is a visible explosion near a military vehicle in the field, producing a large cloud of smoke. 
The presence of soldiers and military vehicles suggests the use of firearms in a combat scenario. 
Explosions and active combat situations pose significant risks to individuals and surroundings. 

Immediate danger to people and property is likely.

Yes. The video captures a vehicle moving on a road flanked by trees. As the vehicle approaches, an 
explosion occurs in front of it, causing a burst of flames and smoke. The impact is visible directly 

ahead of the vehicle.

Yes. The video shows police officers interacting with civilians in what appears to be a tense situation, 
involving several officers and possibly individuals obstructing their path. There is evidence of 

movement across the street, and barricades being carried, which indicates organized control measures 
potentially targeting a protest or conflict area.

Figure 8: Further qualitative results on XD-Violence dataset. Covered all 6 abnormal category and
normal examples.
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Figure 9: Further visualizations of SteerVAD on XD-Violence datasets. Our steering method effec-
tively rectify the biased or ambiguous focus on the original videos.
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Figure 10: Further visualizations of SteerVAD on UCF-Crime datasets. Our steering method effec-
tively rectify the biased or ambiguous focus on the original videos.
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